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Übungsaufgabe I-6.1. (Homomorphismen)

(a) Entscheiden Sie, welche der unten stehenden Abbildungen Homomorphismen, Endomor-
phismen, Isomorphismen bzw. Automorphismen sind. Begründen Sie Ihre Antwort.

𝑓 : (R, ·) → (R, +), 𝑓 (𝑥) := 2𝑥(𝑖) 𝑓 : (R, +) → (R>0, ·), 𝑓 (𝑥) := 2𝑥(𝑖𝑖)
𝑓 : (P(Z),∪) → (P(Z),∩),
𝑓 (𝐴) := Z \𝐴

(𝑖𝑖𝑖) 𝑓 : (N,max(·, ·)) → (N, +),
𝑓 (𝑛) := 2𝑛

(𝑖𝑣)

(b) Es seien (𝐺1,★) und (𝐺2,□) zwei isomorphe Gruppen. Zeigen Sie, dass (𝐺1,★) genau dann
abelsch ist, wenn (𝐺2,□) abelsch ist.

Lösung.

(a) (𝑖) Die Struktur (R, ·) bildet keine Gruppe, sondern nur einen Monoid, wir können
also untersuchen, ob es sich hier um einen Monoidhomomorphismus handelt. Die
Beziehung

𝑓 (𝑥 · 𝑦) = 2𝑥 ·𝑦 = 2𝑥 + 2𝑦 = 𝑓 (𝑥) + 𝑓 (𝑦)

gilt nicht für beliebige 𝑥, 𝑦 ∈ R, denn z. B. für 𝑥 = 1, 𝑦 = 2 erhält man

𝑓 (1 · 2) = 21·2 = 4 ≠ 5 = 21 + 22 = 𝑓 (1) + 𝑓 (2) .

Die multiplikative Struktur links und die additive Struktur rechts wird also von
Exponentialfunktionen nicht erhalten. Diese Art von Struktur wird von den Logarith-
musfunktionen erhalten (deren Umkehrfunktionen). Es handel sich also nichtmal
um einen Halbgruppenhomomorphismus.
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(𝑖𝑖) Die im Vergleich zu Beispiel (𝑖) vertauschten Strukturen links und rechts sind mit
der Exponentialfunktion wiederum verträglich, denn es gilt für alle 𝑥, 𝑦 ∈ R

𝑓 (𝑥 + 𝑦) = 2𝑥+𝑦 = 2𝑥 · 2𝑦 = 𝑓 (𝑥) · 𝑓 (𝑦) .

Da sowohl (R, +) als auch (R>0, ·) Gruppen sind, handelt es sich also schonmal
um einen Gruppenhomomorphismus. Da diese verschieden sind, liegt kein
Endomorphismus und damit kein Automorphismus vor. Da 𝑓 auf Grund
des eingeschränkten Bildbereichs bijektiv ist, handelt es sich allerdings um einen
Gruppenisomorphismus.

(𝑖𝑖𝑖) Bei (P(Z),∪) und (P(Z),∩) handelt es sich um zwei verschiedene Monoide (mit
den neutralen Elementen ∅ respektive Z, jedoch nicht um Gruppen. Dass die Kom-
plementbildung strukturerhaltend sind, also, dass

Z \ (𝐴 ∪ 𝐵) = (Z \𝐴) ∩ (Z \ 𝐵),

ist genau die Aussage der de Morganschen Regeln in Lemma 4.5 des Skripts. Hier
sehen wir sofort, dass es nicht ausschlaggebend ist, dass die Grundmenge für die
Potenzmenge Z ist. Für Monoide fordern wir zusätzlich, dass die neutralen Elemente
aufeinander abgebildet werden, bei den neutralen Elementen Z und ∅ unter Komple-
mentbildung genau der Fall ist. Die Komplementbildung von der Potenzmenge in die
Potenzmenge ist bijektiv (jede Teilmenge von Z ist eindeutig über ihr Komplement
bestimmt), wir haben also einenMonoidisomorphismus.

(𝑖𝑣) Bei (N,max(·, ·)) handelt es sich um eine Halbgruppe, denn die Maximumsbildung
in den natürlichen Zahlen ist eine assoziative Verknüpfung. Das neutrale Element
bezüglich der Maximumsbildung ist die 1, hier liegt also ein Monoid vor. (N, +) ist
eine bekannte Halbgruppe ohne neutrales Element, uns bleibt also nur zu prüfen,
ob wir es mit einem Halbgruppenhomomorphismus (oder -isomorphismus) zu tun
haben. Da für alle 𝑛,𝑚 ∈ N gilt, dass

𝑓 (max(𝑛,𝑚)) = 2 max(𝑛,𝑚) = max(2𝑛, 2𝑚)≠2𝑛 + 2𝑚 = 𝑓 (𝑛) + 𝑓 (𝑚)

handelt es sich hier um keinen Homomorphismus.
(b) Es sei 𝑓 : (𝐺1,★) → (𝐺2,□) ein Isomorphismus und (𝐺2,□) abelsch. Es seien weiter

𝑎, 𝑏 ∈ (𝐺1,★) gegeben. Dann ist

𝑎 ★𝑏 = 𝑓 −1(𝑓 (𝑎 ★𝑏)) (Invertierbarkeit von 𝑓 )
= 𝑓 −1(𝑓 (𝑎) □ 𝑓 (𝑏)) (Strukturerhaltung von 𝑓 )
= 𝑓 −1(𝑓 (𝑏) □ 𝑓 (𝑎)) (Kommutativität in (𝐺2,□))
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= 𝑓 −1(𝑓 (𝑏 ★ 𝑎)) (Strukturerhaltung von 𝑓 )
= 𝑏 ★ 𝑎.

Die Gegenrichtung, für kommutatives (𝐺1,★), folgt analog mit vertauschten Rollen von
(𝐺1,★) und (𝐺2,□) für eine entsprechende Bijektion.

Übungsaufgabe I-6.2. (Kern und Bild)

(a) Bestimmen Sie Kern und Bild der Gruppenhomomorphismen in Übungsaufgabe I-6.1
Teilaufgabe (a).

(b) Es seien (𝐺1,★) und (𝐺2,□) endliche Gruppen. Beweisen oderwiderlegen Sie: Die Gruppen
(𝐺1,★) und (𝐺2,□) sind genau dann isomorph, wenn ein Gruppenhomomorphismus
𝑓 : 𝐺1 → 𝐺2 mit trivialem Kern existiert.

Lösung.

(a) Der einzige Gruppenhomomorphismus ist (𝑖𝑖). Der Bildbereich der Exponentialfunktion
natürlich Bild(𝑓 ) = R>0. Der Kern ist das Urbild des neutralen Elements in der Zielgruppe,
also auf Grund der Bijektivität Kern(𝑓 ) = 𝑓 −1({1}) = {0}.
Für den Monoidisomorphismus in (𝑖𝑖𝑖) können wir natürlich Kern und Bild genauso
untersuchen. Da es sich hier um einen Isomorphismus handelt sind Bild und Kern trivial.

(b) Die Aussage ist falsch. Das sieht man zum Beispiel wenn man für (𝐺1,★) die triviale
Gruppe und für (𝐺2,□) eine beliebige nicht-triviale Gruppe wählt. Diese Gruppen sind
dann natürlich nicht isomorph, aber der triviale Gruppenhomomorphismus ist eine
Abbildung wie in der Aussage gefordert.

Übungsaufgabe I-6.3. (Normalteiler und Faktorgruppe)

(a) Es sei𝑚 ∈ N. Zeigen Sie, dass die Menge Z /𝑚 Z mit ∼· definiert durch [𝑎] ∼· [𝑏] := [𝑎 · 𝑏]
ein kommutatives Monoid mit neutralem Element [1] ergibt, welches isomorph zu dem
kommutativen Monoid (Z𝑚, ·𝑚) aus Beispiel 7.22 ist.
Beachte: Mit der Menge Z /𝑚 Z ist die Faktormenge des Normalteilers (𝑚Z, +) in der
Gruppe (Z, +) gemeint. Diese Faktormenge stimmt mit den Restklassen in Z /

𝑚≡ =

{{𝑎 +𝑚Z} | 𝑎 ∈ Z} überein. Auf dieser Menge soll jetzt statt der Faktorverknüpfung ∼+
(siehe Beispiel 8.23 im Skript) das ∼· untersucht werden.

(b) Es sei (𝐺,★) eine Gruppe. Zeigen Sie die Aussage von Bemerkung 8.24 im Skript, also
dass die Normalteiler von (𝐺,★) genau die Kerne geeigneter Homomorphismen sind.

(c) Es sei (𝐺,★) eine Gruppe. Zeigen Sie Lemma 8.20, also die folgenden Aussagen:
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(𝑖) Ist (𝑁𝑖)𝑖∈𝐼 eine nichtleere Familie von Normalteilern von (𝐺,★), dann ist auch⋂
𝑖∈𝐼 𝑁𝑖 ein Normalteiler von 𝐺 .

(𝑖𝑖) Ist N eine nichtleere Menge von Normalteilern von (𝐺,★), dann ist auch
⋂N ein

Normalteiler von (𝐺,★).

Lösung.

(a) Man kann direkt an der Definition von ∼· ablesen, dass Z /𝑚 Z der Bildbereich ist, denn
die Bilder sind ja genau Klassen aus der Faktormenge. Die Abbildung ist außerdem
wohldefiniert (repräsentantenunabhängig), denn für Repräsentanten 𝑎, 𝑎 und 𝑏, 𝑏 aus Z
mit [𝑎] = [𝑎] und [𝑏] = [𝑏] existieren 𝑧𝑎, 𝑧𝑏 ∈ Z, so dass 𝑎 = 𝑎 + 𝑧𝑎 ·𝑚 und 𝑏 = 𝑏 + 𝑧𝑏 ·𝑚,
also ist

[𝑎] ∼· [𝑏] = [𝑎 · 𝑏] = 𝑎 · 𝑏 +𝑚Z = (𝑎 + 𝑧𝑎 ·𝑚) · (𝑏 + 𝑧𝑏 ·𝑚) +𝑚Z = 𝑎 · 𝑏 +𝑚Z

= [𝑎 · 𝑏] = [𝑎] ∼· [𝑏] .

Es handelt sich also um eine innere Verknüpfung auf Z /𝑚 Z.
Die Assoziativität von ∼· wird direkt von der Assoziativität von · in den ganzen Zahlen
vererbt, denn

( [𝑎] ∼· [𝑏]) ∼· [𝑐] = [𝑎 ·𝑏] ∼· [𝑐] = [(𝑎 ·𝑏) · 𝑐] = [𝑎 · (𝑏 · 𝑐)] = [𝑎] ∼· [𝑏 · 𝑐] = [𝑎] ∼· ( [𝑏] ∼· [𝑐]) .

Analog wird die Kommutativität vererbt, denn

[𝑎] ∼· [𝑏] = [𝑎 · 𝑏] = [𝑏 · 𝑎] = [𝑏] ∼· [𝑎] .

Dass das neutrale Element aus der Klasse [1] besteht, wird ebenfalls vererbt, denn es ist

[1] ∼· [𝑎] = [1 · 𝑎] = [𝑎] = [𝑎 · 1] = [𝑎] ∼· [1] .

Der kanonische Isomorphismus 𝑓 : (Z𝑚, ·𝑚) → (Z /𝑚 Z, ∼· ) ist die Abbildung

{0, . . . ,𝑚 − 1} ∋ 𝑘 ↦→ [𝑘] ∈ Z /𝑚 Z.

Die Bijektivität der Abbildung folgt sofort daraus, dass 𝑘 ∈ {0, . . . ,𝑚 − 1}. Die Homomor-
phismuseigenschaft zeigt die Gleichungskette

𝑓 (𝑎·𝑚𝑏) = 𝑓 (𝑎·𝑏 mod 𝑚) = [𝑎·𝑏 mod 𝑚] = [𝑎·𝑏] = 𝑓 (𝑎)∼· 𝑓 (𝑏) ∀𝑎, 𝑏 ∈ {0, . . . ,𝑚−1}.
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(b) Es sei (𝑁,★) ein Normalteiler von der Gruppe (𝐺,★), deren neutrales Element wir 𝑒𝐺
nennen werden. Wir suchen eine Gruppe (𝐺̃,□) (mit einem neutralen Element 𝑒𝐺̃ ) und
einen Homomorphismus 𝑓 : (𝐺,★) → (𝐺̃,□) mit Kern(𝑓 ) = 𝑁 . Naheliegend ist, hier
als (𝐺̃,□) gerade (𝐺 /𝑁, ∼★) zu wählen, denn hier ist das dazugehörige neutrale Element
gerade 𝑒𝐺̃ = [𝑒𝐺 ] = 𝑁 und die kanonische Surjektion

𝑎 → [𝑎] = 𝑎 ★𝑁

ist gerade ein surjektiver Gruppenhomomorphismus mit dem entsprechenden Kern, siehe
Satz 8.21.

(c) Die Beweise für Familien und Mengen verlaufen vollständig analog, wir zeigen hier
also nur den ersten Fall für Familien. Es sei also (𝑁𝑖)𝑖∈𝐼 eine nichtleere Familie von
Normalteilern einer Gruppe (𝐺,★). Aus der Schnittstabilität für Untergruppen, siehe
Lemma 7.47, folgt sofort, dass

⋂
𝑖∈𝐼 𝑁𝑖 ebenfalls eine Untergruppe ist. Ist nun 𝑎 ∈ 𝐺 und

𝑏 ∈ ⋂
𝑖∈𝐼 𝑁𝑖 , dann ist 𝑏 ∈ 𝑁𝑖 für alle 𝑖 ∈ 𝐼 , welche alle Normalteiler sind. Entsprechend ist

𝑎 ★𝑏 ∈ 𝑁𝑖 ★ 𝑎 ∀𝑖 ∈ 𝐼 ,

und somit 𝑎★𝑏 ∈ ⋂
𝑖∈𝐼 𝑁𝑖★𝑎, also 𝑎★

⋂
𝑖∈𝐼 𝑁𝑖 ⊆

⋂
𝑖∈𝐼 𝑁𝑖★𝑎. Analog zeigt man die andere

Inklusion und erhält, dass
⋂

𝑖∈𝐼 𝑁𝑖 ein Normalteiler von 𝐺 ist.

Übungsaufgabe I-6.4. (Homomorphiesatz für Gruppen)

Geben Sie einen Gruppenhomomorphismus von (Z12, +12) nach (Z3, +3) an, so dass der Homo-
morphiesatz Ihnen die Isomorphie von Z12 / 3Z12 und (Z3, +3) liefert.

Lösung.

Damit wir hier den Homomorphiesatz anwenden können, benötigen wir einen Gruppenhomo-
morphismus 𝑓 : (Z12, +12) → (Z3, +3) mit ker 𝑓 = 3Z12 = {0, 3, 6, 9}, also genau jedes Vielfache
von 3 in Z12 soll auf 0 abgebildet werden, wofür sich natürlich 𝑓 : 𝑧 ↦→ 𝑧 mod 3 anbietet.

Es bleibt zu zeigen, dass dieses 𝑓 tatsächlich ein Gruppenhomomorphismus ist. Das folgt aus
den Gleichheiten

𝑓 (𝑧1 +12 𝑧2) = (𝑧1 + 𝑧2 mod 12) mod 3
= (𝑧1 + 𝑧2) mod 3
= ((𝑧1 mod 3) + (𝑧2 mod 3)) mod 3
= (𝑧1 mod 3) +3 (𝑧2 mod 3)
= 𝑓 (𝑧1) +3 𝑓 (𝑧2)

für alle 𝑧1, 𝑧2 ∈ Z12.
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Hausaufgabe I-6.1 (Homomorphismen) 3.5 + 1.5 = 5 Punkte

(a) Entscheiden Sie, welche der unten stehenden Abbildungen Homomorphismen, Endomor-
phismen, Isomorphismen bzw. Automorphismen sind. Begründen Sie Ihre Antwort.

𝑓 : (R>0, ·) → (R, +), 𝑓 (𝑥) := ln(𝑥)(𝑖) 𝑓 : (Q, +) → (R, +), 𝑓 (𝑥) := 3𝑥 + 1(𝑖𝑖)
𝑓 : (Z2, +2) → ({⊤,⊥},XOR),
𝑓 (𝑧) := (𝑥 > 0)

(𝑖𝑖𝑖) 𝑓 : (𝑆3, ◦) → (P(R), △),
𝑓 (𝜎) := [0,− sgn(𝜎)]

(𝑖𝑣)

(b) Es seien 𝑓 : 𝐺1 → 𝐺2 und𝑔 : 𝐺2 → 𝐺3 (Halbgruppen-, Monoid-, Gruppen-)isomorphismen
von (𝐺1,★) nach (𝐺2,□) bzw. von (𝐺2,□) nach (𝐺3, •). Zeigen Sie, dass dann auch 𝑓 −1

und 𝑔 ◦ 𝑓 ein solcher Isomorphismus von (𝐺2,□) nach (𝐺1,★) bzw. von (𝐺1,★) nach
(𝐺3, •) sind.

Lösung.

(a) (𝑖) Bei 𝑓 : (R>0, ·) → (R, +), 𝑓 (𝑥) := ln(𝑥) handelt es sich im (Ur-)Bildbereich um
Gruppen. Die Rechenregeln zum Logarithmus liefern dabei direkt, dass ln(𝑥 · 𝑦) =
ln(𝑥) + ln(𝑦), für alle 𝑥, 𝑦 ∈ R und damit die Strukturverträglichkeit, also ist 𝑓
ein Gruppenhomomorphismus. Im (Ur-)Bildbereich liegen nicht die gleichen Grup-
pen vor, damit kann es sich nicht um einen Endo- oder Automorphismus handeln.
Allerdings ist der Logarithmus bijektiv auf den positiven reellen Zahlen mit der
Exponentialabbildung als Inverse, daher handelt es sich um einen Gruppenisomor-
phismus. (1 Punkt)

(𝑖𝑖) Bei 𝑓 : (Q, +) → (R, +), 𝑓 (𝑥) := 3𝑥 + 1 handelt es sich im (Ur-)Bildbereich jeweils
um wohlbekannte Gruppen. Durch die Verschiebung der linearen Abbildung um
die 1 handelt es sich aber nicht um eine +-verträgliche Abbildung, denn 𝑓 (0 + 0) =
3 · 0 + 1 = 1 ≠ 2 = 3 · 0 + 1 + 3 · 0 + 1 = 𝑓 (0) + 𝑓 (0). (0.5 Punkte)

(𝑖𝑖𝑖) 𝑓 : (Z2, +2) → ({⊤,⊥},XOR), 𝑓 (𝑧) := (𝑥 > 0) handelt es sich im Urbildbereich
um eine uns wohlbekannte Gruppe. Im Bildbereich ist XOR ein Junktor und damit
eine Verknüpfung. Diese ist außerdem assoziativ, denn sowohl 𝑥 XOR(𝑦 XOR 𝑧) als
auch (𝑥 XOR 𝑦) XOR 𝑧 haben genau dann den Wert ⊤, wenn eine ungerade Anzahl
der Variablen den Wert ⊤ haben und sonst den Wert ⊥. Neutral ist das Element ⊥
und beide Elemente sind selbstinvers, damit handelt es sich um eine Gruppe. Wir
erhalten (auf Grund der Kommutativität von XOR und +2) die Gleichung

𝑓 (𝑥 +2 𝑦) = 𝑓 (𝑥) XOR 𝑓 (𝑦),
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da für 𝑥 = 𝑦 das Bild 𝑓 (𝑥 +2 𝑦) = 𝑓 (0) = ⊥ gerade das Ergebnis von ⊥XOR⊥
und ⊤XOR⊤ ist, sowie analog für den Fall 𝑥 ≠ 𝑦 , jeweils für alle 𝑥, 𝑦 ∈ Z2. Die
Bijektivität von 𝑓 liefert uns sofort einen Gruppenisomorphismus nichtgleicher
Gruppen. (1 Punkt)

(𝑖𝑣) Bei 𝑓 : (𝑆3, ◦) → (P(R), △), 𝑓 (𝜎) := [0,− sgn(𝜎)] handelt es sich im (Ur-)Bildbereich
um Gruppen. Tatsächlich haben wir strukturverträglichkeit, denn es ist:

𝑓 (𝜎1 ◦ 𝜎2) = [0,− sgn(𝜎1 ◦ 𝜎2)]
= [0,− sgn(𝜎1) · sgn(𝜎2)]

=

{
[0, 1] sgn(𝜎1) ≠ sgn(𝜎2)
∅ sgn(𝜎1) = sgn(𝜎2)

= [0,− sgn(𝜎1)]△[0,− sgn(𝜎2)]
= 𝑓 (𝜎1)△𝑓 (𝜎2) .

Es handelt sich aber nur um einen Gruppenhomomorphismus, nicht um einen
Isomorphismus, denn das Bild besteht aus exakt zwei Elementen, das Urbild aber
aus mehr als zwei, damit kann hier keine Bijektion exitieren. (1 Punkt)

(b) Jede bijektive Funktion 𝑓 : (𝐺1,★) → (𝐺2,□) ist natürlich invertierbar und ihre Um-
kehrfunktion ist bijektiv. Wenn sowohl der Definitions- als auch der Zielbereich die
Halbgruppen-, Monoid- oder Gruppenstruktur hat, dann gilt das auch für die Umkehr-
funktion 𝑓 −1. Für 𝑎, 𝑏 ∈ 𝐺2 ist dann

𝑓 −1(𝑎 □ 𝑏) = 𝑓 −1 (𝑓 (𝑓 −1(𝑎)) □ 𝑓 (𝑓 −1(𝑏))
)

= 𝑓 −1 (𝑓 (𝑓 −1(𝑎) ★ 𝑓 −1(𝑏)
) )

= 𝑓 −1(𝑎) ★ 𝑓 −1(𝑏).

Für Monoide haben wir zusätzlich gefordert, dass die inversen Elemente aufeinander
abgebildet werden, was 𝑓 nach Voraussetzung erfüllt und 𝑓 −1 auf Grund der Bijektivität
ebenfalls.
Die Komposition 𝑔 ◦ 𝑓 ist nach Lemma 6.19 ebenfalls bijektiv. Die Strukturverträglichkeit
folgt aus

𝑔 ◦ 𝑓 (𝑎★𝑏) = 𝑔(𝑓 (𝑎★𝑏)) = 𝑔(𝑓 (𝑎) □ 𝑓 (𝑏)) = 𝑔(𝑓 (𝑎)) •𝑔(𝑓 (𝑏)) = (𝑔 ◦ 𝑓 ) (𝑎) • (𝑔 ◦ 𝑓 ) (𝑏)

für alle 𝑎, 𝑏 ∈ 𝐺1.
(1.5 Punkte)

Hausaufgabe I-6.2 (Kern und Bild) 2 + 2 = 4 Punkte
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(a) Bestimmen Sie Kern und Bild der Gruppenhomomorphismen in Hausaufgabe I-6.1 Tei-
laufgabe (a).

(b) Es seien 𝑓 : 𝐺1 → 𝐺2 und 𝑔 : 𝐺2 → 𝐺3 Gruppenhomomorphismen. Bestimmen Sie
Bild(𝑔 ◦ 𝑓 ) und Kern(𝑔 ◦ 𝑓 ) in Abhängigkeit der Kerne und Bilder von 𝑔 und 𝑓 .

Lösung.

(a) (𝑖) Bei 𝑓 : (R>0, ·) → (R, +), 𝑓 (𝑥) := ln(𝑥) müssen wir im Grunde keine Bestimmung
durchführen, weil wir schon festgestellt haben, dass es sich um einen Gruppeni-
somorphismus handelt, der daher trivialen Kern (Kern(𝑓 ) = 1) und volles Bild
(Bild(𝑓 ) = R) hat. (0.5 Punkte)

(𝑖𝑖) Für 𝑓 : (𝑆3, ◦) → (P(R), △), 𝑓 (𝜎) := [0,− sgn(𝜎)] besteht der Kern aus allen ge-
raden Permutationen {id, 𝜏 (1, 2) ◦ 𝜏 (2, 3), 𝜏 (1, 3) ◦ 𝜏 (2, 3)}. Das Bild ist {∅, [0, 1]}.
(1 Punkt)

(𝑖𝑖𝑖) Für 𝑓 : (P({Q}), △) → ({⊤,⊥},XOR), 𝑓 (𝐴) := (𝐴 ≠ ∅) haben wir wieder die
Gruppenisomorphismuseigenschaft, also trivialen Kern (Kern(𝑓 ) = {∅}) und volles
Bild (Bild(𝑓 ) = {⊤,⊥}). (0.5 Punkte)

(b) Es ist

Kern(𝑔 ◦ 𝑓 ) = {𝑎 ∈ 𝐺1 | 𝑔 ◦ 𝑓 (𝑎) = 𝑒3} = {𝑎 ∈ 𝐺1 | 𝑓 (𝑎) ∈ Kern(𝑔)} = 𝑓 −1(Kern(𝑔))

und

Bild(𝑔 ◦ 𝑓 ) = {𝑐 ∈ 𝐺3 | ∃𝑎 ∈ 𝐺1 : 𝑔 ◦ 𝑓 (𝑎) = 𝑐}
= {𝑐 ∈ 𝐺3 | ∃𝑏 ∈ Bild(𝑓 ) : 𝑔(𝑏) = 𝑐}
= 𝑔(Bild(𝑓 ))
= Bild(𝑔|Bild(𝑓 ) ).

(2 Punkte)

Hausaufgabe I-6.3 (Normalteiler und Faktorgruppe) 2 + 1 + 1 + 3 = 7 Punkte

(a) Bestimmen Sie für den Normalteiler (Z, +) in der Gruppe (R, +) die Elemente von (R /Z, +̃)
mit endlicher Ordnung.

(b) Es sei (𝐺,★) eine Gruppe, 𝐸 ⊆ 𝐺 mit ⟨𝐸⟩ = 𝐺 und (𝑁,★) eine Untergruppe von (𝐺,★).
Zeigen Sie, dass 𝑁 genau dann ein Normalteiler von (𝐺,★) ist, wenn 𝑎 ★𝑁 = 𝑁 ★ 𝑎 für
alle 𝑎 ∈ 𝐸 gilt.
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(c) Es sei (𝐺,★) eine Gruppe und (𝑁1,★) und (𝑁2,★) zwei ihrer Normalteiler mit 𝑁1 ⊆ 𝑁2.
Beweisen oder widerlegen Sie, dass (𝐺 /𝑁2,

∼
★) eine Untergruppe von (𝐺 /𝑁1,

∼
★) ist.

(d) Es sei (𝐺,★) eine Gruppe und (𝑁,★) einer ihrer Normalteiler. Zeigen Sie, dass𝐺 /𝑁 genau
dann abelsch ist, wenn 𝑁 die Kommutatorgruppe 𝐾 (𝐺) := ⟨{𝑎 ★𝑏 ★ 𝑎′ ★𝑏′ | 𝑎, 𝑏 ∈ 𝐺}⟩
enthält.

Lösung.

(a) Die Elemente von R /Z besteht aus den Klassen [𝑎] = 𝑎 + Z für alle 𝑎 ∈ R, also

R /Z = {𝑎 + Z | 𝑎 ∈ R} = {𝑎 + Z | 𝑎 ∈ [0, 1)}.

Ein Element [𝑎] ∈ R /Z besitzt genau dann endliche Ordnung bezüglich ∼+, wenn ein
𝑛 ∈ N existiert, so dass

Z = [0]︸  ︷︷  ︸
neutr. Elem. in R /Z

= 𝑛[𝑎] = [𝑎] ∼+ · · · ∼+ [𝑎]︸            ︷︷            ︸
n-mal

= [𝑛𝑎] = 𝑛𝑎 + Z,

was genau dann der Fall ist, wenn 𝑛𝑎 ∈ Z, also wenn ein𝑚 ∈ Z existiert, so dass

𝑛𝑎 =𝑚

also genau dann, wenn 𝑎 ∈ Q, also wenn die Klasse [𝑎] einen Repräsentanten aus Q
besitzt (womit dann gleich alle Repräsentanten aus Q sind). Die Menge von Elementen
aus R /Z mit endlicher Ordnung ist also genau {[𝑎] | 𝑎 ∈ Q}. (2 Punkte)

(b) Da 𝐸 ⊆ 𝐺 ist die eine Implikation klar, es bleibt also nur zu zeigen, dass 𝑎 ★𝑁 = 𝑁 ★ 𝑎

für alle 𝑎 ∈ 𝐸 die Normalteilereigenschaft von 𝑁 impliziert.
Es sei dafür 𝑏 ∈ 𝐺 beliebig. Da 𝐸 die gesamte Gruppe 𝐺 erzeugt, können wir auf Grund
der Darstellung der erzeugten Gruppe aus Satz 7.50 ein 𝑛 ∈ N0 finden und 𝑎1, . . . , 𝑎𝑛 ∈ 𝐸
mit 𝑏 = 𝑎1 ★ . . .★ 𝑎𝑛 . Entsprechend ist

𝑏 ★𝑁 = 𝑎1 ★ . . .★ 𝑎𝑛 ★𝑁

= 𝑎1 ★ . . .★𝑁 ★ 𝑎𝑛

= . . .

= 𝑎1 ★𝑁 ★ . . .★ 𝑎𝑛

= 𝑁 ★ 𝑎1 ★ . . .★ 𝑎𝑛

= 𝑁 ★𝑏.
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(1 Punkt) Beachte: Ein sauberer Beweis der obigen Eigenschaft benötigt einen
Induktionsbeweis, die obige Argumentation zeigt zwar, wie man diesen führen würde, ist
aber unsauber.

(c) Um die gestellte Frage zu untersuchen benötigen wir vor allem eine Antwort darauf, wie
sich dieMengen𝐺 /𝑁1 und𝐺 /𝑁2 zueinander verhalten. Ohne eine Teilmengeneigenschaft
der Grundmengen haben wir keine Möglichkeit, die Faktormengenverknüpfungen (die
streng genommen nicht die gleichen sind) als jeweilige Einschränkungen voneinander
zu verstehen. Sowohl die Elemente von𝐺 /𝑁1 als auch die von𝐺 /𝑁2 liegen in P(𝐺), es
bleibt also zu prüfen, ob 𝐺 /𝑁2 ⊆ 𝐺 /𝑁1 gilt. Dabei sind die Mengen gegeben als

𝐺 /𝑁1 = {𝑎 ★𝑁1︸︷︷︸
⊆𝑎★𝑁2

| 𝑎 ∈ 𝐺} und 𝐺 /𝑁2 = {𝑎 ★𝑁2 | 𝑎 ∈ 𝐺}.

Wir haben also erstmal nur eine Teilmengeneigenschaft auf dem Level der Elemente der
Faktorgruppen, nicht auf den Faktorgruppen selbst.
Es ist also zu klären, ob für jedes 𝑎 ∈ 𝐺 ein 𝑏 ∈ 𝐺 existiert, so dass

𝑎 ★𝑁2 = 𝑏 ★𝑁1.

Da alle Nebenklassen gleichmächtig zu den jeweiligen Normalteilern sind, ist hier klar,
dass eine notwendige Bedingung für die obige Gleichheit sein muss, dass 𝑁1 und 𝑁2
gleichmächtig sind. Die Menge 𝑁2 kann aber deutlich mächtiger sein, als 𝑁1, was von
der Wahl eines einzelnen 𝑏 passend zu 𝑎 und 𝑁1 und 𝑁2 nicht kompensiert werden kann.
Als Gegenbeispiel kann man die additive Verknüpfung von 𝐺 := R, 𝑁1 := Z und 𝑁2 := R
untersuchen. Hier ist

R /R = {𝑟 + R | 𝑟 ∈ R} = {R} ⊈ {𝑟 + Z | 𝑟 ∈ R} = R /Z.

Ebenso gilt die umgekehrte Beziehung nicht, es ist also auch R /R ⊉ R /Z. (1 Punkt)
(d) „⇒“ Ist 𝐺 /𝑁 abelsch, dann gilt für alle 𝑎, 𝑏 ∈ 𝐺 , dass

[𝑎★𝑏 ★𝑎′ ★𝑏′] = [𝑎] ∼
★ [𝑏] ∼

★ [𝑎′] ∼
★ [𝑏′] = [𝑎] ∼

★ [𝑎′] ∼
★ [𝑏] ∼

★ [𝑏′] = [𝑒] ∼
★ [𝑒] = [𝑒] = 𝑁 .

Insbesondere ist damit jeder Kommutator in 𝑁 . Da 𝑁 mit ★ eine Untergruppe von (𝐺,★)
ist, welche die Mengen der Kommutatoren beinhaltet, ist die von den Kommutatoren
erzeugte Gruppe (die bzgl. der Mengeninklusion kleinste Gruppe) eine Teilmenge von 𝑁 .
(1.5 Punkte)
„⇐“ Liegt die Kommutatorengruppe in 𝑁 , dann ist wegen des Translationsgruppenkrite-
riums (Lemma 7.25) (konkret der Surjektivität) für beliebige 𝑎, 𝑏 ∈ 𝐺 , deren Inverse den
Kommutator 𝑏′ ★ 𝑎′ ★𝑏 ★ 𝑎 ∈ 𝑁 bilden, schon

𝑏′ ★ 𝑎′ ★𝑏 ★ 𝑎 ★𝑁 = 𝑁
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und somit gilt

[𝑎] ∼★ [𝑏] = [𝑎★𝑏] = 𝑎★𝑏★𝑁 = 𝑎★𝑏★𝑏′ ★ 𝑎′ ★𝑏 ★ 𝑎★𝑁 = 𝑏★𝑎★𝑁 = [𝑏★𝑎] = [𝑏] ∼★ [𝑎] .

(1.5 Punkte)

Hausaufgabe I-6.4 (Homomorphiesatz für Gruppen) 3 + 1 = 4 Punkte

Es seien (𝐺1,★) und (𝐺2,□) zwei Gruppen und 𝐺1 endlich. Zeigen Sie:

(a) Ist auch 𝐺2 endlich und #𝐺1 und #𝐺2 teilerfremd, dann existiert zwischen (𝐺1,★) und
(𝐺2,□) nur der triviale Gruppenhomomorphismus.
Hinweis: Nutzen Sie den Satz von Lagrange (Satz 7.60 im Skript).

(b) Ist #𝐺1 eine Primzahl, dann ist jeder Gruppenhomomorphismus von (𝐺1,★) nach (𝐺2,□)
trivial oder injektiv.

Lösung.

(a) Es sei 𝑓 : (𝐺1,★) → (𝐺2,□) ein Gruppenhomomorphismus. Dann ist nach den Eigenschaf-
ten von Bild und Kern von Gruppenhomomorphismen in Lemma 8.11 des Skripts

Bild(𝑓 ) = 𝑓 (𝐺1) mit □ eine Untergruppe von (𝐺2,□)
Kern(𝑓 ) = 𝑓 −1(𝑒2) mit ★ eine Untergruppe von (𝐺1,★)

Aus dem Satz 7.60 von Lagrange folgt die Teilereigenschaft # Bild(𝑓 ) | #𝐺2. (1 Punkt)
Der Homomorphiesatz für Gruppen (Satz 8.25 des Skripts) besagt nun weiter, dass
𝐺1 / Kern(𝑓 ) � Bild(𝑓 ) ist. Alle Nebenklassen bzgl. Kern(𝑓 ) sind aber zu Kern(𝑓 ) gleich-
mächtig, es ist also

#𝐺1 = #(𝐺1 / Kern(𝑓 ))︸             ︷︷             ︸
Anzahl der Nebenklassen

· # Kern(𝑓 ) = # Bild(𝑓 ) · # Kern(𝑓 ) (0.1)

Das liefert die Teilereigenschaft # Bild(𝑓 ) | #𝐺1. (1 Punkt)
Zusammen haben wir also # Bild(𝑓 ) | #𝐺1 und # Bild(𝑓 ) | #𝐺2 sowie die Teilerfreiheit
von #𝐺1 und #𝐺2, also muss # Bild(𝑓 ) = 1 sein. Da 𝑓 nach Annahme ein Gruppenhomo-
morphismus ist, muss 𝑓 (𝑒1) = 𝑒2 gelten, also 𝑒2 ∈ Bild(𝑓 ) und damit {𝑒2} = Bild(𝑓 ), 𝑓
muss also der triviale Gruppenhomomorphismus sein. (1 Punkt)

(b) Wie zuvor erhalten wir (0.1) und damit die Teilereigenschaft # Bild(𝑓 ) | #𝐺1, und da 𝐺1
prim ist, muss # Bild(𝑓 ) = 1 sein und damit Bild(𝑓 ) = {𝑒2}, also 𝑓 trivial, oder es muss
# Bild(𝑓 ) = #𝐺1 sein, und 𝑓 damit surjektiv und wegen der Endlichkeit der Mengen auch
injektiv. (1 Punkt)
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Bitte reichen Sie Ihre Lösungen der Hausaufgaben als ein PDF auf Mampf ein.
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