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Übungsaufgabe I-10.1. (Basics zu Matrizen)

Gegeben seien die folgenden reellen Matrizen:

𝐴0 : ⟦1, 1⟧ × ⟦1, 1⟧ ∋ (𝑖, 𝑗) ↦→ 1, 𝐴1 : ⟦1, 4⟧ × ⟦1, 4⟧ ∋ (𝑖, 𝑗) ↦→
{
1, 𝑖 + 𝑗 = 5
0, sonst

𝐴2 : ⟦1, 3⟧ × ⟦1, 6⟧ ∋ (𝑖, 𝑗) ↦→

2, 𝑖 = 𝑗

1, |𝑖 − 𝑗 | = 2
0, sonst

, 𝐴3 : ⟦1, 4⟧ × ⟦1, 4⟧ ∋ (𝑖, 𝑗) ↦→ 𝑖 + 𝑗 − 2

𝐴4 : ⟦1, 6⟧ × ⟦1, 3⟧ ∋ (𝑖, 𝑗) ↦→
{
1, 𝑖 = 𝑗

0, sonst
, 𝐴5 : ⟦1, 3⟧ × ⟦1, 6⟧ ∋ (𝑖, 𝑗) ↦→ 𝑖

(a) Geben Sie die explizite, elementweise Form (15.1 aus dem Skript) der Matrizen an.
(b) Entscheiden Sie, welche der Matrizen quadratisch, Diagonalmatrizen und Einheitsmatri-

zen sind.
(c) Geben Sie für jedes 𝑘 ∈ ⟦0, 5⟧ zu dem dazugehörigen 𝐴𝑘 (wenn möglich) die 𝑘-te Spalte,

𝑘-te Zeile und die Einträge entlang der 𝑘-ten Diagonalen an.
(d) Entscheiden Sie, für welche 𝑘, 𝑙 ∈ ⟦0, 5⟧ die Summe 𝐴𝑘 +𝐴𝑙 gebildet werden kann, und

berechnen Sie die entsprechenden Summen für die Fälle 𝑘 ≠ 𝑙 .
(e) Entscheiden Sie, für welche 𝑘, 𝑙 ∈ ⟦0, 5⟧ das Produkt 𝐴𝑘 𝐴𝑙 gebildet werden kann, und

berechnen Sie die entsprechenden Produkte für die Fälle 𝑘 ≠ 𝑙 . Hinweis: Arbeiten Sie
schon hier möglichst spalten- und zeilenweise.

Lösung.

https://tinyurl.com/scoop-la Seite 1 von 29

https://tinyurl.com/scoop-la


R. Herzog, G. Müller

Universität Heidelberg

Lineare Algebra

Wintersemester 2025 - Sommersemester 2026

(a) Um die „Tableau-Form“ der Matrizen zu erhalten, wertet man einfach die gegebene
Vorschrift an jedem benötigten Indexpaar aus. Dabei können bestimmte Indexkombina-
tionen in Abhängigkeit von der Struktur der Vorschrift natürlich ausgelassen werden. Bei
dem ersten Beispiel ist die Abbildung ja bspw. konstant, hier kann man also einfach die
konstante Einsmatrix der passenden Dimension hinschreiben.
Die Matrizen haben die Form

𝐴0 =
[
1
]

𝐴1 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 𝐴2 =


2 0 1 0 0 0
0 2 0 1 0 0
1 0 2 0 1 0


𝐴3 =


0 1 2 3
1 2 3 4
2 3 4 5
3 4 5 6

 𝐴4 =



1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0


𝐴5 =


1 1 1 1 1 1
2 2 2 2 2 2
3 3 3 3 3 3


(b) Quadratisch sind entsprechend die Matrizen 𝐴0 ∈ R1×1 und 𝐴1, 𝐴3 ∈ R4×4. Diagonalma-

trizen sind die Matrizen 𝐴0 und 𝐴4. Davon ist 𝐴0 die einzige Einheitsmatrix.
(c) k=0: Die 0-te Spalte und Zeile von 𝐴0 existiert nicht. Es ist aber die Hauptdiagonale die

0-te Diagonale und in diesem Fall also lediglich 𝑎11 =
(
1
)
.

k=1: Die Einträge entlang der ersten Diagonalen von 𝐴1 sind gegeben als(
𝑎12 𝑎23 𝑎34

)
=
(
0 1 0

)
.

Die erste Spalte und Zeile von 𝐴1 sind gegeben durch

⟦1, 4⟧ ∋ 𝑖 → 𝑎𝑖1 also
©­­­«
0
0
0
1

ª®®®¬
⟦1, 4⟧ ∋ 𝑗 → 𝑎1𝑗 also

(
0 0 0 1

)
.

k=2: Die Einträge entlang der zweiten Diagonalen von 𝐴2 sind gegeben als(
𝑎13 𝑎24 𝑎35

)
=
(
1 1 1

)
.
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Die zweite Spalte und Zeile von 𝐴2 ist gegeben durch

⟦1, 3⟧ ∋ 𝑖 → 𝑎𝑖2 also ©­«
0
2
0

ª®¬
⟦1, 6⟧ ∋ 𝑗 → 𝑎2𝑗 also

(
0 2 0 1 0 0

)
.

k=3: Die Einträge entlang der dritten Diagonalen von 𝐴3 sind gegeben als

(𝑎14, . . . , 𝑎14) = (3) .

Die dritte Spalte und Zeile von 𝐴3 ist gegeben durch

⟦1, 4⟧ ∋ 𝑖 → 𝑎𝑖3 also
©­­­«
2
3
4
5

ª®®®¬
⟦1, 4⟧ ∋ 𝑗 → 𝑎3𝑗 also

(
2 3 4 5

)
.

k=4: Die vierte Diagonale von𝐴4 existiert nicht. Die vierte Spalte existiert ebenfalls nicht,
die vierte Zeile von 𝐴4 ist gegeben durch

⟦1, 3⟧ ∋ 𝑗 → 𝑎4𝑗 also
(
0 0 0

)
.

k=5: Die Einträge entlang der fünften Diagonalen von 𝐴5 sind gegeben als

(𝑎16, . . . , 𝑎16) = (1).

Die fünfte Zeile existiert nicht, die fünfte Spalte von 𝐴5 ist gegeben durch

⟦1, 3⟧ ∋ 𝑖 → 𝑎𝑖5 also ©­«
1
2
3

ª®¬ .
(d) Matrizen können genau dann addiert werden, wenn sie die gleichen Dimensionen haben.

Insbesondere kann die Summe jeder Matrix mit sich selbst gebildet werden. Außerdem ist
die Matrixaddition kommutativ, jede mögliche Summe kann also auch mit vertauschten
Indizes gebildet werden. Berechnet werden muss also

𝐴1 +𝐴3 = 𝐴3 +𝐴1 =


0 1 2 4
1 2 4 4
2 4 4 5
4 4 5 6

 und 𝐴2 +𝐴5 = 𝐴5 +𝐴2 =


3 1 2 1 1 1
2 4 2 3 2 2
4 3 5 3 4 3

 .
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(e) Matrizen können genau dann multipliziert werden, wenn die innere Dimension überein-
stimmt. Insbesondere können Matrizen genau dann mit sich selbst multipliziert werden,
wenn sie quadratisch sind. Zusätzlich sind die folgenden Kombinationen möglich

𝐴1𝐴3 =


3 4 5 6
2 3 4 5
1 2 3 4
0 1 2 3

 (𝐴1 tauscht die Zeilenreihenfolge)

𝐴3𝐴1 =


3 2 1 0
4 3 2 1
5 4 3 2
6 5 4 3

 (𝐴1 tauscht die Spaltenreihenfolge)

𝐴4𝐴2 =



2 0 1 0 0 0
0 2 0 1 0 0
1 0 2 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


(𝐴4 erhält Zeilen und füllt mit 0 auf)

𝐴4𝐴5 =



1 1 1 1 1 1
2 2 2 2 2 2
3 3 3 3 3 3
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


(𝐴4 erhält Zeilen und füllt mit 0 auf)

𝐴2𝐴4 =


2 0 1
0 2 0
1 0 2

 (𝐴4 wählt die ersten Spalten aus)

𝐴5𝐴4 =


1 1 1
2 2 2
3 3 3

 (𝐴4 wählt die ersten Spalten aus)

Übungsaufgabe I-10.2. (Mehr zu spalten-/zeilenweiser Matrixmultiplikation)

Gegeben sei die Matrix
𝐵 :=

[
1 0 −3
−2 0 4

]
∈ R2×3

und 𝑛 ∈ N. Beschreiben Sie verbal, wie die Produkte

𝐵𝐴 für 𝐴 ∈ R3×𝑛 und 𝐴𝐵 für 𝐴 ∈ R𝑛×2
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aus den Zeilen bzw. Spalten der Matrizen 𝐴 zusammengesetzt sind.

Lösung.

Das Produkt 𝐵𝐴 liegt in R2×𝑛 , hat also zwei Zeilen. In der ersten Zeile von 𝐵𝐴 steht die Summe
aus der ersten und dem (−3)-fachen der letzten Zeile von 𝐴. In der zweiten Zeile von 𝐵𝐴 steht
die Summe aus dem (−2)-fachen der ersten Zeile und dem vierfachen der letzten Zeile von 𝐴.

Das Produkt𝐴𝐵 liegt in R𝑛×3, hat also drei Spalten. In der ersten Spalte von𝐴𝐵 steht die Summe
der ersten Spalte und dem (−2)-fachen der zweiten Spalte von 𝐴, die zweite Spalte ist eine
Nullspalte und die letzte Spalte die Summe des (−3)-fachen der ersten und dem vierfachen der
zweiten Spalte von 𝐴.

Übungsaufgabe I-10.3. (Elementarmatrizen, Rang und Zeilenstufenform)

Es seien (𝐾, +, ·) ein Körper und𝑚,𝑛 ∈ N.

(a) Zeigen Sie, dass die Vertauschung zweier Zeilen einer Matrix durch Matrixmultiplikation
mit Elementarmatrizen vom Typ I und Typ II realisierbar ist.

(b) Bestimmen Sie den Rang und eine Rangfaktorisierung der folgenden Matrizen:
−3 −6 6
1 2 −2
−3 0 5
1 −4 −1

 ∈ R4×3(i)

2 0 1
2 1 2
1 1 1

 ∈ Z3×3
3(ii)

Lösung.

(a) Sei eine Matrix

𝐴 =



𝑎1•
...

𝑎𝑖•
...

𝑎 𝑗•
...

𝑎𝑚•


∈ R𝑛×𝑚

gegeben, in der wir die 𝑖-te und 𝑗-te Zeilen tauschen wollen. Für eine kompaktere Darstel-
lung verzichten wir nun auf die vertikalen Punkte, die die ausgelassenen Zeilen markieren.
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Dann können wir wie folgt vorgehen:
𝑎1•
𝑎𝑖•
𝑎 𝑗•
𝑎𝑚•

 {


𝑎1•
𝑎𝑖•+𝑎 𝑗•
𝑎 𝑗•
𝑎𝑚•

 (Zeile 𝑗 auf Zeile 𝑖 add.)

{


𝑎1•

𝑎𝑖• + 𝑎 𝑗•
𝑎 𝑗•−(𝑎𝑖• + 𝑎 𝑗•) = −𝑎𝑖•

𝑎𝑚•


(Zeile 𝑖 von Zeile 𝑗 abz.)

{


𝑎1•

𝑎𝑖• + 𝑎 𝑗•−𝑎𝑖• = 𝑎 𝑗•
−𝑎𝑖•
𝑎𝑚•

 (Zeile 𝑗 auf Zeile 𝑖 add.)

{


𝑎1•
𝑎 𝑗•
𝑎𝑖•
𝑎𝑚•

 . (Zeile 𝑗 mit −1 multiplizieren.)

(b) Die unten stehenden Lösungen habe alle die Struktur, dass wir mit der zu untersuchen-
den Matrix 𝐴 starten, und eine Identität als 𝐴 = 𝐼𝐴 ergänzen. Zwischen der linken
Matrix (anfangs 𝐼 ) und der rechten Matrix (anfangs 𝐴) ergänzen wir dann sukzessive
Elementarmatrizen und ihre Umkehrung (ihre Inverse) und multiplizieren dann die rechte
Elementarmatrix von links an die rechte Matrix und die linke Elementarmatrix von rechts
an die linke Matrix. Dieses Vorgehen entspricht dem, was man in Implementierungen
umsetzen würde, um Speicher zu sparen. Um Platz zu sparen schreiben wir dabei die
Produkte von Elementarmatrizen des Typ II zu verschiedenen Zeilensummen zusammen.

(𝑖) Es ist
−3 −6 6
1 2 −2
−3 0 5
1 −4 −1

 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



−3 −6 6
1 2 −2
−3 0 5
1 −4 −1


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=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



1 0 0 0
− 1

3 1 0 0
1 0 1 0
− 1

3 0 0 1



1 0 0 0
1
3 1 0 0
−1 0 1 0
1
3 0 0 1

︸                                   ︷︷                                   ︸
=𝐼


−3 −6 6
1 2 −2
−3 0 5
1 −4 −1


=


1 0 0 0
− 1

3 1 0 0
1 0 1 0
− 1

3 0 0 1



1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0



1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

︸                               ︷︷                               ︸
=𝐼


−3 −6 6
0 0 0
0 6 −1
0 −6 1


=


1 0 0 0
− 1

3 0 0 1
1 0 1 0
− 1

3 1 0 0



1 0 0 0
0 1 0 0
0 −1 1 0
0 0 0 1



1 0 0 0
0 1 0 0
0 1 1 0
0 0 0 1

︸                                 ︷︷                                 ︸
=𝐼


−3 −6 6
0 −6 1
0 6 −1
0 0 0


=


1 0 0 0
− 1

3 0 0 1
1 −1 1 0
− 1

3 1 0 0



−3 −6 6
0 −6 1
0 0 0
0 0 0

 =

1 0
− 1

3 0
1 −1
− 1

3 1


[
−3 −6 6
0 −6 1

]
Entsprechend ist der Rang 2, wie man an der inneren Dimension der Rangfaktori-
sierung abliest.

(𝑖𝑖) Wir können analog zur ersten Teilaufgabe vorgehen, benötigen jetzt aber die ent-
sprechenden Rechenoperationen in (Z3, +3, ·3).

2 0 1
2 1 2
1 1 1

 =

1 0 0
0 1 0
0 0 1



2 0 1
2 1 2
1 1 1


=


1 0 0
0 1 0
0 0 1



1 0 0
1 1 0
2 0 1



1 0 0
2 1 0
1 0 1

︸                     ︷︷                     ︸
=𝐼


2 0 1
2 1 2
1 1 1


=


1 0 0
1 1 0
2 0 1



1 0 0
0 1 0
0 1 1



1 0 0
0 1 0
0 2 1

︸                     ︷︷                     ︸
=𝐼


2 0 1
0 1 1
0 1 2


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=


1 0 0
1 1 0
2 1 1



2 0 1
0 1 1
0 0 1

 ,
was schon die fertige Rangfaktorisierung ist, und der Rang ist 3.

Übungsaufgabe I-10.4. (Transposition kann nicht durch Matrixmultiplikation dargestellt
werden)

Es sei (𝐾, +, ·) ein Körper. Zeigen Sie, dass genau dann Matrizen 𝑆,𝑇 ∈ 𝐾𝑚×𝑛 existieren, so dass
𝑆 𝐴𝑇 = 𝐴ᵀ für alle 𝐴 ∈ 𝐾𝑛×𝑚 , wenn 𝑛 =𝑚 = 1.

Hinweis: Nutzen Sie, dass K𝑛×𝑚 ∋ 𝐸𝑖 𝑗 = 𝑒𝑖︸︷︷︸
∈𝐾𝑛×1

𝑒ᵀ𝑗︸︷︷︸
∈𝐾 1×𝑚

und untersuchen Sie diese Matrizen in

der Rolle von 𝐴 um einen Widerspruch zu erhalten.

Lösung.

Im Fall 𝑛 =𝑚 = 1 sind die Matrizen offensichtlich durch 𝑆 = 𝑇 = 1 gegeben.

Im Fall 𝑛+𝑚 > 2 müsste für jede Kombination von Indizes 𝑖 ∈ ⟦1, 𝑛⟧, 𝑗 ∈ ⟦1,𝑚⟧ entsprechend

𝐸 𝑗𝑖 = 𝐸
ᵀ
𝑖 𝑗 = 𝑆𝐸𝑖 𝑗𝑇 = 𝑆𝑒𝑖𝑒

ᵀ
𝑗𝑇 = 𝑆•𝑖𝑇𝑗•

gelten.

Insbesondere gilt das für die Einträge zu den Indizes 𝑗, 𝑖 , also muss

1 = (𝐸 𝑗𝑖) 𝑗𝑖 = (𝑆•𝑖𝑇𝑗•) 𝑗𝑖 = 𝑆 𝑗𝑖𝑇𝑗𝑖

für alle Kombinationen von Indizes 𝑖 ∈ ⟦1, 𝑛⟧, 𝑗 ∈ ⟦1,𝑚⟧ sein, also ist jeder Eintrag von 𝑆 und𝑇
ungleich 0.

Für jede Kombination von Indizes 𝑖 ∈ ⟦1, 𝑛⟧, 𝑗 ∈ ⟦1,𝑚⟧ und ein weiteres Indexpaar (𝑙, 𝑘) ≠ ( 𝑗, 𝑖)
ist allerdings

0 = (𝐸 𝑗𝑖)𝑙𝑘 = (𝑆•𝑖𝑇𝑗•)𝑙𝑘 = 𝑆𝑙𝑖𝑇𝑗𝑘 ,

was einen Widerspruch ergibt.

Übungsaufgabe I-10.5. (Ring quadratischer Matrizen)

Es sei (𝐾, +, ·) ein Körper. Weiterhin sei 𝑛 ∈ N.
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(a) Zeigen Sie, dass das Matrixprodukt von 𝑛 beliebigen strikten oberen Dreiecksmatrizen
aus dem 𝐾𝑛×𝑛 die Nullmatrix ergibt. Zeigen Sie weiter, dass das Lemma 15.36 impliziert,
also dass 𝐴𝑛 = 0 für jede strikte obere Dreiecksmatrix 𝐴 ∈ 𝐾𝑛×𝑛 gilt.

(b) Entscheiden Sie, ob die Ringe der Mengen 𝐾𝑛×𝑛 , 𝐾𝑛×𝑛 und 𝐾𝑛×𝑛 mit der Matrixaddition
und -multiplikation kommutativ sind. Falls ja, kommutieren die jeweiligen Matrizen auch
mit allen Matrizen aus 𝐾𝑛×𝑛?

Lösung.

(a) Wie man in Beispiel 15.37 des Skripts schön sehen kann, sorgt das Erhöhen der Potenz
einer strikten oberen Dreiecksmatrix dafür, dass mindestens eine weitere Nebendiagonale
nur mit Nullen besetzt ist – die Nicht-Null Einträge der Matrix wandern bei Erhöhen
der Potenz nach rechts oben. Dieser Effekt ist unabhängig davon, dass in dem Beispiel
die Potenzen einer strikten oberen Dreiecksmatrix gebildet werden, er tritt auch bei
allgemeinen Produkten auf.
Genauer zeigen wir Folgendes: Es seien 𝐴 und 𝐵 aus 𝐾𝑛×𝑛 strikte obere Dreiecksma-
trizen und 𝑘𝐴, 𝑘𝐵 ∈ ⟦0, 𝑛 − 1⟧ Zahlen, so dass die 𝑘-ten Nebendiagonalen von 𝐴 bzw.
𝐵 für 𝑘 ∈ ⟦0, 𝑘𝐴⟧ bzw. 𝑘 ∈ ⟦0, 𝑘𝐵⟧ nur aus Nullen besteht. Dann bestehen die 𝑘-ten
Nebendiagonalen des Produkts 𝐴𝐵 für 𝑘 ∈ ⟦0, 𝑘𝐴 + 𝑘𝐵 + 1⟧ nur aus Nullen.
Die Behauptung folgt schnell aus der Definition des Matrixprodukt, denn nach Voraus-
setztung sind

𝑎𝑖 𝑗 = 0 für 𝑗 − 𝑖 ⩽ 𝑘𝐴 und 𝑏𝑖 𝑗 = 0 für 𝑗 − 𝑖 ⩽ 𝑘𝐵

und somit

(𝑎𝑏)𝑖 𝑗 =
𝑛∑︁
ℓ=1

𝑎𝑖ℓ︸︷︷︸
=0

für ℓ⩽𝑖+𝑘𝐴

𝑏ℓ 𝑗︸︷︷︸
=0

für ℓ⩾ 𝑗−𝑘𝐵

=

𝑗−𝑘𝐵−1∑︁
ℓ=𝑖+𝑘𝐴+1

𝑎𝑖ℓ𝑏ℓ 𝑗

und die Indexmenge der Summe ist leer, wenn 𝑗 − 𝑖 ⩽ 𝑘𝐵 + 𝑘𝐴 + 1.
Die Anzahl der führenden, nichtnegativen Nulldiagonalen summiert sich also und wird
um 1 verringert. Entsprechend ist klar, dass das Produkt aus 𝑛 strikten oberen Dreiecks-
matrizen die Nullmatrix ergibt. Die 𝑛-te Potenz 𝐴𝑛 einer solchen Matrix ist genau ein
solches Produkt.
Der Beweis ist am einfachsten mit der komponentenweise Definition des Matrixprodukts
zu führen. Eine Intuition, was hier passiert findet manmit der spaltenweisen Interpretation
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jedoch leichter. Das Produkt 𝐴𝐵 erhält erstmal 𝑘𝐵 Nullspalten aus der Struktur von 𝐵,
dann weitere 𝑘𝐴 Nullspalten aus der Struktur von𝐴 und dem Fakt, dass die Spalten 𝑘𝐴+𝑘𝐵
nur die ersten 𝑘𝐴 Spalten von 𝐴 kombinieren. Anschließend ist jede Spalte eins weiter
rechts eine Kombination aus Spalten von𝐴, die einen Eintrag höchstens eins weiter unten
haben kann.
Dass Fälle auftreten können, wo wirklich die 𝑛-te Potenz benötigt wird, zeigt schon
Beispiel 15.37 des Skripts. Andersherum können durchaus auch Fälle auftreten, in denen
𝐴 eine strikte obere Dreiecksmatrix ist, in der lediglich die Hauptdiagonale ausschließlich
aus Nullen besteht, und für die schon 𝐴2 = 0 gilt, z. B. Matrizen der Struktur

0 1 1
0 0 0

0 0 0


.

Die kleinste Zahl 𝑘 ∈ N abzulesen, so dass 𝐴𝑘 = 0 ist, ist also keinesfalls offensichtlich.
(b) Im Fall 𝑛 = 1 stimmen alle drei Unterräume überein und sind isomorph zum Körper,

kommutieren also. Dass die Dreiecksmatrizen für andere 𝑛 ∈ N nicht kommutieren zeigt
schon das Beispiel im Beweis von Lemma 15.33. Die Diagonalmatrizen bilden für beliebige
𝑛 ∈ N einen kommutativen Ring. Bei Multiplikation von rechts skaliert eine Diagonalma-
trix die Spalten der linken Matrix mit ihren entsprechenden Hauptdiagonaleinträgen. Bei
Multiplikation von links wird zeilenweise skaliert. Das liefert für allgemeine Matrizen
nicht den gleichen Effekt, wie man am folgenden Beispiel sieht:
0 1 1
0 0 0

0 0 0



1 0 0
0 0 0

0 0 0


= 0 ≠


0 1 1
0 0 0

0 0 0


=


1 0 0
0 0 0

0 0 0



0 1 1
0 0 0

0 0 0


.

Für Diagonalmatrizen stimmt aber die 𝑗-te Spalte immer mit der 𝑗-ten Zeile überein, hier
werden also die Hauptdiagonalen komponentenweise multipliziert.

Übungsaufgabe I-10.6. (Allgemeine lineare Gruppe)

Es seien 𝐾 ein Körper und 𝑛 ∈ N.

(a) Zeigen Sie, dass GL(𝑛, 𝐾) genau dann endlich ist, wenn 𝐾 endlich ist.
(b) Bestimmen Sie die von derMenge der Elementarmatrizen vom Typ I erzeugte Untergruppe

in GL(𝑛, 𝐾).
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Lösung.

(a) Wenn 𝐾 ein endlicher Körper ist, dann ist schon die Menge aller Matrizen 𝐾𝑛×𝑛 endlich
mit #𝐾 (𝑛2 ) Elementen, die Teilmenge GL(𝑛, 𝐾) ist entsprechend ebenfalls endlich.
Ist 𝐾 ein nicht endlicher Körper, dann ist für jedes 𝛼 ∈ 𝐾 die Matrix der Form

𝛼 0 0
0 1 0

0 0 1


=


𝛼−1 0 0
0 1 0

0 0 1


−1

invertierbar, also in der GL(𝑛, 𝐾), welche damit mindestens so mächtig ist, wie der Körper
selbst.

(b) Für
𝐸 = {𝐴 ∈ GL(𝑛, 𝐾) |𝐴 ist Elementarmatrix vom Typ I}

ist
⟨𝐸⟩ = {𝐴 ∈ GL(𝑛, 𝐾) |𝐴 ist diagonal}.

Dass es sich hierbei um eine Untergruppe handelt liefert das Untergruppenkriterium, da
Diagonalmatrizen genau dann invertierbar sind, wenn ihre Diagonale keine Null enthält,
und dann in diesem Fall Elementweise auf der Diagonalen invertiert wird. Damit gilt

⟨𝐸⟩ ⊆ {𝐴 ∈ GL(𝑛, 𝐾) |𝐴 ist diagonal}

und die umgekehrte Inklusion folgt sofort, da eine invertierbare Diagonalmatrix 𝐴 durch

𝑛∏
𝑖=1

𝐷𝑖 (𝐴𝑖𝑖)

erzeugt werden kann.
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Hausaufgabe I-10.1 (Basics zu Matrizen) 1.5 + 0.5 + 2 + 1 + 2 = 7 Punkte

Gegeben seien die folgenden reellen Matrizen:

𝐴0 : ⟦1, 1⟧ × ⟦1, 1⟧ ∋ (𝑖, 𝑗) ↦→ 15, 𝐴1 : ⟦1, 4⟧ × ⟦1, 4⟧ ∋ (𝑖, 𝑗) ↦→
{
0, 𝑖 + 𝑗 = 2
1, sonst

𝐴2 : ⟦1, 3⟧ × ⟦1, 6⟧ ∋ (𝑖, 𝑗) ↦→

2, 𝑖 = 𝑗 + 1
3, |𝑖 − 𝑗 | = 2
0, sonst

, 𝐴3 : ⟦1, 4⟧ × ⟦1, 4⟧ ∋ (𝑖, 𝑗) ↦→ 𝑖 · 𝑗 − 2

𝐴4 : ⟦1, 3⟧ × ⟦1, 6⟧ ∋ (𝑖, 𝑗) ↦→
{
1, 𝑖 = 𝑗

0, sonst
, 𝐴5 : ⟦1, 4⟧ × ⟦1, 6⟧ ∋ (𝑖, 𝑗) ↦→ 𝑗

(a) Geben Sie die explizite, elementweise Form (15.1 aus dem Skript) der Matrizen an.
(b) Entscheiden Sie, welche der Matrizen quadratisch, Diagonalmatrizen und Einheitsmatri-

zen sind.
(c) Geben Sie für jedes 𝑘 ∈ ⟦0, 5⟧ zu dem dazugehörigen 𝐴𝑘 (wenn möglich) die 𝑘-te Spalte,

𝑘-te Zeile und die Einträge entlang der 𝑘-ten Diagonalen an.
(d) Entscheiden Sie, für welche 𝑘, 𝑙 ∈ ⟦0, 5⟧ die Summe 𝐴𝑘 +𝐴𝑙 gebildet werden kann, und

berechnen Sie die entsprechenden Summen für die Fälle 𝑘 ≠ 𝑙 .
(e) Entscheiden Sie, für welche 𝑘, 𝑙 ∈ ⟦0, 5⟧ das Produkt 𝐴𝑘 𝐴𝑙 gebildet werden kann, und

berechnen Sie die entsprechenden Produkte für die Fälle 𝑘 ≠ 𝑙 . Hinweis: Arbeiten Sie
schon hier möglichst spalten- und zeilenweise.

Lösung.

(a) Um die „Tableau-Form“ der Matrizen zu erhalten, wertet man einfach die gegebene
Vorschrift an jedem benötigten Indexpaar aus. Dabei können bestimmte Indexkombina-
tionen in Abhängigkeit von der Struktur der Vorschrift natürlich ausgelassen werden. Bei
dem ersten Beispiel ist die Abbildung ja bspw. konstant, hier kann man also einfach die
konstante Matrix mit Wert 15 der passenden Dimension hinschreiben.
Die Matrizen haben die Form

𝐴0 =
[
15
]

𝐴1 =


0 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 𝐴2 =


0 0 3 0 0 0
2 0 0 3 0 0
3 2 0 0 3 0


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𝐴3 =


−1 0 1 2
0 2 4 6
1 4 7 10
2 6 10 14

 𝐴4 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 𝐴5 =


1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6


(1.5 Punkte)

(b) Quadratisch sind entsprechend die Matrizen 𝐴0 ∈ R1×1 und 𝐴1, 𝐴3 ∈ R4×4. Diagonalma-
trizen sind die Matrizen 𝐴0 und 𝐴4. (0.5 Punkte)

(c) k=0: Die 0-te Spalte und Zeile von 𝐴0 existiert nicht. Es ist aber die Hauptdiagonale die
0-te Diagonale und in diesem Fall also lediglich 𝑎11 =

(
15
)
.

k=1: Die Einträge entlang der ersten Diagonalen von 𝐴1 sind gegeben als

(𝑎12, 𝑎23, 𝑎34) =
(
1 1 1

)
.

Die erste Spalte und Zeile von 𝐴1 sind gegeben durch

⟦1, 4⟧ ∋ 𝑖 → 𝑎𝑖1 also
©­­­«
0
1
1
1

ª®®®¬
⟦1, 4⟧ ∋ 𝑗 → 𝑎1𝑗 also

(
0 1 1 1

)
.

k=2: Die Einträge entlang der zweiten Diagonalen von 𝐴2 sind gegeben als

(𝑎33, . . . , 𝑎35) =
(
3 3 3

)
.

Die zweite Spalte und Zeile von 𝐴2 ist gegeben durch

⟦1, 3⟧ ∋ 𝑖 → 𝑎𝑖2 also ©­«
0
0
2

ª®¬
⟦1, 6⟧ ∋ 𝑗 → 𝑎2𝑗 also

(
2 0 0 3 0 0

)
.

k=3: Die Einträge entlang der dritten Diagonalen von 𝐴3 sind gegeben als

(𝑎14, . . . , 𝑎14) = (2) .

Die dritte Spalte und Zeile von 𝐴3 ist gegeben durch

⟦1, 4⟧ ∋ 𝑖 → 𝑎𝑖3 also
©­­­«
1
4
7
10

ª®®®¬
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⟦1, 4⟧ ∋ 𝑗 → 𝑎3𝑗 also
(
1 4 7 10

)
.

k=4: Die vierte Diagonale von 𝐴4 ist gegeben durch(
0 0

)
Die vierte Zeile existiert nicht, die vierte Spalte von 𝐴4 ist gegeben durch

⟦1, 3⟧ ∋ 𝑖 → 𝑎𝑖4 also
(
0 0 0

)
.

k=5: Die Einträge entlang der fünften Diagonalen von 𝐴5 sind gegeben als

(𝑎16 . . . 𝑎16) = (6) .

Die fünfte Zeile existiert nicht, die fünfte Spalte von 𝐴5 ist gegeben durch

⟦1, 3⟧ ∋ 𝑖 → 𝑎𝑖5 also
©­­­«
5
5
5
5

ª®®®¬ .
(2 Punkte)

(d) Matrizen können genau dann addiert werden, wenn sie die gleichen Dimensionen haben.
Insbesondere kann die Summe jeder Matrix mit sich selbst gebildet werden. Außerdem ist
die Matrixaddition kommutativ, jede mögliche Summe kann also auch mit vertauschten
Indizes gebildet werden. Berechnet werden muss also

𝐴1 +𝐴3 = 𝐴3 +𝐴1 =


−1 1 2 3
1 3 5 7
2 5 8 11
3 7 11 15


𝐴2 +𝐴4 = 𝐴4 +𝐴2 =


1 0 3 0 0 0
2 1 0 3 0 0
3 2 1 0 3 0

 .
(1 Punkt)

(e) Matrizen können genau dann multipliziert werden, wenn die innere Dimension überein-
stimmt. Insbesondere können Matrizen genau dann mit sich selbst multipliziert werden,
wenn sie quadratisch sind. Zusätzlich sind die folgenden Kombinationen möglich

𝐴1𝐴3 =


3 12 21 30
2 12 22 32
2 12 22 32
2 12 22 32

 (𝐴1 summiert Zeilen von 𝐴3 auf)
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𝐴3𝐴1 =


3 2 2 2
12 12 12 12
21 22 22 22
30 32 32 32

 (𝐴1 summiert Spalten von 𝐴3 auf)

𝐴1𝐴5 =


3 6 9 12 15 18
4 8 12 16 20 24
4 8 12 16 20 24
4 8 12 16 20 24

 (𝐴5 summiert Spalten von 𝐴1 und skaliert sie)

𝐴3𝐴5 =


2 4 6 8 10 12
12 24 36 48 60 72
22 44 66 88 110 132
32 64 96 128 160 192

 (𝐴5 summiert Spalten von 𝐴3 und skaliert sie)

(2 Punkte)

Hausaufgabe I-10.2 (Mehr zu spalten-/zeilenweiser Matrixmultiplikation) 2 Punkte

Geben Sie eine Matrix 𝐵 ∈ R4×3 an, die für beliebige 𝐴 ∈ R3×4 beide folgenden Bedingungen
erfüllt. Entscheiden und erklären Sie, ob die Matrix 𝐵 eindeutig bestimmt ist.

• Die erste Spalte von𝐴𝐵 ist gegeben durch die Summe der ersten Spalte und der vierfachen
letzten Spalte von 𝐴 und die letzte Spalte von 𝐴𝐵 ist gegeben durch ein vielfaches der
Summe aller Spalten von 𝐴.

• Die zweite und dritte Zeile von 𝐵𝐴 sind die Summe des zweifachen der zweiten Zeile
von 𝐴 und des (−3)-fachen der dritten Zeile von 𝐴.

Lösung.

Die gesuchte Matrix 𝐵 ∈ R4×3ist von der Gestalt
? ? ?
? ? ?
? ? ?
? ? ?


mit reellen Einträgen, die es zu bestimmen gilt. Die Informationen über die erste Spalte des
Produkts 𝐴𝐵 liefert schonmal

𝐵 =


1 ? ?
0 ? ?
0 ? ?
4 ? ?


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und die Informationen über die letzte Spalte liefert

𝐵 =


1 ? 𝑎

0 ? 𝑎

0 ? 𝑎

4 ? 𝑎


für ein 𝑎 ∈ R.

Mit den Informationen über die zweite und dritte Zeile von 𝐵𝐴 erhalten wir analog

𝐵 =


1 ? −3
0 2 −3
0 2 −3
4 ? −3


und damit keine eindeutige Matrix, man kann die beiden verbleibenden Einträge beliebig in R
wählen um Matrizen der gesuchten Form zu erhalten. (2 Punkte)

Hausaufgabe I-10.3 (Elementarmatrizen, Rang und Zeilenstufenform) 1.5 + 1 + 3.5 = 6 Punkte

Es seien (𝐾, +, ·) ein Körper und𝑚,𝑛 ∈ N.

(a) Geben Sie zu jeder Elementarmatrix 𝐷, 𝑆, 𝑇 vom Typ I-III eine entsprechende Elementar-
matrix 𝐷 ′, 𝑆 ′, 𝑇 ′ an, für die 𝐷 ′ 𝐷 = 𝑆 ′ 𝑆 = 𝑇 ′𝑇 = 𝐼 gilt, und zeigen Sie damit Lemma 15.43.

(b) Beschreiben Sie, was die Elementarmatrizen vom Typ I-III bei Multiplikation von rechts
bewirken.

(c) Bestimmen Sie den Rang und eine Rangfaktorisierung der folgenden Matrizen:
4 6 11
6 6 15
−2 0 −4
2 6 7

 ∈ R4×3(i)

⊥ ⊤ ⊤
⊤ ⊥ ⊤
⊤ ⊤ ⊥

 ∈ ({⊤,⊥},XOR,∧)3×3(ii)

Lösung.

(a) Die Form der Matrizen ist offensichtlich, wenn man sich überlegt, wie die zeilenweise
Modifikation, die durch die Multiplikation mit den Elementarmatrizen dargestellt wird,
rückgängig macht.
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Typ I: Für

𝐷 :=



1

1
𝛼

1

1


= 𝐼 + (𝛼 − 1) 𝐸𝑖𝑖 ist 𝐷 ′ :=



1

1
1
𝛼

1

1


= 𝐼 +

(
1
𝛼
− 1

)
𝐸𝑖𝑖 .

Typ II: Für

𝑆 :=


1

𝛼 1

1


= 𝐼 + 𝛼 𝐸𝑖 𝑗 ist 𝑆 ′ :=


1

−𝛼 1

1


= 𝐼 − 𝛼 𝐸𝑖 𝑗

Für Matrizen 𝑇 vom Typ III gilt 𝑇 ′ = 𝑇 .
Überprüfen lässt sich das schnell durch Matrixmultiplikation. (1.5 Punkte)

(b) Bei Multiplikation von Rechts modifizieren die Elementarmatrizen den jeweils anderen
Faktor spaltenweise, statt zeilenweise, also Typ I skaliert spalten und Typ III tauscht
Spalten. Aufpassen muss man lediglich mit den Matrizen vom Typ II, denn von Links
multipliziert addiert 𝐼 + 𝐸𝑖 𝑗 die 𝑗-te Zeile auf die 𝑖-te Zeile, von rechts multipliziert dreht
sich aber die Reihenfolge, hier wird die 𝑖-te Spalte auf die 𝑗-te Spalte addiert. (1 Punkt)

(c) Die unten stehenden Lösungen habe alle die Struktur, dass wir mit der zu untersuchenden
Matrix 𝐴 starten, und eine Identität als 𝐴 = 𝐼𝐴 ergänzen. Zwischen der linken Matrix
(anfangs 𝐼 ) und der rechten Matrix (anfangs 𝐴) ergänzen wir dann sukzessive Elementar-
matrizen (und um Zeilen zu vertauschen Permutationsmatrizen) und ihre Umkehrung
(ihre Inverse) und multiplizieren dann die rechte Elementarmatrix von links an die rechte
Matrix und die linke Elementarmatrix von rechts an die linke Matrix.

(𝑖) Es ist
4 6 11
6 6 15
−2 0 −4
2 6 7

 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



4 6 11
6 6 15
−2 0 −4
2 6 7


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=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0



0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

︸                               ︷︷                               ︸
=𝐼


4 6 11
6 6 15
−2 0 −4
2 6 7


=


0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0



1 0 0 0
3 1 0 0
−1 0 1 0
2 0 0 1



1 0 0 0
−3 1 0 0
1 0 1 0
−2 0 0 1

︸                                   ︷︷                                   ︸
=𝐼


2 6 7
6 6 15
−2 0 −4
4 6 11


=


0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0



1 0 0 0
3 1 0 0
−1 0 1 0
2 0 0 1



1 0 0 0
0 1 0 0
0 −0.5 1 0
0 0.5 0 1



1 0 0 0
0 1 0 0
0 0.5 1 0
0 −0.5 0 1

︸                                        ︷︷                                        ︸
=𝐼


2 6 7
0 −12 −6
0 6 3
0 −6 −3


=


0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0



1 0 0 0
3 1 0 0
−1 −0.5 1 0
2 0.5 0 1



2 6 7
0 −12 −6
0 0 0
0 0 0


=


2 0.5 0 1
3 1 0 0
−1 −0.5 1 0
1 0 0 0



2 6 7
0 −12 −6
0 0 0
0 0 0


=


2 0.5
3 1
−1 −0.5
1 0


[
2 6 7
0 −12 −6

]
Entsprechend ist der Rang 2, wie man an der inneren Dimension der Rangfaktori-
sierung abliest. (2 Punkte)

(𝑖𝑖) Wir können analog zur ersten Teilaufgabe vorgehen, benötigen jetzt aber die entspre-
chenden Rechenoperationen in ({⊤,⊥},XOR,∧), welcher isomorph zum (Z2, +2, ·2)
ist. Wir erhalten

⊥ ⊤ ⊤
⊤ ⊥ ⊤
⊤ ⊤ ⊥

 =

⊤ ⊥ ⊥
⊥ ⊤ ⊥
⊥ ⊥ ⊤



⊥ ⊤ ⊤
⊤ ⊥ ⊤
⊤ ⊤ ⊥


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=


⊤ ⊥ ⊥
⊥ ⊤ ⊥
⊥ ⊥ ⊤



⊥ ⊥ ⊤
⊥ ⊤ ⊥
⊤ ⊥ ⊥



⊥ ⊥ ⊤
⊥ ⊤ ⊥
⊤ ⊥ ⊥

︸                          ︷︷                          ︸
=𝐼


⊥ ⊤ ⊤
⊤ ⊥ ⊤
⊤ ⊤ ⊥


=


⊥ ⊥ ⊤
⊥ ⊤ ⊥
⊤ ⊥ ⊥



⊤ ⊥ ⊥
⊤ ⊤ ⊥
⊥ ⊥ ⊤



⊤ ⊥ ⊥
⊤ ⊤ ⊥
⊥ ⊥ ⊤

︸                          ︷︷                          ︸
=𝐼


⊤ ⊤ ⊥
⊤ ⊥ ⊤
⊥ ⊤ ⊤


=


⊥ ⊥ ⊤
⊥ ⊤ ⊥
⊤ ⊥ ⊥



⊤ ⊥ ⊥
⊤ ⊤ ⊥
⊥ ⊥ ⊤



⊤ ⊥ ⊥
⊥ ⊤ ⊥
⊥ ⊤ ⊤



⊤ ⊥ ⊥
⊥ ⊤ ⊥
⊥ ⊤ ⊤

︸                          ︷︷                          ︸
=𝐼


⊤ ⊤ ⊥
⊥ ⊤ ⊤
⊥ ⊤ ⊤


=


⊥ ⊥ ⊤
⊥ ⊤ ⊥
⊤ ⊥ ⊥



⊤ ⊥ ⊥
⊤ ⊤ ⊥
⊥ ⊤ ⊤



⊤ ⊤ ⊥
⊥ ⊤ ⊤
⊥ ⊥ ⊥


=


⊥ ⊤ ⊤
⊤ ⊤ ⊥
⊤ ⊥ ⊥



⊤ ⊤ ⊥
⊥ ⊤ ⊤
⊥ ⊥ ⊥


=


⊥ ⊤
⊤ ⊤
⊤ ⊥


[
⊤ ⊤ ⊥
⊥ ⊤ ⊤

]
,

was schon die fertige Rangfaktorisierung ist, und der Rang ist 2. (1.5 Punkte)

Hausaufgabe I-10.4 (Transposition und (Anti-)Symmetrie) 3.5 + 0.5 = 4 Punkte

Es sei (𝐾, +, ·) ein Körper und 𝑛 ∈ N. Zeigen Sie:

(a) Wenn die Charakteristik char(𝐾) ≠ 2 ist, dann sind 𝐾𝑛×𝑛sym und 𝐾𝑛×𝑛skew Unterräume von
𝐾𝑛×𝑛 der Dimensionen

dim(𝐾𝑛×𝑛sym ) = 1
2𝑛 (𝑛 + 1)

dim(𝐾𝑛×𝑛skew) =
1
2𝑛 (𝑛 − 1),

und es gilt
𝐾𝑛×𝑛 = 𝐾𝑛×𝑛sym ⊕ 𝐾𝑛×𝑛skew
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(Lemma 15.32). Geben Sie dazu die eindeutige Zerlegung 𝐴 = 𝐴sym +𝐴skew für 𝐴 ∈ 𝐾𝑛×𝑛
an.

(b) Wenn die Charakteristik char(𝐾) = 2 ist (z. B. 𝐾 = Z2), dann ist 𝐾𝑛×𝑛sym = 𝐾𝑛×𝑛skew. Was ist
die Dimension von 𝐾𝑛×𝑛sym = 𝐾𝑛×𝑛skew in diesem Fall?

Lösung.

Wir zeigen als kurzes Hilfsresultat, dass genau dann char(𝐾) = 2 gilt, wenn jedes Element von
𝐾 selbstinvers ist. Die Rückrichtung dieser Aussage ist offensichtlich (denn das gilt ja dann
auch für die 1, an Hand der die Charakteristik definiert ist). Für die Hinrichtung sei 𝑎 ∈ 𝐾 ,
dann ist wegen 𝑎 + 𝑎 = 𝑎 · (1 + 1) = 𝑎 · 0 = 0 auch 𝑎 = −𝑎. Beachte: In jedem Vektorraum
gilt das gemischte Distributivitätsgsetz und damit, dass jeder Vektor die additive Ordnung der
Charakteristik des Körpers hat und jeder Körper ist ein VR über sich selbst, daraus folgt das
also auch.

(a) Offensichtlich liegt die Nullmatrix in beiden Mengen (sie ist sowohl symmetrisch als auch
antisymmetrisch). Beide Mengen sind also nichtleer. Für 𝐴, 𝐵 ∈ 𝐾𝑛×𝑛sym und 𝛼, 𝛽 ∈ 𝐾 ist
außerdem auf Grund der komponentenweise Multiplikation und Addition

(𝛼𝐴 + 𝛽𝐵)ᵀ = (𝛼𝐴)ᵀ + (𝛽𝐵)ᵀ = 𝛼𝐴ᵀ + 𝛽𝐵ᵀ = 𝛼𝐴 + 𝛽𝐵.

Weiterhin ist für 𝐴, 𝐵 ∈ 𝐾𝑛×𝑛skew und 𝛼, 𝛽 ∈ 𝐾 wieder auf Grund der komponentenweise
Multiplikation und Addition

(𝛼𝐴 + 𝛽𝐵)ᵀ = (𝛼𝐴)ᵀ + (𝛽𝐵)ᵀ = 𝛼𝐴ᵀ + 𝛽𝐵ᵀ = −𝛼𝐴 − 𝛽𝐵 = −(𝛼𝐴 + 𝛽𝐵).

Entsprechend sind beide Mengen abgeschlossen bzgl. der Vektorraumoperationen und
somit, nach dem Unterraumkriterium, Unterräume. (0.5 Punkte)
Weiterhin gilt 𝐾𝑛×𝑛sym ∩ 𝐾𝑛×𝑛skew = {0}, da die Charakteristik des Körpers eingeschränkt ist.
Eine Matrix die sowohl symmetrisch, als auch antisymmetrisch ist besteht nämlich nur
aus (additiv) selbstinversen Elementen. Für jeden Körper erfüllt die 0 diese Eigenschaft
und wie oben gezeigt gibt es auf Grund der Charakteristikeinschränkung des Körpers
kein weitere selbstinverses Element. (0.5 Punkte)
Um die Dimensionsaussage zu zeigen, zeigen wir lediglich, dass

dim(𝐾𝑛×𝑛sym ) = 1
2𝑛 (𝑛 + 1),

denn dann folgt auf Grund der Dimensionsformel in Satz 14.3 und der noch zu zeigenden
Summeneigenschaft sofort, dass

𝑛2 = dim𝐾 (𝐾𝑛×𝑛) = dim𝐾 (𝐾𝑛×𝑛sym )+dim𝐾 (𝐾𝑛×𝑛skew)+dim𝐾 (𝐾𝑛×𝑛sym ∩𝐾𝑛×𝑛skew) =
1
2𝑛 (𝑛+1)+dim𝐾 (𝐾𝑛×𝑛skew)+0
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und damit dim𝐾 (𝐾𝑛×𝑛skew) = 𝑛
2 − 1

2𝑛 (𝑛 + 1) = 1
2𝑛 (𝑛 − 1). (0.5 Punkte)

Dafür zeigen wir, dass die Menge

𝐵sym := {𝐸𝑖𝑖 | 𝑖 ∈ ⟦1, 𝑛⟧} ∪ {𝐸𝑖 𝑗 + 𝐸 𝑗𝑖 | (𝑖, 𝑗) ∈ ⟦1, 𝑛⟧2, 𝑖 < 𝑗}

eine Basis von 𝐾𝑛×𝑛sym ist. Das sind gerade die symmetrischen Matrizen, die entweder auf
der Hauptdiagonalen eine 1 stehen haben, oder je eine 1 passend symmetrisch auf den
Nebendiagonalen stehen haben, also Matrizen der Form

0

1

0


und


0

1
1 0

0


.

Für die symmetrischen Matrizen bildet diese Menge so etwas wie die Standardbasis, denn
jede symmetrische Matrix 𝐴 lässt sich dann schreiben als

𝐴 =

𝑛∑︁
𝑖< 𝑗=1

𝑎𝑖 𝑗 (𝐸𝑖 𝑗 + 𝐸 𝑗𝑖) +
𝑛∑︁
𝑖=1

𝑎𝑖𝑖𝐸𝑖𝑖

daher ist 𝐵sym erzeugend, und die Kombination is offensichtlich eindeutig. Da es sich bei
𝐵sym um eine Menge mit

∑𝑛
𝑖=1 𝑖 =

1
2𝑛(𝑛 + 1) Elementen handelt ist diese Dimension also

klar. (1 Punkt)
Die Standardbasis 𝐵skew von 𝐾𝑛×𝑛skew ist in diesem Fall entsprechend natürlich durch

𝐵skew := {𝐸𝑖 𝑗 − 𝐸 𝑗𝑖 | (𝑖, 𝑗) ∈ ⟦1, 𝑛⟧2, 𝑖 < 𝑗}

gegeben. Die antisymmetrischen Matrizen haben alle selbstinverse Elemente auf der
Hauptdiagonalen, bei unserer eingeschränkten Charakteristik sind das also nur die Nullen,
daher kann die Diagonale vernachlässigt werden. Insbesondere ist die Menge leer, wenn
𝑛 = 1, denn dann handelt es sich bei 𝐾𝑛×𝑛skew um den Nullvektorraum.
Es verbleibt der Nachweis, dass die beiden Unterräume tatsächlich komplementär sind,
dafür fehlt noch, dass ihre Summe den ganzen Raum ergibt. Dafür würde es natürlich
reichen, dass 𝐵skew tatsächlich eine Basis von 𝐾𝑛×𝑛skew ist, denn dann ergibt sich die Eigen-
schaft aus der Vereinigung der Basen mit ihren entsprechenden Kardinalitäten und der
Trivialschnitteigenschaft. Es ist aber durchaus interessant, sich zu fragen, wie man eine
Matrix in ihren symmetrischen und antisymmetrischen Anteil zerlegt. Für ein 𝐴 ∈ 𝐾𝑛×𝑛
findet man die Zerlegung zum Beispiel gerade durch die Form der beiden Standardba-
sen, denn die Darstellung einer Matrix 𝐴 in der Vereinigung beider Basen liefert das
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Gleichungssystem

𝐴 =

𝑛∑︁
𝑖=1

𝛼𝑖𝑖𝐸𝑖𝑖 +
𝑛∑︁

𝑖< 𝑗=1
𝛼𝑖 𝑗 (𝐸𝑖 𝑗 + 𝐸 𝑗𝑖) + 𝛽𝑖 𝑗 (𝐸𝑖 𝑗 − 𝐸 𝑗𝑖)

für die entsprechenden Koeffizienten 𝛼𝑖 𝑗 , 𝛽𝑖 𝑗 . Komponentenweise liefert das dann das
System

𝛼𝑖 𝑗 + 𝛽𝑖 𝑗 = 𝑎𝑖 𝑗
𝛼𝑖 𝑗 − 𝛽𝑖 𝑗 = 𝑎 𝑗𝑖

für 𝑖 < 𝑗 und damit (summieren und subtrahieren der Zeilen) die Lösungen

𝛼𝑖 𝑗 =
1
2 (𝑎𝑖 𝑗 + 𝑎 𝑗𝑖)

𝛽𝑖 𝑗 =
1
2 (𝑎𝑖 𝑗 − 𝑎 𝑗𝑖)

woran man die Zerlegung

𝐴 =
1
2 (𝐴 +𝐴ᵀ)︸      ︷︷      ︸

∈𝐾𝑛×𝑛
sym

+ 1
2 (𝐴 −𝐴ᵀ)︸      ︷︷      ︸

∈𝐾𝑛×𝑛
skew

sofort erkennt, ohne sich mit den komponentenweisen Gleichungen auf der Diagonalen
genauer befassen zu müssen. Beachte: Wir arbeiten hier in einem Körper der Charakte-
ristik ungleich 2. Das Element 2 ∈ 𝐾 ist also Kurzschreibweise für das Element 1 + 1, das
auf Grund der Charakteristikeinschränkung nicht 0 ist, und damit invertierbar mit dem
inversen Element 1

2 (ebenfalls in Kurzschreibweise für 1
1+1 ). (1 Punkt)

(b) Wenn char(𝐾) = 2 ist, dann ist wie oben ausgeführt jedes Element selbstinvers, daraus
folgt sofort 𝐾𝑛×𝑛sym = 𝐾𝑛×𝑛skew. Die Dimension bleibt weiterhin 1

2𝑛 (𝑛 + 1), denn die Basis
von oben kann unverändert weiterverwendet werden. Hier gilt dann offensichtlich nicht
mehr, dass antisymmetrische Matrizen nur Nullen auf der Diagonalen haben dürfen.
(0.5 Punkte)

Hausaufgabe I-10.5 (Ring quadratischer Matrizen) 1 + 1 + 1 = 3 Punkte

Es sei (𝐾, +, ·) ein Körper.

(a) Es seien𝑚,𝑛 ∈ N0. Zeigen Sie Folgerung 15.46, also dass für beliebige Matrizen 𝐴 ∈ 𝐾𝑛×𝑚
und invertierbare Matrizen 𝐵 ∈ 𝐾𝑛×𝑛 , 𝐶 ∈ 𝐾𝑚×𝑚 die Gleichheit

Rang(𝐵𝐴𝐶) = Rang(𝐴) (15.36)

gilt.
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(b) Es sei 𝑛 ∈ N. Entscheiden Sie, ob 𝐾𝑛×𝑛 ∋ 𝐴 ↦→ 𝐴ᵀ ∈ 𝐾𝑛×𝑛 ein Ringautomorphimus von
Ringen mit Eins ist. Begründen Sie Ihre Antwort.

(c) Zeigen Sie, dass die einzigen Ideale im Ring 𝐾𝑛×𝑛 die trivialen sind. Dennoch ist im
allgemeinen 𝐾𝑛×𝑛 kein Körper. Weshalb ist das kein Widerspruch zu Hausaufgabe I-7.4
Teilaufgabe (c)?

Lösung.

(a) Wir nutzen Satz 15.17. Da invertierbare Matrizen Vollrang haben, gilt

Rang(𝐵𝐴𝐶) ⩽ min{Rang(𝐵), Rang(𝐴), Rang(𝐶)} ⩽ Rang(𝐴)

und andererseits

Rang(𝐴) = Rang((𝐵−1𝐵)𝐴 (𝐶𝐶−1)) = Rang(𝐵−1(𝐵𝐴𝐶)𝐶−1)
⩽ min{Rang(𝐵−1), Rang(𝐵𝐴𝐶), Rang(𝐶−1)} ⩽ Rang(𝐵𝐴𝐶) .

(1 Punkt)
(b) Die Einheitsmatrix ist diagonal, daher gilt 𝐼 ᵀ = 𝐼 . Außerdem gilt für Matrizen𝐴, 𝐵 ∈ 𝐾𝑛×𝑛 ,

dass
(𝐴 + 𝐵)ᵀ = 𝐴ᵀ + 𝐵ᵀ.

Die Matrixmultiplikation ist mit der Transposition aber i. A. bekanntermaßen nicht
verträglich, denn es gilt

(𝐴𝐵)ᵀ = 𝐵ᵀ𝐴ᵀ i. A.
≠ 𝐴ᵀ 𝐵ᵀ

wie man für 𝐴 = 𝐸11 und 𝐵 = 𝐸12 sofort einsieht. Ein Sonderfall ist also lediglich der
Fall 𝑛 = 1, wo diese Matrizen nicht existieren, hier handelt es sich tatsächlich um einen
Ringhomomorphismus. Die Bijektivität der Abbildung liegt dimensionsunabhängig auf
der Hand, da 𝐴ᵀ aus den gleichen Einträgen besteht, wie 𝐴. (1 Punkt)

(c) Wir zeigen, dass jedes Ideal, welches ein nicht-Null Element enthält, bereits den ganzen
Ring enthält. Es sei dafür ein Ideal 𝐼 ≠ {0} und ein 𝐴 ∈ 𝐼 \ {0} gegeben. Dann existieren
also Indizes 𝑖, 𝑗 ∈ ⟦1, 𝑛⟧, so dass 𝑎𝑖 𝑗 ≠ 0. Da 𝐼 ein Ideal ist, muss für beliebige 𝛼 ∈ 𝐾 ,
beliebige Indizes 𝑘, 𝑙 ∈ ⟦1, 𝑛⟧ und die Standardmatrizen 𝐸𝑘𝑖 , 𝐸𝑙 𝑗 ∈ 𝐾𝑛×𝑛 auch

( 𝛼
𝑎𝑖 𝑗
𝐸𝑘𝑖)𝐴𝐸𝑙 𝑗 = 𝛼𝐸𝑘𝑙 ,
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und damit jede beliebig skalierte Standardmatrix im Ideal enthalten sein. Das dieses Ideal
insbesondere abgeschlossen unter Addition ist, liegt ein beliebiges 𝐵 ∈ 𝐾𝑛×𝑛 wegen

𝐵 =

𝑛∑︁
𝑖, 𝑗=1

𝑏𝑖 𝑗𝐸𝑖 𝑗

im Ideal. (1 Punkt)

Hausaufgabe I-10.6 (Allgemeine lineare Gruppe) 2 + 3 = 5 Punkte

(a) Es sei 𝑛 ∈ N und

𝑃 := {𝐴 ∈ 𝐾𝑛×𝑛 | In jeder Zeile und jeder Spalte von 𝐴 steht genau eine 1 und sonst 0} ⊆ GL(𝑛, 𝐾).

(𝑖) Zeigen Sie, dass 𝑃 mit der Matrixmultiplikation eine zur (𝑆𝑛, ◦) isomorphe Gruppe
bildet.

(𝑖𝑖) Zeigen Sie, dass 𝐴−1 = 𝐴ᵀ für alle 𝐴 ∈ 𝑃 .
(𝑖𝑖𝑖) Bestimmen Sie eine Zerlegung der Matrix

0 0 1 0 0
1 0 0 0 0
0 0 0 0 1
0 1 0 0 0
0 0 0 1 0


in das Produkt von Elementarmatrizen vom Typ III.

(b) (𝑖) Bestimmen Sie alle Elemente der GL(2,Z2).
Hinweis: Überführen Sie ein allgemeines 𝐴 ∈ Z2×2

2 in Zeilenstufenform und unter-
scheiden Sie geeignete Fälle.

(𝑖𝑖) Bestimmen Sie die Ordnung für alle Elemente aus GL(2,Z2).
(𝑖𝑖𝑖) Zeigen Sie, dass GL(2,Z2) nicht kommutativ ist.

Lösung.

(a) Beachte: Die Multiplikation mit Matrizen der vorliegenden Form von rechts bzw. links
vertauscht in dem anderen Faktor Spalten bzw. Zeilen, sie permutieren also die Index-
mengen der Spalten und Zeilen, sie werden daher Permutationsmatrizen genannt.
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Eine Permutation 𝑓 ∈ 𝑆𝑛 der Form (
1 . . . 𝑛

𝑓 (1) . . . 𝑓 (𝑛)

)
können wir mit der Matrix Φ(𝑓 ) mit

𝑎𝑖 𝑗 =

{
1, 𝑖 = 𝑓 ( 𝑗)
0, sonst

aus 𝑃 identifizieren. Die 1-Einträge sind also genau die 𝑎𝑓 ( 𝑗 ), 𝑗 für 𝑗 ∈ ⟦1, 𝑛⟧. Die Matrix 𝐴
ist also spaltenweise aus Einheitsvektoren durch 𝐴 = (𝑒𝑓 (1) , . . . , 𝑒𝑓 (𝑛) ) aufgebaut.
Die Bijektivität dieser Abbildung ist offensichtlich, und lässt sich an Hand der Umkehr-
abbildung leicht verifizieren. Eine Matrix 𝐴 ∈ 𝑃 besitzt zu jedem Index 𝑗 ∈ ⟦1, 𝑛⟧ genau
einen Index ℓ𝑗 ∈ ⟦1, 𝑛⟧ mit 𝑎ℓ𝑗 𝑗 = 1, wobei die 𝑙 𝑗 paarweise verschieden sein müssen. Zu
𝐴 ∈ 𝑃 gehört also die Permutation

Φ−1(𝐴) =
(
1 . . . 𝑛

ℓ1 . . . ℓ𝑛

)
.

Es seien nun Permutationen 𝑓 , 𝑔 ∈ 𝑆𝑛 gegeben. Aus der spaltenweise Interpretation der
Matrixmultiplikation folgt sofort, dass für alle Spaltenindizes 𝑗 ∈ ⟦1, 𝑛⟧ gilt

(Φ(𝑓 ) Φ(𝑔))•𝑗 = Φ(𝑓 )•𝑔 ( 𝑗 )

also hat Φ(𝑓 ) Φ(𝑔) in der 𝑗-ten Spalte genau am Zeilenindex 𝑓 (𝑔( 𝑗)) eine 1, entspricht
also Φ(𝑓 ◦ 𝑔). Da die Mengen isomorph sind und die Abbildung strukturverträglich folgt
sofort, dass auch 𝑃 mit der Matrixmultiplikation eine Gruppe bildet. (1 Punkt)
Beachte: Es besteht grundsätzlich auch die Möglichkeit, die Permutationsmatrizen zei-
lenweise statt spaltenweise mit ihren Permutationen der 𝑆𝑛 zu identifizieren. Dann muss
man auf den Permutationsmatrizen die Multiplikation aber genau mit umgekehrter Rei-
henfolge der Matrizen definieren, sonst erhält man einen Antihomomorphismus. Die hier
vorgestellte Variante ist auch attraktiv, weil der Urbildvektor in der Zweizeilenform der
Permutation, also (1, . . . , 𝑛) durch Multiplikation mit Φ(𝑓 ) gerade auf den Bildvektor, also
(𝑓 (1), . . . , 𝑓 (𝑛)) abgebildet wird.
Wir wissen nun, dass Gruppenhomomorphismen mit Inversenbildung verträglich sind,
und dass Transpositionen in der 𝑆𝑛 selbstinvers sind, was entsprechend auch in 𝑃 gilt. Die
Permutationen der 𝑆𝑛 besitzen Zerlegungen in Transpositionen, für𝐴mit einer Zerlegung
der Permutation Φ−1(𝐴) = 𝜏1 ◦ . . . , 𝜏𝑘 , erhalten wir also, dass

𝐴−1 = Φ(Φ−1(𝐴−1)) = Φ(Φ−1(𝐴)−1) = Φ((𝜏1 ◦ . . . , 𝜏𝑘 )−1) = Φ(𝜏𝑘 ) · · · · · Φ(𝜏1)
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= Φ(𝜏𝑘 )ᵀ · · · · · Φ(𝜏1)ᵀ = (Φ(𝜏1) · · · · · Φ(𝜏𝑘 ))ᵀ = Φ(𝜏1 ◦ · · · ◦ 𝜏𝑘 )ᵀ = 𝐴ᵀ.

(0.5 Punkte)
Um für die Matrix 

0 0 1 0 0
1 0 0 0 0
0 0 0 0 1
0 1 0 0 0
0 0 0 1 0


eine Zerlegung in Transpositionsmatrizen (Elementarmatrizen vom Typ III) – das sind
natürlich genau die zu den Transpositionspermutationen der 𝑆𝑛 gehörigen Bilder unter Φ
– zu bestimmen, haben wir nun vier Möglichkeiten. Entweder arbeiten wir mit der Matrix
selbst oder mit der dazugehörigen Permutation(

1 2 3 4 5
2 4 1 5 3

)
.

Arbeiten wir mit der Matrix, dann bestimmen wir die Transpositionsmatrizen (bzw. deren
Inverse, alle sind selbstinvers), die wir benötigen, um durch Multiplikation von rechts bzw.
links, sukzessive Spalten bzw. Zeilen zu tauschen, so dass die Einheitsmatrix entsteht.
Arbeiten wir mit der Permutation, dann bestimmen wir wie in Übungsaufgabe I-5.3
eine Zerlegung durch Tauschen im Urbild- oder Bildbereich der Permutation und bilden
die gefundene Zerlegung auf Matrizen ab, was dann spaltenweisen bzw. zeilenweisen
Vorgehensweise bei der Matrix entspricht.
Wir geben hier die beiden Varianten für das arbeiten mit der Matrix an, weil die Lösung
im Rahmen der 𝑆𝑛 sehr analog zu Übungsaufgabe I-5.3 geht. Wir notieren dabei die
Transpositionsmatrizen, die die 𝑖-te und 𝑗-te Spalte bzw. Zeile tauscht mit 𝑇𝑖 𝑗 . Einmal
erhalten wir dann 

0 0 1 0 0
1 0 0 0 0
0 0 0 0 1
0 1 0 0 0
0 0 0 1 0


= 𝑇12


1 0 0 0 0
0 0 1 0 0
0 0 0 0 1
0 1 0 0 0
0 0 0 1 0


= 𝑇12𝑇24


1 0 0 0 0
0 1 0 0 0
0 0 0 0 1
0 0 1 0 0
0 0 0 1 0


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= 𝑇12𝑇24𝑇34


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 1 0


= 𝑇12𝑇24𝑇34𝑇45.

Alternativ erhalten wir bei Bearbeitung der Spalten (von rechts)
0 0 1 0 0
1 0 0 0 0
0 0 0 0 1
0 1 0 0 0
0 0 0 1 0


=


1 0 0 0 0
0 0 1 0 0
0 0 0 0 1
0 1 0 0 0
0 0 0 1 0


𝑇13

=


1 0 0 0 0
0 1 0 0 0
0 0 0 0 1
0 0 1 0 0
0 0 0 1 0


𝑇23𝑇13

=


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 1 0


𝑇34𝑇23𝑇13

= 𝑇45𝑇34𝑇23𝑇13.

Und wieder sehen wir, dass die Zerlegungen in Transpositionen nicht eindeutig sind.
(0.5 Punkte)

(b) (𝑖) Eine Matrix [
𝑎 𝑏

𝑐 𝑑

]
ist genau dann invertierbar, wenn sie Vollrang 2 hat. Entsprechend können 𝑎 und 𝑐
nicht gleichzeitig 0 sein. Es ergeben sich also die folgenden Möglichkeiten.
Fall 1: 𝑎 = 0 und 𝑐 ≠ 0, also 𝑐 = 1. Dann ergibt sich nach erneuter Anwendung des
Vollrangarguments auf die Zeilen der Matrix, dass 𝑏 nicht Null sein darf, also 𝑏 = 1
sein muss. Hier ergeben sich die Matrizen[

0 1
1 0

]
,

[
0 1
1 1

]
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Fall 2: Für 𝑎 = 1 und 𝑐 = 0 erhalten wir analog die Matrizen[
1 0
0 1

]
,

[
1 1
0 1

]
Fall 3: Für 𝑎 = 𝑐 = 1 dürfen nun 𝑏 und 𝑑 nicht übereinstimmen, da die Zeilen sonst
linear abhängig sind und damit der Rang 1 < 2 ist. Es ergeben sich[

1 0
1 1

]
,

[
1 1
1 0

]
(1.5 Punkte)

(𝑖𝑖) Wirwissen bereits jetzt aus dem Satz von Lagrange, dass die Ordnungen derMatrizen
Teiler von 6 sein müssen, also nur die Ordnungen 1, 2, 3, 6 auftreten können. Ordnung
6 kann nur dann auftreten, wenn die Gruppe zyklisch erzeugt ist. Es ergeben sich:
Ordnung 1: Natürlich nur die Einheitsmatrix (das neutrale Element)

𝐼 =

[
1 0
0 1

]
.

Ordnung 2: Alle selbstinversen Elemente, also schonmal die (einzige) Transpositi-
onsmatrix: [

0 1
1 0

]
.

Außerdem die beiden oberen und unteren Dreiecksmatrizen:[
1 1
0 1

]2
= 𝐼 =

[
1 0
1 1

]2
Ordnung 3: Hierunter fallen die verbleibenden Antidiagonalmatrizen, denn[

0 1
1 1

]3
=

[
0 1
1 1

] [
1 1
1 0

]
= 𝐼 =

[
0 1
1 1

] [
1 1
1 0

]
=

[
1 1
1 0

]3
.

(1 Punkt)
(𝑖𝑖𝑖) Hier kann man sehen, dass sogar die invertierbaren Matrizen im Allgemeinen nicht

miteinander kommutieren. Ein einfaches Beispiel findet man, wenn man nutzt,
dass die Transpositionsmatrizen von links bzw. rechts die Zeilen bzw. die Spalten
vertauschen, was i. A. nicht die gleiche Transformation des anderen Faktors ist. Es
ist z. B. [

0 1
1 0

] [
1 1
1 0

]
=

[
1 0
1 1

]
≠

[
1 1
0 1

]
=

[
1 1
1 0

] [
0 1
1 0

]
.

(0.5 Punkte)
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Bitte reichen Sie Ihre Lösungen der Hausaufgaben als ein PDF auf Mampf ein.
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