R. Herzog, G. Miiller Lineare Algebra
Universitat Heidelberg Wintersemester 2025 - Sommersemester 2026

UBUNG | - 10 (LOSUNG)

Ausgabedatum: 15. Dezember 2025
Abgabedatum: 12. Januar 2026

Ubungsaufgabe I-10.1. (Basics zu Matrizen)

Gegeben seien die folgenden reellen Matrizen:

1, i+j=5
Ao: [L1] x[L1] 3 (i, j) — 1, Az [1,4] x [[14] > (i, j) H{ /
0, sonst
2, i=]j
Az [L3] x[L6] 2 (i,j)— <1, |i—jl=2, As: [L4] x[[L4] 2 (i, j) —i+j—2
0, sonst

Aq: [L6] x [13] 2 (i, j) — {1’ F=J As: [L3] x[L6] > (i,j) =i

0, sonst ’
(a) Geben Sie die explizite, elementweise Form (15.1 aus dem Skript) der Matrizen an.
(b) Entscheiden Sie, welche der Matrizen quadratisch, Diagonalmatrizen und Einheitsmatri-

zen sind.

(c) Geben Sie fiir jedes k € [0, 5] zu dem dazugehérigen Ay (wenn moglich) die k-te Spalte,
k-te Zeile und die Eintrage entlang der k-ten Diagonalen an.

(d) Entscheiden Sie, fiir welche k, ! € [0, 5] die Summe Ay + A; gebildet werden kann, und
berechnen Sie die entsprechenden Summen fiir die Fille k # 1.

(e) Entscheiden Sie, fiir welche k, I € [[0,5] das Produkt A A; gebildet werden kann, und
berechnen Sie die entsprechenden Produkte fiir die Félle k # [. Hinweis: Arbeiten Sie
schon hier moéglichst spalten- und zeilenweise.

Losung.
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(a) Um die ,Tableau-Form® der Matrizen zu erhalten, wertet man einfach die gegebene
Vorschrift an jedem benétigten Indexpaar aus. Dabei konnen bestimmte Indexkombina-
tionen in Abhéngigkeit von der Struktur der Vorschrift natirlich ausgelassen werden. Bei
dem ersten Beispiel ist die Abbildung ja bspw. konstant, hier kann man also einfach die
konstante Einsmatrix der passenden Dimension hinschreiben.

Die Matrizen haben die Form

[0 0 0 1
0 0 1 0 2 1 000
Ay =[1] A=10 0 o A, = 2 010 0
1 2 1
1 0 0 0 0 0
[1 0 0]
01 2 3 01 0
1 2 3 4 0 0 1 L1
As=|, o 4 s A=, 0 o As = 2 2 2 2
333 3 3
3 4 5 6 00 0
0 0 o0

(b) Quadratisch sind entsprechend die Matrizen A, € R™! und A;, A; € R***. Diagonalma-
trizen sind die Matrizen Ay und A4. Davon ist A, die einzige Einheitsmatrix.

(c) k=o: Die 0-te Spalte und Zeile von A, existiert nicht. Es ist aber die Hauptdiagonale die
0-te Diagonale und in diesem Fall also lediglich ay; = (1).

k=1: Die Eintrage entlang der ersten Diagonalen von A; sind gegeben als
(@2 a3 as)=(0 1 0).

Die erste Spalte und Zeile von A; sind gegeben durch

[1L4] 2i — a; also

oS O O

1
[L4] 2j— a; also (0 0 0 1).

k=2: Die Eintrdge entlang der zweiten Diagonalen von A, sind gegeben als

((113 a4 (235):(1 1 1).
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Die zweite Spalte und Zeile von A, ist gegeben durch

0
[L3] 2i—a; also |2
0

[L6]] 2j—az also (0 2 0 1 0 0).

k=3: Die Eintrage entlang der dritten Diagonalen von As sind gegeben als
(a4, ..., a11) = (3).

Die dritte Spalte und Zeile von Aj; ist gegeben durch

S W N

[14] i — a;3 also
5
[L4] 2j—>as; also (2 3 4 5).

k=4: Die vierte Diagonale von A4 existiert nicht. Die vierte Spalte existiert ebenfalls nicht,
die vierte Zeile von A4 ist gegeben durch

[L3] 2j— as also (0 0 0).

k=5: Die Eintrage entlang der fiinften Diagonalen von As sind gegeben als
(as, - - - a16) = (1).

Die funfte Zeile existiert nicht, die fiinfte Spalte von As ist gegeben durch

1
[1L3] 2i— a5 also [2].
3

(d) Matrizen kénnen genau dann addiert werden, wenn sie die gleichen Dimensionen haben.
Insbesondere kann die Summe jeder Matrix mit sich selbst gebildet werden. Auflerdem ist
die Matrixaddition kommutativ, jede mogliche Summe kann also auch mit vertauschten
Indizes gebildet werden. Berechnet werden muss also

01 2 4
9 4 4 31 2 1 11
Al+A3s=A3+ A = 2 4 4 5 und Ar+As=As;+A,=(2 4 2 3 2 2
4 3 5 3 4 3

4 4 5 6
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(e) Matrizen kénnen genau dann multipliziert werden, wenn die innere Dimension iiberein-
stimmt. Insbesondere kénnen Matrizen genau dann mit sich selbst multipliziert werden,
wenn sie quadratisch sind. Zusétzlich sind die folgenden Kombinationen méglich

[3 4 5 6]
2 3 4 5 . . .
Al As = 12 3 4 (A; tauscht die Zeilenreihenfolge)
|0 1 2 3]
3 2 1 0]
4 3 2 1 . .
A3 A = 5 4 3 3 (A; tauscht die Spaltenreihenfolge)
6 5 4 3]
2 0 1 0 0 O]
0 2 0 1 0 0
1 0 2 01 0 .. . .. .
AL Ay = 00000 0 (A4 erhilt Zeilen und fiillt mit 0 auf)
0O 0 0 0 0 0
0 0 0 0 0 0
(1 1 1 1 1 1]
2 2 2 2 2 2
33 3 3 3 3 . . .. .
Ay As = 0006000 (A4 erhalt Zeilen und fillt mit 0 auf)
0O 0 0 0 0 O
0 0 0 0 0 0
[2 0 1]
Ay Ay =10 2 0 (A4 wihlt die ersten Spalten aus)
1 0 2]
[1 1 1]
AsAy =12 2 2 (A4 wihlt die ersten Spalten aus)
3 3 3

Ubungsaufgabe I-10.2. (Mehr zu spalten-/zeilenweiser Matrixmultiplikation)

Gegeben sei die Matrix B l 12 8 —43] c R¥3

und n € N. Beschreiben Sie verbal, wie die Produkte

BA fiir A € R¥>" und  ABfiir A e R™?
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aus den Zeilen bzw. Spalten der Matrizen A zusammengesetzt sind.

Loésung.

Das Produkt B A liegt in R2*X" hat also zwei Zeilen. In der ersten Zeile von BA steht die Summe
aus der ersten und dem (—3)-fachen der letzten Zeile von A. In der zweiten Zeile von BA steht
die Summe aus dem (—2)-fachen der ersten Zeile und dem vierfachen der letzten Zeile von A.

Das Produkt A B liegt in R™*3, hat also drei Spalten. In der ersten Spalte von AB steht die Summe
der ersten Spalte und dem (—2)-fachen der zweiten Spalte von A, die zweite Spalte ist eine
Nullspalte und die letzte Spalte die Summe des (—3)-fachen der ersten und dem vierfachen der
zweiten Spalte von A.

Ubungsaufgabe I-10.3. (Elementarmatrizen, Rang und Zeilenstufenform)

Es seien (K, +, -) ein Koérper und m,n € N.

(a) Zeigen Sie, dass die Vertauschung zweier Zeilen einer Matrix durch Matrixmultiplikation
mit Elementarmatrizen vom Typ I und Typ II realisierbar ist.

(b) Bestimmen Sie den Rang und eine Rangfaktorisierung der folgenden Matrizen:

-3 -6 6
1 2 9 2 0 1
. - 4%3 :e 3X3
(1) 3 0 5 eR i) |2 1 2|eZ
1 -4 -1 1 1 1
Loésung.
(a) Sei eine Matrix
_ dle —
_ Aije _
A: eRnxm
_ Clj. _
L am. -

gegeben, in der wir die i-te und j-te Zeilen tauschen wollen. Fiir eine kompaktere Darstel-
lung verzichten wir nun auf die vertikalen Punkte, die die ausgelassenen Zeilen markieren.
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Dann konnen wir wie folgt vorgehen:

ale [ ale -
_— dije — |~ | aiu+ajo B —
aj. - [ aj. [
Ame — |—— Ame R
- Ale
- die + Qdje
~>
I aj.—(al-. + a»,-.) = -
L am.
e Qe
~> Qie + Aje—0ie = dje
[ —dije
Ame
_ Ale —
~ | aj. -
_ dje _
_ Gme

(b) Die unten stehenden Losungen habe alle die Struktur,

(Zeile j auf Zeile i add.)

die —

(Zeile i von Zeile j abz.)

(Zeile j auf Zeile i add.)

(Zeile j mit —1 multiplizieren.)

dass wir mit der zu untersuchen-

den Matrix A starten, und eine Identitit als A = IA ergénzen. Zwischen der linken
Matrix (anfangs I) und der rechten Matrix (anfangs A) ergdnzen wir dann sukzessive
Elementarmatrizen und ihre Umkehrung (ihre Inverse) und multiplizieren dann die rechte
Elementarmatrix von links an die rechte Matrix und die linke Elementarmatrix von rechts
an die linke Matrix. Dieses Vorgehen entspricht dem, was man in Implementierungen
umsetzen wiirde, um Speicher zu sparen. Um Platz zu sparen schreiben wir dabei die
Produkte von Elementarmatrizen des Typ II zu verschiedenen Zeilensummen zusammen.

(i) Esist
-3 -6 6 10 0 0][-3 -6 6
1 2 =2/ o1 0 o0f|1 2 -2
-3 0 5| fo o 1 0|[][-3 0 5
1 -4 -1 0 0 0 1|1 -4 -1
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=S

W=

[SSIE

W=

[SSIE

W=

W=

S O = O

S O = O

- o O O

1

S = O O

1

S = O O

S = O O

- o O O

S = O O

—- o o o

o O = o

1 0 0 0][1 o o o][-3 -6 6
-3 1.0 0|3 10 0f|1 2 -2
1 0 1 of|]-1 0 1 0f[-3 0 5
-2 0 0 1)|3 0 0 1f][1 -4 -1
=1
[1 0 0 0]t 0 0 0][-3 -6 6
0 0 0 1(/|0 0 0 1/]0 o0 O
0 0 1 of|lo o 1 0/|l0 6 -1
0 1 0 0J[0 1 0 0f]|]0 -6 1
=
[1 0 0 o0]ft o 0 0][-3 -6 6
0 1 0 oflo 1 0 offl0 -6 1
0 -1 1 0|lo 1 1 of|l0 6 -1
0 0 0 1j[0 0 0 1J{0 o0 O
0][-3 -6 6 1 0
10—61_—%0[—3—66}
olfo o0 o0 1 -1/l0o -6 1
ojlo o o] |-3 1

Entsprechend ist der Rang 2, wie man an der inneren Dimension der Rangfaktori-
sierung abliest.

(ii) Wir kénnen analog zur ersten Teilaufgabe vorgehen, bendtigen jetzt aber die ent-

sprechenden Rechenoperationen in (Zs, +3, -3).

—- N DN

_ = O

_ DN =

oo R oo -

SO = O O = O

=0 O = O O

o = o= =N

O R O Rk Rk O

_ O O = N
L L )

—_
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1 0 0]]2 0 1
=11 1 0ff0 1 1§,
2 1 1|0 0 1

was schon die fertige Rangfaktorisierung ist, und der Rang ist 3.
Ubungsaufgabe I-10.4. (Transposition kann nicht durch Matrixmultiplikation dargestellt
werden)

Es sei (K, +, -) ein Korper. Zeigen Sie, dass genau dann Matrizen S, T € K™*" existieren, so dass
SAT =A"fiiralle A e K™ wennn=m=1.

Hinweis: Nutzen Sie, dass K™*™ 3 E;; = ¢; e' und untersuchen Sie diese Matrizen in
ij i

J
——
eKnx1 cK1lxm
der Rolle von A um einen Widerspruch zu erhalten.

Losung.
Im Fall n = m = 1 sind die Matrizen offensichtlich durch S = T = 1 gegeben.

Im Fall n+m > 2 misste fiir jede Kombination von Indizes i € [1,n], j € [1, m] entsprechend
Eji = E|; = SEyT = Se;e!T = SuiTs
gelten.
Insbesondere gilt das fiir die Eintrage zu den Indizes j, i, also muss
1= (Eji)ji = (SeiTje)ji = SjiTji
fiir alle Kombinationen von Indizes i € [1,n], j € [[1, m] sein, also ist jeder Eintrag von S und T
ungleich 0.

Fir jede Kombination von Indizes i € [[1,n], j € [[1, m] und ein weiteres Indexpaar (I, k) # (j, 1)
ist allerdings
0= (Ejl)lk = (SoiT‘j.)lk = Sli]}ka

was einen Widerspruch ergibt.

Ubungsaufgabe I-10.5. (Ring quadratischer Matrizen)

Es sei (K, +, ) ein Korper. Weiterhin sei n € N.
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(a) Zeigen Sie, dass das Matrixprodukt von n beliebigen strikten oberen Dreiecksmatrizen
aus dem K™*" die Nullmatrix ergibt. Zeigen Sie weiter, dass das Lemma 15.36 impliziert,
also dass A" = 0 fiir jede strikte obere Dreiecksmatrix A € K™*" gilt.

(b) Entscheiden Sie, ob die Ringe der Mengen K", K&*" und K" mit der Matrixaddition
und -multiplikation kommutativ sind. Falls ja, kommutieren die jeweiligen Matrizen auch
mit allen Matrizen aus K"*"?

Loésung.

(a) Wie man in Beispiel 15.37 des Skripts schon sehen kann, sorgt das Erhéhen der Potenz
einer strikten oberen Dreiecksmatrix dafiir, dass mindestens eine weitere Nebendiagonale
nur mit Nullen besetzt ist — die Nicht-Null Eintrage der Matrix wandern bei Erhéhen
der Potenz nach rechts oben. Dieser Effekt ist unabhéngig davon, dass in dem Beispiel
die Potenzen einer strikten oberen Dreiecksmatrix gebildet werden, er tritt auch bei
allgemeinen Produkten auf.

Genauer zeigen wir Folgendes: Es seien A und B aus K"*" strikte obere Dreiecksma-
trizen und ka, kg € [[0,n — 1] Zahlen, so dass die k-ten Nebendiagonalen von A bzw.
B fiir k € [[0,ka] bzw. k € [0, kg]] nur aus Nullen besteht. Dann bestehen die k-ten
Nebendiagonalen des Produkts A B fiir k € [0, k4 + kg + 1]] nur aus Nullen.

Die Behauptung folgt schnell aus der Definition des Matrixprodukt, denn nach Voraus-
setztung sind

a;j=0firj—i<ks und b;;=0fiirj—i<kg

und somit
n j—kp—1
(ab)ij = Z air by = Z Airbe;
=1 T t=itka+l

=0 =0
fir ¢<itka fiir ¢>j-kp

und die Indexmenge der Summe ist leer, wenn j — i < kg + kg + 1.

Die Anzahl der fithrenden, nichtnegativen Nulldiagonalen summiert sich also und wird
um 1 verringert. Entsprechend ist klar, dass das Produkt aus n strikten oberen Dreiecks-
matrizen die Nullmatrix ergibt. Die n-te Potenz A" einer solchen Matrix ist genau ein
solches Produkt.

Der Beweis ist am einfachsten mit der komponentenweise Definition des Matrixprodukts
zu fithren. Eine Intuition, was hier passiert findet man mit der spaltenweisen Interpretation
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jedoch leichter. Das Produkt A B erhilt erstmal kg Nullspalten aus der Struktur von B,
dann weitere k4 Nullspalten aus der Struktur von A und dem Fakt, dass die Spalten k4 +kp
nur die ersten k4 Spalten von A kombinieren. Anschlieffend ist jede Spalte eins weiter
rechts eine Kombination aus Spalten von A, die einen Eintrag hochstens eins weiter unten
haben kann.

Dass Fille auftreten konnen, wo wirklich die n-te Potenz benétigt wird, zeigt schon
Beispiel 15.37 des Skripts. Andersherum kénnen durchaus auch Fille auftreten, in denen
A eine strikte obere Dreiecksmatrix ist, in der lediglich die Hauptdiagonale ausschlieflich
aus Nullen besteht, und fiir die schon A% = 0 gilt, z. B. Matrizen der Struktur

0 1——1
0 0——0

Die kleinste Zahl k € N abzulesen, so dass A¥ = 0 ist, ist also keinesfalls offensichtlich.

(b) Im Fall n = 1 stimmen alle drei Unterrdume tiberein und sind isomorph zum Korper,
kommutieren also. Dass die Dreiecksmatrizen fiir andere n € N nicht kommutieren zeigt
schon das Beispiel im Beweis von Lemma 15.33. Die Diagonalmatrizen bilden fiir beliebige
n € N einen kommutativen Ring. Bei Multiplikation von rechts skaliert eine Diagonalma-
trix die Spalten der linken Matrix mit ihren entsprechenden Hauptdiagonaleintragen. Bei
Multiplikation von links wird zeilenweise skaliert. Das liefert fiir allgemeine Matrizen
nicht den gleichen Effekt, wie man am folgenden Beispiel sieht:

0 1——1]J1 0——0 0 1——1] [t 0o——o]fo0 1——1
0 0——0[{0 0——0 0 0——o0| [0 0——0|l0 0——0
IS ISP IS IS IN]
0 0——0[{0 0——0 0 0——o0| [0 0——0|][0 0——0

Fiir Diagonalmatrizen stimmt aber die j-te Spalte immer mit der j-ten Zeile iiberein, hier
werden also die Hauptdiagonalen komponentenweise multipliziert.

Ubungsaufgabe I-10.6. (Allgemeine lineare Gruppe)

Es seien K ein Korper und n € N.

(a) Zeigen Sie, dass GL(n, K) genau dann endlich ist, wenn K endlich ist.

(b) Bestimmen Sie die von der Menge der Elementarmatrizen vom Typ I erzeugte Untergruppe
in GL(n, K).
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Losung.
(a) Wenn K ein endlicher Korper ist, dann ist schon die Menge aller Matrizen K™*" endlich

mit #K("") Elementen, die Teilmenge GL(n, K) ist entsprechend ebenfalls endlich.

Ist K ein nicht endlicher Korper, dann ist fiir jedes @ € K die Matrix der Form

<1 =]

invertierbar, also in der GL(n, K), welche damit mindestens so méachtig ist, wie der Kérper
selbst.

Fir
E = {A € GL(n,K) | A ist Elementarmatrix vom Typ I}
ist
(E) = {A € GL(n,K) | A ist diagonal}.

Dass es sich hierbei um eine Untergruppe handelt liefert das Untergruppenkriterium, da
Diagonalmatrizen genau dann invertierbar sind, wenn ihre Diagonale keine Null enthilt,
und dann in diesem Fall Elementweise auf der Diagonalen invertiert wird. Damit gilt

(E) € {A € GL(n,K) | A ist diagonal}

und die umgekehrte Inklusion folgt sofort, da eine invertierbare Diagonalmatrix A durch

ﬁ Di(Aii)
i=1

erzeugt werden kann.
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Hausaufgabe I-10.1 (Basics zu Matrizen) 15+ 0.5 + 2 + 1+ 2 =7 Punkte

Gegeben seien die folgenden reellen Matrizen:

0, i+j=2
Ao: [L1] % [L1] 3 (i, j) = 15, Alz[[1,4]]><[[1,4]]3(i,j)r—>{ P
1, sonst
2, i=j+1
Az [L3] x[[1L6] 2 (i,j) — <3, |i—-jl=2, As: [L4] x[L4] > (i, j)—i-j-2
0, sonst
Loz
A4:[[1,3]]><[[1,6]]9(i,j)|—>{ = As: [La] x[L6] 3 (i, j) — j
0, sonst

(a) Geben Sie die explizite, elementweise Form (15.1 aus dem Skript) der Matrizen an.

(b) Entscheiden Sie, welche der Matrizen quadratisch, Diagonalmatrizen und Einheitsmatri-
zen sind.

(c) Geben Sie fiir jedes k € [0, 5] zu dem dazugehérigen A (wenn moglich) die k-te Spalte,
k-te Zeile und die Eintrage entlang der k-ten Diagonalen an.

(d) Entscheiden Sie, fiir welche k, I € [0, 5] die Summe Ay + A; gebildet werden kann, und
berechnen Sie die entsprechenden Summen fiir die Fille k # [.

(e) Entscheiden Sie, fiir welche k, I € [[0,5] das Produkt A A; gebildet werden kann, und
berechnen Sie die entsprechenden Produkte fiir die Félle k # I. Hinweis: Arbeiten Sie
schon hier moglichst spalten- und zeilenweise.

Losung.

(@) Um die ,Tableau-Form® der Matrizen zu erhalten, wertet man einfach die gegebene
Vorschrift an jedem bendtigten Indexpaar aus. Dabei konnen bestimmte Indexkombina-
tionen in Abhéngigkeit von der Struktur der Vorschrift natiirlich ausgelassen werden. Bei
dem ersten Beispiel ist die Abbildung ja bspw. konstant, hier kann man also einfach die
konstante Matrix mit Wert 15 der passenden Dimension hinschreiben.

Die Matrizen haben die Form

Ao = [15] Al =

[ U G G )
_ = =
_ = =
_ = =
>
Il
w N O
N O O
S O W
S W o
w o o
S O O
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-1 0 1 2 1 2 3 4 5 6
0 2 4 6 100000 1 2 3 4 5 6
A = Ay=(0 1 0 0 0 O As =
11 o4 7 10 ! 06010 0 0 Tt 2345 6
2 6 10 14 1 2 3 4 5 6
(1.5 Punkte)
(b) Quadratisch sind entsprechend die Matrizen Ay € R und A;, A; € R***. Diagonalma-
trizen sind die Matrizen Ay und Ay. (0.5 Punkte)

(c) k=o: Die 0-te Spalte und Zeile von A, existiert nicht. Es ist aber die Hauptdiagonale die
0-te Diagonale und in diesem Fall also lediglich ay; = (15).

k=1: Die Eintrdge entlang der ersten Diagonalen von A; sind gegeben als
(ar2,a23,a34) = (1 1 1).

Die erste Spalte und Zeile von A; sind gegeben durch

[L4] 3i— ay also

_ = = O

[L4] 5j—ai; also (0 1 1 1).

k=2: Die Eintrige entlang der zweiten Diagonalen von A, sind gegeben als
(a33,...,a35) = (3 3 3) .

Die zweite Spalte und Zeile von A, ist gegeben durch

0
[1L3] 2i—a; also [0
2

[L6]>j—as also(2 0 0 3 0 0).
k=3: Die Eintrdge entlang der dritten Diagonalen von As sind gegeben als
(@i, ..., aa) = (2).
Die dritte Spalte und Zeile von Aj; ist gegeben durch
1

: 4

[1L4] 3i— a3 also .

10
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[L4] 2j—>as; also (1 4 7 10).
k=4: Die vierte Diagonale von A, ist gegeben durch
(0 0)
Die vierte Zeile existiert nicht, die vierte Spalte von A4 ist gegeben durch
[L3]2i—aw also (0 0 0).
k=5: Die Eintrage entlang der fiinften Diagonalen von As sind gegeben als
(a6 . .. a16) = (6).

Die funfte Zeile existiert nicht, die fiinfte Spalte von As; ist gegeben durch

[1L3] 2i— a;5 also

(S22 NS, ) |

(2 Punkte)

(d) Matrizen kénnen genau dann addiert werden, wenn sie die gleichen Dimensionen haben.
Insbesondere kann die Summe jeder Matrix mit sich selbst gebildet werden. Auflerdem ist
die Matrixaddition kommutativ, jede mogliche Summe kann also auch mit vertauschten
Indizes gebildet werden. Berechnet werden muss also

-1 1 2 3
3 5 7
5 8 11
7
0
0
3

Al+A3=A3+ A =

Az +A4 :A4 +A2 =

I I

oS O© O

0
1
2

_— o W
oS W O

(1 Punkt)

(e) Matrizen kénnen genau dann multipliziert werden, wenn die innere Dimension iiberein-
stimmt. Insbesondere kénnen Matrizen genau dann mit sich selbst multipliziert werden,
wenn sie quadratisch sind. Zusétzlich sind die folgenden Kombinationen moglich

3 12 21 30
2 12 22 32

A Az = 9 12 22 32 (A; summiert Zeilen von Asz auf)
2 12 22 32
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(3 2 2 2
12 12 12 12 .
A3 A= (A; summiert Spalten von As auf)

21 22 22 22
30 32 32 32

6 9 12 15 18
8 12 16 20 24
8§ 12 16 20 24
8 12 16 20 24

4 6 8 10 12
12 24 36 48 60 72
Az As = 27 44 66 88 110 132 (As summiert Spalten von As und skaliert sie)

32 64 96 128 160 192

Al As = (As summiert Spalten von A; und skaliert sie)

o R R W

(2 Punkte)

Hausaufgabe I-10.2 (Mehr zu spalten-/zeilenweiser Matrixmultiplikation) 2 Punkte

Geben Sie eine Matrix B € R**® an, die fiir beliebige A € R3** beide folgenden Bedingungen
erfiillt. Entscheiden und erklaren Sie, ob die Matrix B eindeutig bestimmt ist.

+ Die erste Spalte von A B ist gegeben durch die Summe der ersten Spalte und der vierfachen
letzten Spalte von A und die letzte Spalte von A B ist gegeben durch ein vielfaches der
Summe aller Spalten von A.

« Die zweite und dritte Zeile von B A sind die Summe des zweifachen der zweiten Zeile
von A und des (—3)-fachen der dritten Zeile von A.

Losung.

Die gesuchte Matrix B € R**3ist von der Gestalt

NN N

mit reellen Eintrégen, die es zu bestimmen gilt. Die Informationen iiber die erste Spalte des
Produkts A B liefert schonmal

[ N
NN N )
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und die Informationen iiber die letzte Spalte liefert

N N
NN N )
QS Q8 © 9

fir eina € R.

Mit den Informationen uiber die zweite und dritte Zeile von B A erhalten wir analog

[ N
NN DN

und damit keine eindeutige Matrix, man kann die beiden verbleibenden Eintrige beliebig in R
wihlen um Matrizen der gesuchten Form zu erhalten. (2 Punkte)

Hausaufgabe I-10.3 (Elementarmatrizen, Rang und Zeilenstufenform) 1.5 + 1 + 3.5 = 6 Punkte
Es seien (K, +, -) ein Kérper und m,n € N.

(a) Geben Sie zu jeder Elementarmatrix D, S, T vom Typ I-III eine entsprechende Elementar-

matrix D', S/, T’ an, firdie D’ D = 8’ S = T’ T = I gilt, und zeigen Sie damit Lemma 15.43.

(b) Beschreiben Sie, was die Elementarmatrizen vom Typ I-III bei Multiplikation von rechts
bewirken.

(c) Bestimmen Sie den Rang und eine Rangfaktorisierung der folgenden Matrizen:

4 6 11 LT T
. 6 6 15 4%3 .. 3%3
(1) 2 0 -4 eR @@ |T L T|e({T,L}LXOR,A)
I T T 1
Losung.

(a) Die Form der Matrizen ist offensichtlich, wenn man sich tiberlegt, wie die zeilenweise
Modifikation, die durch die Multiplikation mit den Elementarmatrizen dargestellt wird,
rickgédngig macht.
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Typ I: Fur
1 \ i \
1 1
: ’ 1 1
D= a =I+(a—-1)E; ist D = < =I+(——1
1 \ 1 \ ¢
1 1
Typ II: Fir
1 1 \
S = a 1 =I+aE; ist § = —a 1\ =I-akE;
1 1
Fir Matrizen T vom Typ Il gilt T" = T.
Uberpriifen lasst sich das schnell durch Matrixmultiplikation. (1.5 Punkte)

(©

Bei Multiplikation von Rechts modifizieren die Elementarmatrizen den jeweils anderen
Faktor spaltenweise, statt zeilenweise, also Typ I skaliert spalten und Typ III tauscht
Spalten. Aufpassen muss man lediglich mit den Matrizen vom Typ II, denn von Links
multipliziert addiert I + E;; die j-te Zeile auf die i-te Zeile, von rechts multipliziert dreht
sich aber die Reihenfolge, hier wird die i-te Spalte auf die j-te Spalte addiert. (1 Punkt)

Die unten stehenden Losungen habe alle die Struktur, dass wir mit der zu untersuchenden
Matrix A starten, und eine Identitit als A = A ergdnzen. Zwischen der linken Matrix
(anfangs I) und der rechten Matrix (anfangs A) ergédnzen wir dann sukzessive Elementar-
matrizen (und um Zeilen zu vertauschen Permutationsmatrizen) und ihre Umkehrung
(ihre Inverse) und multiplizieren dann die rechte Elementarmatrix von links an die rechte
Matrix und die linke Elementarmatrix von rechts an die linke Matrix.

(i) Esist
4 6 11 1 0 0 0|4 6 11
6 6 15| (0 1 0 Ojf6 6 15
-2 0 -4 0 01 0]|-2 0 -4
2 6 7 0 0 0 112 o6 7
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(1 0 0 o]fo 0 o 1][o o 0o 1][4 6 11
|01 0 ofj0o 1 0 o[f0 1 0 O||6 6 15
10 0 1 0|0 0 1 of|l0o 0 1 O||-2 0 -4
0 0 0 1]J{1 0 0 Of]|1 0 0 Of][2 6 7

=I
[0 0 0 1][1 0o o o][1 o0 o0 o][2 6 7
010 0|3 1 0 O[|-3 10 0[f[6 6 15
10 01 0||-1 0 1 0[|1 0 1 O|]|-2 0 —4
1 0 0 0J][2 0 0 1][-2 0 0 1|]|4 6 11
=I
[0 0 0 1][1 0o o o]t o o o][1 0 0
o1 0 0|3 1 0 0ff0 1 o0 Off0 1 0 0
10 01 0/|-1 0 1 0[]0 —05 1 O/|0 05 1 0
1 0 0 0J][2 0 0 1J[0 05 0 1J[0 —05 0 1
[0 0 0 1][1 o0 0 o][2 6 7
o1 0 0f|3 1 o0 ofl|0 -12 -6
10 0 1 of|-1 =05 1 of{o 0 0
1 0 0 0J][2 05 0 1Jj0 O O
2 05 0 1][2 6 7
3 1 o0 of|l0 -12 -6
“|-1 =05 1 o0||l0 O 0
1 0 o0 ofj0 0 o0
[2 05
13 1 ]2 6 7
-1 -05 [o -12 —6]
10

Entsprechend ist der Rang 2, wie man an der inneren Dimension der Rangfaktori-
sierung abliest. (2 Punkte)

(ii) Wir kénnen analog zur ersten Teilaufgabe vorgehen, benétigen jetzt aber die entspre-
chenden Rechenoperationen in ({T, L}, XOR, A), welcher isomorph zum (Zs, +2, +2)
ist. Wir erhalten

1 T T T L 1f{|4 T T
T 1L T|=(L4 T L||T L T
T T 1 1 1 T[T T 4L
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4l 1 TI({T L LT L LT L Lf{|T T L
=(L T L})|T T Lf|L T L|fL T L}j|L T T
TJ_J_J_J_T__J_TT_J_TT_J_TT
=I
(L 1L T[T L L][T T 1]
=|L T L||T T 1|4 T T
I I VR o of I R
(L T T|[T T 4]
=|T T L1L||L T T
T oL L)L oL o]
(1 T
T T 1
|7 T [ }
1. T 7T
_T 1
was schon die fertige Rangfaktorisierung ist, und der Rang ist 2. (1.5 Punkte)
Hausaufgabe I-10.4 (Transposition und (Anti-)Symmetrie) 3.5 + 0.5 = 4 Punkte

Es sei (K, +,-) ein Korper und n € N. Zeigen Sie:
(a) Wenn die Charakteristik char(K) # 2 ist, dann sind Kgi* und K% Unterrdume von
K™ der Dimensionen

1
dim(K2") = N (n+1)

sym

1
dim(K ) = N (n-1),
und es gilt

Kan - Knxn @ nxn

sym skew
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(Lemma 15.32). Geben Sie dazu die eindeutige Zerlegung A = Agym + Aggew fiir A € K™
an.

(b) Wenn die Charakteristik char(K) = 2 ist (z.B. K = Z), dann ist K" = K370 . Was ist
die Dimension von K{\" = KJ*" in diesem Fall?

Loésung.

Wir zeigen als kurzes Hilfsresultat, dass genau dann char(K) = 2 gilt, wenn jedes Element von
K selbstinvers ist. Die Riickrichtung dieser Aussage ist offensichtlich (denn das gilt ja dann
auch fur die 1, an Hand der die Charakteristik definiert ist). Fiir die Hinrichtung sei a € K,
dann ist wegena+a =a-(1+1) = a-0 = 0 auch a = —a. Beachte: In jedem Vektorraum
gilt das gemischte Distributivititsgsetz und damit, dass jeder Vektor die additive Ordnung der
Charakteristik des Korpers hat und jeder Korper ist ein VR iiber sich selbst, daraus folgt das
also auch.

(a) Offensichtlich liegt die Nullmatrix in beiden Mengen (sie ist sowohl symmetrisch als auch

antisymmetrisch). Beide Mengen sind also nichtleer. Fiir A,B € K71 und @, f € K ist

auBBerdem auf Grund der komponentenweise Multiplikation und Addition
(aA+BB)" = (a¢A)" + (BB)" = aA" + BB’ = aA + BB.

Weiterhin ist fiir A, B € K[ und &, f € K wieder auf Grund der komponentenweise
Multiplikation und Addition

(aA+ BB)" = (aA)" + (BB)" = aA” + BB" = —aA — BB = —(aA + BB).

Entsprechend sind beide Mengen abgeschlossen bzgl. der Vektorraumoperationen und

somit, nach dem Unterraumkriterium, Unterraume. (0.5 Punkte)
Weiterhin gilt K N KI%" = {0}, da die Charakteristik des Kérpers eingeschrinkt ist.

Eine Matrix die sowohl symmetrisch, als auch antisymmetrisch ist besteht ndmlich nur
aus (additiv) selbstinversen Elementen. Fiir jeden Korper erfiillt die 0 diese Eigenschaft
und wie oben gezeigt gibt es auf Grund der Charakteristikeinschrankung des Kérpers
kein weitere selbstinverses Element. (0.5 Punkte)

Um die Dimensionsaussage zu zeigen, zeigen wir lediglich, dass

1
dim (K = 0 (n+1),

sym

denn dann folgt auf Grund der Dimensionsformel in Satz 14.3 und der noch zu zeigenden
Summeneigenschaft sofort, dass

1
n? = dimg (K™") = dimg (K )+dimg (Ko ) +dimg (K NKIER) = on (n+1)+dimg (KX
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und damit dimg (K[ 5") = n? — %n (n+1) = %n (n-1). (0.5 Punkte)

Dafir zeigen wir, dass die Menge
Bsym = {E,‘l‘ | i€ [[1, n]]} U {Eij +Eji | (l,]) S [[1, n]]z, i< _]}

eine Basis von K11 ist. Das sind gerade die symmetrischen Matrizen, die entweder auf
der Hauptdiagonalen eine 1 stehen haben, oder je eine 1 passend symmetrisch auf den

Nebendiagonalen stehen haben, also Matrizen der Form

0
N o
1 und 10

AN AN

0 0

0

Fiir die symmetrischen Matrizen bildet diese Menge so etwas wie die Standardbasis, denn
jede symmetrische Matrix A lasst sich dann schreiben als

n n
A= Z a;j(Eij +Eji)+Z;aiiEii
i=

i<j=1

daher ist Bgyn, erzeugend, und die Kombination is offensichtlich eindeutig. Da es sich bei
Bgym um eine Menge mit )i, i = %n(n + 1) Elementen handelt ist diese Dimension also
Kklar. (1 Punkt)

Die Standardbasis Bggew von K S’;(Xeé’v ist in diesem Fall entsprechend natiirlich durch
Bskew = {Eij — Eji | (i, j) € [Ln]% i < j}

gegeben. Die antisymmetrischen Matrizen haben alle selbstinverse Elemente auf der
Hauptdiagonalen, bei unserer eingeschrankten Charakteristik sind das also nur die Nullen,
daher kann die Diagonale vernachlassigt werden. Insbesondere ist die Menge leer, wenn
n =1, denn dann handelt es sich bei K" um den Nullvektorraum.

Es verbleibt der Nachweis, dass die beiden Unterraume tatséchlich komplementar sind,
dafiir fehlt noch, dass ihre Summe den ganzen Raum ergibt. Dafiir wiirde es natiirlich
reichen, dass Bgew tatsachlich eine Basis von K S’}év"v ist, denn dann ergibt sich die Eigen-
schaft aus der Vereinigung der Basen mit ihren entsprechenden Kardinalitdten und der
Trivialschnitteigenschaft. Es ist aber durchaus interessant, sich zu fragen, wie man eine
Matrix in ihren symmetrischen und antisymmetrischen Anteil zerlegt. Fir ein A € K™*"
findet man die Zerlegung zum Beispiel gerade durch die Form der beiden Standardba-
sen, denn die Darstellung einer Matrix A in der Vereinigung beider Basen liefert das
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Gleichungssystem

n n
z4=2§anﬂr+ES‘%KEU+EﬁT+&AEU—Eﬁ)
i=1

i<j=1
fiir die entsprechenden Koeffizienten «;j, f;;. Komponentenweise liefert das dann das
System

aij + fij = aij
aij = Pij = aji

fir i < j und damit (summieren und subtrahieren der Zeilen) die Losungen

1
Qij = E(aij +aj;)
1

Bij = E(aij - aj;)

woran man die Zerlegung

1 1
A= Eigq +'14T)'+ 5(?4 —'IQT)

nxn nxn
€ Ksym € Kskew

sofort erkennt, ohne sich mit den komponentenweisen Gleichungen auf der Diagonalen
genauer befassen zu miissen. Beachte: Wir arbeiten hier in einem Koérper der Charakte-
ristik ungleich 2. Das Element 2 € K ist also Kurzschreibweise fiir das Element 1+ 1, das
auf Grund der Charakteristikeinschrankung nicht 0 ist, und damit invertierbar mit dem
inversen Element % (ebenfalls in Kurzschreibweise fiir ﬁ) (1 Punkt)

(b) Wenn char(K) = 2 ist, dann ist wie oben ausgefiihrt jedes Element selbstinvers, daraus

folgt sofort K1 = Kj*". Die Dimension bleibt weiterhin 2n(n + 1), denn die Basis
SkKew

von oben kann unverindert weiterverwendet werden. Hier gilt dann offensichtlich nicht
mehr, dass antisymmetrische Matrizen nur Nullen auf der Diagonalen haben diirfen.
(0.5 Punkte)
Hausaufgabe I-10.5 (Ring quadratischer Matrizen) 1+1+1 =3 Punkte
Es sei (K, +, ) ein Korper.

(a) Esseien m,n € Ny. Zeigen Sie Folgerung 15.46, also dass fuir beliebige Matrizen A € K™*™
und invertierbare Matrizen B € K", C € K™*™ die Gleichheit

Rang(BAC) = Rang(A) (15.36)
gilt.
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(b) Es sein € N. Entscheiden Sie, ob K™" 5 A - AT € K" ein Ringautomorphimus von
Ringen mit Eins ist. Begriinden Sie Thre Antwort.

(c) Zeigen Sie, dass die einzigen Ideale im Ring K™*" die trivialen sind. Dennoch ist im
allgemeinen K™*" kein Korper. Weshalb ist das kein Widerspruch zu Hausaufgabe I-7.4
Teilaufgabe (c)?

Losung.

(a) Wir nutzen Satz 15.17. Da invertierbare Matrizen Vollrang haben, gilt
Rang(B AC) < min{Rang(B), Rang(A), Rang(C)} < Rang(A)
und andererseits

Rang(A) = Rang((B™'B) A(CC™")) = Rang(B"'(BAC)C™)
< min{Rang(B™"), Rang(BAC), Rang(C™!)} < Rang(BAC).

(1 Punkt)

(b) Die Einheitsmatrix ist diagonal, daher gilt I" = I. Auflerdem gilt fiir Matrizen A, B € K™*",
dass
(A+B)'=A"+B'.

Die Matrixmultiplikation ist mit der Transposition aber i. A. bekanntermaflen nicht
vertriglich, denn es gilt

i A.
(AB)'=B'A" # A"B'

wie man fir A = Ej; und B = Ej; sofort einsieht. Ein Sonderfall ist also lediglich der
Fall n = 1, wo diese Matrizen nicht existieren, hier handelt es sich tatsachlich um einen
Ringhomomorphismus. Die Bijektivitit der Abbildung liegt dimensionsunabhangig auf
der Hand, da A" aus den gleichen Eintrigen besteht, wie A. (1 Punkt)

(c) Wir zeigen, dass jedes Ideal, welches ein nicht-Null Element enthilt, bereits den ganzen
Ring enthailt. Es sei dafiir ein Ideal I # {0} und ein A € T\ {0} gegeben. Dann existieren
also Indizes i, j € [1,n], so dass a;; # 0. Da I ein Ideal ist, muss fiir beliebige a € K,
beliebige Indizes k, I € [[1, n] und die Standardmatrizen Ey;, E;; € K™*" auch

a
(—Exi) AEjj = aEgy,
Cll'j
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und damit jede beliebig skalierte Standardmatrix im Ideal enthalten sein. Das dieses Ideal
insbesondere abgeschlossen unter Addition ist, liegt ein beliebiges B € K"*" wegen

n
B = Z bijEij
i,j=1

im Ideal. (1 Punkt)
Hausaufgabe I-10.6 (Allgemeine lineare Gruppe) 2 + 3 =5 Punkte

(a) Essein € Nund
P = {A € K" |In jeder Zeile und jeder Spalte von A steht genau eine 1 und sonst 0} C GL(n, K).

(i) Zeigen Sie, dass P mit der Matrixmultiplikation eine zur (S,, o) isomorphe Gruppe
bildet.

(ii) Zeigen Sie, dass A™! = AT fiir alle A € P.

(iii) Bestimmen Sie eine Zerlegung der Matrix

S O O = O
S = O O O
S O O O =
= o O O O
O O =, O O

in das Produkt von Elementarmatrizen vom Typ III.

(b) (i) Bestimmen Sie alle Elemente der GL(2,Z,).

Hinweis: Uberfithren Sie ein allgemeines A € Z2*? in Zeilenstufenform und unter-
scheiden Sie geeignete Fille.

(ii) Bestimmen Sie die Ordnung fiir alle Elemente aus GL(2, Z;).
(iii) Zeigen Sie, dass GL(2,Z;) nicht kommutativ ist.

Losung.
(a) Beachte: Die Multiplikation mit Matrizen der vorliegenden Form von rechts bzw. links

vertauscht in dem anderen Faktor Spalten bzw. Zeilen, sie permutieren also die Index-
mengen der Spalten und Zeilen, sie werden daher Permutationsmatrizen genannt.
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Eine Permutation f € S, der Form

( 1 ... n )
f ... f(n)
koénnen wir mit der Matrix ®(f) mit

B {1, i=f())
aij =

0, sonst

aus P identifizieren. Die 1-Eintrage sind also genau die as(;) ; fiir j € [1, n]]. Die Matrix A
ist also spaltenweise aus Einheitsvektoren durch A = (ef(l), e ef(n)) aufgebaut.

Die Bijektivitat dieser Abbildung ist offensichtlich, und l4sst sich an Hand der Umkehr-
abbildung leicht verifizieren. Eine Matrix A € P besitzt zu jedem Index j € [[1, n] genau
einen Index ¢; € [1,n] mit agj =1, wobei die /; paarweise verschieden sein miissen. Zu
A € P gehort also die Permutation
-1 _ 1 ... n
*(4) = (a A

Es seien nun Permutationen f, g € S,, gegeben. Aus der spaltenweise Interpretation der
Matrixmultiplikation folgt sofort, dass fir alle Spaltenindizes j € [[1, n] gilt

(@(f) 2(9)s; = P(feg(s)

also hat ®(f) ®(g) in der j-ten Spalte genau am Zeilenindex f(g(j)) eine 1, entspricht
also @(f o g). Da die Mengen isomorph sind und die Abbildung strukturvertréglich folgt
sofort, dass auch P mit der Matrixmultiplikation eine Gruppe bildet. (1 Punkt)

Beachte: Es besteht grundsitzlich auch die Moglichkeit, die Permutationsmatrizen zei-
lenweise statt spaltenweise mit ihren Permutationen der S, zu identifizieren. Dann muss
man auf den Permutationsmatrizen die Multiplikation aber genau mit umgekehrter Rei-
henfolge der Matrizen definieren, sonst erhilt man einen Antihomomorphismus. Die hier
vorgestellte Variante ist auch attraktiv, weil der Urbildvektor in der Zweizeilenform der
Permutation, also (1, ..., n) durch Multiplikation mit ®(f) gerade auf den Bildvektor, also
(fQ1),..., f(n)) abgebildet wird.

Wir wissen nun, dass Gruppenhomomorphismen mit Inversenbildung vertraglich sind,
und dass Transpositionen in der S, selbstinvers sind, was entsprechend auch in P gilt. Die
Permutationen der S,, besitzen Zerlegungen in Transpositionen, fiir A mit einer Zerlegung
der Permutation ®1(A) = 1 o ..., 7%, erhalten wir also, dass

AT =0@ 1 (AT) =@ (AT =0((no...,5) ) =P(n) - o(n)
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= 0(r) D) = (@(1) - (5)) = Dm0 ) = A
(0.5 Punkte)
Um fiir die Matrix
0 01 0O
1 0 0 0 O
0 0 0 01
010 0 O
0 0 010

eine Zerlegung in Transpositionsmatrizen (Elementarmatrizen vom Typ III) — das sind
natiirlich genau die zu den Transpositionspermutationen der S, gehorigen Bilder unter ®
- zu bestimmen, haben wir nun vier Mdglichkeiten. Entweder arbeiten wir mit der Matrix
selbst oder mit der dazugehorigen Permutation

1 2 3 45
(2 4 1 5 3) '
Arbeiten wir mit der Matrix, dann bestimmen wir die Transpositionsmatrizen (bzw. deren
Inverse, alle sind selbstinvers), die wir benétigen, um durch Multiplikation von rechts bzw.
links, sukzessive Spalten bzw. Zeilen zu tauschen, so dass die Einheitsmatrix entsteht.
Arbeiten wir mit der Permutation, dann bestimmen wir wie in Ubungsaufgabe 1-5.3
eine Zerlegung durch Tauschen im Urbild- oder Bildbereich der Permutation und bilden

die gefundene Zerlegung auf Matrizen ab, was dann spaltenweisen bzw. zeilenweisen
Vorgehensweise bei der Matrix entspricht.

Wir geben hier die beiden Varianten fiir das arbeiten mit der Matrix an, weil die Losung
im Rahmen der S, sehr analog zu Ubungsaufgabe I-5.3 geht. Wir notieren dabei die
Transpositionsmatrizen, die die i-te und j-te Spalte bzw. Zeile tauscht mit T;;. Einmal
erhalten wir dann

0010 0 1000 0
1 00 00 0010 0
00 00 1|=Ty|0 0 0 0 1
0100 0 0100 0
000 1 0 0001 0
1000 0

0100 0
=TT |0 0 0 0 1
0010 0

0001 0
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1 0 0 0 O
010 0 O
= T12T24T34 0 0 1 0 O
0 0 0 01
0 001 0
= T12T54T34Tys.

Alternativ erhalten wir bei Bearbeitung der Spalten (von rechts)

0 01 0O [1 0 0 0 O]
1 0 0 0 O 0 01 0O
000 0 1/l=[0 0 0 0 1|73
01 0 00 01 0 00
0 001 O 0 0 0 1 0]
[1 0 0 0 O]
01 0 00
=10 0 0 0 1|Tn»Ts
0 01 0 O
0 0 0 1 0
[1 0 0 0 O]
01 0 0 O
=00100T34T23T13
0 0 0 01
0 0 0 1 0
= T45T34 T3 Ths.

Und wieder sehen wir, dass die Zerlegungen in Transpositionen nicht eindeutig sind.

(0.5 Punkte)
a b
c d

(b) (i) Eine Matrix
ist genau dann invertierbar, wenn sie Vollrang 2 hat. Entsprechend kénnen a und ¢
nicht gleichzeitig 0 sein. Es ergeben sich also die folgenden Moglichkeiten.

Fall 1: a = 0 und ¢ # 0, also ¢ = 1. Dann ergibt sich nach erneuter Anwendung des
Vollrangarguments auf die Zeilen der Matrix, dass b nicht Null sein darf, also b =1
sein muss. Hier ergeben sich die Matrizen

ol 1
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(ii)

(i)

Fall 2: Fiir a = 1 und ¢ = 0 erhalten wir analog die Matrizen

b2l b

Fall 3: Fiir a = ¢ = 1 dirfen nun b und d nicht iibereinstimmen, da die Zeilen sonst
linear abhangig sind und damit der Rang 1 < 2 ist. Es ergeben sich

10 11
1 17 |1 0

Wir wissen bereits jetzt aus dem Satz von Lagrange, dass die Ordnungen der Matrizen
Teiler von 6 sein miissen, also nur die Ordnungen 1, 2, 3, 6 auftreten konnen. Ordnung
6 kann nur dann auftreten, wenn die Gruppe zyklisch erzeugt ist. Es ergeben sich:

(1.5 Punkte)

Ordnung 1: Natiirlich nur die Einheitsmatrix (das neutrale Element)

z:[(l) (1’]

Ordnung 2: Alle selbstinversen Elemente, also schonmal die (einzige) Transpositi-

onsmatrix:
0 1
1 0|

Auflerdem die beiden oberen und unteren Dreiecksmatrizen:

b=

Ordnung 3: Hierunter fallen die verbleibenden Antidiagonalmatrizen, denn
o 1’ o tfr t|_,_[o 1]t 1] _[r 1|
11 1 1fr o] " [1 1f|1 o] |1 0]
(1 Punkt)

Hier kann man sehen, dass sogar die invertierbaren Matrizen im Allgemeinen nicht
miteinander kommutieren. Ein einfaches Beispiel findet man, wenn man nutzt,
dass die Transpositionsmatrizen von links bzw. rechts die Zeilen bzw. die Spalten
vertauschen, was i. A. nicht die gleiche Transformation des anderen Faktors ist. Es

it .. R A B R e A e

(0.5 Punkte)
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Bitte reichen Sie Ihre Losungen der Hausaufgaben als ein PDF auf Mampf ein.
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