I have been the deputy group leader and a postdoctoral researcher at the Scientific Computing and Optimization group at the Interdisciplinary Center for Scientific Computing of Heidelberg University since September 2021.
You can find my CV here.
Research Interests
My research mainly focuses on
- nonsmooth optimization
- optimal control of PDEs
- (nonlinear) preconditioning of systems of nonsmooth PDEs
Recent teaching
-
2024 WSGrundlagen der Optimierung (Lecture)
-
2024 WSInfinite-Dimensional Optimization (Lecture)
-
2024 WSMathematical Machine Learning (Seminar)
-
2024 SSLineare Algebra II (Lecture)
-
2023 WSLineare Algebra I (Lecture)
-
2023 SSNonlinear Optimization (Lecture)
-
2023 SSSoftware Praktikum (Software practical)
-
2022 WSGrundlagen der Optimierung (Lecture)
-
2022 WSIntroduction to Optimization (Short course)
-
2022 SSAusgewählte Kapitel der Optimierung (Seminar)
-
2022 SSEinführung in die Numerik (Lecture)
Recent events organized
-
2025-09-01 -- 2025-09-05 European Conference on Numerical Mathematics and Advanced Applications (ENUMATH)
-
2025-02-22 -- 2025-03-01 Heidelberg Seminar on Optimal Control
-
2024-02-24 -- 2024-03-02 Heidelberg Seminar on Optimal Control
-
2023-09-25 -- 2023-09-27 European Conference on Computational Optimization (EUCCO)
-
2023-02-25 -- 2023-03-04 Heidelberg Seminar on Optimal Control
Currently supervising
-
M.Sc. Thesis of
The Simplex Method on ManifoldsM.Sc. Mathematik, Heidelberg UniversitySupervision: Roland Herzog, Peter Albers and Georg Müller
-
B.Sc. Thesis of
Sorting by Linear ProgrammingB.Sc. Mathematik, Heidelberg UniversitySupervision: Roland Herzog and Georg Müller
-
B.Sc. Thesis of
Parsen von Abhängigkeiten und Referenzbeziehungen in verteilten LaTeX-Dokumenten50% B.Sc. Informatik, Heidelberg UniversitySupervision: Roland Herzog and Georg Müller
-
B.Sc. Thesis of
The Courant-Fisher Theorem from an Optimization PerspectiveB.Sc. Mathematik, Heidelberg UniversitySupervision: Roland Herzog and Georg Müller
-
B.Sc. Thesis of
Multimodel Linear Least-Squares FittingB.Sc. Mathematik, Heidelberg UniversitySupervision: Roland Herzog and Georg Müller
-
B.Sc. Thesis of
A Regularized Newton MethodB.Sc. Informatik, Heidelberg UniversitySupervision: Roland Herzog and Georg Müller
-
B.Sc. Thesis of
Structural Optimization using Linear Programming50% B.Sc. Mathematik, Heidelberg UniversitySupervision: Roland Herzog and Georg Müller
Latest publications
-
A descent method for nonsmooth multiobjective optimization in Hilbert spacesJournal of Optimization Theory and Applications, 2024
bibtex
@ARTICLE{SonntagGebkenMuellerPeitzVolkwein:2024:1, AUTHOR = {Sonntag, Konstantin and Gebken, Bennet and Müller, Georg and Peitz, Sebastian and Volkwein, Stefan}, PUBLISHER = {Springer Science and Business Media LLC}, DATE = {2024-09}, DOI = {10.1007/s10957-024-02520-4}, JOURNALTITLE = {Journal of Optimization Theory and Applications}, TITLE = {A descent method for nonsmooth multiobjective optimization in Hilbert spaces}, }
-
Solving semi-linear elliptic optimal control problems with $L^1$-cost via regularization and RAS-preconditioned Newton methods,
2024
bibtex
@ONLINE{CiaramellaKartmannMueller:2024:1, AUTHOR = {Ciaramella, Gabriele and Kartmann, Michael and Müller, Georg}, DATE = {2024}, EPRINT = {2411.00546}, EPRINTTYPE = {arXiv}, TITLE = {Solving semi-linear elliptic optimal control problems with $L^1$-cost via regularization and RAS-preconditioned Newton methods}, }
-
Multiobjective optimization of non-smooth PDE-constrained problems,
2023
bibtex
@ONLINE{BernreutherDellnitzGebkenMuellerPeitzSonntagVolkwein:2023:1, AUTHOR = {Bernreuther, Marco and Dellnitz, Michael and Gebken, Bennet and Müller, Georg and Peitz, Sebastian and Sonntag, Konstantin and Volkwein, Stefan}, DATE = {2023}, EPRINT = {2308.01113}, EPRINTTYPE = {arXiv}, TITLE = {Multiobjective optimization of non-smooth PDE-constrained problems}, }
-
Efficient scalarization in multiobjective optimal control of a nonsmooth PDEComputational Optimization and Applications, 2022
bibtex
@ARTICLE{BernreutherMuellerVolkwein:2022:2, AUTHOR = {Bernreuther, Marco and Müller, Georg and Volkwein, Stefan}, PUBLISHER = {Springer Science and Business Media LLC}, DATE = {2022-08}, DOI = {10.1007/s10589-022-00390-y}, JOURNALTITLE = {Computational Optimization and Applications}, TITLE = {Efficient scalarization in multiobjective optimal control of a nonsmooth PDE}, }
-
Reduced basis model order reduction in optimal control of a nonsmooth semilinear elliptic PDEOptimization and Control for Partial Differential Equations, p.1-32, 2022
bibtex
@INCOLLECTION{BernreutherMuellerVolkwein:2022:1, AUTHOR = {Bernreuther, Marco and Müller, Georg and Volkwein, Stefan}, PUBLISHER = {De Gruyter}, BOOKTITLE = {Optimization and Control for Partial Differential Equations}, DATE = {2022-03}, DOI = {10.1515/9783110695984-001}, PAGES = {1--32}, TITLE = {Reduced basis model order reduction in optimal control of a nonsmooth semilinear elliptic PDE}, }
-
A nonlinear optimized Schwarz preconditioner for elliptic optimal control problemsDomain Decomposition Methods in Science and Engineering XXVI, p.391-398, 2022
bibtex
@INCOLLECTION{CiaramellaKwokMueller:2022:1, AUTHOR = {Ciaramella, Gabriele and Kwok, Felix and Müller, Georg}, EDITOR = {Brenner, Susanne C. and Chung, Eric and Klawonn, Axel and Kwok, Felix and Xu, Jinchao and Zou, Jun}, PUBLISHER = {Springer International Publishing}, BOOKTITLE = {Domain Decomposition Methods in Science and Engineering XXVI}, DATE = {2022}, DOI = {10.1007/978-3-030-95025-5_41}, EPRINT = {2104.00274}, EPRINTTYPE = {arXiv}, PAGES = {391--398}, TITLE = {A nonlinear optimized Schwarz preconditioner for elliptic optimal control problems}, }
-
Multiobjective optimal control of a non-smooth semilinear elliptic partial differential equationESAIM: Control, Optimisation and Calculus of Variations 27, 2021
bibtex
@ARTICLE{ChristofMueller:2021:1, AUTHOR = {Christof, Constantin and Müller, Georg}, PUBLISHER = {EDP Sciences}, DATE = {2021}, DOI = {10.1051/cocv/2020060}, JOURNALTITLE = {ESAIM: Control, Optimisation and Calculus of Variations}, PAGES = {S13}, TITLE = {Multiobjective optimal control of a non-smooth semilinear elliptic partial differential equation}, VOLUME = {27}, }
-
Optimal Control of Time-Discretized Contact Problems,
2019
bibtex
@THESIS{Mueller:2019:1, AUTHOR = {Müller, Georg}, INSTITUTION = {University of Bayreuth}, DATE = {2019}, EPRINT = {urn:nbn:de:bvb:703-epub-4379-0}, EPRINTTYPE = {urn}, TITLE = {Optimal Control of Time-Discretized Contact Problems}, TYPE = {phdthesis}, }