I have been the deputy group leader and a postdoctoral researcher at the Scientific Computing and Optimization group at the Interdisciplinary Center for Scientific Computing of Heidelberg University since September 2021.

You can find my CV here.

Research Interests

My research mainly focuses on

  • nonsmooth optimization
  • optimal control of PDEs
  • (nonlinear) preconditioning of systems of nonsmooth PDEs

Recent teaching

Recent events organized

Currently supervising

  • B.Sc. Thesis of Gero Brunke:
    Sorting by Linear Programming
    B.Sc. Mathematik, Heidelberg University
    Supervision: Roland Herzog and Georg Müller
  • B.Sc. Thesis of Rebekka Bernard:
    Lineare Kleinste-Quadrate-Aufgaben mit mehreren Modellen
    B.Sc. Mathematik, Heidelberg University
    Supervision: Roland Herzog and Georg Müller
  • B.Sc. Thesis of Jan Müller:
    A Regularized Newton Method
    B.Sc. Informatik, Heidelberg University
    Supervision: Roland Herzog and Georg Müller
  • B.Sc. Thesis of Johannes Kamlage:
    Structural Optimization using Linear Programming
    50% B.Sc. Mathematik, Heidelberg University
    Supervision: Roland Herzog and Georg Müller

Latest publications

  • Konstantin Sonntag, Bennet Gebken, Georg Müller, Sebastian Peitz and Stefan Volkwein
    A descent method for nonsmooth multiobjective optimization in Hilbert spaces
    Journal of Optimization Theory and Applications 203(1), p.455-487, 2024
    bibtex
    @ARTICLE{SonntagGebkenMuellerPeitzVolkwein:2024:1,
      AUTHOR = {Sonntag, Konstantin and Gebken, Bennet and Müller, Georg and Peitz, Sebastian and Volkwein, Stefan},
      PUBLISHER = {Springer Science and Business Media LLC},
      DATE = {2024-09},
      DOI = {10.1007/s10957-024-02520-4},
      JOURNALTITLE = {Journal of Optimization Theory and Applications},
      NUMBER = {1},
      PAGES = {455--487},
      TITLE = {A descent method for nonsmooth multiobjective optimization in Hilbert spaces},
      VOLUME = {203},
    }
  • Gabriele Ciaramella, Michael Kartmann and Georg Müller
    Solving semi-linear elliptic optimal control problems with $L^1$-cost via regularization and RAS-preconditioned Newton methods, 2024
    bibtex
    @ONLINE{CiaramellaKartmannMueller:2024:1,
      AUTHOR = {Ciaramella, Gabriele and Kartmann, Michael and Müller, Georg},
      DATE = {2024},
      EPRINT = {2411.00546},
      EPRINTTYPE = {arXiv},
      TITLE = {Solving semi-linear elliptic optimal control problems with $L^1$-cost via regularization and RAS-preconditioned Newton methods},
    }
  • Marco Bernreuther, Michael Dellnitz, Bennet Gebken, Georg Müller, Sebastian Peitz, Konstantin Sonntag and Stefan Volkwein
    Multiobjective optimization of non-smooth PDE-constrained problems, 2023
    bibtex
    @ONLINE{BernreutherDellnitzGebkenMuellerPeitzSonntagVolkwein:2023:1,
      AUTHOR = {Bernreuther, Marco and Dellnitz, Michael and Gebken, Bennet and Müller, Georg and Peitz, Sebastian and Sonntag, Konstantin and Volkwein, Stefan},
      DATE = {2023},
      EPRINT = {2308.01113},
      EPRINTTYPE = {arXiv},
      TITLE = {Multiobjective optimization of non-smooth PDE-constrained problems},
    }
  • Marco Bernreuther, Georg Müller and Stefan Volkwein
    Efficient scalarization in multiobjective optimal control of a nonsmooth PDE
    Computational Optimization and Applications, 2022
    bibtex
    @ARTICLE{BernreutherMuellerVolkwein:2022:2,
      AUTHOR = {Bernreuther, Marco and Müller, Georg and Volkwein, Stefan},
      PUBLISHER = {Springer Science and Business Media LLC},
      DATE = {2022-08},
      DOI = {10.1007/s10589-022-00390-y},
      JOURNALTITLE = {Computational Optimization and Applications},
      TITLE = {Efficient scalarization in multiobjective optimal control of a nonsmooth PDE},
    }
  • Marco Bernreuther, Georg Müller and Stefan Volkwein
    Reduced basis model order reduction in optimal control of a nonsmooth semilinear elliptic PDE
    Optimization and Control for Partial Differential Equations, p.1-32, 2022
    bibtex
    @INCOLLECTION{BernreutherMuellerVolkwein:2022:1,
      AUTHOR = {Bernreuther, Marco and Müller, Georg and Volkwein, Stefan},
      PUBLISHER = {De Gruyter},
      BOOKTITLE = {Optimization and Control for Partial Differential Equations},
      DATE = {2022-03},
      DOI = {10.1515/9783110695984-001},
      PAGES = {1--32},
      TITLE = {Reduced basis model order reduction in optimal control of a nonsmooth semilinear elliptic PDE},
    }
  • Gabriele Ciaramella, Felix Kwok and Georg Müller
    A nonlinear optimized Schwarz preconditioner for elliptic optimal control problems
    Domain Decomposition Methods in Science and Engineering XXVI, p.391-398, 2022
    bibtex
    @INCOLLECTION{CiaramellaKwokMueller:2022:1,
      AUTHOR = {Ciaramella, Gabriele and Kwok, Felix and Müller, Georg},
      EDITOR = {Brenner, Susanne C. and Chung, Eric and Klawonn, Axel and Kwok, Felix and Xu, Jinchao and Zou, Jun},
      PUBLISHER = {Springer International Publishing},
      BOOKTITLE = {Domain Decomposition Methods in Science and Engineering XXVI},
      DATE = {2022},
      DOI = {10.1007/978-3-030-95025-5_41},
      EPRINT = {2104.00274},
      EPRINTTYPE = {arXiv},
      PAGES = {391--398},
      TITLE = {A nonlinear optimized Schwarz preconditioner for elliptic optimal control problems},
    }
  • Constantin Christof and Georg Müller
    Multiobjective optimal control of a non-smooth semilinear elliptic partial differential equation
    ESAIM: Control, Optimisation and Calculus of Variations 27, 2021
    bibtex
    @ARTICLE{ChristofMueller:2021:1,
      AUTHOR = {Christof, Constantin and Müller, Georg},
      PUBLISHER = {EDP Sciences},
      DATE = {2021},
      DOI = {10.1051/cocv/2020060},
      JOURNALTITLE = {ESAIM: Control, Optimisation and Calculus of Variations},
      PAGES = {S13},
      TITLE = {Multiobjective optimal control of a non-smooth semilinear elliptic partial differential equation},
      VOLUME = {27},
    }
  • Optimal Control of Time-Discretized Contact Problems, 2019
    bibtex
    @THESIS{Mueller:2019:1,
      AUTHOR = {Müller, Georg},
      INSTITUTION = {University of Bayreuth},
      DATE = {2019},
      EPRINT = {urn:nbn:de:bvb:703-epub-4379-0},
      EPRINTTYPE = {urn},
      TITLE = {Optimal Control of Time-Discretized Contact Problems},
      TYPE = {phdthesis},
    }