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Übungsaufgabe I-8.1. (Vektorräume)

(a) Entscheiden Sie, welche der folgenden Beispiele Vektorräume über dem üblichen Körper
der reellen Zahlen (R, +, ·) sind und beweisen Sie Ihre Antworten.
(𝑖) (R, ⊕, ⊙) mit 𝑥 ⊕ 𝑦 := 3

√︁
𝑥3 + 𝑦3 und 𝛼 ⊙ 𝑥 := 3√𝛼 · 𝑥

(𝑖𝑖) (C, ⊕, ⊙) mit 𝑥 ⊕ 𝑦 := 𝑥 + 𝑦 − 𝑖 und 𝛼 ⊙ 𝑥 := 𝛼 · (𝑥 − 𝑖) + 𝑖
(𝑖𝑖𝑖) (P(R), △, ⊙) mit 𝛼 ⊙ 𝐴 := {𝛼 · 𝑥 | 𝑥 ∈ 𝐴}.

(b) Es sei 𝑛 ∈ N. Untersuchen Sie, in welchen Fällen Sie die symmetrische Gruppe (𝑆𝑛, ◦) mit
einer S-Multiplikation zu einem Vektorraum ergänzen können und welche Körper Sie
dafür verwenden können.

Lösung.

(a) (𝑖) Sowohl die innere wie auch die äußere Abbildung liefern eine wohldefinierte Ver-
knüpfung der Menge in sich. Dabei ist

(𝑥 ⊕ 𝑦) ⊕ 𝑧 = 3
√︁
𝑥3 + 𝑦3 ⊕ 𝑧 = 3

√︁
𝑥3 + 𝑦3 + 𝑧3 = 𝑥 ⊕ 3

√︁
𝑦3 + 𝑧3 = 𝑥 ⊕ (𝑦 ⊕ 𝑧),

also die additive Verknüpfung assoziativ, damit handelt es sich um eineHalbgrup-
pe. Weiterhin ist die 0 immernoch additiv neutral und die zu 𝑥 ∈ R ist −𝑥 ∈ R
additiv invers. Damit handelt es sich um eine Gruppe, und die Kommutativität der
gewöhnlichen Addition in R überträgt sich direkt auf die hier angegebene, damit
liegt eine abelsche Gruppe vor.
Das gemischte Assoziativgesetz gilt ebenso, denn für 𝛼, 𝛽, 𝑥 ∈ R ist

(𝛼 · 𝛽) ⊙ 𝑥 =
3
√︁
𝛼 · 𝛽 · 𝑥 = 3√𝛼 · 3

√︁
𝛽 · 𝑥 = 𝛼 ⊙ (𝛽 ⊙ 𝑥) .
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Da weiterhin für 𝛼, 𝛽, 𝑥, 𝑦 ∈ R auch

𝛼⊙(𝑥⊕𝑦) = 3√𝛼 · 3
√︁
𝑥3 + 𝑦3 = 3

√︁
𝛼 · (𝑥3 + 𝑦3) = 3

√︃
( 3√𝛼𝑥)3 + ( 3√𝛼𝑦)3 = (𝛼⊙𝑥)⊕(𝛼⊙𝑦)

sowie

(𝛼 + 𝛽) ⊙ 𝑥 =
3
√︁
𝛼 + 𝛽𝑥 =

3
√︁
𝛼 + 𝛽 3√

𝑥3 = 3
√︁
(𝛼 + 𝛽)𝑥3

=
3
√︁
𝛼𝑥3 + 𝛽𝑥3 = 3√𝛼𝑥 + 3

√︁
𝛽𝑥 = (𝛼 ⊙ 𝑥) ⊕ (𝛽 ⊙ 𝑥)

gilt, gelten die gemischtenDistributivgesetze und die 1 istmultiplikativ neutral,
womit ein Vektorraum vorliegt.

(𝑖𝑖) Die Abbildung ⊕ ist eine Verknüpfung, denn sie bildet wieder in die komplexen
Zahlen ab. Assoziativ ist diese Verknüpfung ebenfalls, denn es ist für 𝑢, 𝑣,𝑤 ∈ C:

(𝑢 ⊕ 𝑣) ⊕𝑤 = (𝑢 + 𝑣 − 𝑖) ⊕𝑤
= (𝑢 + 𝑣 − 𝑖) +𝑤 − 𝑖
= 𝑢 + 𝑣 +𝑤 − 2 · 𝑖
= 𝑢 + (𝑣 +𝑤 − 𝑖) − 𝑖
= 𝑢 ⊕ (𝑣 +𝑤 − 𝑖)
= 𝑢 ⊕ (𝑣 ⊕𝑤)

entsprechend liegt mit (C, ⊕) eine Halbgruppe vor. Das neutrale Element bzgl. der
Addition ⊕ ist das Element 𝑖 , denn es ist

𝑢 ⊕ 𝑖 = 𝑢 + 𝑖 − 𝑖 = 𝑢.

Es liegt mit (C, ⊕) also schonmal ein Monoid vor. Das zu 𝑥 in C bzgl. ⊕ inverse
Element ist −𝑥 + 2𝑖 , denn dann ist

𝑥 ⊕ −𝑥 + 2𝑖 = 𝑥 − 𝑥 + 2𝑖 − 𝑖 = 𝑖,

Mit (C, ⊕) liegt also eine abelsche Gruppe vor, in der die Kommutativität direkt
aus der Kommutativität der üblichen Addition in C geerbt wird.
Weiterhin ist die multiplikative Abbildung ⊙ ebenfalls eine äußere Vernüpfung,
denn sie bildet wieder nach C ab. Zusätzlich gilt für 𝛼, 𝛽 ∈ R und 𝑢, 𝑣 ∈ C:

𝛼 ⊙ (𝑢 ⊕ 𝑣) = 𝛼 ⊙ (𝑢 + 𝑣 − 𝑖)
= 𝛼 · (𝑢 + 𝑣 − 2𝑖) + 𝑖
= (𝛼 · (𝑣 − 𝑖) + 𝑖) + (𝛼 · (𝑢 − 𝑖) + 𝑖) − 𝑖

https://tinyurl.com/scoop-la Seite 2 von 20

https://tinyurl.com/scoop-la


R. Herzog, G. Müller

Universität Heidelberg

Lineare Algebra

Wintersemester 2025 - Sommersemester 2026

= (𝛼 ⊙ 𝑣) ⊕ (𝛼 ⊙ 𝑢)

und

(𝛼 + 𝛽) ⊙ 𝑣 = (𝛼 + 𝛽) · (𝑣 − 𝑖) + 𝑖
= (𝛼 (𝑣 − 𝑖) + 𝑖) + (𝛽 (𝑣 − 𝑖) + 𝑖) − 𝑖
= (𝛼 ⊙ 𝑣) ⊕ (𝛽 ⊙ 𝑣),

also gelten die gemischten Distributivgesetze. Weiter ist

(𝛼 · 𝛽) ⊙ 𝑣 = (𝛼 · 𝛽) · (𝑣 − 𝑖) + 𝑖
= 𝛼 · ((𝛽 · (𝑣 − 𝑖) + 𝑖) − 𝑖) + 𝑖
= 𝛼 ⊙ (𝛽 ⊙ 𝑣),

und damit das Assoziativgesetz. Auch ist die Körper-Eins 1 neutral bzgl. der S-
Multiplikation, denn

1 ⊙ 𝑣 = 𝑣 − 𝑖 + 𝑖 = 𝑣 .
Hier handelt es sich also um einen Vektorraum.

(𝑖𝑖𝑖) Hier ist (P(R), △) eine inzwischen hinlänglich bekannte abelsche Gruppe mit
dem neutralen Element ∅.
Außerdem ist für 𝛼, 𝛽 ∈ R und 𝐴, 𝐵 ∈ P(R):

𝛼 ⊙ (𝐴△𝐵) = 𝛼 ⊙ (𝐴 \ 𝐵 ∪ 𝐵 \𝐴)
= (𝛼 ⊙ (𝐴 \ 𝐵)) ∪ (𝛼 ⊙ (𝐵 \𝐴))
= ((𝛼 ⊙ 𝐴) \ (𝛼 ⊙ 𝐵)) ∪ ((𝛼 ⊙ 𝐵) \ (𝛼 ⊙ 𝐴))
= (𝛼 ⊙ 𝐴)△(𝛼 ⊙ 𝐵)

es gilt also das erste Distributivgesetz, allerdings ist i. A.

(𝛼 + 𝛽) ⊙ 𝐵 = {(𝛼 + 𝛽) · 𝑏 | 𝑏 ∈ 𝐵} ≠ (𝛼 ⊙ 𝐵)△(𝛽 ⊙ 𝐵),

wie man z. B. für 𝐵 = R, 𝛼 = 𝛽 = 1 sieht, denn hier ist

(𝛼 + 𝛽) ⊙ 𝐵 = 2R = R ≠ ∅ = R△R = (𝛼 ⊙ 𝐵)△(𝛽 ⊙ 𝐵),

das zweite Distributivgesetz gilt also nicht, entsprechend handelt es sich um
keinen Vektorraum. Das gemischte Assoziativgesetz gilt allerdings, denn hier
ist

(𝛼 · 𝛽) ⊙ 𝐵 = {(𝛼 · 𝛽) · 𝑏 | 𝑏 ∈ 𝐵} = 𝛼 ⊙ {𝛽 · 𝑏 | 𝑏 ∈ 𝐵} = 𝛼 ⊙ (𝛽 ⊙ 𝐵)
und auch die Körper-Eins 1 ist neutral in der S-Multiplikation, denn hier ist

1 ⊙ 𝐵 = {1 · 𝑏 | 𝑏 ∈ 𝐵} = {𝑏 | 𝑏 ∈ 𝐵} = 𝐵.
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(b) Die Voraussetzung an einen Vektorraum (𝑉 , ⊕, ⊙), dass (𝑉 , ⊕) eine kommutative Gruppe
sein muss impliziert direkt, dass wir nur eine Chance haben die (𝑆𝑛, ◦) zu einem Vektor-
raum zu ergänzen, wenn 𝑛 ∈ {1, 2} ist, denn ab 𝑛 = 3 existieren die Permutationen 𝜏 (1, 2)
und 𝜏 (2, 3), die nicht kommutieren.
Für 𝑛 = 1 besteht die Gruppe nur aus dem neutralen Element (der Identität). Unabhängig
von derWahl des Körpers kannman hier nur eine einzige skalareMultiplikation definieren
(nämlich die, die das einzige Element der Gruppe immer als Bild hat). Hier ist 1𝐾 auch
neutral bezüglich der S-Multiplikation und die gemischten Gesetze gelten trivialerweise.
Hier hat man also beliebige Wahl des Körpers.
Für 𝑛 = 2 besteht die Gruppe aus id und 𝜏 (1, 2). In jedem Vektorraum 𝑉 gilt für 𝑣 ∈ 𝑉
und 𝛼, 𝛽 ∈ 𝐾 𝛼𝑣 = 𝛽𝑣 genau dann, wenn (𝛼 − 𝛽)𝑣 = 0, was wiederum genau dann gilt,
wenn 𝛼 = 𝛽 oder 𝑣 = 0 ist. Damit hat jeder Vektorraum, der mindestens ein nicht-Null
Element enthält, mindestens so viele Elemente wie der Körper. Uns stehen hier also nur
Körper mit genau zwei Elementen zur Verfügung, und bis auf Isomorphie ist das einzig
der (Z2, +2, ·2).

Übungsaufgabe I-8.2. (Linearkombinationen)

Es sei (R, +, ·) der übliche Körper der reellen Zahlen.

(a) Gegeben sei der Vektorraum der reellen Folgen (RN, +, ⊙) über R aus Beispiel 11.3. Berech-
nen Sie die Linearkombination der Vektoren 𝑣1 = (1, 0, 1, 0, . . . ), 𝑣2 = (1, 1,−2, 0, . . . ) und
𝑣3 = (3, 2,−3, 0, . . . ) zu den Koeffizienten 𝛼1 = 2, 𝛼2 = 4, 𝛼3 = −1. Zeigen Sie weiterhin,
dass 𝑣3 eine Linearkombination von 𝑣1 und 𝑣2 ist.

(b) Gegeben sei der Vektorraum (R, +, ·) über sich selbst. Entscheiden Sie, ob
∑∞
𝑘=1

1
𝑘2

eine

Linearkombination der Familie von Vektoren
(
1
𝑘2

)
𝑘∈N

ist. Falls ja, bestimmen Sie passende
Koeffizienten einer Linearkombination.

Lösung.

(a) In dieser Lösung erlauben wir uns mal, die Folgen weiter als „unendliche Tupel“ zu
schreiben, statt als Funktionen. Es ist dann

2𝑣1 + 4𝑣2 − 𝑣3 = 2 · (1, 0, 1, 0, . . . ) + 4 · (1, 1,−2, 0, . . . ) − 1 · (3, 2,−3, 0, . . . )
= (2 + 4 − 3, 0 + 4 − 2, 2 − 8 + 3, 0, . . . )
= (3, 2,−3, 0, . . . ) = 𝑣3,

wir können also direkt ablesen, dass 2𝑣1 + 4𝑣2 = 2𝑣3 und teilen durch 2 auf beiden Seiten
liefert, dass 𝑣3 eine Linearkombination von 𝑣1 und 𝑣2 zu den Koeffizienten 1 und 2 ist.
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(b) Achtung, diese Aufgabenstellung benötigt ein gewisses Maß an Interpretation über die
Lineare Algebra hinaus (deshalb hier als Übungs-, nicht als Hausaufgabe). Dass der
Grenzwert der Reihe in der Aufgabenstellung hingeschrieben werden kann, setzt voraus,
dass dieser Reihengrenzwert auch existiert. In allen norminduzierten Topologien ist das
auch der Fall, da die allgemeine harmonische Reihe mit dem Quadrat im Exponenten im
Sinne der betraginduzierten Topologie konvergiert, der Ausdruck 𝑙 :=

∑∞
𝑘=1

1
𝑘2

ist also
eine reelle Zahl. Die Familie von Vektoren ist eine Familie reeller Zahlen, die alle ungleich
Null sind. Für beliebiges 𝑘 ∈ N können wir also schreiben

𝑙 =
1
𝑘
· 𝑘 · 𝑙︸︷︷︸

𝛼 :=

es reicht also schon ein beliebiger Vektor der Familie um die Linearkombination bilden
zu können.

Übungsaufgabe I-8.3. (Unterräume)

(a) Es sei (𝐾, +, ·) ein Körper. Entscheiden Sie, welche der folgenden Teilmengen des Vektor-
raums (𝐾N, +, ·) einen Untervektorraum bilden.

{𝑣 ∈ 𝐾N | 𝑣1 = 𝑣2 = 𝑣3 = 𝑣4 = 0}(i) {𝑣 ∈ 𝐾N | 𝑣𝑖 = 0 ∀𝑖 ⩾ 17}(ii)
{𝑣 ∈ 𝐾N | 𝑣1 ≠ 0} ∪ {0}(iii) {𝑣 ∈ 𝐾N | 𝑣𝑛 = 𝑛𝑥 für ein 𝑥 ∈ 𝐾}(iv)

(b) Es sei (𝑉 , +, ·) ein Vektorraum und (𝑈1, +, ·) sowie (𝑈2, +, ·) Unterräume. Zeigen Sie, dass
𝑈1 ∪𝑈2 genau dann ein Unterraum ist, wenn𝑈1 ⊆ 𝑈2 oder𝑈2 ⊆ 𝑈1 ist.

(c) Zeigen Sie, dass 𝑈
UR
≼ 𝑉 :⇔ (𝑈 ist Unterraum von 𝑉 ) eine Ordnungsrelation auf der

Klasse aller Vektorräume definiert.

Lösung.

(a) (𝑖) Die Menge {𝑣 ∈ 𝐾N | 𝑣1 = 𝑣2 = 𝑣3 = 𝑣4 = 0} ist nichtleer, denn sie enthält die Null
im Folgenraum. Ebenfalls ist sie abgeschlossen unter Addition und Multiplikation
und daher ein Unterraum.

(𝑖𝑖) Die Menge {𝑣 ∈ 𝐾N | 𝑣𝑖 = 0 ∀𝑖 ⩾ 17} ist nichtleer, denn sie enthält die Null im
Folgenraum. Ebenfalls ist sie abgeschlossen unter Addition und Multiplikation und
daher ein Unterraum.

(𝑖𝑖𝑖) Die Menge {𝑣 ∈ 𝐾N | 𝑣1 ≠ 0} ∪ {0} ist offensichtlich nichtleer, denn sie enthält
die Null im Folgenraum, ist unter Multiplikation sogar abgeschlossen, allerdings
nicht unter Addition, denn beispielsweise die Summe der Folgen (1, 1, 0, . . . ) und
(−1, 0, 0, . . . ) liegt nicht in der Menge.
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(𝑖𝑣) Die Menge {𝑣 ∈ 𝐾N | 𝑣𝑛 = 𝑛𝑥 für ein 𝑥 ∈ 𝐾} enthält den Nullvektor (er gehört zu
𝑥 = 0). Wegen des gemischten Distributivgesetzes ist die Menge abgeschlossen
unter S-Multiplikation und wegen der Kommutativität in der abelschen Gruppe
auch unter Addition, da 𝑛𝑥 + 𝑛𝑦 = 𝑛(𝑥 + 𝑦) für 𝑛 ∈ N und 𝑥, 𝑦 ∈ 𝐾 .

(b) Wir wissen bereits aus Hausaufgabe I-5.4 , dass𝑈1 ∪𝑈2 genau dann eine Untergruppe ist,
wenn 𝑈1 ⊆ 𝑈2 oder 𝑈2 ⊆ 𝑈1 gilt. In diesem Fall ist 𝑈1 ∪𝑈2 = 𝑈1 oder 𝑈1 ∪𝑈2 = 𝑈2 und
damit𝑈1 ∪𝑈2 ein Untervektorraum.

(c) Wir zeigen die definierenden Eigenschaften einer Ordnungsrelation, also Reflexivität, Anti-
symmetrie und Transitivität. Klar ist, dass Unter-/Oberräume die gleichen Verknüpfungen
und den gleichen zugrundeliegenden Körper teilen.

Offensichtlich ist jeder Vektorraum ein Untervektorraum von sich selbst, also
UR
≼ reflexiv.

Sind nun𝑈 und 𝑉 Vektorräume mit𝑈
UR
≼ 𝑉 und 𝑉

UR
≼ 𝑈 , dann ist wegen der Teilmenge-

neigenschaft schon𝑈 = 𝑉 und
UR
≼ antisymmetrisch.

Sind nun 𝑈 , 𝑉 und 𝑊 Vektorräume mit 𝑈
UR
≼ 𝑉 und 𝑉

UR
≼ 𝑊 dann gilt wegen der

Transitivität der Mengeninklusionsordnung auf der Klasse aller Mengen, dass 𝑈 ⊆𝑊 .
Alle Verknüpfungen sitmmen überein und𝑈 ist nichtleer sowie abgeschlossen unter den

Verknüfungen, also ist
UR
≼ transitiv.

Übungsaufgabe I-8.4. (Erzeugung in Vektorräumen)

Es sei (𝑉 , +, ·) ein Vektorraum. Dann sind (P(𝑉 ), ⊆) und ({𝑈 ∈ P(𝑉 ) |𝑈
UR
≼ 𝑉 },

UR
≼ ) partiell

geordnete Mengen. Zeigen Sie, dass die Hüllenbildung ⟨·⟩ : P(𝑉 ) → P(𝑉 ) ein Ordnungsho-
momorphismus ist, also dass für 𝐸, 𝐹 ∈ P(𝑉 ) gilt:

𝐸 ⊆ 𝐹 ⇒ ⟨𝐸⟩
UR
≼ ⟨𝐹 ⟩

Lösung.

Es sei 𝐸 ⊆ 𝐹 . Wegen 𝐹 ⊆ ⟨𝐹 ⟩ ist entsprechend auch 𝐸 ⊆ ⟨𝐹 ⟩, also ist ⟨𝐹 ⟩ ein Untervektorraum
von 𝑉 , der 𝐸 enthält und damit auf Grund der Hüllenkonstruktion der linearen Hülle auch
⟨𝐸⟩ ⊆ ⟨𝐹 ⟩.

Übungsaufgabe I-8.5. (Lineare (Un-)abhängigkeit)
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(a) Es sei 𝑋 eine nichtleere Menge. Entscheiden Sie, welche der folgenden Mengen 𝐸 von
Vektoren in einem Vektorraum linear (un-)abhängig sind und beweisen Sie Ihre Antwort.
(𝑖) 𝐸 := {(1, 2, 3), (3, 2, 1), (1, 1, 1)} in (R3, +, ·) über (Q, +, ·).
(𝑖𝑖) 𝐸 := {1, 1, 2} in (Z3, +3, ·3) über sich selbst.
(𝑖𝑖𝑖) 𝐸 := {{𝑥} | 𝑥 ∈ 𝑋 } in (P(𝑋 ), △, ·) über (Z2, +2, ·2).

(b) Es seien (𝑉 , +𝑉 , ·𝑉 ) und (𝑊, +𝑊 , ·𝑊 ) Vektorräume über einem Körper (𝐾, +𝐾 , ·𝐾 ), 𝐸 ⊆ 𝑉
sowie 𝐹 ⊆𝑊 und 𝑉 ×𝑊 der Vektorraum mit den komponentenweisen Verknüpfungen
aus Hausaufgabe I-8.1 . Was können Sie i. A. über die lineare (Un-)abhängigkeit der Menge
𝐸 × 𝐹 in 𝑉 ×𝑊 in den folgenden Fällen aussagen?
(𝑖) 𝐸 ist linear unabhängig in 𝑉 und 𝐹 ist linear unabhängig in𝑊 .
(𝑖𝑖) 𝐸 ist linear abhängig in 𝑉 und 𝐹 ist linear unabhängig in𝑊 .
(𝑖𝑖𝑖) 𝐸 ist linear abhängig in 𝑉 und 𝐹 ist linear abhängig in𝑊 .

Lösung.

(a) (𝑖) 𝐸 := {(1, 2, 3), (3, 2, 1), (1, 1, 1)} in (R3, +, ·) über (Q, +, ·) ist eine linear abhängige
Menge. Entweder erkennt man durch „scharfes Hinsehen“, dass

1(1, 2, 3) + 1(3, 2, 1) + (−4)·(1, 1, 1) = 0

oder man untersucht, welche Skalare 𝛼1, 𝛼2, 𝛼3 das lineare Gleichungssystem

𝛼1(1, 2, 3) + 𝛼2(3, 2, 1) + 𝛼3(1, 1, 1) = 0

also das System

𝛼1+3𝛼2+𝛼3= 0 (0.1)
2𝛼1+2𝛼2+𝛼3= 0 (0.2)
3𝛼1+ 𝛼2+𝛼3= 0 (0.3)

lösen. Subtrahiert man (0.2) von (0.3), dann ergibt sich

𝛼1+3𝛼2+𝛼3= 0 (0.4)
2𝛼1+2𝛼2+𝛼3= 0 (0.5)
𝛼1− 𝛼2 = 0 (0.6)

und setzt man (0.6) in eine der beiden anderen verbleibenden Gleichungen ein, dann
erhält man 𝛼1 = 𝛼2 = − 1

4𝛼3 (und damit auch rationale Lösungen, nämlich z. B. die
oben angegebene).
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(𝑖𝑖) 𝐸 := {1, 1, 2} in (Z3, +3, ·3) über sich selbst können wir zuerst einmal vereinfachen,
denn 𝐸 = {1, 2}. Diese Menge ist linear abhängig, denn in der Modulo-3 Arithmetik
sind 1 und 2 zueinander additiv invers, es gilt also

1 ·3 1 +3 1 ·3 2 = 1 +3 2 = 3 mod 3 = 0.

(𝑖𝑖𝑖) 𝐸 := {{𝑥} | 𝑥 ∈ 𝑋 } in (P(𝑋 ), △, ·) über (Z2, +2, ·2) ist linear unabhängig, denn ist
𝐸0 ⊆ 𝐸 endlich, und ist

𝐴 :=
i

𝑥∈𝐸0

𝛼𝑥 {𝑥} = ∅

gegeben, dann enthält 𝐴 genau alle Elemente 𝑥 , deren Koeffizient 𝛼𝑥 = 1 ist, daher
muss 𝛼𝑥 = 0 ∈ 𝑍2 für alle 𝑥 ∈ 𝐸0 sein.

(b) Die Produktmente 𝐸 × 𝐹 = {(𝑒, 𝑓 ) | 𝑒 ∈ 𝐸, 𝑓 ∈ 𝐹 } übernimmt i. A. leider wenig Struktur
der einzelnen Mengen in Bezug auf lineare (Un-)abhängigkeit.
(𝑖) Sind 𝐸 und 𝐹 linear unabhängig in 𝑉 bzw.𝑊 , dann lässt sich i. A. nichts über die

lineare (Un-)abhängigkeit der Produktmenge aussagen.
So sind z. B. 𝐸 := 𝐹 := {1} ⊆ (R, +, ·) über (R, +, ·) linear unabhängige Mengen, deren
Kreuzprodukt 𝐸 × 𝐹 = {(1, 1)} über (R, +, ·) wieder linear unabhängig ist.
Andererseits sind die Mengen 𝐸 := 𝐹 := {(0, 1), (1, 0)} ⊆ (R2, +, ·) über (R, +, ·)
linear unabhängig, doch das Kreuzprodukt

𝐸 × 𝐹 = {((1, 0), (1, 0)), ((1, 0), (0, 1)), ((0, 1), (1, 0)), ((0, 1), (0, 1))}

ist linear abhängig, denn es ermöglicht die Linearkombination

1 · ((1, 0), (1, 0)) + (−1) · ((1, 0), (0, 1)) + (−1) · ((0, 1), (1, 0)) + 1 · ((0, 1), (0, 1)) = 0.

Beachte: Mit den Vektoren aus dem R2 × R2 kann man offensichtlich rechnen wie
mit Vektoren aus dem R4.

(𝑖𝑖) Ist 𝐸 linear abhängig in 𝑉 und 𝐹 linear unabhängig in𝑊 , dann lässt sich i. A. auch
nichts über die lineare Unabhängigkeit der Produktmenge aussagen.
Z. B. ist 𝐸 := {1, 2} ⊆ (R, +, ·) über (R, +, ·) linear abhängig und 𝐹 := {1} ⊆ (R, +, ·)
über (R, +, ·) linear unabhängig sowie 𝐸 × 𝐹 = {(1, 1), (2, 1)} linear unabhängig im
Produktraum.
Andererseits sind dieMengen𝐸 := {1, 2} ⊆ (R, +, ·) über (R, +, ·) und 𝐹 := {(1, 0), (0, 1)} ⊆
(R2, +, ·) über (R, +, ·) ebenfalls Mengen dieser Form und die Produktmenge

𝐸 × 𝐹 = {(1, (1, 0)), (1, (0, 1)), (2, (1, 0)), (2, (0, 1))}
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ist linear abhängig, denn sie ermöglicht die Linearkombination

1 · (1, (1, 0)) + (−1) · (1, (0, 1)) + (−1) · (2, (1, 0)) + 1 · (2, (0, 1)) = 0.

(𝑖𝑖𝑖) Wir können zeigen, dass 𝐸 × 𝐹 linear abhängig in 𝑉 ×𝑊 ist, wenn 𝐸 und 𝐹 linear
abhängig in 𝑉 bzw.𝑊 sind. Für die Übersichtlichkeit werden wir die Operationen
auf 𝑉 und𝑊 nicht mit ihren entsprechenden Indizes notieren. Wir führen den
Beweis hier für Familien.
Es seien also 𝑛𝑉 , 𝑛𝑊 ∈ N, Koeffizienten 𝛼ℓ ≠ 0 für alle ℓ ∈ {1, . . . , 𝑛𝑉 } und 𝛽𝑘 ≠ 0
für alle 𝑘 ∈ {1, . . . , 𝑛𝑊 } sowie jeweils paarweise verschiedene Vektoren 𝑣1, . . . , 𝑣𝑛𝑉
und𝑤1, . . . ,𝑤𝑛𝑊 gegeben, so dass

𝑛𝑉∑︁
ℓ=1

𝛼ℓ · 𝑣ℓ = 0𝑉 ∈ 𝑉 und
𝑛𝑊∑︁
𝑘=1

𝛽𝑘 ·𝑤𝑘 = 0𝑊 ∈𝑊 .

Dann sind die Vektoren (𝑣ℓ ,𝑤𝑘 ) paarweise verschieden und 𝛼ℓ · 𝛽𝑘 ≠ 0 für alle
Kombinationen ℓ ∈ {1, . . . , 𝑛𝑉 } und 𝑘 ∈ {1, . . . , 𝑛𝑊 } und es gilt

𝑛𝑉∑︁
ℓ=1

𝑛𝑊∑︁
𝑘=1

𝛼ℓ𝛽𝑘 · (𝑣ℓ ,𝑤𝑘 ) =
𝑛𝑉∑︁
ℓ=1

𝑛𝑊∑︁
𝑘=1

(𝛼ℓ𝛽𝑘 · 𝑣ℓ , 𝛼ℓ𝛽𝑘 ·𝑤𝑘 )

(Produkt komponentenweise)

=

(
𝑛𝑉∑︁
ℓ=1

𝑛𝑊∑︁
𝑘=1

𝛼ℓ𝛽𝑘 · 𝑣ℓ ,
𝑛𝑉∑︁
ℓ=1

𝑛𝑊∑︁
𝑘=1

𝛼ℓ𝛽𝑘 ·𝑤𝑘

)
(Summe komponentenweise)

=

©­­­­­­«
𝑛𝑊∑︁
𝑘=1

𝛽𝑘 ·
𝑛𝑉∑︁
ℓ=1

𝛼ℓ · 𝑣ℓ︸     ︷︷     ︸
=0

,

𝑛𝑉∑︁
ℓ=1

𝛼ℓ ·
𝑛𝑊∑︁
𝑘=1

𝛽𝑘 ·𝑤𝑘︸       ︷︷       ︸
=0

ª®®®®®®¬
(umsortiert/ausgeklammert)

= (0, 0)
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Hausaufgabe I-8.1 (Vektorräume) 2 + 1.5 + 1.5 = 5 Punkte

(a) Es sei (R, +, ·) der übliche Körper der reellen Zahlen. Entscheiden Sie, welche der folgenden
Beispiele Vektorräume über R sind und beweisen Sie Ihre Antworten.
(𝑖) (R, ⊕, ⊙) mit 𝑥 ⊕ 𝑦 := 2

√︁
𝑥2 + 𝑦2 und 𝛼 ⊙ 𝑥 := 2√𝛼 · 𝑥

(𝑖𝑖) (C, ⊕, ⊙), wobei ⊕ die übliche Addition in C ist und 𝛼 ⊙ 𝑥 := 𝛼 · 𝑥
(𝑖𝑖𝑖) (R>0, ⊕, ⊙) mit 𝑥 ⊕ 𝑦 := 𝑥 · 𝑦 und 𝛼 ⊙ 𝑥 := 𝑥𝛼

(b) Es sei 𝑋 eine nichtleere Menge und (P(𝑋 ), △) die bereits bekannte abelsche Gruppe.
Geben Sie eine skalare Multiplikation an, so dass (P(𝑋 ), △) mit dieser S-Multiplikation
ein Vektorraum über dem Körper (Z2, +2, ·2) ergibt.

(c) Es seien (𝑉 , +𝑉 , ·𝑉 ) und (𝑊, +𝑊 , ·𝑊 ) Vektorräume über einem Körper (𝐾, +𝐾 , ·𝐾 ). Zeigen
Sie, dass 𝑉 ×𝑊 mit den Verknüpfungen

+ : (𝑉 ×𝑊 )2 → (𝑉 ×𝑊 ) (𝑣,𝑤) + (𝑣, 𝑤̃) := (𝑣 +𝑉 𝑣,𝑤 +𝑊 𝑤̃)
· : 𝐾 × (𝑉 ×𝑊 ) → (𝑉 ×𝑊 ) 𝛼 · (𝑣,𝑤) := (𝛼 ·𝑉 𝑣, 𝛼 ·𝑊 𝑤)

ein Vektorraum über 𝐾 ist.

Lösung.

(a) (𝑖) Wie schon in Übungsaufgabe I-8.1 Teilaufgabe (a)(𝑖) haben wir hier eine assoziative
Verknüpfung vorliegen, allerdings existiert hier für alle Elemente mit 𝑥 < 0 kein
additiv neutrales Element mehr. Hier handelt es sich also um keinen Vektorraum.
(0.5 Punkte)

(𝑖𝑖) Bekanntermaßen ist (C, +) eine abelsche Gruppe (Beispiele 7.22 und 7.29), die
äußere Verknüpfung bildet wieder nach C ab, da R ein Unterkörper von C ist.
Außerdem ist für 𝛼, 𝛽 ∈ R und 𝑢, 𝑣 ∈ C wegen der Rechenregeln in den komplexen
Zahlen:

𝛼 ⊙ (𝑢 ⊕ 𝑣) = 𝛼 · 𝑢 + 𝑣 = 𝛼 · 𝑢 + 𝛼 · 𝑣 = (𝛼 ⊙ 𝑢) ⊕ (𝛼 ⊙ 𝑣)
(𝛼 + 𝛽) ⊙ 𝑣 = (𝛼 + 𝛽) · 𝑣 = 𝛼 · 𝑣 + 𝛽 · 𝑣 = (𝛼 ⊙ 𝑣) ⊕ (𝛽 ⊙ 𝑣),

es gelten also die gemischten Distributivgesetze. Nun ist aber i. A.

(𝛼 · 𝛽) ⊙ 𝑣 = (𝛼 · 𝛽) · 𝑣 = 𝛼 · (𝛽 · 𝑣) ≠ 𝛼 · (𝛽 · 𝑣) = 𝛼 ⊙ (𝛽 ⊙ 𝑣),

wie man z. B. für 𝑣 = 𝑖 , 𝛼 = 𝛽 = 1 sieht, denn hier ist

(𝛼 · 𝛽) ⊙ 𝑣 = 1 ⊙ 𝑖 = 1 · (−𝑖) = −𝑖 ≠ 𝑖 = 1 · 𝑖 = 1 ⊙ (−𝑖) = 1 ⊙ (1 ⊙ 𝑖) = 𝛼 ⊙ (𝛽 ⊙ 𝑣)
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damit gilt das gemischte Assoziativgesetz nicht.
Zudem ist die Eins im Körper C nicht neutral bzgl. ⊙, denn z. B. 1 ⊙ 𝑖 = −𝑖 ≠ 𝑖 .
Hier handelt es sich also nicht um einen Vektorraum. (0.5 Punkte)

(𝑖𝑖𝑖) (𝑅>0, ·) ist eine abelsche Gruppe, denn die Multiplikation bildet positive Zahlen
auf positive Zahlen ab und ist assoziativ sowie kommutativ. Das neutrale Element
ist die (positive, reelle) Zahl 1, alle positiven Zahlen sind multiplikativ invertierbar
und die Inversen sind ebenfalls positiv und reell. (0.5 Punkte)
Die Potenzen 𝑥𝛼 , 𝑥 ∈ R>0, 𝛼 ∈ R sind alle positiv, entsprechend ist die skalare
Multiplikation tatsächlich eine äußere Verknüpfung. Außerdem ist für 𝛼, 𝛽 ∈ R
und 𝑢, 𝑣 ∈ R>0 (hier wird Schulwissen für das Rechnen mit Potenzen vorausgesetzt):

𝛼 ⊙ (𝑢 ⊕ 𝑣) = (𝑢 · 𝑣)𝛼 = 𝑢𝛼 · 𝑣𝛼 = (𝛼 ⊙ 𝑢) ⊕ (𝛼 ⊙ 𝑣)
(𝛼 + 𝛽) ⊙ 𝑣 = 𝑣𝛼+𝛽 = 𝑣𝛼 · 𝑣𝛽 = (𝛼 ⊙ 𝑣) ⊕ (𝛽 ⊙ 𝑣)

(𝛼 · 𝛽) ⊙ 𝑣 = 𝑣𝛼 ·𝛽 =

(
𝑣𝛽

)𝛼
= 𝛼 ⊙ (𝛽 ⊙ 𝑣),

es gelten also die gemischten Distributivgesetze und das gemischte Assozia-
tivgesetz. Die Eins im Körper ist auch neutral bzgl. ⊙, denn 𝑥 1 = 𝑥 ∀𝑥 ∈ R>0.
(0.5 Punkte)
Hier handelt es sich also um einen Vektorraum.
Beachte: Die Vektorraum-Null und die Körper-Eins stimmen hier also zufällig
überein.

(b) Die einzige Möglichkeit, eine skalare Multiplikation zu definieren, ist durch die Forderung
der Neutralität der Körper-Eins und den Rechenregeln aus Lemma 11.5 festgelegt. Es muss
nämlich für die beiden Elemente 0, 1 ∈ Z2 und beliebiges 𝑣 ∈ 𝑉 := P(𝑋 ) gelten:

0 ⊙ 𝑣 = ∅ (Rechenregel)
1 ⊙ 𝑣 = 𝑣 . (Neutralität der 1)

(0.5 Punkte)
Hier erhalten wir tatsächlich einen Vektorraum, für 𝑢, 𝑣 ∈ 𝑉 , 𝛼, 𝛽 ∈ Z2 ist nämlich

𝛼 ⊙ (𝑢△𝑣) = 𝑢△𝑣 = (𝛼 ⊙ 𝑢)△(𝛼 ⊙ 𝑣) falls 𝛼 = 1
𝛼 ⊙ (𝑢△𝑣) = ∅ = ∅△∅ = (𝛼 ⊙ 𝑢)△(𝛼 ⊙ 𝑣) falls 𝛼 = 0

und

(𝛼 + 𝛽) ⊙ 𝑣 = 0 ⊙ 𝑣 = ∅ = (𝛼 ⊙ 𝑣)△(𝛽 ⊙ 𝑣) falls 𝛼 = 𝛽
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(𝛼 + 𝛽) ⊙ 𝑣 = 1 ⊙ 𝑣 = ∅△1 ⊙ 𝑣 = (𝛼 ⊙ 𝑣)△(𝛽 ⊙ 𝑣) falls 𝛼 ≠ 𝛽,

es gelten also die Distributivgesetze. Dabei ist der rot markierte Teil entscheidend, denn
sowohl in (Z2, +2) als auch in (P(𝑋 ), △) sind alle Elemente selbstinvers, was den Fall
𝛼 = 𝛽 = 1 abdeckt. Diese Konstruktion also dann anwendbar, wenn eine Gruppe vorliegt,
in der jedes Element selbstinvers ist (eine sogenannte boolesche Gruppe).
Zuletzt gilt das Assoziativgesetz, denn

(𝛼 · 𝛽) ⊙ 𝑣 = 1 ⊙ 𝑣 = 1 ⊙ (1 ⊙ 𝑣) = 𝛼 ⊙ (𝛽 ⊙ 𝑣) falls 𝛼 = 𝛽 = 1
(𝛼 · 𝛽) ⊙ 𝑣 = 0 ⊙ 𝑣 = ∅ = 𝛼 ⊙ (𝛽 ⊙ 𝑣) sonst.

(1 Punkt)
(c) Die benötigten Eigenschaften folgen sofort aus der komponentenweisen Definition der

Verknüpfungen auf dem Produktraum. Diese ist natürlich wieder assoziativ und kom-
mutatitv, das neutrale Element bzgl. der Addition ist (0𝑉 , 0𝑊 ) und das zu (𝑣,𝑤) inverse
Element ist −(𝑣,𝑤) = (−𝑣,−𝑤). Weiter ist für 𝛼, 𝛽 ∈ 𝐾 , (𝑣1,𝑤1), (𝑣2,𝑤2), (𝑣,𝑤) ∈ 𝑉 ×𝑊

𝛼 · ((𝑣1,𝑤1) + (𝑣2,𝑤2)) =
(
𝛼 ·𝑉 (𝑣1 +𝑉 𝑣2), 𝛼 ·𝑊 (𝑤1 +𝑊 𝑤2)

)
=

(
𝛼 ·𝑉 𝑣1 +𝑉 𝛼 ·𝑉 𝑣2, 𝛼 ·𝑊 𝑤1 +𝑊 𝛼 ·𝑊 𝑤2

)
= 𝛼 · (𝑣1,𝑤1) + 𝛼 · (𝑣2,𝑤2)

(𝛼 +𝐾 𝛽) · (𝑣,𝑤) = ((𝛼 +𝐾 𝛽) ·𝑉 𝑣, (𝛼 +𝐾 𝛽) ·𝑊 𝑤)
= (𝛼 ·𝑉 𝑣 + 𝛽 ·𝑉 𝑣, 𝛼 ·𝑊 𝑤 + 𝛽 ·𝑊 𝑤)
= 𝛼 · (𝑣,𝑤) + 𝛽 · (𝑣,𝑤)

(𝛼 ·𝐾 𝛽) · (𝑣,𝑤) = ((𝛼 ·𝐾 𝛽) ·𝑉 𝑣, (𝛼 ·𝐾 𝛽) ·𝑊 𝑤)
= (𝛼 ·𝑉 (𝛽 ·𝑉 𝑣), 𝛼 ·𝑊 (𝛽 ·𝑊 𝑤))
= 𝛼 · (𝛽 · (𝑣,𝑤))

und die Neutralität des neutralen Elements 1𝐾 folgt sofort aus der komponentenweisen
Neutralität. (1.5 Punkte)

Hausaufgabe I-8.2 (Linearkombinationen) 1.5 + 1.5 = 3 Punkte

(a) Es sei (R𝑛, ⊕, ⊙) als Vektorraum über dem üblichen Körper (R, +, ·) der reellen Zahlen
aus Beispiel 11.3 gegeben. Bestimmen Sie, für welche 𝑟 ∈ R der Vektor 𝑣 := (−7, 𝑟 , 2) eine
Linearkombination der Vektoren 𝑣1 := (1, 2, 4), 𝑣2 := (−2, 1, 2) und 𝑣3 := (3, 1, 2) ist, und
bestimmen Sie dann alle möglichen Koeffizienten aus Linearkombinationen von 𝑣1, 𝑣2, 𝑣3,
die 𝑣 ergeben.
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(b) Gegeben sei der Vektorraum (P(N), △, ⊙) mit der S-Multiplikation aus Hausaufgabe I-8.1
über (Z2, +2, ·2). Bestimmen Sie alle Linearkombinationen der Vektoren

{1, 2, 4, 8}, {1, 3, 9, 27}, {1, 4, 16, 64},

die keine ungeraden Zahlen enthalten.

Lösung.

(a) Die Bedingung 𝛼1𝑣1 + 𝛼2𝑣2 + 𝛼3𝑣3 = 𝑣 liefert wegen der komponentenweise Addition und
Multiplikation die drei Bedingungen

𝛼1 − 2𝛼2 + 3𝛼3 = −7 (0.7)
2𝛼1+ 𝛼2+ 𝛼3 = 𝑟 (0.8)
4𝛼1 + 2𝛼2 + 2𝛼3 = 2 (0.9)

also ein lineares Gleichungssystem. Die Zeilen (0.8) und (0.9) liefern nachdem man (0.9)
durch 2 geteilt hat, dass 𝑟 = 1 gelten muss, also

𝛼1 − 2𝛼2 + 3𝛼3 = −7 (0.10)
2𝛼1+ 𝛼2+ 𝛼3 = 1. (0.11)

Subtrahieren des doppelten der Zeile (0.10) von (0.11) liefert 𝛼2 = 3 + 𝛼3. Setzt man das
in (0.10) ein, dann erhält man 𝛼1 = −1 − 𝛼3 und damit die Lösungen 𝛼3 ∈ R, 𝛼2 = 3 + 𝛼3,
𝛼1 = −1 − 𝛼3. Schreibt man die Koeffizienten 𝛼𝑖 als Vektor des R3, dann erhält man die
Lösungen

{(−1, 3, 0) + 𝑠 (−1, 1, 1) | 𝑠 ∈ R} ⊆ R3.

(1.5 Punkte)
(b) Für 𝛼1, 𝛼2, 𝛼3 ∈ Z2 ist die Linearkombination

𝛼1{1, 2, 4, 8}△𝛼2{1, 3, 9, 27}△𝛼3{1, 4, 16, 64}

genau dann eine Obermenge von {3, 9, 27}, wenn 𝛼2 = 1 ist, daher muss 𝛼2 = 0 sein, wenn
keine ungeraden Zahlen in der Linearkombinationen enthalten sein sollten. Wir müssen
uns also nur um die Linearkombinationen

𝛼1{1, 2, 4, 8}△𝛼3{1, 4, 16, 64}

kümmern, wo die einzige auftretende ungerade Zahl 1 ist, welche in beiden Mengen
vorhanden ist, damit muss 𝛼1 = 𝛼3 sein, es ergeben sich

1{1, 2, 4, 8}△0{1, 3, 9, 27}△1{1, 4, 16, 64} = {2, 8, 16, 64}
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0{1, 2, 4, 8}△0{1, 3, 9, 27}△0{1, 4, 16, 64} = ∅.

(1.5 Punkte)

Hausaufgabe I-8.3 (Unterräume) 3.5 + 0.5 + 1 = 5 Punkte

(a) Es sei 𝑋 eine nichtleere Menge und (P(𝑋 ), △, ⊙) der aus Hausaufgabe I-8.1 bekannte
Vektorraum über (Z2, +2, ·2). Entscheiden Sie, welche der folgenden Teilmengen einen
Untervektorraum bilden.

{𝐴 ⊆ 𝑋 |𝐴 ≠ ∅}(i) P(𝑋 ) \ {𝐵} für 𝐵 ⊆ 𝑋(ii)
{∅, 𝑋 \ 𝐵} für 𝐵 ⊆ 𝑋(iii) {𝐴 ⊆ 𝑋 |𝐴 und 𝑋 gleichmächtig} ∪

{∅}
(iv)

(b) Es sei (𝑉 , +, ·) ein Vektorraum und (𝑈𝑖 , +, ·)𝑖∈𝐼 eine nichtleere Familie von Unterräumen.
Zeigen Sie Lemma 11.14 des Skripts, also dass dann auch

⋂
𝑖∈𝐼 𝑈𝑖 mit + und · ein Unterraum

von (𝑉 , +, ·) ist.
(c) Es sei (𝐾, +, ·) ein Körper, 𝑋 eine nichtleere Menge, 𝑥0 ∈ 𝑋 beliebig und (𝐾𝑋 , +, ·) der

Vektorraum der Funktionen von 𝑋 nach 𝐾 über 𝐾 mit den punktweisen Verknüpfungen
sowie

𝑈 :=
{
𝑓 ∈ 𝐾𝑋

�� 𝑓 (𝑥0) = 0
}
,

𝑊 :=
{
𝑓 ∈ 𝐾𝑋

�� 𝑓 (𝑥) = 𝑓 (𝑦) ∀𝑥, 𝑦 ∈ 𝑋
}
.

Zeigen Sie:
𝑈 und𝑊 sind Unterräume von (𝐾𝑋 , +, ·)(i) (𝑈 ∩𝑊 ) = {0}(ii)

Lösung.

(a) (𝑖) Die Menge {𝐴 ⊆ 𝑋 |𝐴 ≠ ∅} ist zwar nicht leer, denn 𝑋 liegt darin, aber unter
Multiplikation nicht abgeschlossen, denn Multiplikation mit 0 ∈ Z2 liefert gerade
die leere Menge. (0.5 Punkte)

(𝑖𝑖) Die Menge P(𝑋 ) \ 𝐵 für 𝐵 ⊆ 𝑋 untersuchen wir mit einer Fallunterscheidung.
Für 𝐵 = ∅ ist die Menge nie multiplikativ abgeschlossen, was wieder die Multiplika-
tion von z. B. 𝑋 mit 0 ∈ Z2 zeigt.
Ist nun 𝐵 ≠ ∅, dann ist die Menge multiplikativ abgeschlossen. Es verbleibt für 𝐵 ≠ ∅
also die additive Abgeschlossenheit zu untersuchen.
Hat 𝑋 genau ein Element, dann ist P(𝑋 ) \ {𝑋 } gerade der triviale Untervektorraum.
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Anderenfalls, also wenn mindestens zwei Elemente in 𝑋 existieren, dann ist die
Menge additiv nicht abgeschlossen, wofür wir wieder eine Fallunterscheidung her-
anziehen. Hat 𝐵 nur ein Element, also 𝐵 = {𝑎}, dann existiert ein weiteres Element
𝑏 ∈ 𝑋 \ 𝐵 und damit ist {{𝑏}, {𝑎, 𝑏}} ⊆ P(𝑋 ) \ {𝐵} und {𝑏}△{𝑎, 𝑏} = {𝑎} =

𝐵 ∉ P(𝑋 ) \ {𝐵}. Hat 𝐵 mindestens zwei Elemente, eines davon 𝑎 ∈ 𝐵, dann ist
{{𝑎}, 𝐵 \ {𝑎}} ⊆ P(𝑋 ) \ {𝐵}, und {𝑎}△𝐵 \ {𝑎} = 𝐵 ∉ P(𝑋 ) \ {𝐵}. (1.5 Punkte)

(𝑖𝑖𝑖) Die Menge {∅, 𝑋 \ 𝐵} für 𝐵 ⊆ 𝑋 ist nichtleer und abgeschlossen unter den Verküp-
fungen und daher ein Untervektorraum. (0.5 Punkte)

(𝑖𝑣) Die Menge {𝐴 ⊆ 𝑋 |𝐴 und 𝑋 gleichmächtig} ∪ {∅} ist genau dann ein Unterraum,
wenn 𝑋 endlich ist, denn dann ist die Menge gerade {∅, 𝑋 }. Anderenfalls ist für
jedes 𝑎 ∈ 𝑋 die Menge 𝑋 \ {𝑎} gleichmächtig zu 𝑋 aber es gilt 𝑋△(𝑋 \ {𝑎}) = {𝑎},
was nicht zu 𝑋 gleichmächtig ist. (1 Punkt)

(b) Wir nennen den gemeinsamen Körper, über dem wir die Vektorräume vorliegen haben,
wieder (𝐾, +, ·). Aus der Schnittstabilität von Untergruppen folgt sofort, dass

⋂
𝑖∈𝐼 𝑈𝑖

ebenfalls eine Untergruppe von 𝑉 bzgl. + ist. Außerdem ist⋂
𝑖∈𝐼

𝑈𝑖 +
⋂
𝑖∈𝐼

𝑈𝑖 ⊆ 𝑈𝑖 ∀𝑖 ∈ 𝐼

𝐾 ·
⋂
𝑖∈𝐼

𝑈𝑖 ⊆ 𝑈𝑖 ∀𝑖 ∈ 𝐼

also ⋂
𝑖∈𝐼

𝑈𝑖 +
⋂
𝑖∈𝐼

𝑈𝑖 ⊆
⋂
𝑖∈𝐼

𝑈𝑖

𝐾 ·
⋂
𝑖∈𝐼

𝑈𝑖 ⊆
⋂
𝑖∈𝐼

𝑈𝑖 .

(0.5 Punkte)
(c) (𝑖) Sowohl𝑈 (Funktionen, die in 𝑥0 den Wert Null annehmen) als auch𝑊 (Funktionen,

die konstant sind) enthalten die konstante Nullfunktion, sind also nicht leer. Für
𝑓 , 𝑔 ∈ 𝑈 , 𝛼 ∈ 𝐾 ist

(𝑓 + 𝑔) (𝑥0) = 𝑓 (𝑥0) + 𝑔(𝑥0) = 0 + 0 = 0
(𝛼 𝑓 ) (𝑥0) = 𝛼 · 𝑓 (𝑥0) = 𝛼 · 0 = 0

und für 𝑓 , 𝑔 ∈𝑊 , 𝛼 ∈ 𝐾 ist

(𝑓 + 𝑔) (𝑥) = 𝑓 (𝑥) + 𝑔(𝑥) = 𝑓 (𝑦) + 𝑔(𝑦) = (𝑓 + 𝑔) (𝑦) ∀𝑥, 𝑦 ∈ 𝑋
(𝛼 𝑓 ) (𝑥) = 𝛼 · 𝑓 (𝑥) = 𝛼 · 𝑓 (𝑦) = (𝛼 · 𝑓 ) (𝑦) ∀𝑥, 𝑦 ∈ 𝑋 .

(0.5 Punkte)
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(𝑖𝑖) Für 𝑓 ∈ 𝑈 ∩𝑊 ist 𝑓 (𝑥) = 𝑓 (𝑥0) = 0 ∀𝑥 ∈ 𝑋 , also ist 𝑓 die Nullfunktion. (0.5 Punkte)

Hausaufgabe I-8.4 (Erzeugung in Vektorräumen) 2 + 2 = 4 Punkte

(a) Es sei (𝐾, +, ·) ein Körper, (𝑉 , +, ·) ein Vektorraum über 𝐾 und 𝐸 ⊆ 𝑉 . Zeigen Sie:

(𝑖) ⟨𝐸⟩ =
{ 𝑛∑︁
𝑖=1

𝛼𝑖 𝑣𝑖

���∃𝑛 ∈ N0 ∀𝑖 = 1, . . . , 𝑛 (𝑣𝑖 ∈ ⟨𝐸⟩, 𝛼𝑖 ∈ 𝐾)
}
.

(𝑖𝑖) ⟨𝐸⟩ = ⋃{⟨𝐸0⟩ | 𝐸0 ⊆ 𝐸, 𝐸0 endlich}.
(b) Bestimmen Sie eine möglichst explizite Darstellung der folgenden erzeugten Unterräume.

(𝑖) ⟨(1, 2)⟩ in R × Q über Q
(𝑖𝑖) ⟨{Q \ Z,Z}⟩ in (P(Q), △, ⊙) über (Z2, +2, ·2), siehe Hausaufgabe I-8.1

Lösung.

(a) (𝑖) Wir nutzen und erweitern hier die Darstellung der linearen Hülle aus Satz 11.16. Dabei
passieren zwei Dinge. Zum Einen kann man die Mengen in eine Familiendarstellung
umschreiben, zum Anderen die Menge 𝐸 durch den von ihr erzeugten Vektorraum
austauschen.
Per Definition der Endlichkeit von Mengen existiert für jede endliche Menge 𝐸0 ⊆ 𝐸

eine Bijektion auf ⟦1, #𝐸0⟧ und damit eine Familie (𝑣𝑖)𝑖∈⟦1,𝑛⟧ mit 𝑛 = #(𝐸0), die
genau die Elemente von 𝐸0 als Mitglieder hat. Damit gilt

⟨𝐸⟩ ⊆
{ 𝑛∑︁
𝑖=1

𝛼𝑖 𝑣𝑖

���∃𝑛 ∈ N0 ∀𝑖 = 1, . . . , 𝑛 (𝑣𝑖 ∈ 𝐸, 𝛼𝑖 ∈ 𝐾)
}
.

Für jede Familie (𝑣𝑖)𝑖=1,...,𝑛̃ aus Mitgliedern aus 𝐸 ist außerdem die Menge

{𝑣 | 𝑣 ist Mitglied von(𝑣𝑖)𝑖=1,...,𝑛} ⊆ 𝐸

endlich, daher ist auf Grund der Distributivität auch

⟨𝐸⟩ ⊇
{ 𝑛∑︁
𝑖=1

𝛼𝑖 𝑣𝑖

���∃𝑛 ∈ N0 ∀𝑖 = 1, . . . , 𝑛 (𝑣𝑖 ∈ 𝐸, 𝛼𝑖 ∈ 𝐾)
}
,

womit Gleichheit der Mengen gilt.
Auf Grund der Hüllenkonstruktion der linearen Hülle ist insbesondere ⟨𝑈 ⟩ = 𝑈

für jeden Unterraum von 𝑈 von 𝑉 , wir können als weiterhin 𝐸 durch ⟨𝐸⟩ ersetzen.
(1 Punkt)

https://tinyurl.com/scoop-la Seite 16 von 20

https://tinyurl.com/scoop-la


R. Herzog, G. Müller

Universität Heidelberg

Lineare Algebra

Wintersemester 2025 - Sommersemester 2026

(𝑖𝑖) Diese Eigenschaft folgt direkt aus der Darstellung der von Mengen erzeugten Un-
terräume in Satz 11.16. Ist nämlich𝑤 ∈ ⟨𝐸⟩, dann gibt es ein endliches 𝐸0 ⊆ 𝐸 und
passende Koeffizienten, so dass

𝑤 =
∑︁
𝑣∈𝐸0

𝛼𝑣 𝑣,

also insbesondere𝑤 ∈ ⟨𝐸0⟩ ⊆
⋃{⟨𝐸0⟩ | 𝐸0 ⊂ 𝐸, 𝐸0 endlich}, also ist ⟨𝐸⟩ ⊆

⋃{⟨𝐸0⟩ | 𝐸0 ⊂
𝐸, 𝐸0 endlich} und die verbleibende Inklusion gilt offensichtlich. (1 Punkt)

(b) (𝑖) Hier gilt

⟨(1, 2)⟩ =
{

𝑛∑︁
𝑖=1

𝛼𝑖 · (1, 2)
�����𝑛 ∈ N𝛼𝑖 ∈ Q

}
= {𝛼 · (1, 2) | 𝛼 ∈ Q}

(1 Punkt)
(𝑖𝑖) Hier gilt

⟨{Q \ Z,Z}⟩ =
{
i

𝐴

𝛼𝐴𝐴

�����𝐴 ∈ {Q \ Z,Z}
}

= {∅,Z,Q \ Z,Q} .

(1 Punkt)

Hausaufgabe I-8.5 (Lineare (Un-)abhängigkeit) 2.5 + 0.5 + 1 = 4 Punkte

(a) Es sei 𝑋 eine nichtleere Menge. Entscheiden Sie, welche der folgenden Mengen 𝐸 von
Vektoren in einem Vektorraum linear (un-)abhängig sind und beweisen Sie Ihre Antwort.
(𝑖) 𝐸 :=

{
(1, 2, 3), (

√
2,
√
2,
√
2), (1, 1, 1)

}
in (R3, +, ·) über (Q, +, ·).

(𝑖𝑖) 𝐸 := {𝑒𝑥 | 𝑥 ∈ 𝑋 } ∪ {1} in (𝐾𝑋 , +, ·) über einem Körper (𝐾, +, ·) (siehe (12.3) des
Skripts).

(𝑖𝑖𝑖) 𝐸 := {𝑋 \ {𝑥} | 𝑥 ∈ 𝑋 } in (P(𝑋 ), △, ·) über (Z2, +2, ·2).
(b) Zeigen Sie, dass in einer linear unabhängigen Familie von Vektoren kein Element doppelt

vorkommen kann.
(c) Es sei𝑉 ein𝐾-Vektorraum. Zeigen Sie Lemma 12.5 des Skripts in der Mengenformulierung,

also die Äquivalenz der folgenden Aussagen:
(𝑖) 𝐸 ⊆ 𝑉 ist eine linear abhängige Menge.
(𝑖𝑖) Es gibt einen Vektor 𝑣 ∈ 𝐸, der als Linearkombination von 𝐸 \ {𝑣} darstellbar ist.
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Lösung.

(a) (𝑖) 𝐸 :=
{
(1, 2, 3), (

√
2,
√
2,
√
2), (1, 1, 1)

}
in (R3, +, ·) über (Q, +, ·) ist eine linear unab-

hängige Menge.
Der Vektor (

√
2,
√
2,
√
2) hat Komponenten, die alle inR\Q liegen, alle verbleibenden

Komponenten der anderen Vektoren sind inQ, und auch der Nullvektor hat lediglich
Komponenten aus Q. Damit muss in jeder Linearkombination der Form

𝛼1(1, 2, 3) + 𝛼2(
√
2,
√
2,
√
2) + 𝛼3(1, 1, 1) = 0

der Koeffizient 𝛼2 = 0 sein. Für die verbleibenden Koeffizienten ergibt sich durch
Vergleich der ersten und zweiten Komponenten, dass die beiden Gleichungen

𝛼1 + 𝛼3 = 0
2𝛼1 + 𝛼3 = 0

gelten müssen, woraus sich direkt (subtrahieren der ersten von der zweiten Glei-
chung) 𝛼1 = 𝛼2 = 𝛼3 = 0 ergibt. (0.5 Punkte)

(𝑖𝑖) 𝐸 := {𝑒𝑥 | 𝑥 ∈ 𝑋 }∪{1} in (𝐾𝑋 , +, ·) über einem Körper (𝐾, +, ·) ist genau dann linear
abhängig, wenn 𝑋 endlich ist, sonst linear unabhängig.
Ist𝑋 endlich (und nichtleer, wie vorausgesetzt), dann gibt es eine Bijektion in ⟦1, 𝑛⟧
für ein 𝑛 ∈ N, also 𝑋 = {𝑥1, . . . , 𝑥𝑛}, dann ist

𝐸 = {𝑒𝑥𝑖 | 𝑖 ∈ ⟦1, 𝑛⟧} ∪ {1}

und die Nullfunktion ergibt sich als die endliche, nichtleere Linearkombinationen
der paarweise verschiedenen Indikatorfunktionen und der Einsfunktion durch

𝑛∑︁
𝑖=1

1 · 𝑒𝑥𝑖 + (−1) · 1 = 1 ·
(
𝑛∑︁
𝑖=1

𝑒𝑥𝑖

)
+ (−1) · 1 = 1 · 1 + (−1) · 1 = (1 − 1) · 1 = 0.

(0.5 Punkte)
Sei nun 𝑋 nicht endlich und 𝑛 ∈ N sowie 𝑓ℓ , ℓ = 1, . . . , 𝑛 paarweise verschie-
dene Vektoren aus 𝐸 und für Koeffizienten 𝛼ℓ ∈ 𝐾 eine Linearkombination der
Nullfunktion durch

𝑓 :=
𝑛∑︁
ℓ=1

𝛼ℓ 𝑓ℓ = 0

gegeben.
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Gilt 𝑓ℓ ≠ 1 für alle ℓ = 1, . . . , 𝑛, dann gilt 𝑓ℓ = 𝑒𝑥ℓ für paarweise verschiedene
Elemente 𝑥ℓ , ℓ = 1, . . . , 𝑛 aus 𝑋 . Entsprechend ist für jedes 𝑘 aus {1, . . . , 𝑛}

0 = 𝑓 (𝑥𝑘 ) =
𝑛∑︁
ℓ=1

𝛼ℓ 𝑓ℓ (𝑥𝑘 ) = 𝛼𝑘 .

Gilt 𝑓𝑘 = 1 für genau ein 𝑘 aus {1, . . . , 𝑛}, dann gilt 𝑓ℓ = 𝑒𝑥ℓ für paarweise verschiede-
ne Elemente 𝑥ℓ , ℓ = {1, . . . , 𝑛} \ 𝑘 aus 𝑋 . Da 𝑋 nicht endlich ist, gibt es ein weiteres
Element 𝑥 ∈ 𝑋 \ {𝑥ℓ | ℓ ∈ {1, . . . 𝑛} \ 𝑘}, und wenn wir 𝑓 an dieser Stelle auswerten,
dann erhalten wir

0 = 𝑓 (𝑥) =
𝑛∑︁
ℓ=1

𝛼ℓ 𝑓ℓ (𝑥) = 𝛼𝑘 · 1(𝑥) = 𝛼𝑘

und die gleiche Argumentation, wie im Fall, wo 𝑓ℓ ≠ 1 für alle ℓ = 1, . . . , 𝑛 galt, zeigt,
dass die verbleibenden Koeffizienten ebenfalls 0 sein müssen. (0.5 Punkte)

(𝑖𝑖𝑖) 𝐸 := {𝑋 \{𝑥} | 𝑥 ∈ 𝑋 } in (P(𝑋 ), △, ·) über (Z2, +2, ·2) benötigt Fallunterscheidungen.
Wir betrachten eine beliebige Linearkombination zu einer endlichen Menge 𝐸0 ⊆ 𝐸

bzw die dazugehörige endliche Menge der 𝐹0 := {𝑥 |𝑋 \ {𝑥} ∈ 𝐸0} gegeben durch

∅ =
i

𝐴∈𝐸0

𝛼𝐴𝐴 =
i

𝑥∈𝐹0

𝛼𝑥𝑋 \ {𝑥} =
i

𝑥∈𝐹0

𝑋 \ {𝑥}

für die Menge 𝐹0 = {𝑥 ∈ 𝐹0 | 𝛼𝑥 = 1}.
Angenommen die Kardinalität von 𝐹0 wäre ungerade (und damit insbesondere nicht
0), dann ist

∅ =
i

𝐴∈𝐸0

𝛼𝐴𝐴 =
i

𝑥∈𝐹0

𝛼𝑥𝑋 \ {𝑥} =
i

𝑥∈𝐹0

𝑋 \ {𝑥} = 𝑋 \ 𝐹0.

Angenommen 𝐹0 hätte gerade Kardinalität, dann ist

∅ =
i

𝐴∈𝐸0

𝛼𝐴𝐴 =
i

𝑥∈𝐹0

𝛼𝑥𝑋 \ {𝑥} =
i

𝑥∈𝐹0

𝑋 \ {𝑥} = 𝐹0.

Die vorliegende Menge 𝐸 ist also genau dann linear abhängig, wenn 𝑋 endlich ist
und #𝑋 ungerade ist. Anderenfalls ist sie linear unabhängig. (1 Punkt)

(b) Es sei (𝑣𝑖)𝑖∈𝐼 eine Familie von Vektoren aus einem Vektorraum 𝑉 mit einer nichtleeren
Indexmenge 𝐼 . Falls Indizes 𝑖 ≠ 𝑗 aus 𝐼 existieren, so dass 𝑣𝑖 = 𝑣 𝑗 ist, so können wir zu
diesen Indizes die Linearkombination

1 · 𝑣𝑖 + (−1) · 𝑣 𝑗 = 1 · 𝑣𝑖 + (−1) · 𝑣𝑖 = (1 − 1) · 𝑣𝑖 = 0 · 𝑣𝑖 = 0
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des Nullvektors angeben. Hier sind die Indizes unterschiedlich, die Koeffizienten nicht
alle 0, also ist eine solche Familie immer linear abhängig. (0.5 Punkte)

(c) (𝑖) „⇒“: Da 𝐸 linear abhängig ist, gibt es für eine nichtriviale Linearkombination der
Null, also eine endliche, nichtleere Teilmenge 𝐸0 ⊆ 𝐸, sodass

0 =
∑︁
𝑣∈𝐸0

𝛼𝑣𝑣 .

Da diese Linearkombination nichttrivial ist existiert ein 𝑣 ∈ 𝐸0 mit 𝑣 ≠ 0 und 𝛼𝑣 ≠ 0.
Entsprechend ist

𝛼𝑣𝑣 = −
∑︁

𝑤∈𝐸0\{𝑣}𝛼𝑤𝑤

und damit
𝑣 = −

∑︁
𝑤∈𝐸0\{𝑣} 𝛼𝑤

𝛼𝑣
𝑤

.

(0.5 Punkte)
„⇐“: Ist 𝑣 ∈ 𝐸 und eine Linearkombination zu endlichem 𝐸0 ⊆ 𝐸 \ {𝑣} mit

𝑣 =
∑︁
𝑤∈𝐸0

𝛼𝑤𝑤

gegeben, dann ist 𝐸0 ∪ {𝑣} ⊆ 𝐸 endlich und es gilt offensichtlich

0 =

( ∑︁
𝑤∈𝐸0

𝛼𝑤𝑤

)
− 𝑣,

was eine nichttriviale Linearkombination der 0 ist, womit 𝐸 linear abhängig ist.
(0.5 Punkte)

Bitte reichen Sie Ihre Lösungen der Hausaufgaben als ein PDF auf Mampf ein.
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