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Übungsaufgabe I-13.1. (Koordinatendatendarstellung von Vektoren)

Gegeben seien die folgenden Kombinationen von Vektorräumen 𝑉 mit Basen 𝐵 und Vektoren
𝑣 ∈ 𝑉 . Bestimmen Sie für jede Kombination die Koordinatendarstellung von 𝑣 bzgl. 𝐵.

(a) 𝑉 := R4 über (R, +, ·), 𝐵 :=
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(b) 𝑉 := (P({1, 2, 3, 4}), △, ⊙) über (Z2, +2, ·2) ,𝐵 := ({1, 3}, {1, 2, 3}, {1, 4}, {1, 2}) , 𝑣 := {2, 3, 4}

Lösung.

(a) Bei den Standardvektorräumen liefert ein Koeffizientenvergleich in einer Linearkombinati-
on direkt das gesuchte lineare Gleichungssystem mit der erweiterten Koeffizientenmatrix
der Form 

1 1 1 1 0
0 1 0 0 1
0 0 1 0 2
0 0 0 1 3

 {

1 0 0 0 −6
0 1 0 0 1
0 0 1 0 2
0 0 0 1 3


in deren letzter Spalte nun der gesuchte Koordinatenvektor steht.

(b) Wir machen den Ansatz

{2, 3, 4} = 𝛼1{1, 3}△𝛼2{1, 2, 3}△𝛼3{1, 4}△𝛼4{1, 2}△.
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Im rechten Term ist {1} genau dann enthalten, wenn sich alle Koeffizienten zu 0 aufaddie-
ren. Analoge Vergleiche für die jeweiligen Einelementigen Mengen zu 2, 3 und 4 liefern
das volle System 

1 1 1 1 0
0 1 0 1 1
1 1 0 0 1
0 0 1 0 1

 {

1 0 0 0 0
0 1 0 0 1
0 0 1 0 1
0 0 0 1 0


in deren letzter Spalte nun der gesuchte Koordinatenvektor steht.

Übungsaufgabe I-13.2. (Darstellungsmatrizen)

(a) Bestimmen Sie die Darstellungsmatrizen der linearen Abbildungen aus Übungsaufga-
be I-11.3 Teilaufgabe (a), sofern dies möglich ist, jeweils bzgl. der Standardbasen der
entsprechenden Vektorräume.

(b) Bestimmen Sie die Darstellungsmatrizen der unten stehenden linearen Abbildung
(𝑖) (P(⟦1, 3⟧), △, ·) ∋ 𝑀 ↦→ 𝑀 ∩ {1, 3} ∈ (P(⟦1, 4⟧), △, ·) über (Z2, +2, ·2) bzgl. der

Basen

({1, 2, 3}, {1, 3}, {1 2}) und ({1, 2}, {2}, {3, 4}, {4}).

(𝑖𝑖) (P(⟦1, 4⟧), △, ·) ∋ 𝑀 ↦→ 𝑒𝑀 ∈ ((Z2)⟦1,5⟧, +, ·) über (Z2, +2, ·2) bzgl. der Basen

({1, 2}, {2}, {3, 4}, {4}) und (𝑒1, 𝑒1 + 𝑒2, 𝑒2 + 𝑒3, 𝑒3 + 𝑒4, 𝑒4 + 𝑒5),

wobei 𝑒𝑀 die Elemente aus𝑀 auf 1 und jedes andere Argument auf 0 abbildet.
(𝑖𝑖𝑖) Die Komposition der beiden obigen Abbildungen bzgl. der Basen

({1, 2, 3}, {1, 3}, {1}) und (𝑒1, 𝑒1 + 𝑒2, 𝑒2 + 𝑒3, 𝑒3 + 𝑒4, 𝑒4 + 𝑒5) .

Hinweis: Hier können Sie sich mit einem Resultat aus dem Skript den Großteil der
Arbeit sparen.

Lösung.

Die Matrizen ergeben sich immer, indem man spaltenweise die Koeffizientenvektoren der
Bilder der Basisvektoren des Urbildraums bzgl. der Bildraumbasis einträgt. Das ist genau der
gleiche Prozess, den wir in Übungsaufgabe I-13.1 schon durchgeführt haben. Insbesondere
in den unintuitiveren Räumen bietet es sich an, statt in dem Vektorraum selbst in dessen
Koordinatenraum bzgl. der Standardbasis zu „denken“. Beispielweise ist in (P(⟦1, 3⟧), △, ·) über
(Z2, +2, ·2) die Standardbasis 𝐸 :=

{
{1}, {2}, {3}

}
also ist der Vektor {1, 2, 3} = {1}△{2}△{3} =

Φ
𝐸
((1, 1, 1)ᵀ) und {1, 3} = {1}△{3} = Φ

𝐸
((1, 0, 1)ᵀ).
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(a) Zu Übungsaufgabe I-11.3 ist nur die Abbildung aus ?? zu untersuchen, alle anderen
Abbildungen sind entweder nicht linear oder involvieren unendlichdimensionale Räume.
Hier ist die Standardbasis 𝐸5 die Basis der Einheitsvektoren und es ergibt sich die Matrix

M𝐸𝑊←𝐸𝑉 (𝑓 ) =


0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0


∈ 𝐾5×5.

(b) (𝑖) Dass es sich hier tatsächlich um eine lineare Abbildung handelt, muss hier nicht ge-
zeigt werden. Die Additivität folgt direkt daraus, dass (P(·), △,∩) einen Ring bildet,
die Bedingung der Additivität entspricht nämlich genau dem Distributivgesetz.
Die Basisbilder sind gegeben als ({1, 3}, {1, 3}, {1}). Zu diesen müssen wir nun die
Koeffizienten bzgl. der Bildraumbasis ({1, 2}, {2}, {3, 4}, {4}) bestimmen.
Wieder können wir einen Ansatz machen, der auf ein lineares Gleichungssystem
führt, oderwir wechseln direkt (durchAnwendung vonΦ−1

𝐸
) in den Koordinatenraum

bzgl. der Standardbasis. Beides endet in dem System mit mehreren rechten Seiten
im (Z2, +2, ·2), 

1 0 0 0 1 1 1
1 1 0 0 0 0 0
0 0 1 0 1 1 0
0 0 1 1 0 0 0

 {

1 0 0 0 1 1 1
0 1 0 0 1 1 1
0 0 1 0 1 1 0
0 0 0 1 1 1 0


was die Darstellungsmatrix 

1 1 1
1 1 1
1 1 0
1 1 0

 ∈ (Z2)4×3

liefert.
(𝑖𝑖) Dass es sich hier tatsächlich um eine lineare Abbildung handelt, muss hier nicht

gezeigt werden. Offensichtlich ist das allerdings nicht unbedingt, daher prüfen wir
Additivität und Homogenität kurz in einem Schritt mit Fallunterscheidung nach.
Dafür seien𝐴, 𝐵 ∈ P(⟦1, 4⟧). Für 𝛼 = 0 ∈ Z2 ist 𝑒𝐴△𝛼𝐵 = 𝑒𝐴 = 𝑒𝐴+𝛼𝑒𝐵 offensichtlich.
Für𝛼 = 1 ∈ Z2 ist 𝑒𝐴△𝛼𝐵 = 𝑒𝐴△𝐵 = 𝑒𝐴+𝑒𝐵 = 𝑒𝐴+𝛼𝑒𝐵 nicht offensichtlich für 𝑥 ∈ 𝐴∩𝐵
und gilt nur weil char(Z2) = 2 gilt.
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Die Basisbilder sind gegeben als (𝑒{1,2}, 𝑒{2}, 𝑒{3,4}, 𝑒{4}). Wieder können wir einen
Ansatz machen, der auf ein lineares Gleichungssystem führt, oder wir wechseln
direkt (durch Anwendung von Φ−1

𝐸
im Bildraum) in den Koordinatenraum bzgl.

der Standardbasis im Bildraum. Beides endet in dem unten stehenden System mit
mehreren rechten Seiten im (Z2, +2, ·2)

1 1 0 0 0 1 0 0 0
0 1 1 0 0 1 1 0 0
0 0 1 1 0 0 0 1 0
0 0 0 1 1 0 0 1 1
0 0 0 0 1 0 0 0 0


{


1 0 0 0 0 0 1 0 1
0 1 0 0 0 1 1 0 1
0 0 1 0 0 0 0 0 1
0 0 0 1 0 0 0 1 1
0 0 0 0 1 0 0 0 0


was die Darstellungsmatrix 

0 1 0 1
1 1 0 1
0 0 0 1
0 0 1 1
0 0 0 0


∈ (Z2)5×4

liefert.
(𝑖𝑖𝑖) Die Darstellungsmatrix der Komposition ist das Produkt der Darstellungsmatrizen,

sie ist also durch 
0 1 0 1
1 1 0 1
0 0 0 1
0 0 1 1
0 0 0 0



1 1 1
1 1 1
1 1 0
1 1 0

 =

0 0 1
1 1 0
1 1 0
0 0 0
0 0 0


∈ (Z2)5×3

gegeben.

Übungsaufgabe I-13.3. (Links- bzw. Rechtsinvertierbarkeit linearer Abbildungen und ihrer
Darstellungsmatrizen)

Es seien 𝑉 ,𝑊 endlich-dimensionale Vektorräume über demselben Körper 𝐾 mit dim(𝑉 ) =𝑚 ∈
N0 und dim(𝑊 ) = 𝑛 ∈ N0. Weiter seien 𝐵𝑉 = (𝑣1, . . . , 𝑣𝑚) und 𝐵𝑊 = (𝑤1, . . . ,𝑤𝑛) Basen von 𝑉
bzw. von𝑊 und 𝑓 : 𝑉 →𝑊 ein Homomorphismus. Schließlich sei 𝐴 :=M𝐵𝑊←𝐵𝑉 (𝑓 ) ∈ 𝐾𝑛×𝑚

die Darstellungsmatrix von 𝑓 bzgl. dieser Basen. Zeigen Sie Satz 19.14, also die folgenden
Aussagen:

(a) Es sind äquivalent:
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(𝑖) 𝑓 ist surjektiv, also Rang(𝑓 ) = 𝑛.
(𝑖𝑖) Es existiert eine Rechtsinverse von 𝑓 , also eine lineare Abbildung 𝑓𝑟 :𝑊 → 𝑉 , sodass

𝑓 ◦ 𝑓𝑟 = id𝑊 gilt. 𝑓𝑟 ist notwendig injektiv.
(𝑖𝑖𝑖) 𝐴 besitzt vollen Zeilenrang, also Rang(𝐴) = 𝑛.
(𝑖𝑣) Es existiert eine Rechtsinverse von 𝐴, also eine Matrix 𝑅 ∈ 𝐾𝑚×𝑛 mit 𝐴𝑅 = 𝐼𝑛 gilt.

𝑅 besitzt notwendig vollen Spaltenrang.
(b) Es sind äquivalent:

(𝑖) 𝑓 ist injektiv, also Defekt(𝑓 ) = 0, d. h. Rang(𝑓 ) =𝑚.
(𝑖𝑖) Es existiert eine Linksinverse von 𝑓 , also eine lineare Abbildung 𝑓𝑙 : 𝑉 →𝑊 , sodass

𝑓𝑙 ◦ 𝑓 = id𝑉 gilt. 𝑓𝑙 ist notwendig surjektiv. Ihre Einschränkung 𝑓𝑙 | 𝑓 (𝑉 ) auf das Bild
von 𝑓 ist eindeutig.

(𝑖𝑖𝑖) 𝐴 besitzt vollen Spaltenrang, also Rang(𝐴) =𝑚.
(𝑖𝑣) Es existiert eine Linksinverse von 𝐴, also eine Matrix 𝐿 ∈ 𝐾𝑛×𝑚 mit 𝐿𝐴 = 𝐼𝑚 gilt. 𝐿

besitzt notwendig vollen Zeilenrang.

Lösung.

(a) Nach Satz 19.10 sind Aussage (𝑖) und Aussage (𝑖𝑖𝑖) äquivalent. Weiterhin liefert Satz 19.9
direkt die Äquivalenz von Aussage (𝑖𝑖) und Aussage (𝑖𝑣).
Die Implikation Aussage (𝑖𝑣) ⇒ Aussage (𝑖𝑖𝑖) folgt sofort aus der Rangeigenschaft, dass
𝑛 = Rang(𝐼𝑛) = Rang(𝐴𝑅) ≤ min(Rang(𝐴), Rang(𝑅)) ≤ 𝑛. Die Implikation Aussage (𝑖𝑖𝑖)
⇒ Aussage (𝑖𝑣) folgt, da Spalten von 𝐴 im 𝐾𝑛 liegen und dort wegen der Gleichheit von
Spalten- und Zeilenrang einen 𝑛-dimensionalen Unterraum, also den gesamten 𝐾𝑛 auf-
spannen, damit existieren Koeffizienten, mit denen die Standardvektoren linearkombiniert
werden können, diese stehen spaltenweise in der Matrix 𝑅.

(b) Wie in der obigen Teilaufgabe ergeben sich die Äquivalenzen von Aussage (𝑖) und Aus-
sage (𝑖𝑖𝑖) aus Satz 19.10 und die Äquivalenzen von Aussage (𝑖𝑖) und Aussage (𝑖𝑣) aus
Satz 19.9.
Die Implikation Aussage (𝑖𝑣) nach Aussage (𝑖𝑖𝑖) folgt wieder aus der analogen Rangab-
schätzung zu der in der letzten Teilaufgabe und die Rückrichtung folgt aus analogen
Argumenten, also dem𝑚-dimensionalen Zeilenraum im 𝐾𝑚 .
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Hausaufgabe I-13.1 (Koordinatendarstellung in unendlich-dimensionalen Räumen) 4 Punkte

In Satz 19.1 werden Koordinaten(vektoren), Synthese- und Analyseabbildung für endlichdimen-
sionale Vektorräume eingeführt. Entscheiden Sie, ob sich dieses Konzept auf unendlichdimensio-
nale Vektorräume verallgemeinern lässt, und beschreiben Sie, wie die entsprechenden Aussagen
und Konzepte angepasst werden müssten.

Lösung.

Das Konzept lässt sich unter Annahme des Auswahlaxioms direkt auf unendlichdimensionale
Vektorräume erweitern. Für einen beliebig-dimensionalen Vektorraum𝑉 können wir auf Grund
des dann gültigen Basisexistenzsatzes die Existenz einer Basisfamilie 𝐵𝑉 von Basisvektoren 𝑣𝑖
über einer Indexmenge 𝐼 folgern. Bezüglich dieser Basisfamilie hat jedes 𝑣 ∈ 𝑉 eine Darstellung
als endliche Linearkombination mit (bis auf Nullkoeffizienten) eindeutigen Koeffizienten. Das
sichert die Existenz, Eindeutigkeit (bezüglich 𝐵𝑉 ) und Bijektivität der Abbildung

Φ𝐵𝑉
: 𝐾 𝐼

0 ∋ 𝑓 ↦→
∑︁

𝑖∈𝐼 ,𝑓 (𝑖 )≠0
𝑓 (𝑖) 𝑣𝑖 ∈ 𝑉 ,

wobei 𝐾 𝐼
0 die endlich getragenen Funktionen der Indexmenge in den Körper sind. Diese Abbil-

dung ist wieder ein linearer Isomorphismus mit der analog konstruierten Inversen. (4 Punkte)

Hausaufgabe I-13.2 (möglichst einfache Darstellungsmatrizen für lineare Abbildungen)
6 Punkte

Es seien 𝑉 ,𝑊 endlich-dimensionale Vektorräume über demselben Körper 𝐾 mit dim(𝑉 ) =𝑚 ∈
N0 und dim(𝑊 ) = 𝑛 ∈ N0. Weiter sei 𝑓 : 𝑉 →𝑊 ein Homomorphismus mit 𝑟 = Rang(𝑓 ) und
Defekt(𝑓 ) = dim(Kern(𝑓 )) =𝑚 − 𝑟 nach Dimensionsformel (18.5). Zeigen Sie Lemma 19.5, also
dass wir Basen 𝐵𝑉 , 𝐵𝑊 so wählen können, dass gilt

𝐵𝑊 = (𝑤1, . . . ,𝑤𝑟︸      ︷︷      ︸
Basis von Bild(𝑓 )

,𝑤𝑟+1, . . . ,𝑤𝑛︸         ︷︷         ︸
Ergänzung zu einer Basis von𝑊

)

und
𝐵𝑉 = (𝑣1, . . . , 𝑣𝑟︸    ︷︷    ︸

𝑣𝑗 ∈ 𝑓 −1 ({𝑤𝑗 })

, 𝑣𝑟+1, . . . , 𝑣𝑚︸       ︷︷       ︸
Basis von Kern(𝑓 )

),

und dass die DarstellungsmatrixM𝐵𝑊←𝐵𝑉 (𝑓 ) von 𝑓 bzgl. dieser Basen die folgende Gestalt
hat:

M𝐵𝑊←𝐵𝑉 (𝑓 ) =
[
𝐼𝑟 0
0 0

]
∈ 𝐾𝑛×𝑚 . (0.1)
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Lösung.

Der Beweis ist im Grunde in der Formatierung der Aussage schon enthalten.

Nach dem Basisexistenz- und -ergänzungssatz können wir eine Basisfamilie (𝑤1, . . . ,𝑤𝑟 ) von
Bild(𝑓 ) wählen und zu einer Basis

𝐵𝑊 = (𝑤1, . . . ,𝑤𝑟︸      ︷︷      ︸
Basis von Bild(𝑓 )

,𝑤𝑟+1, . . . ,𝑤𝑛︸         ︷︷         ︸
Ergänzung zu einer Basis von𝑊

)

ergänzen. (1.5 Punkte)

Nun wählen wir zu jedem der 𝑤 𝑗 ein 𝑣 𝑗 ∈ 𝑓 −1(𝑤 𝑗 ). Die dazugehörige Familie (𝑣1, . . . , 𝑣𝑟 ) ist
linear unabhängig, da die Familie der𝑤 𝑗 linear unabhängig ist. Wir wählen nun eine Basisfamilie
(𝑣𝑟+1, . . . , 𝑣𝑚) von Kern(𝑓 ) (die Dimension wissen wir aus der Dimensionsformel) und zeigen,
dass die Familie

𝐵𝑉 = (𝑣1, . . . , 𝑣𝑟︸    ︷︷    ︸
𝑣𝑗 ∈ 𝑓 −1 ({𝑤𝑗 })

, 𝑣𝑟+1, . . . , 𝑣𝑚︸       ︷︷       ︸
Basis von Kern(𝑓 )

),

eine Basis von 𝑉 ist. (1.5 Punkte)

Da die Raumdimension bekannt ist, reicht es, hier lineare Unabhängigkeit zu zeigen. Es sei
dafür eine Linearkombination der Null gegeben, also

𝑉 ∋ 0 =

𝑚∑︁
𝑖=1

𝛼𝑖𝑣𝑖 .

Auswerten von 𝑓 liefert

𝑊 ∋ 0 =

𝑚∑︁
𝑗=1
𝛼 𝑗 𝑓 (𝑣 𝑗 ) =

𝑟∑︁
𝑗=1
𝛼 𝑗 𝑓 (𝑣 𝑗 ) =

𝑟∑︁
𝑗=1
𝛼 𝑗𝑤 𝑗

und die lineare Unabhängigkeit der Familie (𝑤1, . . . ,𝑤𝑟 ) als Teilfamilie von 𝐵𝑊 liefert, dass
𝛼 𝑗 = 0 für 𝑗 = 1, . . . , 𝑟 . Die Basiseigenschaft der (𝑣𝑟+1, . . . , 𝑣𝑚) für Kern(𝑓 ) liefert die restlichen
Trivialkoeffizienten. Die Darstellungsmatrix folgt als direkte Konsequenz der Konstruktion.
(3 Punkte)

Hausaufgabe I-13.3 (Koordinatendatendarstellung von Vektoren) 1.5 + 1.5 = 3 Punkte

Gegeben seien die folgenden Kombinationen von Vektorräumen 𝑉 mit Basen 𝐵 und Vektoren
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𝑣 ∈ 𝑉 . Bestimmen Sie für jede Kombination die Koordinatendarstellung von 𝑣 bzgl. 𝐵. Woraus
bestehen die Spalten der Koeffizientenmatrizen der dazugehörigen linearen Gleichungssyste-
me?

(a) 𝑉 := R⟦1,4⟧ über (R, +, ·), 𝐵 := (𝑘𝑒𝑘 )𝑘∈⟦1,4⟧, 𝑣 := id

(b) 𝑉 := Q3 /
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Lösung.

In den Matrizen bestehen die Spalten aus den Koordinatendarstellungen der Vektoren aus 𝐵
bzgl. der Basis, bzgl. welcher der Koeffizientenvergleich durchgeführt wird, also derjenigen
Basis, bezüglich welcher die Elemente der Basis 𝐵 und die 𝑣 dargestellt sind. In diesem Fall sind
das immer die Standardbasen der jeweiligen Räume.

Formal kann man den Koeffizientenvergleich also auch so interpretieren: Wir nehmen die
Elemente aus 𝐵 sowie 𝑣 und wenden Φ−1

𝐸
mit der Standardbasis 𝐸 an. Dann stellen wir die Frage,

wie wir Φ−1
𝐸
(𝑣) aus Φ−1

𝐸
(𝐵) kombinieren können, was genau dem linearen Gleichungssystem in

Matrixproduktschreibweise entspricht.

(a) Wir machen den Ansatz

id =

4∑︁
𝑘=1

𝑘𝑒𝑘 =

4∑︁
𝑘=1

𝛼𝑘𝑒𝑘

wo wieder ein Vergleich der Koeffizienten vor der Basis der charakteristischen Funktionen
das lineare Gleichungssystem mit der erweiterten Koeffizientenmatrix der Form

1 0 0 0 1
0 2 0 0 2
0 0 3 0 3
0 0 0 4 4

 {

1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1


liefert und damit den Koeffizientenvektor in der letzten Spalte. (1.5 Punkte)

(b) In einem Faktorraum 𝑉 /𝑈 mit Basis ( [𝑣𝑖])𝑖∈𝐼 ist

[𝑣] =
∑︁
𝑖∈𝐼0

𝛼𝑖 [𝑣𝑖] = [
∑︁
𝑖∈𝐼0

𝛼𝑖𝑣𝑖]

genau dann, wenn
∑

𝑖∈𝐼0 𝛼𝑖𝑣𝑖 − 𝑣 ∈ 𝑈 ist, also genau dann, wenn 𝑣 als endliche Linearkom-
bination der Konkatenation von (𝑣𝑖)𝑖∈𝐼 und einer Basisfamilie von 𝑈 dargestellt werden
kann.
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Wir lösen also das folgende lineare Gleichungssystem, wo der entsprechende Koeffizien-
tenvektor, mit den beiden zu den Basisklassen gehörenden Koeffizienten in rot, in der
rechtesten Spalte zu finden ist:

1 2 1 1
1 3 −1 2
3 7 4 7

 {

1 0 0 −6
0 1 0 3
0 0 1 1

 .
(1.5 Punkte)

Hausaufgabe I-13.4 (Darstellungsmatrizen) 3 + 3 = 6 Punkte

(a) Bestimmen Sie die Darstellungsmatrizen der linearen Abbildungen aus Hausaufgabe I-
12.4Teilaufgabe (a), jeweils bzgl. der Standardbasen der entsprechenden Vektorräume.

(b) Bestimmen Sie die Darstellungsmatrizen der unten stehenden linearen Abbildung
(𝑖) (Q⟦1,3⟧, +, ·) ∋ 𝑓 ↦→ 𝑓 |⟦2,3⟧ ∈ (Q

⟦2,3⟧, +, ·) über (Q, +, ·) bzgl. der Basen

(1 − 𝑒3, 1 − 𝑒2, 1 − 𝑒1) und (1 − 𝑒3, 1 − 𝑒2) .

(𝑖𝑖) (Q⟦2,3⟧, +, ·) ∋ 𝑓 ↦→ 𝑓 (2) + 𝑓 (3) ∈ (Q, +, ·) über (Q, +, ·) bzgl. der Basen

(1 − 𝑒3, 1 − 𝑒2) und (2) .

(𝑖𝑖𝑖) Die Komposition der beiden obigen Abbildungen bzgl. der Basen

(1 − 𝑒3, 1 − 𝑒2, 1 − 𝑒1) und (2) .

Hinweis: Hier können Sie sich mit einem Resultat aus dem Skript den Großteil der
Arbeit sparen.

Lösung.

(a) Im Fall von Teilaufgabe (𝑖) ist die Standardbasis die der charakteristischen Funktionen,
da die Abbildung die Identität ist, ist das aber auch egal, denn solang auf der Bild- und
Urbildseite die gleiche Basis verwandt wird, ergibt sich die IdentitätsmatrixM𝐸4←𝐸4 (𝑓 ) =
𝐼4 ∈ R4×4. (1 Punkt)
Im Fall von Teilaufgabe (𝑖𝑖) besteht die Standardbasis aus den Matrizen, die in genau
einem Eintrag eine 1 und sonst 0 stehen haben, also die Matrizen

(𝐸𝑛𝑚)𝑛∈⟦1,2⟧,𝑚∈⟦1,3⟧ ⊆ 𝑉 und (𝐸𝑛𝑚)𝑛∈⟦1,3⟧,𝑚∈⟦1,3⟧ ⊆𝑊 .
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Da diese Familien noch doppelt indiziert sind, müssen wir uns auf eine Ordnung festlegen.
Wir machen das spaltenweise, und erhalten die Familien der Form(

𝐸mod(𝑘−1,𝑛)+1,⌊ 𝑘+1
𝑛
⌋

)
𝑘∈⟦1,𝑛𝑚⟧

= (𝐸11, 𝐸21, . . . , 𝐸𝑛1, 𝐸12, . . . , 𝐸𝑛𝑚).

Die Darstellungsmatrix ergibt sich entsprechend zu

0 1 0 0 0 0
1 0 0 0 0 0
1 1 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 1 1 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 0 1 1


R9×6.

Hätten wir die doppelt indizierte Basis zeilenweise einfach indiziert, könnten wir die
Struktur der Transformationsmatrix in der Darstellungsmatrix nicht so schnell wiederer-
kennen, denn die Spalten und Zeilen wären permutiert. (2 Punkte)

(b) (𝑖) Dass es sich hier tatsächlich um eine lineare Abbildung handelt, muss hier nicht
gezeigt werden.
Die Basisbilder sind gegeben als die Funktionen (1 − 𝑒3, 1 − 𝑒2, 1). Zu diesen müssen
wir nun die Koeffizienten bzgl. der Bildraumbasis (1 − 𝑒3, 1 − 𝑒2) bestimmen. Wieder
können wir einen Ansatz machen und das dazugehörige lineare Gleichungssystem
aufstellen, oder vorher in die Sichtweise der Standardbasis wechseln, die Darstellung
ist in diesem Fall aber so leicht abzulesen, dass wir sie hier nur angeben, sie führt
gerade auf die Darstellungsmatrix[

1 0 1
0 1 1

]
∈ Q2×3.

(1 Punkt)
(𝑖𝑖) Wieder muss nicht gezeigt werden, dass die Abbildung linear ist. Die Bilder der

Basiselemente sind gerade (1, 1), damit ergibt sich unter Einbeziehung der Bildraum-
basis direkt die Darstellungsmatrix[ 1

2
1
2
]
∈ Q1×2

liefert. (1 Punkt)
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(𝑖𝑖𝑖) Die Darstellungsmatrix der Komposition ist das Produkt der Darstellungsmatrizen,
sie ist also durch [ 1

2
1
2
] [1 0 1

0 1 1

]
=
[ 1
2

1
2 1

]
∈ Q3×1

gegeben. (1 Punkt)

Bitte reichen Sie Ihre Lösungen der Hausaufgaben als ein PDF auf Mampf ein.
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