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Übungsaufgabe I-11.1. (Beispiele linearer Gleichungssysteme)

(a) Bestimmen Sie die Lösungsmenge des linearen Gleichungssystems 𝐴𝑥 = 𝑏 für

𝐴 =


2 1 2 4
4 2 4 1
1 3 1 3

 und 𝑏 =
©­«
4
2
𝑧

ª®¬
über (Z5, +5, ·5) in Abhängigkeit von 𝑧.

(b) Gegeben sei der Vektorraum R{1,2,3,4} über (R, +, ·) mit den Basen

𝐵1 := {𝑒1 + 𝑒3 + 𝑒4, 𝑒2 + 2𝑒3 + 𝑒4, 𝑒1 + 𝑒4, 2𝑒2 + 𝑒3 + 𝑒4}
𝐵2 := {2𝑒1 + 𝑒3, 3𝑒2 + 2𝑒4, 𝑒1 + 2𝑒2 + 3𝑒3 + 𝑒4, 𝑒1 + 𝑒2 + 𝑒3 + 5𝑒4}

Bestimmen Sie die Linearkombinationskoeffizienten der Elemente in 𝐵2 bezüglich 𝐵1,
indem Sie das dazugehörige lineare Gleichungssystem mit mehreren rechten Seiten
aufstellen und lösen.

Lösung.

(a) Wir stellen die erweiterte Matrix des linearen Gleichungssystems auf und überführen Sie
in Zeilenstufenform.

2 1 2 4 4
4 2 4 1 2
1 3 1 3 𝑧

3
2

{


2 1 2 4 4
0 0 0 3 4
0 0 0 1 𝑧 + 3

3
{


2 1 2 4 4
0 0 0 3 4
0 0 0 0 𝑧


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Hier sehen wir, dass der Rang von 𝐴 genau dann dem von 𝐴|𝑏 entspricht, wenn 𝑧 = 0
ist. Nur dann ist das System lösbar. In dem Fall erkennen wir sofort, dass der Rang des
Systems 2 ist, also haben wir einen 4 − 2 = 2-dimensionalen affinen Lösungsraum. Für
diesen Fall führen das System in die reduzierte Zeilenstufenform und erhalten

2 1 2 4 4
0 0 0 3 4
0 0 0 0 0


2
1 {


1 3 1 2 2
0 0 0 1 3
0 0 0 0 0


3

{


1 3 1 0 1
0 0 0 1 3
0 0 0 0 0

 .
Die abhängigen Variablen gehören zu den Indizes aus {1, 4}, die unabhängigen zu denen
aus {2, 3}. Wir erhalten also eine Partikulärlösung durch

𝑥0 =
©­­­«
1
0
0
3

ª®®®¬ .
Für das homogene System 

1 3 1 0 0
0 0 0 1 0
0 0 0 0 0


erhalten wir 𝑥4 = 0 und 𝑥1 = 2𝑥2 + 4𝑥3 und damit die Lösungsmenge

©­­­«
1
0
0
3

ª®®®¬ +

©­­­«
2𝛼 + 4𝛽
𝛼

𝛽

0

ª®®®¬
��������𝛼, 𝛽 ∈ Z5

 =

©­­­«
1
0
0
3

ª®®®¬ +
〈

©­­­«
2
1
0
0

ª®®®¬ ,
©­­­«
4
0
1
0

ª®®®¬

〉

(b) Für jedes Basiselement 𝑓 (2)
𝑖

∈ 𝐵2, 𝑖 = 1, . . . , 4 gilt es, die Koeffizienten 𝑥𝑖
𝑘
der Kombination

𝑓
(2)
𝑖

=

4∑︁
𝑘=1

𝑥
(𝑖 )
𝑘
𝑓
(1)
𝑘
, 𝑖 = 1, . . . , 4

zu bestimmen, also das lineare Gleichungssystem mit mehreren rechten Seiten in dem
die Koeffizienten der Polynome spaltenweise auftauchen, also

1 0 1 0 2 0 1 1
0 1 0 2 0 3 2 1
1 2 0 1 1 0 3 1
1 1 1 1 0 2 1 5


https://tinyurl.com/scoop-la Seite 2 von 13

https://tinyurl.com/scoop-la


R. Herzog, G. Müller

Universität Heidelberg

Lineare Algebra

Wintersemester 2025 - Sommersemester 2026

Wie in der letzten Teilaufgabe überführt man das System in die Zeilenstufenform via
1 0 1 0 2 0 1 1
0 1 0 2 0 3 2 1
1 2 0 1 1 0 3 1
1 1 1 1 0 2 1 5

 {

1 0 1 0 2 0 1 1
0 1 0 2 0 3 2 1
0 2 −1 1 −1 0 2 0
0 1 0 1 −2 2 0 4

 {

1 0 1 0 2 0 1 1
0 1 0 2 0 3 2 1
0 0 −1 −3 −1 −6 −2 −2
0 0 0 −1 −2 −1 −2 3


Hier kannman nun den Vollrang derMatrix schon erkennen und damit die Invertierbarkeit
überprüfen. Wir transformieren nun weiter in die reduzierte Zeilenstufenform (und
invertieren damit letztendlich die Matrix).
1 0 1 0 2 0 1 1
0 1 0 2 0 3 2 1
0 0 −1 −3 −1 −6 −2 −2
0 0 0 −1 −2 −1 −2 3

 {

1 0 1 0 2 0 1 1
0 1 0 2 0 3 2 1
0 0 1 3 1 6 2 2
0 0 0 1 2 1 2 −3

 {

1 0 1 0 2 0 1 1
0 1 0 0 −4 1 −2 7
0 0 1 0 −5 3 −4 11
0 0 0 1 2 1 2 −3


{


1 0 0 0 7 −3 5 −10
0 1 0 0 −4 1 −2 7
0 0 1 0 −5 3 −4 11
0 0 0 1 2 1 2 −3

 .
Auf der rechten Seite steht nun die Inverse der Systemmatrix angewandt auf die Matrix
der rechten Seiten, und damit (spaltenweise) die Koeffizienten der Linearkombinationen.

Übungsaufgabe I-11.2. (Resultate zu Lösungsmengen linearer Gleichungssysteme)

Es sei 𝐾 ein Körper und 𝐾̃ ein echter Teilkörper von 𝐾 sowie 𝑛,𝑚, 𝑘 ∈ N und 𝐴 ∈ 𝐾̃𝑛×𝑚 und
𝑏 ∈ 𝐾̃𝑛 .

Zeigen Sie, dass die Lösungsmenge L(𝐴,𝑏) bezüglich 𝐾 genau dann mit der bezüglich 𝐾̃
übereinstimmt, wenn das System eindeutig oder garnicht lösbar ist.

Lösung.

Sowohl für die Matrix 𝐴 als auch für die erweitere Matrix [𝐴,𝑏] werden bei der Bestimmung
einer Rangfaktorisierung per Zeilenstufentransformation unabhängig vom zugrunde gelegten
Körper (also 𝐾 oder 𝐾̃ ) lediglich Matrizen aus 𝐾̃𝑛×𝑛 auftauchen. Insbesondere sieht man daran,
dass Rang(𝐴) und Rang( [𝐴,𝑏]) bezüglich einem beliebigen der beiden Körper bestimmt werden
können.

Daraus können wir folgern, dass das System 𝐴𝑥 = 𝑏 bezüglich beider Körper 𝐾 und 𝐾̃ genau
dann nicht lösbar ist, wenn Rang(𝐴) ≠ Rang( [𝐴,𝑏]), siehe Satz 16.3. Dann ist die Lösungsmenge
also unabhängig vom Körper leer.
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Außerdem ist ebenfalls laut Satz 16.3 eindeutige Lösbarkeit äquivalent zu Rang(𝐴) = Rang( [𝐴,𝑏]) =
𝑚, ebenfalls wieder in beiden Körpern. Dass die Lösung dann in 𝐾̃𝑛 liegen muss, liegt eben an
der Eindeutigkeit der Lösung.

Ist das System nun lösbar aber nicht eindeutig lösbar, so liefert Satz 16.3 gerade wieder die
Existenz einer Partikulärlösung 𝑥0 ∈ 𝐾̃𝑛 , so dass

L(𝐴,𝑏)𝐾̃ = 𝑥0 + L(𝐴, 0)𝐾̃
L(𝐴,𝑏)𝐾 = 𝑥0 + L(𝐴, 0)𝐾

mit dim𝐾 (L(𝐴, 0)𝐾 ) = dim𝐾̃ (L(𝐴, 0)𝐾̃ ) = 𝑚 − Rang(𝐴). Dabei gilt offensichtlich L(𝐴, 0)𝐾̃ ⊆
L(𝐴, 0)𝐾 . Sobald aber das System lösbar ist und Rang(𝐴) < 𝑚 gilt, existiert ein 𝑣 ∈ L(𝐴, 0)𝐾̃\{0}
und für jedes 𝛼 ∈ 𝐾 \ 𝐾̃ ist 𝛼𝑣 ∈ L(𝐴, 0)𝐾 \ L(𝐴, 0)𝐾̃ und die Lösungsmengen stimmen nicht
überein.

Übungsaufgabe I-11.3. (Basics zu Vektorraumhomomorphismen)

(a) Entscheiden Sie, welche der folgenden Abbildungen Vektorraumhomomorphismen, -
endomorphismen oder -automorphismen sind, und beweisen Sie Ihre Antwort.
(𝑖) 𝑓 : 𝐾5 ∋ (𝑣1, . . . , 𝑣5) ↦→ (𝑣5, . . . , 𝑣1) ∈ 𝐾5 jeweils über einem Körper 𝐾 .
(𝑖𝑖) 𝑓 : R ∋ 𝑥 ↦→ max(𝑥, 0) ∈ R jeweils über R.
(𝑖𝑖𝑖) 𝑓 : P(Q) ∋ 𝑀 ↦→ Q \𝑀 ∈ P(Q) für (P(Q), △, ·) über (Z2, +2, ·2).

(b) Es seien (𝑈 , +, ·), (𝑉 , +, ·), (𝑊, +, ·) Vektorräume über dem gleichen Körper 𝐾 . Zeigen Sie
Satz 17.3(𝑖), also dass wenn 𝑓 : 𝑉 →𝑊 und 𝑔 : 𝑈 → 𝑉 lineare Abbildungen sind, dann ist
auch 𝑓 ◦ 𝑔 : 𝑈 →𝑊 eine lineare Abbildung.

Lösung.

(a) (𝑖) Hier handelt es sich um eine lineare Abbildung. Um die Strukturverträglichkeit
nachzuprüfen seien 𝑢 = (𝑢1, . . . , 𝑢5), 𝑣 = (𝑣1, . . . , 𝑣5) aus 𝐾5 und 𝛼 ∈ 𝐾 gegeben.
Dann gilt

𝑓 (𝑢 + 𝑣) = 𝑓 ((𝑢1 + 𝑣1, . . . , 𝑢5 + 𝑣5)) = (𝑢5 + 𝑣5, . . . , 𝑢1 + 𝑣1) = (𝑢5, . . . , 𝑢1) + (𝑣5, . . . , 𝑣1) = 𝑓 (𝑢) + 𝑓 (𝑣)
𝑓 (𝛼 𝑢) = 𝑓 ((𝛼 𝑢1, . . . , 𝛼 𝑢5)) = (𝛼 𝑢5, . . . , 𝛼 𝑢1) = 𝛼 (𝑢5, . . . , 𝑢1) = 𝛼 𝑓 (𝑢) .

Der Definitions- und Zielbereich der Abbildung stimmen überein, es handelt sich
also auch um einen Endomorphismus. Die Bijektivität der Abbildung folgt sofort
aus der komponentenweisen Struktur der Abbildung. Es handelt sich also sogar um
einen Isomorphismus, also einen linearen Automorphismus.
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(𝑖𝑖) Hier handelt es sich um keine lineare Abbildung, denn sogar beide Komponenten
der Strukturverträglichkeit sind i. A. nicht gegeben, denn für 𝑢 = 1 = −𝑣 = −𝛼 ∈ R
ist

𝑓 (𝑢 + 𝑣) = max(1 − 1, 0) = 0 ≠ 1 = max(1, 0) +max(−1, 0) = 𝑓 (𝑢) + 𝑓 (𝑣)
𝑓 (𝛼 𝑢) = max(−1, 0) = 0 ≠ −1 = −1max(1, 0) = 𝛼 𝑓 (𝑢).

(𝑖𝑖𝑖) Hier handelt es sich um keine lineare Abbildung, denn es ist

𝑓 ( ∅︸︷︷︸
=0∈ (P (·),△)

) = Q ≠ ∅.

(b) Sind 𝑓 und 𝑔 lineare Abbildungen wie angegeben und 𝑢, 𝑣 ∈ 𝑈 sowie 𝛼 ∈ 𝐾 , dann ist
wegen der Linearität von 𝑓 und 𝑔:

𝑓 ◦ 𝑔(𝑢 + 𝑣) = 𝑓 (𝑔(𝑢 + 𝑣)) = 𝑓 (𝑔(𝑢) + 𝑔(𝑣)) = 𝑓 (𝑔(𝑢)) + 𝑓 (𝑔(𝑣)) = 𝑓 ◦ 𝑔(𝑢) + 𝑓 ◦ 𝑔(𝑣)
𝑓 ◦ 𝑔(𝛼𝑢) = 𝑓 (𝑔(𝛼𝑢)) = 𝑓 (𝛼𝑔(𝑢)) = 𝛼 𝑓 (𝑔(𝑢)) = 𝛼 𝑓 ◦ 𝑔(𝑢)

Übungsaufgabe I-11.4. (Konstruktion linearer Abbildungen)

Wir betrachten die Vektorräume (RN, +, ·) und (R, +, ·) über dem Körper R. Zeigen Sie, dass es
eine lineare Abbildung 𝑓 : RN → R gibt, so dass 𝑓 (𝑒𝑛) = 2𝑛 für alle 𝑛 ∈ N gilt. Ist eine solche
Abbildung eindeutig, surjektiv, injektiv oder bijektiv?

Lösung.

Wir wissen bereits, dass die Familie (𝑒𝑛)𝑛∈N linear unabhängig ist. Satz 17.10 des Skripts liefert
dann (für die Urbildfamilie (𝑒𝑛)𝑛∈N und die Bildfamilie (2𝑛)𝑛∈N) direkt, dass eine solche gesuchte
lineare Abbildung 𝑓 : RN → R existiert.

Die Familie (𝑒𝑛)𝑛∈N ist allerdings nicht erzeugend in (RN, +, ·). Wir können also aus dem oben
referenzierten Theorem nicht direkt die Eindeutigkeit der linearen Abbildung folgern. Genauer
kann man am Beweis des Theorems erkennen, dass eine solche Abbildung dann (mit Ausnahme
des Nullraums als Bildraum) nicht eindeutig sein kann, denn ergänzt man die linear unabhängige
Menge zu einer Basis, dann kann man die Bilder der ergänzten Basisvektoren beliebig wählen.

Die Familie (2𝑛)𝑛∈N ist in R offensichtlich erzeugend und linear abhängig, da die Anzahl der
(nicht-Null) Vektoren die Dimension des Raums, also 1, überschreitet. Entsprechend ist jede
solche Abbildung surjektiv aber nicht injektiv und damit nicht bijektiv.
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Hausaufgabe I-11.1 (Beispiele linearer Gleichungssysteme) 2 + 4 = 6 Punkte

(a) Bestimmen Sie die Lösungsmenge des linearen Gleichungssystems 𝐴𝑥 = 𝑏 für

𝐴 =


−2 0 −1 −1
0 0 0 0
6 1 4 2
2 −1 0 2

 und 𝑏 =

©­­­«
𝑟

𝑠

0
−8

ª®®®¬
über (R, +, ·) in Abhängigkeit von 𝑟, 𝑠;

(b) Gegeben sei 𝑋 = {𝑥1, 𝑥2, 𝑥3, 𝑥4} und eine einelementige Menge 𝑌 sowie die Basen

𝐵1 := ({𝑥1, 𝑥3}, {𝑥1, 𝑥2, 𝑥3}, {𝑥1, 𝑥4}, {𝑥1, 𝑥2})
𝐵2 := (𝑋 \ {𝑥𝑖})𝑖∈⟦1,4⟧

zu dem Vektorraum (P(𝑋 ), △, ⊙) über (P(𝑌 ), △,∩).
Bestimmen Sie die Linearkombinationskoeffizienten der Mitglieder in 𝐵2 bezüglich 𝐵1
und die der Mitglieder in 𝐵1 bezüglich 𝐵2, indem Sie die dazugehörigen linearen Glei-
chungssysteme mit mehreren rechten Seiten aufstellen und lösen.

Lösung.

(a) Wir stellen die erweiterte Matrix des linearen Gleichungssystems auf und überführen Sie
in Zeilenstufenform.
−2 0 −1 −1 𝑟

0 0 0 0 𝑠

6 1 4 2 0
2 −1 0 2 −8

 {

−2 0 −1 −1 𝑟

2 −1 0 2 −8
6 1 4 2 0
0 0 0 0 𝑠


1

3 {


−2 0 −1 −1 𝑟

0 −1 −1 1 𝑟 − 8
0 1 1 −1 3𝑟
0 0 0 0 𝑠

1

{


−2 0 −1 −1 𝑟

0 −1 −1 1 𝑟 − 8
0 0 0 0 4𝑟 − 8
0 0 0 0 𝑠


Hier sehen wir, dass der Rang von 𝐴 genau dann dem von 𝐴|𝑏 entspricht, wenn 𝑠 = 0
und 𝑟 = 2 ist. Ansonsten ist das Gleichungssystem nicht lösbar. In dem Fall erkennen wir
sofort, dass der Rang des Systems 2 ist, also haben wir einen 4 − 2 = 2-dimensionalen
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affinen Lösungsraum. Für diesen Fall führen das System in die reduzierte Zeilenstufenform
und erhalten 

−2 0 −1 −1 2
0 −1 −1 1 −6
0 0 0 0 0
0 0 0 0 0


·(− 1

2 )
·(−1)

{


1 0 1

2
1
2 −1

0 1 1 −1 6
0 0 0 0 0
0 0 0 0 0


Die abhängigen Variablen gehören zu den Indizes aus {1, 2}, die unabhängigen zu denen
aus {3, 4}. Wir erhalten also eine Partikulärlösung durch

𝑥0 =
©­­­«
−1
6
0
0

ª®®®¬ .
Für das homogene System 

1 0 1
2

1
2 0

0 1 1 −1 0
0 0 0 0 0
0 0 0 0 0


erhalten wir 𝑥2 = 𝑥4 −𝑥3 und 𝑥1 = − 1

2 (𝑥3 +𝑥4), also ist eine Basis des Lösungsraum durch
die Menge 

©­­­«
− 1

2
−1
1
0

ª®®®¬ ,
©­­­«
− 1

2
1
0
1

ª®®®¬


gegeben und die gesamte Lösungsmenge ergibt sich zu

©­­­«
−1
6
0
0

ª®®®¬ +

©­­­«
− 1

2 (𝛼 + 𝛽)
𝛽 − 𝛼
𝛼

𝛽

ª®®®¬
��������𝛼, 𝛽 ∈ R

 =

©­­­«
−1
6
0
0

ª®®®¬ +
〈

©­­­«
− 1

2
−1
1
0

ª®®®¬ ,
©­­­«
− 1

2
1
0
1

ª®®®¬

〉

(2 Punkte)
(b) Für jedes 𝑋 \ {𝑥𝑖}∈𝐵2, 𝑖 = 1, . . . , 4 gilt es, die Koeffizienten 𝛼𝑖

𝑘
der Kombination

𝑋 \ {𝑥𝑖} =
4i

𝑘=1

𝛼
(𝑖 )
𝑘
𝐴𝑖 , 𝑖 = 1, . . . , 4
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zu bestimmen, also das lineare Gleichungssystem mit mehreren rechten Seiten in dem
die Koeffizienten der Teilmengen spaltenweise auftauchen, also

𝑌 𝑌 𝑌 𝑌 ∅ 𝑌 𝑌 𝑌

∅ 𝑌 ∅ 𝑌 𝑌 ∅ 𝑌 𝑌

𝑌 𝑌 ∅ ∅ 𝑌 𝑌 ∅ 𝑌

∅ ∅ 𝑌 ∅ 𝑌 𝑌 𝑌 ∅


Wie in der letzten Teilaufgabe überführt man das System in die Zeilenstufenform via
𝑌 𝑌 𝑌 𝑌 ∅ 𝑌 𝑌 𝑌

∅ 𝑌 ∅ 𝑌 𝑌 ∅ 𝑌 𝑌

𝑌 𝑌 ∅ ∅ 𝑌 𝑌 ∅ 𝑌

∅ ∅ 𝑌 ∅ 𝑌 𝑌 𝑌 ∅

 {

𝑌 𝑌 𝑌 𝑌 ∅ 𝑌 𝑌 𝑌

∅ 𝑌 ∅ 𝑌 𝑌 ∅ 𝑌 𝑌

∅ ∅ 𝑌 𝑌 𝑌 ∅ 𝑌 ∅
∅ ∅ 𝑌 ∅ 𝑌 𝑌 𝑌 ∅

 {

𝑌 𝑌 𝑌 𝑌 ∅ 𝑌 𝑌 𝑌

∅ 𝑌 ∅ 𝑌 𝑌 ∅ 𝑌 𝑌

∅ ∅ 𝑌 ∅ 𝑌 𝑌 𝑌 ∅
∅ ∅ ∅ 𝑌 ∅ 𝑌 ∅ ∅


Hier kann man nun den Vollrang der Matrix schon erkennen. Wir transformieren nun
weiter in die reduzierte Zeilenstufenform (und invertieren damit letztendlich die Matrix).
𝑌 𝑌 𝑌 𝑌 ∅ 𝑌 𝑌 𝑌

∅ 𝑌 ∅ 𝑌 𝑌 ∅ 𝑌 𝑌

∅ ∅ 𝑌 ∅ 𝑌 𝑌 𝑌 ∅
∅ ∅ ∅ 𝑌 ∅ 𝑌 ∅ ∅

 {

𝑌 𝑌 𝑌 𝑌 ∅ 𝑌 𝑌 𝑌

∅ 𝑌 ∅ ∅ 𝑌 𝑌 𝑌 𝑌

∅ ∅ 𝑌 ∅ 𝑌 𝑌 𝑌 ∅
∅ ∅ ∅ 𝑌 ∅ 𝑌 ∅ ∅

 { {


𝑌 ∅ ∅ ∅ ∅ ∅ 𝑌 ∅
∅ 𝑌 ∅ ∅ 𝑌 𝑌 𝑌 𝑌

∅ ∅ 𝑌 ∅ 𝑌 𝑌 𝑌 ∅
∅ ∅ ∅ 𝑌 ∅ 𝑌 ∅ ∅

 .
Auf der rechten Seite steht nun die Inverse der Systemmatrix angewandt auf die Matrix
der rechten Seiten, und damit (spaltenweise) die Koeffizienten der Linearkombinationen.
(2 Punkte)
Analog geht man vor um die Darstellung der Basismiglieder der ersten Basis bezüglich
der zweiten Basis zu bestimmen. Wir vertauschen hier die Reihenfolge der Spalten der
Einfachheit halber nicht und erhalten die Lösungen spaltenweise auf der linken Seite

𝑌 𝑌 𝑌 𝑌 ∅ 𝑌 𝑌 𝑌

∅ 𝑌 ∅ 𝑌 𝑌 ∅ 𝑌 𝑌

𝑌 𝑌 ∅ ∅ 𝑌 𝑌 ∅ 𝑌

∅ ∅ 𝑌 ∅ 𝑌 𝑌 𝑌 ∅

 {

𝑌 ∅ 𝑌 𝑌 𝑌 ∅ ∅ ∅
∅ ∅ ∅ 𝑌 ∅ 𝑌 ∅ ∅
𝑌 ∅ ∅ ∅ ∅ ∅ 𝑌 ∅
∅ 𝑌 𝑌 ∅ ∅ ∅ ∅ 𝑌

 .
(2 Punkte)

Hausaufgabe I-11.2 (Resultate zu Lösungsmengen linearer Gleichungssysteme) 1 + 2 + 2 =
5 Punkte

Es sei 𝐾 ein Körper und 𝑛,𝑚, 𝑘 ∈ N sowie 𝐴 ∈ 𝐾𝑛×𝑚 und 𝑏 ∈ 𝐾𝑛 .
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(a) Zeigen Sie, dass L(𝐴,𝑏) genau dann ein Unterraum von 𝐾𝑚 ist, wenn 𝑏 = 0 ist.
(b) Zeigen Sie, dass für alle𝑀 ∈ 𝐾𝑘×𝑛 gilt:

L(𝑀𝐴,𝑀𝑏) = L(𝐴,𝑏 + L(𝑀, 0)) :=
⋃

𝑐∈L(𝑀,0)
L(𝐴,𝑏 + 𝑐).

(c) Zeigen Sie, dass für alle𝑀 ∈ 𝐾𝑚×𝑘 gilt:

L(𝐴𝑀,𝑏) = L(𝑀,L(𝐴,𝑏)) :=
⋃

𝑐∈L(𝐴,𝑏 )
L(𝑀,𝑐) .

Lösung.

(a) Wenn L(𝐴,𝑏) ein Unterraum ist, dann liegt die 0 darin, also ist 𝐴0 = 0 = 𝑏. Dass es sich
in diesem Fall tatsächlich um einen Unterraum handelt ist in Satz 16.3 nachgewiesen.
(1 Punkt)

(b) Es ist

L(𝑀𝐴,𝑀𝑏) =
{
𝑥 ∈ 𝐾𝑚

��𝑀𝐴𝑥 = 𝑀𝑏
}

=
{
𝑥 ∈ 𝐾𝑚

��𝑀 (𝐴𝑥 − 𝑏) = 0
}

=
{
𝑥 ∈ 𝐾𝑚

��𝐴𝑥 − 𝑏 ∈ L(𝑀, 0)
}

=
{
𝑥 ∈ 𝐾𝑚

��∃𝑐 ∈ L(𝑀, 0) mit 𝐴𝑥 − 𝑏 = 𝑐
}

=
⋃

𝑐∈L(𝑀,0)
L(𝐴,𝑏 + 𝑐).

(2 Punkte)
(c) Es ist

L(𝐴𝑀,𝑏) =
{
𝑥 ∈ 𝐾𝑘

��𝐴𝑀 𝑥 = 𝑏
}

=
{
𝑥 ∈ 𝐾𝑘

��𝑀 𝑥 ∈ L(𝐴,𝑏)
}

=
{
𝑥 ∈ 𝐾𝑘

��∃𝑐 ∈ L(𝐴,𝑏) mit𝑀 𝑥 = 𝑐
}

=
⋃

𝑐∈L(𝐴,𝑏 )

{
𝑥 ∈ 𝐾𝑘

��𝑀 𝑥 = 𝑐
}

=
⋃

𝑐∈L(𝐴,𝑏 )
L(𝑀,𝑐).

(2 Punkte)
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Hausaufgabe I-11.3 (Basics zu Vektorraumhomomorphismen) 1.5 + 1 + 1.5 + 3 = 7 Punkte

(a) Entscheiden Sie, welche der folgenden Abbildungen Vektorraumhomomorphismen, -
endomorphismen oder -automorphismen sind, und beweisen Sie Ihre Antwort.
(𝑖) 𝑓 : R5 ∋ (𝑣1, . . . , 𝑣5) ↦→ (3 𝑣1, 2 𝑣4 + 𝑣1, 0, 0, 𝑣5 + 1) ∈ R5 jeweils über R.
(𝑖𝑖) 𝑓 : ZN

2 ∋ 𝑓 ↦→ 𝑓 2 ∈ ZN
2 jeweils mit den punktweisen Funktionsverknüpfungen über

(Z2, +2, ·2), wobei 𝑓 2 = 𝑓 ·2 𝑓 punktweise zu verstehen ist.
(𝑖𝑖𝑖) 𝑓 : P(Q) ∋ 𝑀 ↦→ 𝑀 ∩ N ∈ P(Q) für (P(Q), △, ·) über (Z2, +2, ·2).

(b) Es seien (𝑉 , +, ·), (𝑊, +, ·) Vektorräume über dem gleichen Körper 𝐾 und 𝑓 : 𝑉 → 𝑊

bijektiv. Zeigen Sie, dass 𝑓 genau dann ein Vektorraumisomorphismus von 𝑉 nach𝑊 ist,
wenn 𝑓 −1 ein Vektorraumisomorphismus von𝑊 nach 𝑉 ist.

(c) Es sei (𝑉 , +, ·) ein Vektorraum über einem Körper 𝐾 und 𝑓 : 𝑉 → 𝑉 ein Vektorraumendo-
morphismus mit 𝑣 ∈ 𝑉 und 𝑛 ∈ N so, dass

𝑓 (𝑛) (𝑣) := 𝑓 ◦ · · · ◦ 𝑓︸      ︷︷      ︸
𝑛-mal

(𝑣) ≠ 0 und 𝑓 (𝑛+1) (𝑣) := 𝑓 ◦ · · · ◦ 𝑓︸      ︷︷      ︸
𝑛+1-mal

(𝑣) = 0.

Zeigen Sie, dass
{
𝑣, 𝑓 (𝑣), . . . , 𝑓 (𝑛) (𝑣)

}
linear unabhängig ist.

(d) Es sei (𝑉 , +, ·) ein Vektorraum über einem Körper 𝐾 der Charakterstik char(𝐾) ≠ 2.
Zeigen Sie:
(𝑖) Ist 𝑓 : 𝑉 → 𝑉 ein selbstinverser Vektorraumautomorphismus, dann sind

𝑉+(𝑓 ) := {𝑣 ∈ 𝑉 | 𝑓 (𝑣) = 𝑣} und 𝑉− (𝑓 ) := {𝑣 ∈ 𝑉 | 𝑓 (𝑣) = −𝑣}

𝑉 -komplementäre Unterräume.
(𝑖𝑖) Sind𝑈 und𝑊 zwei𝑉 -komplementäre Unterräume, dann gibt es genau einen selbstin-

versen Vektorraumautomorphismus mit 𝑉+(𝑓 ) = 𝑈 und 𝑉− (𝑓 ) =𝑊 .

Lösung.

(a) (𝑖) Hier handelt es sich um keine lineare Abbildung, denn es ist

𝑓 (0) = (0, 0, 0, 0, 1) ≠ 0.

(0.5 Punkte)
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(𝑖𝑖) Hier handelt es sich um eine lineare Abbildung, denn für jedes 𝑧 ∈ Z2 ist 𝑧2 = 𝑧 ·2
𝑧 = 𝑧 und damit ist 𝑓 die Identitätsabbildung, für welche die Linearität offensichtlich
ist. Damit ist auch klar, dass es sich auch um einen Endo-, Iso- und somit auch
Automorphismus handelt. (0.5 Punkte)

(𝑖𝑖𝑖) Hier handelt es sich um eine lineare Abbildung. Die Additivität folgt sofort daraus,
dass (P(𝑋 ), △,∩) für nichtleere 𝑋 , wie wir wissen, einen Ring bildet und damit die
Distributivitätsgesetze erfüllt sind. Die Homogenität sieht man für 𝑀 ∈ P(Q) an
Hand von

𝑓 (1𝑀) = (1𝑀) ∩ N = 𝑀 ∩ N = 1 (𝑀 ∩ N) = 1 𝑓 (𝑀)
𝑓 (0𝑀) = (0𝑀) ∩ N = ∅ ∩ N = ∅ = 0 (𝑀 ∩ N) = 0 𝑓 (𝑀) .

Allerdings ist die Abbildung nicht bijektiv, denn es haben nur Teilmengen der
natürlichen Zahlen Urbilder, also handelt es sich nur um einen Endomorphismus.
(0.5 Punkte)

(b) Ist 𝑓 −1 :𝑊 → 𝑉 eine lineare Abbildung und 𝑢, 𝑣 ∈ 𝑉 , 𝛼 ∈ 𝐾 , dann ist

𝑓 (𝑢 + 𝑣) = 𝑓 (𝑓 −1(𝑓 (𝑢)) + 𝑓 −1(𝑓 (𝑣))) = 𝑓 (𝑓 −1(𝑓 (𝑢) + 𝑓 (𝑣))) = 𝑓 (𝑢) + 𝑓 (𝑣)
𝑓 (𝛼𝑢) = 𝑓 (𝛼 𝑓 −1(𝑓 (𝑢))) = 𝑓 (𝑓 −1(𝛼 𝑓 (𝑢))) = 𝛼 𝑓 (𝑢) .

Die Gegenrichtung folgt mit vertauschten Rollen. (1 Punkt)
(c) Für jede Linearkombination der 0 mit Koeffizienten 𝛼𝑘 ∈ 𝐾 , 𝑘 = 0, . . . , 𝑛 der Form

𝑛∑︁
𝑘=0

𝛼𝑘 𝑓
(𝑘 ) (𝑣) = 0

und 𝑖 ∈ N ist

0 = 𝑓 (𝑖 ) (0) = 𝑓 (𝑖 )
(
𝑛∑︁
𝑘=0

𝛼𝑘 𝑓
(𝑘 ) (𝑣)

)
=

𝑛∑︁
𝑘=0

𝛼𝑘 𝑓
(𝑘+𝑖 ) (𝑣) =

𝑛−𝑖∑︁
𝑘=0

𝛼𝑘 𝑓
(𝑘+𝑖 ) (𝑣).

Für 𝑖 = 𝑛 folgt, dass 𝛼𝑛−𝑛 = 𝛼0 = 0 sein muss und sukzessive folgt für jeweils kleinere
𝑖 , dass 𝛼𝑛−𝑖 = 0 für alle 𝑖 = 𝑛, . . . , 0 und damit alle der Linearkombinationskoeffizienten.
(1.5 Punkte)

(d) Die Aufgabe zeigt, dass selbstinverse Vektorraumautomorphismen im Grunde nur Anteile
spiegeln und Anteile unverändert lassen.
(𝑖) Dass es sich bei beiden Mengen um Unterräume handelt folgt mit dem Unterraum-

kriterium. Dabei ist wegen 𝑓 (0) = 0 = −0 ∈ 𝑉+ ∩ 𝑉− klar dass beide nichtleer
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sind. Die Abgeschlossenheit beider Mengen unter den Vektorraumoperationen folgt
direkt aus der Linearität von 𝑓 . Wir zeigen das einmal exemplarisch für 𝑉− . Dafür
seien 𝑢, 𝑣 ∈ 𝑉− , 𝛼, 𝛽 ∈ 𝐾 dann ist

𝑓 (𝛼𝑢 + 𝛽𝑣) = 𝛼 𝑓 (𝑢) + 𝛽 𝑓 (𝑣) = 𝛼 (−𝑢) + 𝛽 (−𝑣) = −(𝛼𝑢 + 𝛽𝑣) .

(0.5 Punkte)
Für die Trivialschnitteigenschaft sei 𝑣 ∈ 𝑉+ ∩𝑉− , dann gilt

0 = 𝑓 (0) = 𝑓 (𝑣 − 𝑣) = 𝑓 (𝑣) − 𝑓 (𝑣) = 𝑣 − (−𝑣) = 2︸︷︷︸
1+1

𝑣,

also muss 𝑣 = 0 gewesen sein (Achtung, das gilt wieder nur wegen der Charakteris-
tikeinschränkung). (0.5 Punkte)
Die Erzeugendeneigenschaft ergibt sich durch die Zerlegung

𝑣 =
1
2
(𝑣 + 𝑓 (𝑣))︸        ︷︷        ︸
∈𝑉+ (𝑓 )

+ 1
2
(𝑣 − 𝑓 (𝑣))︸        ︷︷        ︸
∈𝑉− (𝑓 )

die wir schon aus dem Beispiel der Transposition von Matrizen aus dem letzten
Übungsblatt kennen, siehe Hausaufgabe I-10.4 . Diese Zerlegung funktioniert nur,
weil es sich um einen selbstinversen Automorphismus handelt. (1 Punkt)
Beachte: Hat der Körper Charakteristik 2, dann ist 𝑉− (𝑓 ) = 𝑉+(𝑓 ) und die einzige
selbstinverse lineare Abbildung ist die Identität.

(𝑖𝑖) Der entsprechende Automorphismus ist durch sein Verhalten auf den komplementä-
ren Unterräumen bereits vollständig vorgegeben, denn auf Grund der Komplemen-
tarität können wir jedes 𝑣 eindeutig als 𝑣 = 𝑢 +𝑤 mit 𝑢,𝑤 aus 𝑈 bzw.𝑊 schreiben
und eine lineare Abbildung 𝑓 muss

𝑓 (𝑣) = 𝑓 (𝑢) + 𝑓 (𝑤)

erfüllen. Die Bijektivität folgt dann sofort aus der Bijektivität der Identität über die
entsprechende Abbildung der Anteile. (1 Punkt)

Hausaufgabe I-11.4 (Konstruktion linearer Abbildungen) 2 + 2 = 4 Punkte

(a) Gegeben sei 𝑋 = {𝑥1, 𝑥2, 𝑥3}. Entscheiden Sie, ob es eine lineare Abbildung 𝑓 von
(P(𝑋 ), △, ⊙) nach (P({𝑥1, 𝑥2}), △, ⊙) über (Z2, +2, ·2) geben kann, so dass

𝑓 ({𝑥1, 𝑥2}) = {𝑥1}, 𝑓 ({𝑥1, 𝑥3}) = {𝑥2}, 𝑓 ({𝑥2, 𝑥3}) = {𝑥1}
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ist. Falls ja, begründen Sie, weshalb das gerade in dieser Konfigurationmöglich ist, erklären
Sie anderenfalls, wie die Bedingungen verändert werden müssen, damit dies möglich ist.

(b) Es seien (𝑉 , +, ·), (𝑊, +, ·) Vektorräume über demselben Körper 𝐾 und (𝑉1, +, ·) sowie
(𝑉2, +, ·) Unterräume von (𝑉 , +, ·). Zeigen Sie, dass lineare Abbildungen 𝑓1 : 𝑉1 → 𝑊

und 𝑓2 : 𝑉2 → 𝑊 zu einer linearen Abbildung 𝑓 : 𝑉 → 𝑊 mit 𝑓 |
𝑉1

= 𝑓1 und 𝑓 |𝑉2 = 𝑓2
fortgesetzt werden können, wenn 𝑓1 = 𝑓2 auf 𝑉1 ∩𝑉2 gilt. Entscheiden und beweisen Sie,
unter welcher Bedingung an 𝑉1 und 𝑉2 diese Fortsetzung eindeutig ist.

Lösung.

(a) Es ist nicht möglich eine solche lineare Abbildung zu finden, denn die Familie der Vektoren,
deren Bilder vorgeschrieben werden sollen, ist linear abhängig. Insbesondere ist

{𝑥1, 𝑥2}△{𝑥1, 𝑥3} = {𝑥2, 𝑥3}

aber
{𝑥1}△{𝑥2} ≠ {𝑥1}.

Die Bedingungen können vielfältig angepasst werden, um erfüllbar zu werden. Man
könnte die dritte Bedingung vollständig weglassen, deren Bild auf {𝑥1, 𝑥2} setzen oder
statt ein Bild für {𝑥2, 𝑥3} zu fordern, das Bild eines Vektors außerhalb des Spans der
ersten beiden Vektoren fordern, z. B. für {𝑥3}, welches man dann beliebig wählen könnte.
(2 Punkte)

(b) Wir können eine Basis 𝐵∩ von 𝑉1 ∩𝑉2 zu einer Basis 𝐵1 von 𝑉1 und einer Basis 𝐵2 von
𝑉2 ergänzen. Die Menge 𝐵1 ∪ 𝐵2 ist dann eine Basis von 𝑉1 +𝑉2. Wieder können wir aus
Satz 17.10 folgern, dass dann eine eindeutige lineare Abbildung 𝑓 : 𝑉1 +𝑉2 →𝑊 existiert,
die die Fortsetzungsbedingung erfüllt. Ist 𝑉1 +𝑉2 = 𝑉 ist die Fortsetzung also eindeutig
und ihre Existenz nachgewiesen. Ist 𝑉1 +𝑉2 ≠ 𝑉 , dann können wir 𝐵1 ∪ 𝐵2 zu einer Basis
𝐵 von 𝑉 ergänzen und für jedes 𝑣 ∈ 𝐵 \ (𝐵1 ∪ 𝐵2) haben wir freie Bildwahl in𝑊 , die ist
also nur eindeutig, wenn𝑊 der Nullraum ist. (2 Punkte)

Bitte reichen Sie Ihre Lösungen der Hausaufgaben als ein PDF auf Mampf ein.
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