I have been a postdoctoral researcher at the Scientific Computing and Optimization group at the Interdisciplinary Center for Scientific Computing of Heidelberg University since September 2022.

You can find my CV here.

Research Interests

My research mainly focuses on

  • Mathematical Machine Learning
  • Optimization with partial differential equations
  • Variational discretization
  • Model Order Reduction

Recent teaching

Recent events organized

Currently supervising

  • M.Sc. Thesis of Isabel Gernand:
    Prediction of Optimal Trajectories by Neural Networks
    M.Sc. Mathematik, Heidelberg University
    Supervision: Roland Herzog and Evelyn Herberg
  • B.Sc. Thesis of Karina Kniel:
    Parametric Linear Optimization Using Neural Networks
    B.Sc. Mathematik, Heidelberg University
    Supervision: Roland Herzog and Evelyn Herberg

Latest publications

  • Variationelle Diskretisierung für Optimale Steuerung mit Maßkontrollen
    Mitteilungen der Deutschen Mathematiker-Vereinigung 31(3), p.156-159, 2023
    bibtex
    @ARTICLE{Herberg:2023:2,
      AUTHOR = {Herberg, Evelyn},
      PUBLISHER = {Walter de Gruyter},
      DATE = {2023-09},
      DOI = {10.1515/dmvm-2023-0053},
      JOURNALTITLE = {Mitteilungen der Deutschen Mathematiker-Vereinigung},
      NUMBER = {3},
      PAGES = {156--159},
      TITLE = {Variationelle Diskretisierung für Optimale Steuerung mit Maßkontrollen},
      VOLUME = {31},
    }
  • Lecture Notes: Neural Network Architectures
    2023
    bibtex
    @ONLINE{Herberg:2023:1,
      AUTHOR = {Herberg, Evelyn},
      DATE = {2023},
      EPRINT = {2304.05133},
      EPRINTTYPE = {arXiv},
      TITLE = {Lecture Notes: Neural Network Architectures},
    }
  • Evelyn Herberg, Roland Herzog and Frederik Köhne
    Time regularization in optimal time variable learning
    2023
    bibtex
    @ONLINE{HerbergHerzogKoehne:2023:1,
      AUTHOR = {Herberg, Evelyn and Herzog, Roland and Köhne, Frederik},
      DATE = {2023},
      EPRINT = {2306.16111},
      EPRINTTYPE = {arXiv},
      TITLE = {Time regularization in optimal time variable learning},
    }
  • Evelyn Herberg and Michael Hinze
    Variational discretization approach applied to an optimal control problem with bounded measure controls
    Optimization and Control for Partial Differential Equations, p.113-136, 2022
    bibtex
    @INCOLLECTION{HerbergHinze:2022:2,
      AUTHOR = {Herberg, Evelyn and Hinze, Michael},
      PUBLISHER = {De Gruyter},
      BOOKTITLE = {Optimization and Control for Partial Differential Equations},
      DATE = {2022-03},
      DOI = {10.1515/9783110695984-006},
      PAGES = {113--136},
      TITLE = {Variational discretization approach applied to an optimal control problem with bounded measure controls},
    }
  • Harbir Antil, Hugo Díaz and Evelyn Herberg
    An optimal time variable learning framework for deep neural networks
    2022
    bibtex
    @ONLINE{AntilDiazHerberg:2022:1,
      AUTHOR = {Antil, Harbir and Díaz, Hugo and Herberg, Evelyn},
      DATE = {2022},
      EPRINT = {2204.08528},
      EPRINTTYPE = {arXiv},
      TITLE = {An optimal time variable learning framework for deep neural networks},
    }