R. Herzog, G. Miiller Lineare Algebra
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UBUNG | - 7 (LOSUNG)

Ausgabedatum: 24. November 2025
Abgabedatum: 1. Dezember 2025

Ubungsaufgabe I-7.1. (Ringe und Unterringe)

(a) EsseiX eine nichtleere Menge. Entscheiden Sie, welche der folgenden Beispiele Ringe sind
und ob diese kommutativ sind. Bestimmen Sie fiir die Ringe mit Eins die Charakteristik.

0 (P(X),40) (i) (P (X),u,N)
(i) (Z,+ max(,-)) (iv) (R, +)
(b) Essei (G, +) eine abelsche Gruppe. Zeigen Sie, dass der Endomorphismenring (End(G), +, o)
(Beispiel 9.2 des Skripts) tatsichlich ein Ring ist.
(c) Es seien (R, +,-) ein Ring und ((R;,+, -));c; eine nichtleere Familie von Unterringen.
Zeigen Sie Lemma 9.16, also dass ;¢ R; mit + und - ein Unterring von (R, +, -) ist.

(d) Belegen Sie mit einem Beispiel, dass die Vereinigung zweier Unterringe eines Rings im
Allgemeinen kein Unterring ist.

Losung.

(a) (i) Wir wissen aus Hausaufgabe I-5.1, dass (P (X), A) eine abelsche Gruppe mit neu-
tralem Element 0 und (P (X), V) ein kommutatives Monoid mit neutralem Element
0 ist. Auf Grund der Kommutativitit miissen wir nur eines der beiden Distributivge-
setze prifen. Die Distributivgesetze gelten allerdings nicht. In unserem konkreten
Fall schreibt sich fiir alle a, b, ¢ € P (X) das Distributivgesetz

a-(b+c)=(a-b)+(a-c) (9.1a)

als
aVU (bac) = (aUb)A(aVUc).
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Wihrend a immer Teilmenge des linken Ausdrucks ist, ist a nie Teilmenge des
rechten Ausdrucks, ein einfaches Gegenbeispiel liefert also a = X, b = ¢ = 0, denn
dann ist

aU (bac) =X U (020) =X #0=(XU0)A(XUD)=(aub)a(aUc).

Es handelt sich also um keinen Ring.

(ii) Wir wissen aus Hausaufgabe I-5.1, dass (£ (X), U) lediglich eine Halbgruppe bildet,
entsprechend kann es sich hier nicht um einen Ring handeln.

(iii) Esist (Z,+) eine schon bekannte abelsche Gruppe (Beispiel 7.29 des Skripts) und
(Z, max(-, -)) eine kommutative Halbgruppe ohne neutrales Element. Die Assoziati-
vitat des Maximums auf Z sieht man daran, dass fiir drei Elemente unabhingig von
der Verkniipfungsreihenfolge immer ein Gré3tes ausgegeben wird. Nun ist fir a = 1
und b = ¢ = 0 aber

max(a, b+ ¢) = max(1,0) =1 # 2 = max(1,0) + max(1,0) = max(a, b) + max(aq, c),

die Distributivgesetze gelten also nicht und somit liegt kein Ring vor.

(iv) Hierbei handelt es sich um einen kommutativen Ring mit Eins, ndmlich der
konstanten Einsfunktion, wobei alle benétigten Eigenschaften von dem Ring (R, +, -)
iibertragen werden. Die Charakteristik iibertragt sich aus der Charakteristik der
reellen Zahlen, ist also 0.

(b) Laut Skript ist
End(G) = {f: G — G| f ist Endomorphismus}, (9-2)

wobei die Endomorphismen die Homomorphismen mit dem speziellen Definitions- und
Bildbereich sind, und wir statten End(G) mit den Verkniipfungen

+: End(G) X End(G) — End(G) mit (f,g) = f + g, definiert durch (f + g)(x) = f(x) + g(x)
o: End(G) X End(G) — End(G) mit (f,g) = f o g, definiert durch (f o g)(x) = f(g(x))

aus. Wir wissen bereits, dass (G, +) eine abelsche Gruppe ist, weil die entsprechenden
punktweisen Eigenschaften von +: G X G — G an +: G® x GY — G© vererbt werden.
Ebenso wissen wir aus Hausaufgabe I-5.1, dass (G, o) ein (i. A. nichtkommutativer) Mo-
noid mit Eins, ndmlich der Identitatsabbildung) ist. Diese Eigenschaften bleiben erhalten,
wenn wir uns auf Homomorphismen einschrinken, da die punktweise Verkniipfung (hier
Summe) und die Komposition von Homomorphismen wieder ein Homomorphismus ist,
sowohl fiir Monoide, als auch fiir Gruppen, denn in beiden Féllen ist

(f+9)(a+b) = f(a+b)+g(a+b) = f(a) + f(b) +g(a) +g(b) = (f +g)(a) + (f +9)(b)
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und wegen der Strukturvertraglichkeit
(fog)(a+b) = f(g(a+b)) = f(g(a)+g(b)) = f(g(a)) +f(g(b)) = (fog)(a)+(fog)(D).
Nun ist zudem wieder wegen der Strukturvertriglichkeit von f fiir alle a € G:

(folg+h)(a) = f((g+h)(a) = f(g(a) +h(a)) = f(g(a)) + f(h(a)) = (fog+foh)(a),

und

((g+h) o f)a) = (g+h)(f(a)) =g(f(a)) +h(f(a)) = ((go f+hof))(a)

es gelten also die Distributivgesetzte und es liegt ein Ring mit Eins vor.

(c) Aus Hausaufgabe I-5.4 wissen wir, dass ();c; R; mit + eine (abelsche) Untergruppe
von (R, +) bildet. Fiir a,b € (;;R; ist also a,b € R; fur alle i € I und wegen der
Unterringeigenschaft jedes R; sind diese bzgl. - auch abgeschlossen, also a - b € R; fiir alle
i € I. Also ist auch ();¢; R; bzgl. - abgeschlossen und damit (();¢; R;, +, ) ein Unterring
von (R, +,-). Die Distributivgesetze gelten fiir alle Kombinationen von Elementen im
Oberring und damit auch fiir jede beliebige Teilmenge.

(d) Die Unterringe 2Z und 3Z in (Z, +, -) beinhalten die Elemente 2 bzw. 3, deren additive
Verkniipfung 5 ist, was in keinem der beiden Unterringe und damit nicht in der Vereini-
gung enthalten ist. Hier wurde keine multiplikative Eigenschaft verwendet, allein das
Untergruppenverhalten in der additiven Gruppe geniigt.

Ubungsaufgabe I-7.2. (Nullteiler)

(a) Untersuchen Sie, welche der Ringe aus Ubungsaufgabe I-7.1 Teilaufgabe (a) nullteilerfrei
sind, und ob es sich um Integritatsringe handelt.

(b) Essei (R, +, ) ein Ring. Zeigen Sie Lemma 9.8, also die Aquivalenz der folgenden Aussagen
fira e R:

(i) aist kein Linksnullteiler von R.
(ii) Der Gruppenhomomorphismus (R,+) 3 b — a- b € (R, +) ist injektiv.
(iii) Fur alle b,c € Rgilt: a-b = a - c impliziert b = c.
(c) Essei (R, +, -) ein Integritatsring. Zeigen Sie, dass dann char(R) eine Primzahl oder 0 ist.

(d) Es sei (R, +,-) ein Integritatsring und S ein Unterring von R, der kein Nullring ist und
eine Eins besitzt. Zeigen Sie, dass dann schon 1 = 1g gilt.

Losung.
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(a) In Teilaufgabe (iv) ist das neutrale Element bzgl. + die konstante Nullfunktion. Es handelt
sich nicht um den Nullring (denn die Eins und die Null sind verschieden). Sind f, g € RX
mit f - g = 0 dann gilt f(x) = 0V g(x) = 0 fiir alle x € X. Damit ist der Ring genau
dann nullteilerfrei, wenn X ein einziges Element beinhaltet, denn dann muss eine der
beiden Funktionen die konstante Nullfunktion sein. Dann handelt es sich auch um einen
Integrititsring. Sobald X zwei verschiedene Elemente xi, x, enthélt, kann man allerdings

die Funktionen
0 x=x 1 x=x
X) = X) =
f() {1 sonst g() {O sonst

angeben, fiir die f - g =0 aber f # 0 # g.

(b) (i) & (ii): Dass a kein Linksnullteiler von R ist, ist per Definition genau dann der Fall,
wenn kein b € R existiert, so dass a - b = 0 ist. Das ist genau dann der Fall, wenn der
Kern des angegebenen Gruppenhomomorphismus trivial ist und damit, genau dann wenn
dieser injektiv ist.

(i) © (iii): Fur beliebige b und c aus R ist die Gleichung a - b = a - ¢ durch Subtraktion
und Anwendung des Distributivgesetztes dquivalent umformbar zu a - (b — ¢) = Og. Ist
a kein Linksnullteiler, dann kann das nur erfullt sein, wenn b = ¢ ist. Gilt andererseits
a-(b—c)=0gnurfirb=c,dannista-b =a- (b— 0g) nur dann Og, wenn b = O, ist,
und a damit kein Linksnullteiler.

(c) Per Definition ist ein Integritdtsring ein kommutativer, nullteilerfreier Ring mit Einsele-
ment ungleich dem Nullring. In einem Integritatsring ist O # 1g also char(R) # 1.

Angenommen es wire char(R) nun eine nicht prime Zahl ungleich 1. Dann gibt es
n,m € [[2, char(R) — 1]] mit char(R) = nm, und somit wegen der Distributivgesetze

(n1g) - (mlg) = (nm)1g = Og.
Da der Integrititsring nullteilerfrei ist, muss nlg oder mlg mit Og iibereinstimmen, im
Widerspruch dazu, dass n,m < char(R).
(d) Esist
IsrRls=1ss1s=1s =1g R 1R

und da nach Voraussetzung 1s # 0s = Og liefert Kiirzen, dass 15 = 1g.

Ubungsaufgabe I-7.3. (Ringhomomorphismen)

(a) Es seien (Ry,+1, 1) und (Ry, +2, -2) zwei Ringe und f: Ry — R, ein Ringhomomorphismus.
Besitzen die Ringe die Einselemente 1g, respektive 1g,, dann fordern wir zusatzlich die
Bedingung f(1g,) = 1g, in Gleichung (9.5¢) um f einen Homomorphismus von Ringen
mit Eins zu nennen. Zeigen Sie, dass diese Bedingung dquivalent zu 1g, € Bild(f) ist.
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(b) Zeigen Sie, dass es fiur jeden Ring (R, +, ) mit 1 genau einen Ringhomomorphismus
f:(Z,+,-) = (R +,-) von Ringen mit Eins gibt.

Losung.

(a) Klar ist, dass f(1g,) = 1gr, auch 1z, € Bild(f) = f(R;) bedeutet. Ist andererseits nur
1g, € Bild(f) = f(Ry), dann gibt es ein r € Ry mit f(r) = 1g, und es ist

g, = f(r) = f(r11r) = f(r) 2 f(Ir) = 1r, 2 f(1r,) = f(1R,).

(b) Zur Erinnerung, in einer Gruppe (G, +) kénnen wir fiir beliebige Elemente a die Abkiir-

zung a + - - - + a = za schreiben, dabei ist z € Z. Dabei taucht also eine ganze Zahl aus dem
——

z-mal
Zahlbereich auf, die angibt, wie oft summiert wurde. In dieser Teilaufgabe sind die ganzen

Zahlen, die dem Zahlbereich entspringen, rot markiert. Fiir einen Ringhomomorphismus
erhilt man durch mehrfache Anwendung der Strukturerhaltung auch

f(za) = fla+---+a) = f(a) +---+ f(a) = zf (a).

z-mal

Der Knackpunkt dieser Aufgabe ist jetzt, dass Z zyklisch ist und von der 1 additiv erzeugt
wird, was die Funktionswerte von Ringhomomorphismen schon eindeutig festlegt. Sei
namlich f: (Z,+,-) — (R, +, -) ein Ringhomomorphismus, fiir den nach Definition (1) =
1g gilt, und z € Z. Dann muss

zyklisch erz.

f(2)

gelten, was f eindeutig festgelegt.

f(z1) = zf (1) = z1g

Tatséchlich ist diese Abbildung auch ein Ringhomomorphismus, denn fiir y, z € Z ist

f(y+2)=(y+2)1g = yIg + zIg =f(y) +f(2)
Distrib.

f(y-2)=(y-21r =" (yIr) - (z1r) = f(¥) - f(2),

wobei in der letzten Zeile die Distributivgesetze eingeflossen sind, und natiirlich ist

) =1g.

Ubungsaufgabe I-7.4. (Ideale und Faktorringe)

(a) Entscheiden Sie, welche der unten stehenden Teilmengen des dazugehorigen Rings Ideale
mit den entsprechenden Verkniipfungen bilden.
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(i) Die ungeraden ganzen Zahlen in (Z, +, -)
(ii) {fog|f,g € End(Q), f invertierbar} in dem Gruppenendomorphismenring (End(Q), +, o)

(b) Es sei (R, +,) ein Ring. Zeigen Sie Lemma 9.34, also dass wenn (J;, +, -);es eine Familie
von Idealen mit nichtleerer Indexmenge I ist, dann ist auch ();¢; J; ein Ideal in R.

(c) Es sei (R, +,-) ein Ring mit Eins und J ein Ideal in R. Zeigen Sie, dass wenn 1g € J ist,
dannist ] = R.

(d) Bestimmen Sie ohne Beweis aber mit knapper Erklarung die unten stehenden erzeugten
Ideale in den dazugehoérigen Ringen

(l) (\/5) in (Ra +, )
(i) (A) fiir A € P(X) in (P(X), A, N)

Loésung.

(@) (i) Die ungeraden ganzen Zahlen sind genau die Menge 2Z + 1 und damit nicht einmal
ein Unterring, denn die 0 liegt nicht in dieser Menge, damit kann es sich nicht um
eine Untergruppe von (Z, +) handeln, und damit liegt kein Ideal vor.

(ii) Da die Identitit ein Endomorphismus ist konnen wir jedes g € End(Q) als g =
id o g schreiben, damit handelt es sich bei der Menge um den Endomorphismenring
(End(Q), +, o) selbst, welcher offensichtlich ein Ideal bildet.

(b) Aus Ubungsaufgabe I-7.1 wissen wir, dass der beliebige nichtleere Schnitt von Unterringen
wieder ein Unterring ist. Ist nun a € R, dann ist wegen der Idealeigenschaft aller J;, i € I

a'(Q]i):{ a-j |j€]iVi€I}g{j|j€]iVi€I}=QJi
efiViel

und die rechtsseitige Eigenschaft folgt analog.

(c) Per Definition des Ideals und der Eins ist
R2J2R-J2R-{Ig} =R

und damit | = R.

(d) (i) Hauptideale zu nicht-Null-Elementen in Korpern gerade der Korper selbst, siehe
Hausaufgabe I-7.4 daher ist (V2) = R.

(ii) Esist (A) = P(A). Sowohl Unterring- als auch Idealzusatzeigenschaft folgen aus der
verkleinernden Eigenschaft des Schnitts, also dass AN C = C N A C A fiir beliebige
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C € P(X). Alternativ sieht man das anhand der Darstellung aus Satz 9.36, denn der
Ring ist unitir und kommutativ und jedes Element ist additiv selbstinvers, also ist

(A) = {B mA|B c so(X)} = P(A).

Ubungsaufgabe I-7.5. (Korper und Kérperhomomorphismen)
(a) Es sei (K, +, -) ein Korper. Bestimmen Sie alle Losungen der Gleichung x - x = x in K.

(b) Zeigen Sie, dass die Bedingung f(1k,) = 1k, (also (10.2¢)) in der Definition eines Korper-
homomorphismus auch durch f(1k,) # Ok, ersetzt werden kann, also dass fiir Kérper
(K, +1, 1) und (K3, +2, -2) sowie f: K; — K, mit additiver und multiplikativer Strukturver-
traglichkeit ((10.2a) und (10.2b)) die Bedingung f(1k,) # Ok, hinreichend fiir f(1x,) = 1x,
ist.

Losung.

(a) Ist (K,+,) ein Korper, dann enthélt K die zwei verschiedenen Elemente 1x und 0g. Fir
beide gilt die Beziehung x - x = x (0.1). Angenommen, es gibe ein weiteres Element
x € K\ {0k, 1x} mit x - x = x, dann ist x multiplikativ invertierbar und wenn wir x~! an
die obige Gleichung multiplizieren, dann ergibt sich x = 1x und damit ein Widerspruch.

Man kann auch analog tiber die Kiirzungsregeln argumentieren.
(b) Esist
fk) = f(Kk 11k) = f(1k) 2 f(1k),

und die Anwendung der Kiirzungsregeln (da f(1x,) # Ox) liefert f(1x,) = 1k,.
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Hausaufgabe I-7.1 (Ringe und Unterringe) 3 +1 = 4 Punkte

(a) Es sei X eine nichtleere Menge. Entscheiden Sie, welche der folgenden Beispiele Ringe
sind und ob diese kommutativ sind. Entscheiden Sie, ob die Ringe nullteilerfrei sind, und
bestimmen Sie fiir die Ringe mit Eins die Charakteristik.

1) (Zs, +2,2) (i) (P(X),a,N)
(iii) (P(X), A, 1) (iv) (Q% +0)
(b) Es sei (R,+,-) ein Ring und a - a = a fiir alle a € R. Zeigen Sie, dass (R, +, -) kommutativ
ist.
Loésung.

(@) (i) Bei(Zs,+2,-2) sind beide Abbildungen auf Z5 assoziative Verkniipfungen, es handelt
sich also um zwei Halbgruppen. Allerdings ist weder (Zs,+;) noch (Zs, ;) ein
Monoid, denn 0 + 2 mod 2 = 1-2 mod 2 = 0. Hier liegt also kein Ring vor.
(0.5 Punkte)

(ii) Bei (P(X), A,N) wissen wir bereits, dass (P (X), A) eine abelsche Gruppe mit neu-
tralem Element 0 und (P (X), N) ein kommutatives Monoid mit neutralem Element
X ist. Auf Grund der Kommutativitit miissen wir nur eines der beiden Distributivge-
setze prifen. In diesem Fall erhalten wir fir alle g, b, ¢ € P (X) das Distributivgesetz

AN (BAC)=AN (B\CUC\ B)
:(Am(B\C)) u(Am(C\B))
:((AmB)\c) u((AnC)\B)
=((AmB)\(AnC))u((AnC)\(AnB))
— (ANB)A(ANO).

Hier liegt als ein kommutativer Ring mit Eins vor (ndmlich das Element X). Da
alle Elemente additiv selbstinvers sind ist die Charakteristik hier 2. (1 Punkt)

(iii) Bei (P(X), A, A) handelt es sich mit beiden Verkniipfungen um eine uns bekannte
Gruppe. Es gilt also die Distributivitatsgesetze zu priifen, da sehen wir jedoch, dass

XAXAX)=Xn0=X#0=040=(X2X)A(X2X),

womit kein Ring vorliegt. (1 Punkt)

(iv) Bei (QF, +, o) liefern die beiden assoziativen Verkniipfungen eine additive, kommuta-
tive Gruppe (mit der Nullfunktion als Null) und eine multiplikative Halbgruppe. Die
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Halbgruppe besitzt jedoch kein neutrales Element, denn es existieren iberabzahlbar
viele linksneutrale Elemente, namlich z. B. die Familie
x, x€Q
fix) =
r, x€eR\Q
fir die Indexmenge r € R.

Auflerdem gelten die Distributivgesetze nicht, denn z.B. fir f = 1und g, h = 0 ist
fiir alle x € R:

(folg+h)(x)=1#2=1+1=(fog)(x)+(f o h)(x).
Hier liegt also kein Ring vor. (0.5 Punkte)
(b) Fiir a, b aus R ist

(a+b)=(a+b)-(a+b)=a-a+b-b+a-b+b-a=a+b+a-b+b-a=a-b=—(b-

Nun ist aber fiir jedes beliebige ¢ aus R auch

(c+c)=(c+c)-(c+c)=4(c-c)=2(c+c)=c+c=0,

also jedes Element sein eigenes, additives Inverses, entsprechend ist aucha-b =5 - a.

(1 Punkt)

Hausaufgabe I-7.2 (Nullteiler) 1+ 2 = 3 Punkte

(a) Untersuchen Sie, welche der Ringe aus Hausaufgabe I-7.1 Teilaufgabe (a) nullteilerfrei
sind und ob es sich um Integritatsringe handelt.

(b) Essei (R, +, ) ein Ring. Zeigen Sie Lemma 9.8, also die Aquivalenz der folgenden Aussagen
furb e R:

(i) b ist kein Rechtsnullteiler von R.
(ii) Der Gruppenhomomorphismus (R,+) 3 a — a- b € (R, +) ist injektiv.

(iii) Fur alle a,c € Rgilt: a- b = ¢ - b impliziert a = c.

Losung.

(a) In Teilaufgabe (ii) ist AN B = () genau dann, wenn die Mengen in dem Komplement der
jeweils anderen liegen, die Mengen also disjunkt sind. I. A. ist dieser Ring also nicht
nullteilerfrei und damit kein Integrititsring. Nullteilerfrei ist der Ring genau dann,
wenn X kein, oder nur ein Element enthilt. Ist X leer, dann handelt es sich um den
Nullring (dieser Fall war auch ausgeschlossen in der Voraussetzung). Besteht X aus
genau einem Element, dann handelt es sich sogar um einen Integrititsring (1 Punkt)
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(b) (i) & (ii): Dass b kein Rechtsnullteiler von R ist, ist per Definition genau dann der Fall,
wenn kein a € R existiert, so dass a - b = 0 ist. Das ist genau dann der Fall, wenn der
Kern des angegebenen Gruppenhomomorphismus trivial ist und damit, genau dann wenn
dieser injektiv ist. (1 Punkt)

(i) © (iii): Fur beliebige a und c aus R ist die Gleichung a - b = ¢ - b durch Subtraktion
und Anwendung des Distributivgesetztes dquivalent umformbar zu a - (b — ¢) = Og. Ist
b kein Rechtsnullteiler, dann kann das nur erfillt sein, wenn a = ¢ ist. Gilt andererseits
(a—c)-b=0gnurfira=c dannista-b = (a— Og) - b nur dann O, wenn a = Op ist,
und b damit kein Rechtsnullteiler. (1 Punkt)

Hausaufgabe I-7.3 (Ringhomomorphismen) 2 +1+ 2 =5 Punkte

(a) Es seien (R, +1, 1) und (Ry, +2, -2) Ringe. Weiter sei f: Ry — R, ein Homomorphismus.
Zeigen Sie Lemma 9.22 des Skripts, also dass dann gilt:
(i) Bild(f) ist ein Unterring von (Ry, +2, *2).
(ii) Kern(f) ist ein Unterring von (Ry, +1, -1).
(b) Es seien (Ry, +1, 1) und (Ry, +2, -2) Ringe mit den Nullelementen Og, bzw. Og,. Weiter sei

f: Ry — R, ein Homomorphismus. Zeigen Sie Lemma 9.24 des Skripts, also die Aquivalenz
der folgenden Eigenschaften:

(i) f ist injektiv.
(if) Kern(f) = {0g,}.
(iii) Die einzige Losung der Gleichung f(a) = Og, ist a = Og,.

(c) Essei (R, +, -) ein Ring mit Eins und char(R) = 0. Zeigen Sie Lemma 9.20 des Skripts, also
dass dann R einen Unterring enthalt, der isomorph zu Z ist.

Losung.

(a) Die Distributivgesetze gelten fir alle Kombinationen von Elementen in den Oberringen
und damit auch fur jede beliebige Teilmenge.

Dass f: R — R, ein Ringhomomorphismus ist, bedeutet insbesondere, dass f auch ein
entsprechender Gruppenhomomorphismus fiir die Mengen mit der additive Verkniipfung
ist. Aus Lemma 8.11 wissen wir dann, dass Bild(f) mit +, eine Untergruppe von (Ry, +;)
und Kern(f) mit +; eine Untergruppe von (R, +;) ist. (1 Punkt)
Wegen der multiplikativen Strukturvertraglichkeit des Ringhomomorphismus ist fir
abe R
f(a) 2 f(b) = f(a1b)
—_——

€R;
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und damit Bild(f) abgeschlossen unter +;, also Bild(f) mit +;, - ein Unterring von
(Rs, 42, -2) im Kontext von Ringen ohne Einselement. (0.5 Punkte)

Auflerdem ist fiir a, b € Kern(f)

f(a-1b) = f(a) -2 f(b) =0g, 2 Og, = O,
und damit Kern(f) bzgl. -; abgeschlossen, also mit +;, -; ein Unterring von (Ry, +1, -1) im
Kontext von Ringen ohne Einselement. (0.5 Punkte)

(b) Die Aquivalenz (i) & (ii) gilt schon weil der Ringhomomorphismus ein Gruppenhomo-
morphismus fiir den additiven Teil des Rings ist, sieche Lemma 8.13.

Die Definition des Kerns liefert gerade die Aquivalenz (ii) < (iii). (1 Punkt)

(c) Der Unterring ist gerade die von 1 erzeugte additive Untergruppe (1g). Diese ist offen-
sichtlich eine Untergruppe des additiven Ringanteils und auf Grund der Distributivgesetze
auch ein Unterring.

In Ubungsaufgabe [-7.3 haben wir gesehen, dass es nur einen Homomorphismus von
(Z, +,-) nach (R, +, -) (im Kontext von Homomorphismen mit Eins) geben kann und dass
dieser genau nach (1g) abbildet mit f(z) = f(z1z) = zf(1z) = z1g, woran wir auch sofort
dessen Surjektivitit ablesen konnen. Die Injektivitit folgt aus der Charakteristik, denn
der Kern ist gerade gegeben durch

{z|z € Z, z1g = Or}
und damit durch alle ganzzahligen Vielfachen der Charakteristik. (2 Punkte)

Hausaufgabe I-7.4 (Ideale und Faktorringe) 15+ 4 + 2.5 + 1 + 2 = 11 Punkte

(a) Entscheiden Sie, welche der unten stehenden Teilmengen des dazugehorigen Rings Ideale
mit den entsprechenden Verkniipfungen bilden.

(i) Nin (Z,+, )
(ii) Die geraden ganzen Zahlen in (Z, +, )
(iii) P(Y) in (P(X), A, N) fiir eine nichtleere Menge X und Y € P(X)
(b) Essei (R, +,-) ein Ring und E C R. Zeigen Sie die wesentliche Aussage von Satz 9.36, also

n
(E) = {Zai’3n6N0 Vi=1...n(q; €EU -E U RE U ER U RER)}, (9.132)

i=1

und beschreiben Sie kurz, warum und wie sich die Darstellung in kommutativen Ringen
und in Ringen mit Eins vereinfachen lésst.
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(c) Es sei (R, +,-) ein unitarer, kommutativer Ring. Zeigen Sie die Aquivalenz folgender
Aussagen:

(i) (R,+,-) ist ein Korper.
(ii) (R, +,-) hat genau zwei Ideale, namlich die trivialen, welche nicht iibereinstimmen.

(d) Es sei X eine Menge und Y C X. Zeigen Sie, dass der Faktorring #(X)/%P(Y) von
(P(X), A,N) isomorph zu (P (X \ Y), A, N) ist.

(e) Bestimmen Sie ohne Beweis aber mit knapper Erklarung die unten stehenden erzeugten
Ideale in den dazugehorigen Ringen und versuchen Sie, ein einzelnes Element des Rings
zu bestimmen, dass schon das jeweilige Ideal erzeugt.

(i) (A,B) fiir A,B € P(X) in (P(X), &,N)
(ii) (9,15) in (Z,+, )

Losung.

(@) (i) Nistin (Z,+, -) kein Ideal, die natiirlichen Zahlen bilden nicht einmal einen Unter-
ring, denn sie enthalten die 0 nicht. Auflerdem ist die Idealzusatzbedingung nicht
erfiillt, denn esist N - (—-1) € N. (0.5 Punkte)

(ii) Die geraden ganzen Zahlen lassen sich gerade als 2Z schreiben. Sie bilden einen
Unterring von (Z, +, -), denn 2Z bildet eine Untergruppe von (Z, +). Das konnen
wir mit dem Untergruppenkriterium nachpriifen. Nichtleerheit der Menge ist klar
und 2z; — 2z, = 2(z1 — z3) € 2Z. Die Abgeschlossenheit unter der Multiplikation
erledigen wir gleichzeitig mit der zusitzlichen Idealeigenschaft, es ist namlich wegen
der Assoziativitdt und Kommutativitat

(2-z2) z1=21-(2-22) =2+ (21-22) €22

und da der Ring kommutativ ist stimmt die linksseitige Bedingung mit der rechts-
seitigen tiberein. Hier handelt es sich also um ein Ideal. (0.5 Punkte)

(iii) Hier handelt es sich um einen Unterring von (£ (X), A,N), denn @ liegt in der Menge
und jedes Element ist additiv selbstinvers, also ist

AlAAé =A1AAy CATUA, CB

und nach dem Untergruppenkriterium liegt also eine Untergruppe von (P (X), A)
vor. Auflerdem ist die Menge multiplikativ abgeschlossen, nicht nur in sich, sondern
auch beziiglich der Multiplikation mit beliebigen anderen Elementen C € P (X),
denn

ANCCACB
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was wieder zugleich die Idealeigenschaft zeigt, denn der Ring ist kommutativ, hier
liegt also ein Ideal vor. (0.5 Punkte)

(b) Wir wahlen die Bezeichnung

i=1

FneNyVi=1...,n(a;€EU —E U RE U ER U RER)}

fiir diese Teilaufgabe.

Wir zeigen nun im ersten Schritt, dass (E) 2 J. Da (E) ein Ideal ist, ist es eine additive
Untergruppe, daher enthilt es neben E auch E’. Auf Grund der Zusatzeigenschaft der
Idealdefinition beinhaltet (E) auch die Mengen RE und ER. All diese Mengen kénnen wir
also auch nochmal von der jeweils anderen Seite mit R verkniipfen um RER C (E) zu
erhalten. Endliche Summen dieser Elemente liegen wegen der Untergruppeneigenschaft
on (E) wieder in (E), also ist (E) 2 J. (1 Punkt)

Im zweiten Schritt zeigen wir, dass (E) C J indem wir zeigen, dass J ein Ideal ist, dass
E enthilt. Die Obermengeneigenschaft J 2 E ist dabei klar, denn fiir n = 1 kénnen
wir g; ja aus E wihlen. Dass J eine additive Untergruppe von (R, +) ist, folgt mit dem
Untergruppenkriterium. Fir n = 0 ist die Summe in der Darstellung von E leer also 0 € R,
damit ist J nicht leer. Fiir zwei Elemente ) -, a;, Z;-"zl bj aus ] ist auflerdem

n m n+m
Sar-(S00) - 35
i=1 j=1 i=1
furc; = a; furi e {1,...,n}und ¢; = b;_, fir i > n. Es gilt also fur die Familie (¢;)i=1,_n+m
nur den hinteren Teil zu untersuchen, also die Frage zu kléren, ob -b; e EU —E U RE U
ER U RER, wenn dies fir die b; gilt. Ist b; in E oder —E, dann ist das offensichtlich.
Anderenfalls folgt die Eigenschaft aus den Distributivgesetzen, denn es ist z. B. fiir b; =
rer € RER
—b;=—(ref)=(-r)ef=re(-7) e RER.

Wie immer miissen wir die multiplikative Abgeschlosenheit von J beziiglich sich selbst
nicht priifen, denn wir miissen sie ja sogar fiir Multiplikation mit jedem Ringelement
prifen. Sei also a € Rund ).} a; € J. Dann ist

n n

a- E a; = E a- aj

i=1 i=1
unda-a; € EU —E U RE U ER U RER folgt aus der multiplikativen Assoziativitat,
denn es ist z.B. fiir a; = r e € RER:

a-a;=a(rer)=(ar)(eF) € RER.
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(©

(e)

(2 Punkte)

In kommutativen Ringen ist ER = RE 2 RER und in Ringen mit Eins ist E,-E C
RE C RERund ER C RER, wodurch sich in der endlichen Summe die Summanden auf
eine entsprechende kiirzere Darstellung der Mengenvereinigung einschrinken lassen.
Die kiirzeste Darstellung ergibt sich bei kommutativen Ringen mit 1, hier reicht es, die
Summanden aus E R oder RE zu wihlen. (1 Punkt)

Wir starten mit der Hinrichtung, dafiir sei also (R, +, -) ein Kérper und J ein Ideal in R,
das nicht das Nullideal ist. Dann existiert a € J \ {0}. Wegen der Idealeigenschaft ist
R-aCR-JCJunddaa™! € Rist,istauch1 € J. Damit mussaber R=R-1CR-J C JCR
sein und damit J = R. (1 Punkt)

Sei nun R ein Ring mit genau zwei Idealen, dann ist er insbesondere nicht der Nullring,
da dieser nur ein Ideal (sich selbst) besitzt. Da der Ring unitéir und nicht der Nullring ist,
muss er zumindest die ungleichen Elemente 0 # 1 enthalten. Wiaren nur diese beiden
Elemente enthalten, wiirde es sich bis auf Isomorphie um Z, handeln und damit um einen
Korper. Anderenfalls gibt es ein weiteres Element a € R\ {0, 1} und es ist fiir jedes solcher
Elemente

(a) =R,

da das erzeugte Ideal immer die Menge selbst enthélt und damit nicht nur das Nullideal
sein kann. (0.5 Punkte)

Aus der Kommutativitit und Existenz der Eins des Rings folgt nun, dass

n
R:(a):{Zai’ElneNoVi:L...,n(a,-e{J_ra} URa U aR URaR)}
€Ra =Ra =Ra
also, dass fur geeignete Ringelemente r; gilt, dass 1g = Y1, (ria) = (Z;’:I ri) a, und damit
existieren die multiplikativ inversen Elemente fiir jedes nicht Null Element. Damit handelt
es sich um einen Korper. (1 Punkt)

Wir haben schon in Aufgabenteil (a) gesehen, dass P (Y) tatsachlich ein Ideal ist. Genauer
gesagt ist es sogar der Kern der Abbildung f: P(X) — P(X\Y) mit f(A) = ANX\Y, also
der Multiplikation mit einem festen Ringelement, was wegen der Distributivgesetze und
der Assoziativitat der Multiplikation ein Ringhomomorphismus ist. Der Homomorphiesatz
Satz 9.38 fur Ringe liefert direkt die Isomorphie. (1 Punkt)

(i) Wieder nutzen wir die Darstellung aus Satz 9.36 fiir den unitdren und kommutati-
ven Ring und erhalten wegen den kontraktiven Eigenschaften der symmetrischen
Differenz und des Mengenschnitts

(A,B) = P(AUB) = (AU B),
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wobei die zweite Gleichung direkt aus Ubungsaufgabe I-7.4 folgt und die erste daraus
folgt, dass (A U B) ein Oberideal von {A, B} ist und jedes Element C € P(A U B)
durch (C N B) \ AAC N A erzeugt werden kann. (1 Punkt)

(ii) Esist (9,15) = (3) = 3Z. Elemente aus 97 und 15Z sind entweder gleich oder haben
mindestens den Abstand des grof3ten gemeinsamen Teilers 3 und fiir 2 - 9 = 18 und
1-15 wird dieser Abstand auch erreicht, das Element 3 = 18 — 15 liegt also auch
im erzeugten Ideal und damit auch das von 3 erzeugte Ideal 3Z. Die verbleibende
Inklusion folgt wieder direkt aus der Darstellung des erzeugten Ideals aus Satz 9.36.
(1 Punkt)

Hausaufgabe I-7.5 (Korper und Kérperhomomorphismen) 1+ 2 +1 = 4 Punkte

(a) Es sei (K, +, ) ein Korper und a,b € K. Zeigen Sie, dass
(a=x)-(b-x)=0g

genau dann gilt, wenn x = a oder x = b ist.

(b) Es sei (K, +,-) ein Koérper mit char(K) = 0. Zeigen Sie Lemma 10.16, also dass dann K
einen Unterkorper enthilt, der isomorph zu Q ist.

(c) Zeigen Sie, dass kein endlicher Koérper geordnet werden kann.

Loésung.

(a) Jeder Korper ist auch ein Ring, also gilt nach den Rechenregeln in Ringen aus Lemma 9.3,
dass
Ok -a=0g Vaek (0.1)
(das ist gerade eines der bendtigten Argumente im Beweis des Satzes).

Ist x = a, dann gilt die Aussage offensichtlich. Ist x # a, dann ist, weil in Gruppen Inverse
Elemente eindeutig sind, a — x # Ok, und weil (K, +,-) ein Korper ist, ist damit a — x
multiplikativ invertierbar, also gibt es (a — x) ! und somit ist

(b-x)=1g-(b-x)=(a—x)""-(a=x)-(b—x)=(a—x)"" 0g = 0.

Man kann auch analog iiber die Kiirzungsregeln argumentieren. (1 Punkt)

(b) Wie schon in Hausaufgabe I-7.3 betrachten wir die Abbildung

f:Q-K, f(%) =zl - (nlg) ™!
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mit z € Z und n € N. Wegen char(K) = 0 ist (nlg) # 0 Vn € N und daher der Term
(n1g) ! wohldefiniert.

Die Abbildung selbst ist ebenfalls wohldefiniert, denn fiir eine beliebige rationale Zahl %
mit teilerfremden z € Zund n € Nund d € N ist

() = et @mio
= (dix) - (z1k) - (dnig)™"
= (dig) - (nlg) - (nlg) ™" - (21k) - (dnlg) ™"
= (n1x) ™" (z1k)

1)

das heifit, alle Darstellungen einer rationalen Zahl werden mit der obigen Vorschrift auf
das gleiche Element in K abgebildet.

Dann ist weiterhin offensichtlich f(1) = 1x und

f (ﬁ . z_Z) = (a1221x) - (mnolx) ™' = 21l - (mlx) ™' - Zolk - (nplg) ™' = f (%)f (2)

nm 1 n;

sowie
1 2y Z1Ng + Zam
niny
= (zin + zom) 1 - (mnalg) ™"

= z11g - (mlg) '+ 2ok - (nalg) !
_rlA 2
_f(n1)+f(n2).

Damit ist f ein Kérperhomomorphismus, dieser ist per Definition injektiv und das Bild
ist als Bild eines Kérperhomomorphismus ein Unterkorper. (2 Punkte)

(c) Essei (K, +,-) mit < ein geordneter Korper. In einem geordneten Korper muss nlg > 0
fur alle n € N sein. Ware char K > 0, dann wire aber (char K — 1)1x = —1g und damit
sowohl grofler oder gleich sowie kleiner oder gleich 0x und damit —1x = 0x und damit K
kein Korper. (1 Punkt)

Bitte reichen Sie Thre Losungen der Hausaufgaben als ein PDF auf Mampf ein. ‘
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