I joined Heidelberg University in April 2021 and established the group Scientific Computing and Optimization (SCOOP) at the Interdisciplinary Center for Scientific Computing (IWR).
You can find my CV here.
Research interests
My research interests include
- optimal control of partial differential equations
- large-scale optimization and its applications
- numerical linear algebra
- optimal experimental design
- optimization on manifolds
- numerical methods for partial differential equations
Recent teaching
-
2023 SSAusgewählte Kapitel der Optimierung (Seminar)
-
2023 SSMathematical Machine Learning (Seminar)
-
2022 WSGrundlagen der Optimierung (Lecture)
-
2022 WSIntroduction to Optimization (Short course)
-
2022 SSAusgewählte Kapitel der Optimierung (Seminar)
-
2022 SSEinführung in die Numerik (Lecture)
-
2021 WSGrundlagen der Optimierung (Lecture)
-
2021 SSTopics in Optimization (Seminar)
Recent events organized
-
2023-09-25 -- 2023-09-27 European Conference on Computational Optimization (EUCCO)
-
2023-02-25 -- 2023-03-04 Heidelberg Seminar on Optimal Control
-
2022-10-17 -- 2023-02-18 Optimization Seminar
-
2022-04-20 -- 2022-08-02 Optimization Seminar
-
2022-03-12 -- 2022-03-19 Heidelberg Seminar on Optimal Control
Currently supervising
-
M.Sc. Thesis of
Physics-Informed Neural Networks for Optimal Control ProblemsM.Sc. Mathematik, TU ChemnitzSupervision: Roland Herzog and Evelyn Herberg
-
B.Sc. Thesis of
Optimal Control Problems with MeasuresB.Sc. Mathematik, Heidelberg University
-
B.Sc. Thesis of
Generalized Convexity and Neatly Quasiconvex FunctionsB.Sc. Mathematik, Heidelberg UniversitySupervision: Roland Herzog and Georg Müller
-
B.Sc. Thesis of
Iterative Solution of Markov Decision ProcessesB.Sc. Mathematik, Heidelberg UniversitySupervision: Roland Herzog and Karina Koval
Latest publications
-
Advanced open source data formats for geometrically and physically coupled systemsProceedings of Asian Modelica Conference 2022, 2022
bibtex
@INPROCEEDINGS{NaumannSaakSauerzapfVettermannBeitelschmidtHerzog:2022:1, AUTHOR = {Naumann, Andreas and Saak, Jens and Sauerzapf, Stefan and Vettermann, Julia and Beitelschmidt, Michael and Herzog, Roland}, PUBLISHER = {Linköping University Electronic Press}, BOOKTITLE = {Proceedings of Asian Modelica Conference 2022}, DATE = {2022-11}, DOI = {10.3384/ecp19381}, TITLE = {Advanced open source data formats for geometrically and physically coupled systems}, }
-
First- and second-order analysis for optimization problems with manifold-valued constraintsJournal of Optimization Theory and Applications, 2022
bibtex
@ARTICLE{BergmannHerzogOrtizLopezSchiela:2022:1, AUTHOR = {Bergmann, Ronny and Herzog, Roland and Ortiz López, Julián and Schiela, Anton}, PUBLISHER = {Springer Science and Business Media LLC}, DATE = {2022-09}, DOI = {10.1007/s10957-022-02107-x}, EPRINT = {2110.04882}, EPRINTTYPE = {arXiv}, JOURNALTITLE = {Journal of Optimization Theory and Applications}, TITLE = {First- and second-order analysis for optimization problems with manifold-valued constraints}, }
-
A manifold of planar triangular meshes with complete Riemannian metricMathematics of Computation 92(339), p.1-50, 2022
bibtex
@ARTICLE{HerzogLoayzaRomero:2022:1, AUTHOR = {Herzog, Roland and Loayza-Romero, Estefanía}, PUBLISHER = {American Mathematical Society (AMS)}, DATE = {2022-09}, DOI = {10.1090/mcom/3775}, EPRINT = {2012.05624}, EPRINTTYPE = {arXiv}, JOURNALTITLE = {Mathematics of Computation}, NUMBER = {339}, PAGES = {1--50}, TITLE = {A manifold of planar triangular meshes with complete Riemannian metric}, VOLUME = {92}, }
-
Fenchel duality and a separation theorem on Hadamard manifoldsSIAM Journal on Optimization 32(2), p.854-873, 2022
bibtex
@ARTICLE{SilvaLouzeiroBergmannHerzog:2022:1, AUTHOR = {Silva Louzeiro, Maurício and Bergmann, Ronny and Herzog, Roland}, PUBLISHER = {Society for Industrial \& Applied Mathematics (SIAM)}, DATE = {2022-05}, DOI = {10.1137/21m1400699}, EPRINT = {2102.11155}, EPRINTTYPE = {arXiv}, JOURNALTITLE = {SIAM Journal on Optimization}, NUMBER = {2}, PAGES = {854--873}, TITLE = {Fenchel duality and a separation theorem on Hadamard manifolds}, VOLUME = {32}, }
-
Optimization and Control for Partial Differential Equations2022
bibtex
@COLLECTION{HerzogHeinkenschlossKaliseStadlerTrelat:2022:1, EDITOR = {Herzog, Roland and Heinkenschloss, Matthias and Kalise, Dante and Stadler, Georg and Trélat, Emmanuel}, PUBLISHER = {De Gruyter}, DATE = {2022}, DOI = {10.1515/9783110695984}, SERIES = {Radon Series on Computational and Applied Mathematics}, TITLE = {Optimization and Control for Partial Differential Equations}, VOLUME = {29}, }