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Übungsaufgabe I-7.1. (Ringe und Unterringe)

(a) Es sei𝑋 eine nichtleere Menge. Entscheiden Sie, welche der folgenden Beispiele Ringe sind
und ob diese kommutativ sind. Bestimmen Sie für die Ringe mit Eins die Charakteristik.

(P(𝑋 ), △,∪)(i) (P(𝑋 ),∪,∩)(ii)
(Z, +,max(·, ·))(iii) (R𝑋 , +, ·)(iv)

(b) Es sei (𝐺, +) eine abelscheGruppe. Zeigen Sie, dass der Endomorphismenring (End(𝐺), +, ◦)
(Beispiel 9.2 des Skripts) tatsächlich ein Ring ist.

(c) Es seien (𝑅, +, ·) ein Ring und ((𝑅𝑖 , +, ·))𝑖∈𝐼 eine nichtleere Familie von Unterringen.
Zeigen Sie Lemma 9.16, also dass

⋂
𝑖∈𝐼 𝑅𝑖 mit + und · ein Unterring von (𝑅, +, ·) ist.

(d) Belegen Sie mit einem Beispiel, dass die Vereinigung zweier Unterringe eines Rings im
Allgemeinen kein Unterring ist.

Lösung.

(a) (𝑖) Wir wissen aus Hausaufgabe I-5.1 , dass (P(𝑋 ), △) eine abelsche Gruppe mit neu-
tralem Element ∅ und (P(𝑋 ),∪) ein kommutatives Monoid mit neutralem Element
∅ ist. Auf Grund der Kommutativität müssen wir nur eines der beiden Distributivge-
setze prüfen. Die Distributivgesetze gelten allerdings nicht. In unserem konkreten
Fall schreibt sich für alle 𝑎, 𝑏, 𝑐 ∈ P(𝑋 ) das Distributivgesetz

𝑎 · (𝑏 + 𝑐) = (𝑎 · 𝑏) + (𝑎 · 𝑐) (9.1a)

als
𝑎 ∪ (𝑏△𝑐) = (𝑎 ∪ 𝑏)△(𝑎 ∪ 𝑐) .
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Während 𝑎 immer Teilmenge des linken Ausdrucks ist, ist 𝑎 nie Teilmenge des
rechten Ausdrucks, ein einfaches Gegenbeispiel liefert also 𝑎 = 𝑋,𝑏 = 𝑐 = ∅, denn
dann ist

𝑎 ∪ (𝑏△𝑐) = 𝑋 ∪ (∅△∅) = 𝑋 ≠ ∅ = (𝑋 ∪ ∅)△(𝑋 ∪ ∅) = (𝑎 ∪ 𝑏)△(𝑎 ∪ 𝑐) .

Es handelt sich also um keinen Ring.
(𝑖𝑖) Wir wissen aus Hausaufgabe I-5.1 , dass (P(𝑋 ),∪) lediglich eine Halbgruppe bildet,

entsprechend kann es sich hier nicht um einen Ring handeln.
(𝑖𝑖𝑖) Es ist (Z, +) eine schon bekannte abelsche Gruppe (Beispiel 7.29 des Skripts) und(

Z,max(·, ·)
)
eine kommutative Halbgruppe ohne neutrales Element. Die Assoziati-

vität des Maximums auf Z sieht man daran, dass für drei Elemente unabhängig von
der Verknüpfungsreihenfolge immer ein Größtes ausgegeben wird. Nun ist für 𝑎 = 1
und 𝑏 = 𝑐 = 0 aber

max(𝑎, 𝑏 + 𝑐) = max(1, 0) = 1 ≠ 2 = max(1, 0) +max(1, 0) = max(𝑎, 𝑏) +max(𝑎, 𝑐),

die Distributivgesetze gelten also nicht und somit liegt kein Ring vor.
(𝑖𝑣) Hierbei handelt es sich um einen kommutativen Ring mit Eins, nämlich der

konstanten Einsfunktion, wobei alle benötigten Eigenschaften von dem Ring (R, +, ·)
übertragen werden. Die Charakteristik überträgt sich aus der Charakteristik der
reellen Zahlen, ist also 0.

(b) Laut Skript ist
End(𝐺) := {𝑓 : 𝐺 → 𝐺 | 𝑓 ist Endomorphismus}, (9.2)

wobei die Endomorphismen die Homomorphismen mit dem speziellen Definitions- und
Bildbereich sind, und wir statten End(𝐺) mit den Verknüpfungen

+ : End(𝐺) × End(𝐺) → End(𝐺) mit (𝑓 , 𝑔) ↦→ 𝑓 + 𝑔, definiert durch (𝑓 + 𝑔) (𝑥) := 𝑓 (𝑥) + 𝑔(𝑥)
◦ : End(𝐺) × End(𝐺) → End(𝐺) mit (𝑓 , 𝑔) ↦→ 𝑓 ◦ 𝑔, definiert durch (𝑓 ◦ 𝑔) (𝑥) := 𝑓 (𝑔(𝑥))

aus. Wir wissen bereits, dass (𝐺𝐺 , +) eine abelsche Gruppe ist, weil die entsprechenden
punktweisen Eigenschaften von + : 𝐺 ×𝐺 → 𝐺 an + : 𝐺𝐺 ×𝐺𝐺 → 𝐺𝐺 vererbt werden.
Ebenso wissen wir aus Hausaufgabe I-5.1 , dass (𝐺𝐺 , ◦) ein (i. A. nichtkommutativer)Mo-
noidmit Eins, nämlich der Identitätsabbildung) ist. Diese Eigenschaften bleiben erhalten,
wenn wir uns auf Homomorphismen einschränken, da die punktweise Verknüpfung (hier
Summe) und die Komposition von Homomorphismen wieder ein Homomorphismus ist,
sowohl für Monoide, als auch für Gruppen, denn in beiden Fällen ist

(𝑓 +𝑔) (𝑎 +𝑏) = 𝑓 (𝑎 +𝑏) +𝑔(𝑎 +𝑏) = 𝑓 (𝑎) + 𝑓 (𝑏) +𝑔(𝑎) +𝑔(𝑏) = (𝑓 +𝑔) (𝑎) + (𝑓 +𝑔) (𝑏)
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und wegen der Strukturverträglichkeit

(𝑓 ◦𝑔) (𝑎+𝑏) = 𝑓 (𝑔(𝑎+𝑏)) = 𝑓 (𝑔(𝑎) +𝑔(𝑏)) = 𝑓 (𝑔(𝑎)) + 𝑓 (𝑔(𝑏)) = (𝑓 ◦𝑔) (𝑎) + (𝑓 ◦𝑔) (𝑏) .

Nun ist zudem wieder wegen der Strukturverträglichkeit von 𝑓 für alle 𝑎 ∈ 𝐺 :

(𝑓 ◦ (𝑔+ℎ)) (𝑎) = 𝑓 ((𝑔+ℎ) (𝑎)) = 𝑓 (𝑔(𝑎) +ℎ(𝑎)) = 𝑓 (𝑔(𝑎)) + 𝑓 (ℎ(𝑎)) = (𝑓 ◦𝑔+ 𝑓 ◦ℎ) (𝑎),

und

((𝑔 + ℎ) ◦ 𝑓 ) (𝑎) = (𝑔 + ℎ) (𝑓 (𝑎)) = 𝑔(𝑓 (𝑎)) + ℎ(𝑓 (𝑎)) = ((𝑔 ◦ 𝑓 + ℎ ◦ 𝑓 )) (𝑎)

es gelten also die Distributivgesetzte und es liegt ein Ring mit Eins vor.
(c) Aus Hausaufgabe I-5.4 wissen wir, dass

⋂
𝑖∈𝐼 𝑅𝑖 mit + eine (abelsche) Untergruppe

von (𝑅, +) bildet. Für 𝑎, 𝑏 ∈ ⋂
𝑖∈𝐼 𝑅𝑖 ist also 𝑎, 𝑏 ∈ 𝑅𝑖 für alle 𝑖 ∈ 𝐼 und wegen der

Unterringeigenschaft jedes 𝑅𝑖 sind diese bzgl. · auch abgeschlossen, also 𝑎 · 𝑏 ∈ 𝑅𝑖 für alle
𝑖 ∈ 𝐼 . Also ist auch

⋂
𝑖∈𝐼 𝑅𝑖 bzgl. · abgeschlossen und damit (⋂𝑖∈𝐼 𝑅𝑖 , +, ·) ein Unterring

von (𝑅, +, ·). Die Distributivgesetze gelten für alle Kombinationen von Elementen im
Oberring und damit auch für jede beliebige Teilmenge.

(d) Die Unterringe 2Z und 3Z in (Z, +, ·) beinhalten die Elemente 2 bzw. 3, deren additive
Verknüpfung 5 ist, was in keinem der beiden Unterringe und damit nicht in der Vereini-
gung enthalten ist. Hier wurde keine multiplikative Eigenschaft verwendet, allein das
Untergruppenverhalten in der additiven Gruppe genügt.

Übungsaufgabe I-7.2. (Nullteiler)

(a) Untersuchen Sie, welche der Ringe aus Übungsaufgabe I-7.1 Teilaufgabe (a) nullteilerfrei
sind, und ob es sich um Integritätsringe handelt.

(b) Es sei (𝑅, +, ·) ein Ring. Zeigen Sie Lemma 9.8, also die Äquivalenz der folgenden Aussagen
für 𝑎 ∈ 𝑅:
(𝑖) 𝑎 ist kein Linksnullteiler von 𝑅.
(𝑖𝑖) Der Gruppenhomomorphismus (𝑅, +) ∋ 𝑏 ↦→ 𝑎 · 𝑏 ∈ (𝑅, +) ist injektiv.
(𝑖𝑖𝑖) Für alle 𝑏, 𝑐 ∈ 𝑅 gilt: 𝑎 · 𝑏 = 𝑎 · 𝑐 impliziert 𝑏 = 𝑐 .

(c) Es sei (𝑅, +, ·) ein Integritätsring. Zeigen Sie, dass dann char(𝑅) eine Primzahl oder 0 ist.
(d) Es sei (𝑅, +, ·) ein Integritätsring und 𝑆 ein Unterring von 𝑅, der kein Nullring ist und

eine Eins besitzt. Zeigen Sie, dass dann schon 1𝑅 = 1𝑆 gilt.

Lösung.
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(a) In Teilaufgabe (iv) ist das neutrale Element bzgl. + die konstante Nullfunktion. Es handelt
sich nicht um den Nullring (denn die Eins und die Null sind verschieden). Sind 𝑓 , 𝑔 ∈ R𝑋

mit 𝑓 · 𝑔 = 0 dann gilt 𝑓 (𝑥) = 0 ∨ 𝑔(𝑥) = 0 für alle 𝑥 ∈ 𝑋 . Damit ist der Ring genau
dann nullteilerfrei, wenn 𝑋 ein einziges Element beinhaltet, denn dann muss eine der
beiden Funktionen die konstante Nullfunktion sein. Dann handelt es sich auch um einen
Integritätsring. Sobald𝑋 zwei verschiedene Elemente 𝑥1, 𝑥2 enthält, kann man allerdings
die Funktionen

𝑓 (𝑥) :=
{
0 𝑥 = 𝑥1

1 sonst
𝑔(𝑥) :=

{
1 𝑥 = 𝑥1

0 sonst

angeben, für die 𝑓 · 𝑔 = 0 aber 𝑓 ≠ 0 ≠ 𝑔.
(b) (𝑖) ⇔ (𝑖𝑖): Dass 𝑎 kein Linksnullteiler von 𝑅 ist, ist per Definition genau dann der Fall,

wenn kein 𝑏 ∈ 𝑅 existiert, so dass 𝑎 · 𝑏 = 0 ist. Das ist genau dann der Fall, wenn der
Kern des angegebenen Gruppenhomomorphismus trivial ist und damit, genau dann wenn
dieser injektiv ist.
(𝑖) ⇔ (𝑖𝑖𝑖): Für beliebige 𝑏 und 𝑐 aus 𝑅 ist die Gleichung 𝑎 · 𝑏 = 𝑎 · 𝑐 durch Subtraktion
und Anwendung des Distributivgesetztes äquivalent umformbar zu 𝑎 · (𝑏 − 𝑐) = 0𝑅 . Ist
𝑎 kein Linksnullteiler, dann kann das nur erfüllt sein, wenn 𝑏 = 𝑐 ist. Gilt andererseits
𝑎 · (𝑏 − 𝑐) = 0𝑅 nur für 𝑏 = 𝑐 , dann ist 𝑎 · 𝑏 = 𝑎 · (𝑏 − 0𝑅) nur dann 0𝑅 , wenn 𝑏 = 0𝑅 ist,
und 𝑎 damit kein Linksnullteiler.

(c) Per Definition ist ein Integritätsring ein kommutativer, nullteilerfreier Ring mit Einsele-
ment ungleich dem Nullring. In einem Integritätsring ist 0𝑅 ≠ 1𝑅 also char(𝑅) ≠ 1.
Angenommen es wäre char(𝑅) nun eine nicht prime Zahl ungleich 1. Dann gibt es
𝑛,𝑚 ∈ ⟦2, char(𝑅) − 1⟧ mit char(𝑅) = 𝑛𝑚, und somit wegen der Distributivgesetze

(𝑛1𝑅) · (𝑚1𝑅) = (𝑛𝑚)1𝑅 = 0𝑅 .

Da der Integritätsring nullteilerfrei ist, muss 𝑛1𝑅 oder𝑚1𝑅 mit 0𝑅 übereinstimmen, im
Widerspruch dazu, dass 𝑛,𝑚 < char(𝑅).

(d) Es ist
1𝑆 ·𝑅 1𝑆 = 1𝑆 ·𝑆 1𝑆 = 1𝑆 = 1𝑆 ·𝑅 1𝑅

und da nach Voraussetzung 1𝑆 ≠ 0𝑆 = 0𝑅 liefert Kürzen, dass 1𝑆 = 1𝑅 .

Übungsaufgabe I-7.3. (Ringhomomorphismen)

(a) Es seien (𝑅1, +1, ·1) und (𝑅2, +2, ·2) zwei Ringe und 𝑓 : 𝑅1 → 𝑅2 ein Ringhomomorphismus.
Besitzen die Ringe die Einselemente 1𝑅1 respektive 1𝑅2 , dann fordern wir zusätzlich die
Bedingung 𝑓 (1𝑅1) = 1𝑅2 in Gleichung (9.5c) um 𝑓 einen Homomorphismus von Ringen
mit Eins zu nennen. Zeigen Sie, dass diese Bedingung äquivalent zu 1𝑅2 ∈ Bild(𝑓 ) ist.
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(b) Zeigen Sie, dass es für jeden Ring (𝑅, +, ·) mit 1𝑅 genau einen Ringhomomorphismus
𝑓 : (Z, +, ·) → (𝑅, +, ·) von Ringen mit Eins gibt.

Lösung.

(a) Klar ist, dass 𝑓 (1𝑅1) = 1𝑅2 auch 1𝑅2 ∈ Bild(𝑓 ) = 𝑓 (𝑅1) bedeutet. Ist andererseits nur
1𝑅2 ∈ Bild(𝑓 ) = 𝑓 (𝑅1), dann gibt es ein 𝑟 ∈ 𝑅1 mit 𝑓 (𝑟 ) = 1𝑅2 und es ist

1𝑅2 = 𝑓 (𝑟 ) = 𝑓 (𝑟 ·1 1𝑅1) = 𝑓 (𝑟 ) ·2 𝑓 (1𝑅1) = 1𝑅2 ·2 𝑓 (1𝑅1) = 𝑓 (1𝑅1) .

(b) Zur Erinnerung, in einer Gruppe (𝐺, +) können wir für beliebige Elemente 𝑎 die Abkür-
zung 𝑎 + · · · + 𝑎︸      ︷︷      ︸

𝑧-mal

= 𝑧𝑎 schreiben, dabei ist 𝑧 ∈ Z. Dabei taucht also eine ganze Zahl aus dem

Zählbereich auf, die angibt, wie oft summiert wurde. In dieser Teilaufgabe sind die ganzen
Zahlen, die dem Zählbereich entspringen, rot markiert. Für einen Ringhomomorphismus
erhält man durch mehrfache Anwendung der Strukturerhaltung auch

𝑓 (𝑧𝑎) = 𝑓 (𝑎 + · · · + 𝑎) = 𝑓 (𝑎) + · · · + 𝑓 (𝑎)︸                ︷︷                ︸
𝑧-mal

= 𝑧𝑓 (𝑎) .

Der Knackpunkt dieser Aufgabe ist jetzt, dass Z zyklisch ist und von der 1 additiv erzeugt
wird, was die Funktionswerte von Ringhomomorphismen schon eindeutig festlegt. Sei
nämlich 𝑓 : (Z, +, ·) → (𝑅, +, ·) ein Ringhomomorphismus, für den nach Definition 𝑓 (1) =
1𝑅 gilt, und 𝑧 ∈ Z. Dann muss

𝑓 (𝑧) zyklisch erz.
= 𝑓 (𝑧1) = 𝑧𝑓 (1) = 𝑧1𝑅

gelten, was 𝑓 eindeutig festgelegt.
Tatsächlich ist diese Abbildung auch ein Ringhomomorphismus, denn für 𝑦, 𝑧 ∈ Z ist

𝑓 (𝑦 + 𝑧) = (𝑦 + 𝑧)1𝑅 = 𝑦1𝑅 + 𝑧1𝑅 = 𝑓 (𝑦) + 𝑓 (𝑧)

𝑓 (𝑦 · 𝑧) = (𝑦 · 𝑧)1𝑅
Distrib.
= (𝑦1𝑅) · (𝑧1𝑅) = 𝑓 (𝑦) · 𝑓 (𝑧),

wobei in der letzten Zeile die Distributivgesetze eingeflossen sind, und natürlich ist
𝑓 (1) = 1𝑅 .

Übungsaufgabe I-7.4. (Ideale und Faktorringe)

(a) Entscheiden Sie, welche der unten stehenden Teilmengen des dazugehörigen Rings Ideale
mit den entsprechenden Verknüpfungen bilden.
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(𝑖) Die ungeraden ganzen Zahlen in (Z, +, ·)
(𝑖𝑖) {𝑓 ◦𝑔 | 𝑓 , 𝑔 ∈ End(Q), 𝑓 invertierbar} in demGruppenendomorphismenring (End(Q), +, ◦)

(b) Es sei (𝑅, +, ·) ein Ring. Zeigen Sie Lemma 9.34, also dass wenn (𝐽𝑖 , +, ·)𝑖∈𝐼 eine Familie
von Idealen mit nichtleerer Indexmenge 𝐼 ist, dann ist auch

⋂
𝑖∈𝐼 𝐽𝑖 ein Ideal in 𝑅.

(c) Es sei (𝑅, +, ·) ein Ring mit Eins und 𝐽 ein Ideal in 𝑅. Zeigen Sie, dass wenn 1𝑅 ∈ 𝐽 ist,
dann ist 𝐽 = 𝑅.

(d) Bestimmen Sie ohne Beweis aber mit knapper Erklärung die unten stehenden erzeugten
Ideale in den dazugehörigen Ringen
(𝑖) (

√
2) in (R, +, ·)

(𝑖𝑖) (𝐴) für 𝐴 ∈ P(𝑋 ) in (P(𝑋 ), △,∩)

Lösung.

(a) (𝑖) Die ungeraden ganzen Zahlen sind genau die Menge 2Z + 1 und damit nicht einmal
ein Unterring, denn die 0 liegt nicht in dieser Menge, damit kann es sich nicht um
eine Untergruppe von (Z, +) handeln, und damit liegt kein Ideal vor.

(𝑖𝑖) Da die Identität ein Endomorphismus ist können wir jedes 𝑔 ∈ End(Q) als 𝑔 =

id ◦ 𝑔 schreiben, damit handelt es sich bei der Menge um den Endomorphismenring
(End(Q), +, ◦) selbst, welcher offensichtlich ein Ideal bildet.

(b) Aus Übungsaufgabe I-7.1 wissenwir, dass der beliebige nichtleere Schnitt von Unterringen
wieder ein Unterring ist. Ist nun 𝑎 ∈ 𝑅, dann ist wegen der Idealeigenschaft aller 𝐽𝑖 , 𝑖 ∈ 𝐼 :

𝑎 ·
(⋂
𝑖∈𝐼

𝐽𝑖

)
= { 𝑎 · 𝑗︸︷︷︸

∈ 𝐽𝑖∀𝑖∈𝐼

| 𝑗 ∈ 𝐽𝑖 ∀𝑖 ∈ 𝐼 } ⊆ { 𝑗 | 𝑗 ∈ 𝐽𝑖 ∀𝑖 ∈ 𝐼 } =
⋂
𝑖∈𝐼

𝐽𝑖

und die rechtsseitige Eigenschaft folgt analog.
(c) Per Definition des Ideals und der Eins ist

𝑅 ⊇ 𝐽 ⊇ 𝑅 · 𝐽 ⊇ 𝑅 · {1𝑅} = 𝑅

und damit 𝐽 = 𝑅.
(d) (𝑖) Hauptideale zu nicht-Null-Elementen in Körpern gerade der Körper selbst, siehe

Hausaufgabe I-7.4 daher ist (
√
2) = R.

(𝑖𝑖) Es ist (𝐴) = P(𝐴). Sowohl Unterring- als auch Idealzusatzeigenschaft folgen aus der
verkleinernden Eigenschaft des Schnitts, also dass 𝐴 ∩𝐶 = 𝐶 ∩𝐴 ⊆ 𝐴 für beliebige
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𝐶 ∈ P(𝑋 ). Alternativ sieht man das anhand der Darstellung aus Satz 9.36, denn der
Ring ist unitär und kommutativ und jedes Element ist additiv selbstinvers, also ist

(𝐴) =
{
𝐵 ∩𝐴

���𝐵 ∈ P(𝑋 )
}
= P(𝐴) .

Übungsaufgabe I-7.5. (Körper und Körperhomomorphismen)

(a) Es sei (𝐾, +, ·) ein Körper. Bestimmen Sie alle Lösungen der Gleichung 𝑥 · 𝑥 = 𝑥 in 𝐾 .
(b) Zeigen Sie, dass die Bedingung 𝑓 (1𝐾1) = 1𝐾2 (also (10.2c)) in der Definition eines Körper-

homomorphismus auch durch 𝑓 (1𝐾1) ≠ 0𝐾2 ersetzt werden kann, also dass für Körper
(𝐾1, +1, ·1) und (𝐾2, +2, ·2) sowie 𝑓 : 𝐾1 → 𝐾2 mit additiver und multiplikativer Strukturver-
träglichkeit ((10.2a) und (10.2b)) die Bedingung 𝑓 (1𝐾1) ≠ 0𝐾2 hinreichend für 𝑓 (1𝐾1) = 1𝐾2

ist.

Lösung.

(a) Ist (𝐾, +, ·) ein Körper, dann enthält 𝐾 die zwei verschiedenen Elemente 1𝐾 und 0𝐾 . Für
beide gilt die Beziehung 𝑥 · 𝑥 = 𝑥 (0.1). Angenommen, es gäbe ein weiteres Element
𝑥 ∈ 𝐾 \ {0𝐾 , 1𝐾 } mit 𝑥 · 𝑥 = 𝑥 , dann ist 𝑥 multiplikativ invertierbar und wenn wir 𝑥−1 an
die obige Gleichung multiplizieren, dann ergibt sich 𝑥 = 1𝐾 und damit ein Widerspruch.
Man kann auch analog über die Kürzungsregeln argumentieren.

(b) Es ist
𝑓 (1𝐾1) = 𝑓 (1𝐾1 ·1 1𝐾1) = 𝑓 (1𝐾1) ·2 𝑓 (1𝐾1),

und die Anwendung der Kürzungsregeln (da 𝑓 (1𝐾1) ≠ 0𝐾 ) liefert 𝑓 (1𝐾1) = 1𝐾2 .
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Hausaufgabe I-7.1 (Ringe und Unterringe) 3 + 1 = 4 Punkte

(a) Es sei 𝑋 eine nichtleere Menge. Entscheiden Sie, welche der folgenden Beispiele Ringe
sind und ob diese kommutativ sind. Entscheiden Sie, ob die Ringe nullteilerfrei sind, und
bestimmen Sie für die Ringe mit Eins die Charakteristik.

(Z3, +2, ·2)(i) (P(𝑋 ), △,∩)(ii)
(P(𝑋 ), △, △)(iii) (QR, +, ◦)(iv)

(b) Es sei (𝑅, +, ·) ein Ring und 𝑎 · 𝑎 = 𝑎 für alle 𝑎 ∈ 𝑅. Zeigen Sie, dass (𝑅, +, ·) kommutativ
ist.

Lösung.

(a) (𝑖) Bei (Z3, +2, ·2) sind beide Abbildungen auf Z3 assoziative Verknüpfungen, es handelt
sich also um zwei Halbgruppen. Allerdings ist weder (Z3, +2) noch (Z3, ·2) ein
Monoid, denn 0 + 2 mod 2 = 1 · 2 mod 2 = 0. Hier liegt also kein Ring vor.
(0.5 Punkte)

(𝑖𝑖) Bei (P(𝑋 ), △,∩) wissen wir bereits, dass (P(𝑋 ), △) eine abelsche Gruppe mit neu-
tralem Element ∅ und (P(𝑋 ),∩) ein kommutatives Monoid mit neutralem Element
𝑋 ist. Auf Grund der Kommutativität müssen wir nur eines der beiden Distributivge-
setze prüfen. In diesem Fall erhalten wir für alle 𝑎, 𝑏, 𝑐 ∈ P(𝑋 ) das Distributivgesetz

𝐴 ∩ (𝐵△𝐶) = 𝐴 ∩ (𝐵 \𝐶 ∪𝐶 \ 𝐵)

=

(
𝐴 ∩ (𝐵 \𝐶)

)
∪

(
𝐴 ∩ (𝐶 \ 𝐵)

)
=

(
(𝐴 ∩ 𝐵) \𝐶

)
∪

(
(𝐴 ∩𝐶) \ 𝐵

)
=

(
(𝐴 ∩ 𝐵) \ (𝐴 ∩𝐶)

)
∪

(
(𝐴 ∩𝐶) \ (𝐴 ∩ 𝐵)

)
= (𝐴 ∩ 𝐵)△(𝐴 ∩𝐶) .

Hier liegt als ein kommutativer Ring mit Eins vor (nämlich das Element 𝑋 ). Da
alle Elemente additiv selbstinvers sind ist die Charakteristik hier 2. (1 Punkt)

(𝑖𝑖𝑖) Bei (P(𝑋 ), △, △) handelt es sich mit beiden Verknüpfungen um eine uns bekannte
Gruppe. Es gilt also die Distributivitätsgesetze zu prüfen, da sehen wir jedoch, dass

𝑋△(𝑋△𝑋 ) = 𝑋△∅ = 𝑋 ≠ ∅ = ∅△∅ = (𝑋△𝑋 )△(𝑋△𝑋 ),

womit kein Ring vorliegt. (1 Punkt)
(𝑖𝑣) Bei (QR, +, ◦) liefern die beiden assoziativen Verknüpfungen eine additive, kommuta-

tive Gruppe (mit der Nullfunktion als Null) und eine multiplikative Halbgruppe. Die
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Halbgruppe besitzt jedoch kein neutrales Element, denn es existieren überabzählbar
viele linksneutrale Elemente, nämlich z. B. die Familie

𝑓𝑟 (𝑥) :=
{
𝑥, 𝑥 ∈ Q

𝑟, 𝑥 ∈ R \ Q

für die Indexmenge 𝑟 ∈ R.
Außerdem gelten die Distributivgesetze nicht, denn z. B. für 𝑓 ≡ 1 und 𝑔, ℎ ≡ 0 ist
für alle 𝑥 ∈ R:

(𝑓 ◦ (𝑔 + ℎ)) (𝑥) = 1 ≠ 2 = 1 + 1 = (𝑓 ◦ 𝑔) (𝑥) + (𝑓 ◦ ℎ) (𝑥).

Hier liegt also kein Ring vor. (0.5 Punkte)
(b) Für 𝑎, 𝑏 aus 𝑅 ist

(𝑎 + 𝑏) = (𝑎 + 𝑏) · (𝑎 + 𝑏) = 𝑎 · 𝑎 + 𝑏 · 𝑏 + 𝑎 · 𝑏 + 𝑏 · 𝑎 = 𝑎 + 𝑏 + 𝑎 · 𝑏 + 𝑏 · 𝑎 ⇒ 𝑎 · 𝑏 = −(𝑏 · 𝑎)

Nun ist aber für jedes beliebige 𝑐 aus 𝑅 auch

(𝑐 + 𝑐) = (𝑐 + 𝑐) · (𝑐 + 𝑐) = 4(𝑐 · 𝑐) = 2(𝑐 + 𝑐) ⇒ 𝑐 + 𝑐 = 0,

also jedes Element sein eigenes, additives Inverses, entsprechend ist auch 𝑎 · 𝑏 = 𝑏 · 𝑎.
(1 Punkt)

Hausaufgabe I-7.2 (Nullteiler) 1 + 2 = 3 Punkte

(a) Untersuchen Sie, welche der Ringe aus Hausaufgabe I-7.1 Teilaufgabe (a) nullteilerfrei
sind und ob es sich um Integritätsringe handelt.

(b) Es sei (𝑅, +, ·) ein Ring. Zeigen Sie Lemma 9.8, also die Äquivalenz der folgenden Aussagen
für 𝑏 ∈ 𝑅:
(𝑖) 𝑏 ist kein Rechtsnullteiler von 𝑅.
(𝑖𝑖) Der Gruppenhomomorphismus (𝑅, +) ∋ 𝑎 ↦→ 𝑎 · 𝑏 ∈ (𝑅, +) ist injektiv.
(𝑖𝑖𝑖) Für alle 𝑎, 𝑐 ∈ 𝑅 gilt: 𝑎 · 𝑏 = 𝑐 · 𝑏 impliziert 𝑎 = 𝑐 .

Lösung.

(a) In Teilaufgabe (ii) ist 𝐴 ∩ 𝐵 = ∅ genau dann, wenn die Mengen in dem Komplement der
jeweils anderen liegen, die Mengen also disjunkt sind. I. A. ist dieser Ring also nicht
nullteilerfrei und damit kein Integritätsring. Nullteilerfrei ist der Ring genau dann,
wenn 𝑋 kein, oder nur ein Element enthält. Ist 𝑋 leer, dann handelt es sich um den
Nullring (dieser Fall war auch ausgeschlossen in der Voraussetzung). Besteht 𝑋 aus
genau einem Element, dann handelt es sich sogar um einen Integritätsring (1 Punkt)
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(b) (𝑖) ⇔ (𝑖𝑖): Dass 𝑏 kein Rechtsnullteiler von 𝑅 ist, ist per Definition genau dann der Fall,
wenn kein 𝑎 ∈ 𝑅 existiert, so dass 𝑎 · 𝑏 = 0 ist. Das ist genau dann der Fall, wenn der
Kern des angegebenen Gruppenhomomorphismus trivial ist und damit, genau dann wenn
dieser injektiv ist. (1 Punkt)
(𝑖) ⇔ (𝑖𝑖𝑖): Für beliebige 𝑎 und 𝑐 aus 𝑅 ist die Gleichung 𝑎 · 𝑏 = 𝑐 · 𝑏 durch Subtraktion
und Anwendung des Distributivgesetztes äquivalent umformbar zu 𝑎 · (𝑏 − 𝑐) = 0𝑅 . Ist
𝑏 kein Rechtsnullteiler, dann kann das nur erfüllt sein, wenn 𝑎 = 𝑐 ist. Gilt andererseits
(𝑎 − 𝑐) · 𝑏 = 0𝑅 nur für 𝑎 = 𝑐 , dann ist 𝑎 · 𝑏 = (𝑎 − 0𝑅) · 𝑏 nur dann 0𝑅 , wenn 𝑎 = 0𝑅 ist,
und 𝑏 damit kein Rechtsnullteiler. (1 Punkt)

Hausaufgabe I-7.3 (Ringhomomorphismen) 2 + 1 + 2 = 5 Punkte

(a) Es seien (𝑅1, +1, ·1) und (𝑅2, +2, ·2) Ringe. Weiter sei 𝑓 : 𝑅1 → 𝑅2 ein Homomorphismus.
Zeigen Sie Lemma 9.22 des Skripts, also dass dann gilt:
(𝑖) Bild(𝑓 ) ist ein Unterring von (𝑅2, +2, ·2).
(𝑖𝑖) Kern(𝑓 ) ist ein Unterring von (𝑅1, +1, ·1).

(b) Es seien (𝑅1, +1, ·1) und (𝑅2, +2, ·2) Ringe mit den Nullelementen 0𝑅1 bzw. 0𝑅2 . Weiter sei
𝑓 : 𝑅1 → 𝑅2 ein Homomorphismus. Zeigen Sie Lemma 9.24 des Skripts, also die Äquivalenz
der folgenden Eigenschaften:
(𝑖) 𝑓 ist injektiv.
(𝑖𝑖) Kern(𝑓 ) = {0𝑅1}.
(𝑖𝑖𝑖) Die einzige Lösung der Gleichung 𝑓 (𝑎) = 0𝑅2 ist 𝑎 = 0𝑅1 .

(c) Es sei (𝑅, +, ·) ein Ring mit Eins und char(𝑅) = 0. Zeigen Sie Lemma 9.20 des Skripts, also
dass dann 𝑅 einen Unterring enthält, der isomorph zu Z ist.

Lösung.

(a) Die Distributivgesetze gelten für alle Kombinationen von Elementen in den Oberringen
und damit auch für jede beliebige Teilmenge.
Dass 𝑓 : 𝑅1 → 𝑅2 ein Ringhomomorphismus ist, bedeutet insbesondere, dass 𝑓 auch ein
entsprechender Gruppenhomomorphismus für die Mengen mit der additive Verknüpfung
ist. Aus Lemma 8.11 wissen wir dann, dass Bild(𝑓 ) mit +2 eine Untergruppe von (𝑅2, +2)
und Kern(𝑓 ) mit +1 eine Untergruppe von (𝑅1, +1) ist. (1 Punkt)
Wegen der multiplikativen Strukturverträglichkeit des Ringhomomorphismus ist für
𝑎, 𝑏 ∈ 𝑅1

𝑓 (𝑎) ·2 𝑓 (𝑏) = 𝑓 ( 𝑎 ·1 𝑏︸︷︷︸
∈𝑅1

)
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und damit Bild(𝑓 ) abgeschlossen unter +2, also Bild(𝑓 ) mit +2, ·2 ein Unterring von
(𝑅2, +2, ·2) im Kontext von Ringen ohne Einselement. (0.5 Punkte)
Außerdem ist für 𝑎, 𝑏 ∈ Kern(𝑓 )

𝑓 (𝑎 ·1 𝑏) = 𝑓 (𝑎) ·2 𝑓 (𝑏) = 0𝑅2 ·2 0𝑅2 = 0𝑅2

und damit Kern(𝑓 ) bzgl. ·1 abgeschlossen, also mit +1, ·1 ein Unterring von (𝑅2, +1, ·1) im
Kontext von Ringen ohne Einselement. (0.5 Punkte)

(b) Die Äquivalenz (𝑖) ⇔ (𝑖𝑖) gilt schon weil der Ringhomomorphismus ein Gruppenhomo-
morphismus für den additiven Teil des Rings ist, siehe Lemma 8.13.
Die Definition des Kerns liefert gerade die Äquivalenz (𝑖𝑖) ⇔ (𝑖𝑖𝑖). (1 Punkt)

(c) Der Unterring ist gerade die von 1𝑅 erzeugte additive Untergruppe ⟨1𝑅⟩. Diese ist offen-
sichtlich eine Untergruppe des additiven Ringanteils und auf Grund der Distributivgesetze
auch ein Unterring.
In Übungsaufgabe I-7.3 haben wir gesehen, dass es nur einen Homomorphismus von
(Z, +, ·) nach (𝑅, +, ·) (im Kontext von Homomorphismen mit Eins) geben kann und dass
dieser genau nach ⟨1𝑅⟩ abbildet mit 𝑓 (𝑧) = 𝑓 (𝑧1Z) = 𝑧𝑓 (1Z) = 𝑧1𝑅 , woran wir auch sofort
dessen Surjektivität ablesen können. Die Injektivität folgt aus der Charakteristik, denn
der Kern ist gerade gegeben durch

{𝑧 | 𝑧 ∈ Z, 𝑧1𝑅 = 0𝑅}

und damit durch alle ganzzahligen Vielfachen der Charakteristik. (2 Punkte)

Hausaufgabe I-7.4 (Ideale und Faktorringe) 1.5 + 4 + 2.5 + 1 + 2 = 11 Punkte

(a) Entscheiden Sie, welche der unten stehenden Teilmengen des dazugehörigen Rings Ideale
mit den entsprechenden Verknüpfungen bilden.
(𝑖) N in (Z, +, ·)
(𝑖𝑖) Die geraden ganzen Zahlen in (Z, +, ·)
(𝑖𝑖𝑖) P(𝑌 ) in (P(𝑋 ), △,∩) für eine nichtleere Menge 𝑋 und 𝑌 ∈ P(𝑋 )

(b) Es sei (𝑅, +, ·) ein Ring und 𝐸 ⊆ 𝑅. Zeigen Sie die wesentliche Aussage von Satz 9.36, also

(𝐸) =
{ 𝑛∑︁
𝑖=1

𝑎𝑖

���∃𝑛 ∈ N0 ∀𝑖 = 1, . . . , 𝑛 (𝑎𝑖 ∈ 𝐸 ∪ −𝐸 ∪ 𝑅 𝐸 ∪ 𝐸 𝑅 ∪ 𝑅 𝐸 𝑅)
}
, (9.13a)

und beschreiben Sie kurz, warum und wie sich die Darstellung in kommutativen Ringen
und in Ringen mit Eins vereinfachen lässt.
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(c) Es sei (𝑅, +, ·) ein unitärer, kommutativer Ring. Zeigen Sie die Äquivalenz folgender
Aussagen:
(𝑖) (𝑅, +, ·) ist ein Körper.
(𝑖𝑖) (𝑅, +, ·) hat genau zwei Ideale, nämlich die trivialen, welche nicht übereinstimmen.

(d) Es sei 𝑋 eine Menge und 𝑌 ⊆ 𝑋 . Zeigen Sie, dass der Faktorring P(𝑋 ) /P(𝑌 ) von
(P(𝑋 ), △,∩) isomorph zu (P(𝑋 \ 𝑌 ), △,∩) ist.

(e) Bestimmen Sie ohne Beweis aber mit knapper Erklärung die unten stehenden erzeugten
Ideale in den dazugehörigen Ringen und versuchen Sie, ein einzelnes Element des Rings
zu bestimmen, dass schon das jeweilige Ideal erzeugt.
(𝑖) (𝐴, 𝐵) für 𝐴, 𝐵 ∈ P(𝑋 ) in (P(𝑋 ), △,∩)
(𝑖𝑖) (9, 15) in (Z, +, ·)

Lösung.

(a) (𝑖) N ist in (Z, +, ·) kein Ideal, die natürlichen Zahlen bilden nicht einmal einen Unter-
ring, denn sie enthalten die 0 nicht. Außerdem ist die Idealzusatzbedingung nicht
erfüllt, denn es ist N · (−1) ⊈ N. (0.5 Punkte)

(𝑖𝑖) Die geraden ganzen Zahlen lassen sich gerade als 2Z schreiben. Sie bilden einen
Unterring von (𝑍, +, ·), denn 2Z bildet eine Untergruppe von (Z, +). Das können
wir mit dem Untergruppenkriterium nachprüfen. Nichtleerheit der Menge ist klar
und 2𝑧1 − 2𝑧2 = 2(𝑧1 − 𝑧2) ∈ 2Z. Die Abgeschlossenheit unter der Multiplikation
erledigen wir gleichzeitig mit der zusätzlichen Idealeigenschaft, es ist nämlich wegen
der Assoziativität und Kommutativität

(2 · 𝑧2) · 𝑧1 = 𝑧1 · (2 · 𝑧2) = 2 · (𝑧1 · 𝑧2) ∈ 2Z

und da der Ring kommutativ ist stimmt die linksseitige Bedingung mit der rechts-
seitigen überein. Hier handelt es sich also um ein Ideal. (0.5 Punkte)

(𝑖𝑖𝑖) Hier handelt es sich um einen Unterring von (P(𝑋 ), △,∩), denn ∅ liegt in der Menge
und jedes Element ist additiv selbstinvers, also ist

𝐴1△𝐴′
2 = 𝐴1△𝐴2 ⊆ 𝐴1 ∪𝐴2 ⊆ 𝐵

und nach dem Untergruppenkriterium liegt also eine Untergruppe von (P(𝑋 ), △)
vor. Außerdem ist die Menge multiplikativ abgeschlossen, nicht nur in sich, sondern
auch bezüglich der Multiplikation mit beliebigen anderen Elementen 𝐶 ∈ P(𝑋 ),
denn

𝐴 ∩𝐶 ⊆ 𝐴 ⊆ 𝐵
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was wieder zugleich die Idealeigenschaft zeigt, denn der Ring ist kommutativ, hier
liegt also ein Ideal vor. (0.5 Punkte)

(b) Wir wählen die Bezeichnung

𝐽 :=
{ 𝑛∑︁
𝑖=1

𝑎𝑖

���∃𝑛 ∈ N0 ∀𝑖 = 1, . . . , 𝑛 (𝑎𝑖 ∈ 𝐸 ∪ −𝐸 ∪ 𝑅 𝐸 ∪ 𝐸 𝑅 ∪ 𝑅 𝐸 𝑅)
}

für diese Teilaufgabe.
Wir zeigen nun im ersten Schritt, dass (𝐸) ⊇ 𝐽 . Da (𝐸) ein Ideal ist, ist es eine additive
Untergruppe, daher enthält es neben 𝐸 auch 𝐸′. Auf Grund der Zusatzeigenschaft der
Idealdefinition beinhaltet (𝐸) auch die Mengen 𝑅𝐸 und 𝐸𝑅. All diese Mengen können wir
also auch nochmal von der jeweils anderen Seite mit 𝑅 verknüpfen um 𝑅𝐸𝑅 ⊆ (𝐸) zu
erhalten. Endliche Summen dieser Elemente liegen wegen der Untergruppeneigenschaft
on (𝐸) wieder in (𝐸), also ist (𝐸) ⊇ 𝐽 . (1 Punkt)
Im zweiten Schritt zeigen wir, dass (𝐸) ⊆ 𝐽 indem wir zeigen, dass 𝐽 ein Ideal ist, dass
𝐸 enthält. Die Obermengeneigenschaft 𝐽 ⊇ 𝐸 ist dabei klar, denn für 𝑛 = 1 können
wir 𝑎1 ja aus 𝐸 wählen. Dass 𝐽 eine additive Untergruppe von (𝑅, +) ist, folgt mit dem
Untergruppenkriterium. Für 𝑛 = 0 ist die Summe in der Darstellung von 𝐸 leer also 0 ∈ 𝑅,
damit ist 𝐽 nicht leer. Für zwei Elemente

∑𝑛
𝑖=1 𝑎𝑖 ,

∑𝑚
𝑗=1 𝑏 𝑗 aus 𝐽 ist außerdem

𝑛∑︁
𝑖=1

𝑎𝑖 −
(
𝑚∑︁
𝑗=1
𝑏 𝑗

)
=

𝑛+𝑚∑︁
𝑖=1

𝑐𝑖

für 𝑐𝑖 = 𝑎𝑖 für 𝑖 ∈ {1, . . . , 𝑛} und 𝑐𝑖 = 𝑏𝑖−𝑛 für 𝑖 > 𝑛. Es gilt also für die Familie (𝑐𝑖)𝑖=1,...,𝑛+𝑚
nur den hinteren Teil zu untersuchen, also die Frage zu klären, ob −𝑏𝑖 ∈ 𝐸 ∪ −𝐸 ∪ 𝑅 𝐸 ∪
𝐸 𝑅 ∪ 𝑅 𝐸 𝑅, wenn dies für die 𝑏𝑖 gilt. Ist 𝑏𝑖 in 𝐸 oder −𝐸, dann ist das offensichtlich.
Anderenfalls folgt die Eigenschaft aus den Distributivgesetzen, denn es ist z. B. für 𝑏𝑖 =
𝑟 𝑒 𝑟 ∈ 𝑅 𝐸 𝑅

−𝑏𝑖 = −(𝑟 𝑒 𝑟 ) = (−𝑟 ) 𝑒 𝑟 = 𝑟 𝑒 (−𝑟 ) ∈ 𝑅 𝐸 𝑅.
Wie immer müssen wir die multiplikative Abgeschlosenheit von 𝐽 bezüglich sich selbst
nicht prüfen, denn wir müssen sie ja sogar für Multiplikation mit jedem Ringelement
prüfen. Sei also 𝑎 ∈ 𝑅 und

∑𝑛
𝑖=1 𝑎𝑖 ∈ 𝐽 . Dann ist

𝑎 ·
𝑛∑︁
𝑖=1

𝑎𝑖 =

𝑛∑︁
𝑖=1

𝑎 · 𝑎𝑖

und 𝑎 · 𝑎𝑖 ∈ 𝐸 ∪ −𝐸 ∪ 𝑅 𝐸 ∪ 𝐸 𝑅 ∪ 𝑅 𝐸 𝑅 folgt aus der multiplikativen Assoziativität,
denn es ist z. B. für 𝑎𝑖 = 𝑟 𝑒𝑟 ∈ 𝑅 𝐸𝑅:

𝑎 · 𝑎𝑖 = 𝑎 (𝑟 𝑒 𝑟 ) = (𝑎 𝑟 ) (𝑒 𝑟 ) ∈ 𝑅 𝐸 𝑅.
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(2 Punkte)
In kommutativen Ringen ist 𝐸 𝑅 = 𝑅 𝐸 ⊇ 𝑅 𝐸 𝑅 und in Ringen mit Eins ist 𝐸,−𝐸 ⊆
𝑅 𝐸 ⊆ 𝑅 𝐸 𝑅 und 𝐸 𝑅 ⊆ 𝑅 𝐸 𝑅, wodurch sich in der endlichen Summe die Summanden auf
eine entsprechende kürzere Darstellung der Mengenvereinigung einschränken lassen.
Die kürzeste Darstellung ergibt sich bei kommutativen Ringen mit 1, hier reicht es, die
Summanden aus 𝐸 𝑅 oder 𝑅 𝐸 zu wählen. (1 Punkt)

(c) Wir starten mit der Hinrichtung, dafür sei also (𝑅, +, ·) ein Körper und 𝐽 ein Ideal in 𝑅,
das nicht das Nullideal ist. Dann existiert 𝑎 ∈ 𝐽 \ {0}. Wegen der Idealeigenschaft ist
𝑅 ·𝑎 ⊆ 𝑅 · 𝐽 ⊆ 𝐽 und da 𝑎−1 ∈ 𝑅 ist, ist auch 1 ∈ 𝐽 . Damit muss aber 𝑅 = 𝑅 ·1 ⊆ 𝑅 · 𝐽 ⊆ 𝐽 ⊆ 𝑅

sein und damit 𝐽 = 𝑅. (1 Punkt)
Sei nun 𝑅 ein Ring mit genau zwei Idealen, dann ist er insbesondere nicht der Nullring,
da dieser nur ein Ideal (sich selbst) besitzt. Da der Ring unitär und nicht der Nullring ist,
muss er zumindest die ungleichen Elemente 0 ≠ 1 enthalten. Wären nur diese beiden
Elemente enthalten, würde es sich bis auf Isomorphie um Z2 handeln und damit um einen
Körper. Anderenfalls gibt es ein weiteres Element 𝑎 ∈ 𝑅 \ {0, 1} und es ist für jedes solcher
Elemente

(𝑎) = 𝑅,

da das erzeugte Ideal immer die Menge selbst enthält und damit nicht nur das Nullideal
sein kann. (0.5 Punkte)
Aus der Kommutativität und Existenz der Eins des Rings folgt nun, dass

𝑅 = (𝑎) =
{ 𝑛∑︁
𝑖=1

𝑎𝑖

���∃𝑛 ∈ N0 ∀𝑖 = 1, . . . , 𝑛 (𝑎𝑖 ∈ {±𝑎}︸︷︷︸
∈𝑅 𝑎

∪ 𝑅 𝑎 ∪ 𝑎 𝑅︸︷︷︸
=𝑅 𝑎

∪ 𝑅 𝑎 𝑅︸︷︷︸
=𝑅 𝑎

)
}

also, dass für geeignete Ringelemente 𝑟𝑖 gilt, dass 1𝑅 =
∑𝑛
𝑖=1(𝑟𝑖𝑎) =

(∑𝑛
𝑖=1 𝑟𝑖

)
𝑎, und damit

existieren die multiplikativ inversen Elemente für jedes nicht Null Element. Damit handelt
es sich um einen Körper. (1 Punkt)

(d) Wir haben schon in Aufgabenteil (a) gesehen, dass P(𝑌 ) tatsächlich ein Ideal ist. Genauer
gesagt ist es sogar der Kern der Abbildung 𝑓 : P(𝑋 ) → P(𝑋 \𝑌 )mit 𝑓 (𝐴) := 𝐴∩𝑋 \𝑌 , also
der Multiplikation mit einem festen Ringelement, was wegen der Distributivgesetze und
der Assoziativität derMultiplikation ein Ringhomomorphismus ist. Der Homomorphiesatz
Satz 9.38 für Ringe liefert direkt die Isomorphie. (1 Punkt)

(e) (𝑖) Wieder nutzen wir die Darstellung aus Satz 9.36 für den unitären und kommutati-
ven Ring und erhalten wegen den kontraktiven Eigenschaften der symmetrischen
Differenz und des Mengenschnitts

(𝐴, 𝐵) = P(𝐴 ∪ 𝐵) = (𝐴 ∪ 𝐵),
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wobei die zweite Gleichung direkt aus Übungsaufgabe I-7.4 folgt und die erste daraus
folgt, dass P(𝐴 ∪ 𝐵) ein Oberideal von {𝐴, 𝐵} ist und jedes Element 𝐶 ∈ P(𝐴 ∪ 𝐵)
durch (𝐶 ∩ 𝐵) \𝐴△𝐶 ∩𝐴 erzeugt werden kann. (1 Punkt)

(𝑖𝑖) Es ist (9, 15) = (3) = 3Z. Elemente aus 9Z und 15Z sind entweder gleich oder haben
mindestens den Abstand des größten gemeinsamen Teilers 3 und für 2 · 9 = 18 und
1 · 15 wird dieser Abstand auch erreicht, das Element 3 = 18 − 15 liegt also auch
im erzeugten Ideal und damit auch das von 3 erzeugte Ideal 3Z. Die verbleibende
Inklusion folgt wieder direkt aus der Darstellung des erzeugten Ideals aus Satz 9.36.
(1 Punkt)

Hausaufgabe I-7.5 (Körper und Körperhomomorphismen) 1 + 2 + 1 = 4 Punkte

(a) Es sei (𝐾, +, ·) ein Körper und 𝑎, 𝑏 ∈ 𝐾 . Zeigen Sie, dass

(𝑎 − 𝑥) · (𝑏 − 𝑥) = 0𝐾

genau dann gilt, wenn 𝑥 = 𝑎 oder 𝑥 = 𝑏 ist.
(b) Es sei (𝐾, +, ·) ein Körper mit char(𝐾) = 0. Zeigen Sie Lemma 10.16, also dass dann 𝐾

einen Unterkörper enthält, der isomorph zu Q ist.
(c) Zeigen Sie, dass kein endlicher Körper geordnet werden kann.

Lösung.

(a) Jeder Körper ist auch ein Ring, also gilt nach den Rechenregeln in Ringen aus Lemma 9.3,
dass

0𝐾 · 𝑎 = 0𝐾 ∀𝑎 ∈ 𝐾 (0.1)

(das ist gerade eines der benötigten Argumente im Beweis des Satzes).
Ist 𝑥 = 𝑎, dann gilt die Aussage offensichtlich. Ist 𝑥 ≠ 𝑎, dann ist, weil in Gruppen Inverse
Elemente eindeutig sind, 𝑎 − 𝑥 ≠ 0𝐾 , und weil (𝐾, +, ·) ein Körper ist, ist damit 𝑎 − 𝑥
multiplikativ invertierbar, also gibt es (𝑎 − 𝑥)−1 und somit ist

(𝑏 − 𝑥) = 1𝐾 · (𝑏 − 𝑥) = (𝑎 − 𝑥)−1 · (𝑎 − 𝑥) · (𝑏 − 𝑥) = (𝑎 − 𝑥)−1 · 0𝐾 = 0𝐾 .

Man kann auch analog über die Kürzungsregeln argumentieren. (1 Punkt)
(b) Wie schon in Hausaufgabe I-7.3 betrachten wir die Abbildung

𝑓 : Q → 𝐾, 𝑓

(𝑧
𝑛

)
:= 𝑧1𝐾 · (𝑛1𝐾 )−1
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mit 𝑧 ∈ Z und 𝑛 ∈ N. Wegen char(𝐾) = 0 ist (𝑛1𝐾 ) ≠ 0 ∀𝑛 ∈ N und daher der Term
(𝑛1𝐾 )−1 wohldefiniert.
Die Abbildung selbst ist ebenfalls wohldefiniert, denn für eine beliebige rationale Zahl 𝑑𝑧

𝑑𝑛

mit teilerfremden 𝑧 ∈ Z und 𝑛 ∈ N und 𝑑 ∈ N ist

𝑓

(
𝑑𝑧

𝑑𝑛

)
= (𝑑𝑧1𝐾 ) · (𝑑𝑛1𝐾 )−1

= (𝑑1𝐾 ) · (𝑧1𝐾 ) · (𝑑𝑛1𝐾 )−1

= (𝑑1𝐾 ) · (𝑛1𝐾 ) · (𝑛1𝐾 )−1 · (𝑧1𝐾 ) · (𝑑𝑛1𝐾 )−1

= (𝑛1𝐾 )−1 · (𝑧1𝐾 )

= 𝑓

(𝑧
𝑛

)
,

das heißt, alle Darstellungen einer rationalen Zahl werden mit der obigen Vorschrift auf
das gleiche Element in 𝐾 abgebildet.
Dann ist weiterhin offensichtlich 𝑓 (1) = 1𝐾 und

𝑓

(
𝑧1

𝑛1
· 𝑧2
𝑛2

)
= (𝑧1𝑧21𝐾 ) · (𝑛1𝑛21𝐾 )−1 = 𝑧11𝐾 · (𝑛11𝐾 )−1 · 𝑧21𝐾 · (𝑛21𝐾 )−1 = 𝑓

(
𝑧1

𝑛1

)
¤𝑓
(
𝑧2

𝑛2

)
sowie

𝑓

(
𝑧1

𝑛1
+ 𝑧2
𝑛2

)
= 𝑓

(
𝑧1𝑛2 + 𝑧2𝑛1

𝑛1𝑛2

)
= (𝑧1𝑛2 + 𝑧2𝑛1)1𝐾 · (𝑛1𝑛21𝐾 )−1

= 𝑧11𝐾 · (𝑛11𝐾 )−1 + 𝑧21𝐾 · (𝑛21𝐾 )−1

= 𝑓

(
𝑧1

𝑛1

)
+ 𝑓

(
𝑧2

𝑛2

)
.

Damit ist 𝑓 ein Körperhomomorphismus, dieser ist per Definition injektiv und das Bild
ist als Bild eines Körperhomomorphismus ein Unterkörper. (2 Punkte)

(c) Es sei (𝐾, +, ·) mit ⩽ ein geordneter Körper. In einem geordneten Körper muss 𝑛1𝐾 ⩾ 0
für alle 𝑛 ∈ N sein. Wäre char𝐾 > 0, dann wäre aber (char𝐾 − 1)1𝐾 = −1𝐾 und damit
sowohl größer oder gleich sowie kleiner oder gleich 0𝐾 und damit −1𝐾 = 0𝐾 und damit 𝐾
kein Körper. (1 Punkt)

Bitte reichen Sie Ihre Lösungen der Hausaufgaben als ein PDF auf Mampf ein.
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