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Übungsaufgabe I-5.1. ((Abelsche) Gruppen)

(a) Entscheiden Sie, welche der Beispiele aus Übungsaufgabe I-4.3 Gruppen sind, und ob sie
kommutativ sind. Begründen Sie Ihre Entscheidung.

(b) Gegeben seien eine nichtleere Indexmenge 𝐼 und für jedes 𝑖 ∈ 𝐼 eine Gruppe (𝐺𝑖 ,★𝑖). Wir
definieren auf

>
𝑖∈𝐼 𝐺𝑖 die Verknüpfung

★× (𝑎, 𝑏) := (𝑎𝑖 ★𝑖 𝑏𝑖)𝑖∈𝐼 .

Zeigen Sie, dass (>𝑖∈𝐼 𝐺𝑖 ,★×) eine Gruppe ist. (Diese Gruppe wird direktes Produkt der
Gruppen (𝐺𝑖 ,★𝑖) genannt). Zeigen Sie weiterhin, dass (>𝑖∈𝐼 𝐺𝑖 ,★×) genau dann abelsch
ist, wenn alle (𝐺𝑖 ,★𝑖) abelsch sind.

Lösung.

(a) In Frage kommen nur die Monoide, also die Paare (i) und (iii).
(i): Für (R𝑋 , ·) mit der konstanten Einsfunktion besitzt bspw. die konstante Nullfunktion
kein Inverses, hier liegt also keine Gruppe vor.
(iii): Für (P(𝑋 ),∪) mit der leeren Menge als neutralem Element ist lediglich ∅ invertierbar,
hier liegt also keine Gruppe vor.

(b) Entsprechend Definition 6.42 ist?
𝑖∈𝐼

𝐺𝑖 :=
{
𝐹 : 𝐼 →

⋃
𝑖∈𝐼

𝐺𝑖

��� 𝐹 (𝑖) ∈ 𝐺𝑖 für alle 𝑖 ∈ 𝐼
}
.
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Für 𝑎 und 𝑏 aus
>

𝑖∈𝐼 𝐺𝑖 sind die Auswertungen 𝑎𝑖 = 𝑎(𝑖) und 𝑏𝑖 = 𝑏 (𝑖) also jeweils in
𝐺𝑖 und nach Voraussetzung ist ★𝑖 eine Verknüpfung auf 𝐺𝑖 , damit ist 𝑎𝑖 ×𝑖 𝑏𝑖 ∈ 𝐺𝑖 , also
ist ★× zumindest schonmal wohldefiniert. Das war Teil der Aufgabenstellung, musste
also nicht nachgeprüft werden, ebenso wie die Assoziativität, die aber ebenfalls einfach
vererbt wird, denn es ist auf Grund der Assoziativität jeder Verknüpfung ★𝑖 :

(𝑎 ★× 𝑏) ★× 𝑐 = (𝑖 ↦→ 𝑎𝑖 ★𝑖 𝑏𝑖) ★× 𝑐

= (𝑖 ↦→ (𝑎𝑖 ★𝑖 𝑏𝑖) ★𝑖 𝑐𝑖)
= (𝑖 ↦→ 𝑎𝑖 ★𝑖 (𝑏𝑖 ★𝑖 𝑐𝑖))
= 𝑎 ★× (𝑖 ↦→ 𝑏𝑖 ★𝑖 𝑐𝑖)
= 𝑎 ★× (𝑏 ★× 𝑐) .

In jeder Gruppe 𝐺𝑖 existiert ein neutrales Element 𝑒𝑖 , und das Element 𝑒× := 𝑖 ↦→ 𝑒𝑖 ist
dann neutral in

>
𝑖∈𝐼 𝐺𝑖 , denn für jedes 𝑏 ∈ >

𝑖∈𝐼 𝐺𝑖 ist

𝑒× ★× 𝑏 = (𝑖 ↦→ (𝑒𝑖 ★𝑖 𝑏𝑖)) = (𝑖 ↦→ 𝑏𝑖) = 𝑏.

Außerdem ist jedes 𝑏 ∈ >
𝑖∈𝐼 𝐺𝑖 invertierbar mit inversem Element 𝑏−1 := 𝑖 ↦→ 𝑏−1𝑖 , denn

𝑏−1 ★× 𝑏 = (𝑖 ↦→ (𝑏−1𝑖 ★𝑖 𝑏𝑖)) = (𝑖 ↦→ 𝑒𝑖) = 𝑒× .

Damit handelt es sich hier um eine Gruppe.
Sind alle Teilverknüpfungen kommutativ, dann gilt für 𝑎, 𝑏 ∈ >

𝑖∈𝐼 𝐺𝑖 : 𝑎 ★× 𝑏 = (𝑎𝑖 ★𝑖

𝑏𝑖)𝑖∈𝐼 = (𝑏𝑖★𝑖 𝑎𝑖)𝑖∈𝐼 = 𝑏★× 𝑎. Gibt es ein einziges 𝑖0 ∈ 𝐼 für das Elemente 𝑎𝑖0, 𝑏𝑖0 existieren,
so dass 𝑎𝑖0 ★𝑖0 𝑏𝑖0 ≠ 𝑏𝑖0 ★𝑖0 𝑎𝑖0 , dann ist für je beliebigen 𝑎, 𝑏 ∈∈ >

𝑖∈𝐼 𝐺𝑖 auch 𝑎 ★× 𝑏 and
Stelle 𝑖0 verschieden von 𝑏 ★× 𝑎 und damit ★× nicht kommutativ.

Übungsaufgabe I-5.2. (Kommutativität in (Halb-)Gruppen)

Gegeben sei eine partiell geordnete, nichtleere Menge (𝐻,≼) mit der Eigenschaft, dass für je
zwei Elemente 𝑥, 𝑦 das Infimum inf ({𝑥, 𝑦}) ∈ 𝐻 existiert. Zeigen Sie, dass (𝐻, inf ({·, ·})) eine
Halbgruppe ist, und untersuchen Sie, ob diese kommutativ ist, und in welchen Fällen es sich
sogar um eine Gruppe handelt.

Lösung.

Per Definition ist das Infimum in 𝐻 , damit bildet die Abbildung schonmal in die richtige Menge
ab. Ebenfalls per Definition ist das Infimum einer Menge von zwei Elementen unabhängig von
deren Reihenfolge, damit liegt Kommutativität vor.
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Für die Assoziativität seien 𝑎, 𝑏, 𝑐 ∈ 𝐻 . Wir zeigen nun, dass inf ({𝑎, inf ({𝑏, 𝑐})}) = inf ({𝑎, 𝑏, 𝑐})
ist, dann folgt die Assoziativität sofort aus der Kommutativität.Wir setzen 𝑖 := inf ({𝑎, inf ({𝑏, 𝑐})}).
Dann ist 𝑖 eine untere Schranke an {𝑎} und an inf ({𝑏, 𝑐}). Auf Grund der Transitivität der Ord-
nungsrelation ist 𝑖 auch untere Schranke an {𝑏, 𝑐} und damit auch eine untere Schranke an
{𝑎, 𝑏, 𝑐}. Ist nun 𝑠 eine weitere untere Schranke an {𝑎, 𝑏, 𝑐}, dann ist 𝑠 auch untere Schranke
an {𝑎} und an {𝑏, 𝑐}. Per Definition des Infimums ist 𝑠 damit auch untere Schranke an {𝑎}
und {inf ({𝑏, 𝑐})} und damit an {{𝑎}, inf ({𝑏, 𝑐})}, woraus sofort 𝑠 ⩽ 𝑖 folgt und damit, dass
𝑖 = inf ({𝑎, 𝑏, 𝑐}).

Damit liegt eine kommutative Halbgruppe vor. Ein Element 𝑒 ist genau dann neutral, wenn
inf ({𝑒, 𝑎}) = 𝑎 für alle 𝑎 ∈ 𝐻 gilt. Dies gilt genau dann, wenn 𝑒 ⩾ 𝑎 für alle 𝑎 ∈ 𝐻 und 𝑒 ∈ 𝐻 ist,
also wenn 𝑒 ein Maximum in 𝐻 ist. Das ist also der einzige Fall, in dem ein Monoid vorliegt.

Invertierbarkeit für jedes 𝑎 ∈ 𝐻 bedeutet, dass jeweils ein 𝑎−1 existiert, so dass inf (𝑎, 𝑎−1) = 𝑒
gilt, was genau dann der Fall ist, wenn 𝑒 ⩽ 𝑎 ⩽ 𝑒 für 𝑎 ∈ 𝐻 , also wenn 𝐻 nur aus dem neutralen
Element besteht.

Übungsaufgabe I-5.3. (Symmetrische Gruppe)

Bestimmen Sie die Fehlstände, eine Zerlegung in Transpositionen und das Signum der Permuta-
tion

𝜎 :=
(
1 2 3 4 5 6 7 8
6 5 4 1 7 3 8 2

)
.

Lösung.

Die Fehlstände lesen wir ab, indem wir für jedes Indexpaar (𝑖, 𝑗) mit 𝑖 < 𝑗 prüfen, ob 𝜎 (𝑖) > 𝜎 ( 𝑗)
ist. Wir prüfen also für jeden Index 𝑖 aus ⟦1, 8⟧ und alle größeren Indizes, also die 𝑗 aus ⟦𝑖 + 1, 8⟧,
die Werte aus der Permutation (untere Reihe). Beispielsweise ist (1, 2) ein Fehlstand, denn
𝜎 (1) = 6 > 5 = 𝜎 (2). Es ergeben sich die Fehlstände

(1, 𝑗) für alle 𝑗 ∈ {2, 3, 4, 6, 8}
(2, 𝑗) für alle 𝑗 ∈ {3, 4, 6, 8}
(3, 𝑗) für alle 𝑗 ∈ {4, 6, 8}
(4, 𝑗) für keine 𝑗
(5, 𝑗) für alle 𝑗 ∈ {6, 8}
(6, 𝑗) für alle 𝑗 ∈ {8}
(7, 𝑗) für alle 𝑗 ∈ {8}.
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Eine Zerlegung in Transpositionen können wir dadurch bestimmen, dass wir durch Trans-
positionen die Permutation 𝜎 zurück in die Identität überführen. Dabei gibt es mindestens 4
gleichwertige Möglichkeiten vorzugehen. Entweder führt man die Transpositionen im Bildbe-
reich von 𝜎 (also nach/links der ursprünglichen Permutation) aus oder im Definitionsbereich
von 𝜎 (also vor/rechts der ursprünglichen Permutation).

Tauscht man im Bildbereich, dann ergibt sich die folgende Kette von Umformungen:

𝜎 =

(
1 2 3 4 5 6 7 8
6 5 4 1 7 3 8 2

)
= 𝜏 (6, 1) ◦

(
1 2 3 4 5 6 7 8
1 5 4 6 7 3 8 2

)
= 𝜏 (6, 1) ◦ 𝜏 (5, 2) ◦

(
1 2 3 4 5 6 7 8
1 2 4 6 7 3 8 5

)
= 𝜏 (6, 1) ◦ 𝜏 (5, 2) ◦ 𝜏 (4, 3) ◦

(
1 2 3 4 5 6 7 8
1 2 3 6 7 4 8 5

)
= 𝜏 (6, 1) ◦ 𝜏 (5, 2) ◦ 𝜏 (4, 3) ◦ 𝜏 (6, 4) ◦

(
1 2 3 4 5 6 7 8
1 2 3 4 7 6 8 5

)
= 𝜏 (6, 1) ◦ 𝜏 (5, 2) ◦ 𝜏 (4, 3) ◦ 𝜏 (6, 4) ◦ 𝜏 (7, 5) ◦

(
1 2 3 4 5 6 7 8
1 2 3 4 5 6 8 7

)
= 𝜏 (6, 1) ◦ 𝜏 (5, 2) ◦ 𝜏 (4, 3) ◦ 𝜏 (6, 4) ◦ 𝜏 (7, 5) ◦ 𝜏 (8, 7) ◦

(
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8

)
︸                              ︷︷                              ︸

id

= 𝜏 (6, 1) ◦ 𝜏 (5, 2) ◦ 𝜏 (4, 3) ◦ 𝜏 (6, 4) ◦ 𝜏 (7, 5) ◦ 𝜏 (8, 7)

Dabei fällt auf, dass wir uns wirklich in jedem Schritt merken müssen, wie die verbleibende
Permutation aussieht, denn es können sich Transpositionen ergeben, die eine verbleibende Stelle
mehrfach verwenden, in diesem Beispiel also der Tausch der 3 und der 4 jeweils aus der Stelle
6 heraus. Außerdem haben wir eine Transposition weniger ausführen müssen als höchstens
erforderlich, denn die 6 hatten wir zufällig zwischendurch an die richtige Stelle getauscht und
konnten nach der 5 gleich mit der 7 weitermachen. Schön zu sehen ist, wie die verbleibende
Permutation einen immer weiter wachsenden Identitätsblock auf der linken Seite stehen hat,
also zum Beispiel nach dem dritten Tauschschritt die Struktur(

1 2 3 4 5 6 7 8
1 2 3 6 7 4 8 5

)
hat.
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Tauscht man im Definitionsbereich (was etwas weniger übersichtlich ist), dann ergibt sich:

𝜎 =

(
1 2 3 4 5 6 7 8
6 5 4 1 7 3 8 2

)
=

(
1 2 3 4 5 6 7 8
1 5 4 6 7 3 8 2

)
◦ 𝜏 (4, 1)

=

(
1 2 3 4 5 6 7 8
1 2 4 6 7 3 8 5

)
◦ 𝜏 (8, 2) ◦ 𝜏 (4, 1)

=

(
1 2 3 4 5 6 7 8
1 2 3 6 7 4 8 5

)
◦ 𝜏 (6, 3) ◦ 𝜏 (8, 2) ◦ 𝜏 (4, 1)

=

(
1 2 3 4 5 6 7 8
1 2 3 4 7 6 8 5

)
◦ 𝜏 (6, 4) ◦ 𝜏 (6, 3) ◦ 𝜏 (8, 2) ◦ 𝜏 (4, 1)

=

(
1 2 3 4 5 6 7 8
1 2 3 4 5 6 8 7

)
◦ 𝜏 (8, 5) ◦ 𝜏 (6, 4) ◦ 𝜏 (6, 3) ◦ 𝜏 (8, 2) ◦ 𝜏 (4, 1)

=

(
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8

)
︸                              ︷︷                              ︸

id

◦𝜏 (8, 7) ◦ 𝜏 (8, 5) ◦ 𝜏 (6, 4) ◦ 𝜏 (6, 3) ◦ 𝜏 (8, 2) ◦ 𝜏 (4, 1)

= 𝜏 (8, 7) ◦ 𝜏 (8, 5) ◦ 𝜏 (6, 4) ◦ 𝜏 (6, 3) ◦ 𝜏 (8, 2) ◦ 𝜏 (4, 1)

Tauscht man die größeren Zahlen zuerst, dann ergeben sich ganz analog Zerlegungen.

Wir können das Signum nun aus der Anzahl der Fehlstände 𝑑 = 16 als (−1)𝑑 = (−1)16 = 1
oder mit der Anzahl 𝑟 = 6 der Transpositionen in einer Zerlegung von 𝜎 als (−1)𝑟 = (−1)6 = 1
ermitteln.

Übungsaufgabe I-5.4. (Untergruppen)

(a) Beweisen oder widerlegen Sie, dass
(𝑖) (𝑚 Z, +) für𝑚 ∈ N eine Untergruppe von (Z, +) ist;

Beachte: Hier ist tatsächlich𝑚 Z := {𝑚𝑧 | 𝑧 ∈ Z} gemeint, keine Restklassen.
(𝑖𝑖)

({
𝑓 ∈ RR

��∀𝑥 ∈ R (𝑓 (𝑥) ⩾ 0)
}
, ◦
)
eine Untergruppe von

(
{𝑓 ∈ RR | 𝑓 bijektiv}, ◦

)
ist.

(b) Es sei (𝑈 ,★) eine Untergruppe der Gruppe (𝐺,★). Zeigen Sie Lemma 7.43 des Skripts,
also die folgende Aussage: Das neutrale Element 𝑒𝑈 von (𝑈 ,★) ist gleich dem neutra-
len Element 𝑒 von (𝐺,★). Außerdem gilt für alle 𝑎 ∈ 𝑈 , dass das Inverse von 𝑎 in 𝑈
übereinstimmt mit dem Inversen von 𝑎 in 𝐺 .
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Lösung.

(a) Hier kann man schon anfangen mit dem Untergruppenkriterium zu arbeiten. In diesem
Lösungsvorschlag werden wir den Nachweis aber nochmal händisch führen.
(𝑖) Es sei𝑚 ∈ N. Für jedes 𝑎 ∈ Z ist𝑚𝑎 ∈ Z und somit tatsächlich𝑚Z ⊆ Z. Bezüglich

der Addition ist diese Teilmenge auch abgeschlossen, denn für 𝑎1 = 𝑚𝑧1 und
𝑎2 =𝑚𝑧2 aus𝑚Z ist

𝑎1 + 𝑎2 =𝑚𝑧1 +𝑚𝑧2 =𝑚 (𝑧1 + 𝑧2)︸   ︷︷   ︸
∈Z

∈𝑚Z.

Das neutrale Element in (Z, +) ist die 0, und da auch𝑚0 = 0 ist, ist 0 ∈ 𝑚Z, diese
Teilmenge ist bezüglich der Addition also abgeschlossen und enthält das neutrale
Element, formt mit der Addition also schonmal einMonoid.
Dass es sich bei (𝑚Z, +) sogar um eine Gruppe handelt sieht man daran, dass jedes
Element 𝑎 =𝑚𝑧 das inverse Element 𝑎′ =𝑚(−𝑧) ∈ 𝑚Z besitzt. Jedes Element aus
(𝑚Z, +) ist also invertierbar.

(𝑖𝑖) Es handelt sich hier nicht um eine Untergruppe, denn
{
𝑓 ∈ RR

��∀𝑥 ∈ R (𝑓 (𝑥) ⩾ 0)
}

ist nichtmal eine Teilmenge von {𝑓 ∈ RR | 𝑓 bijektiv}, wie bspw. die positive aber
nicht invertierbare Funktion 𝑓 ≡ 1 zeigt.
Es handelt sich aber bei {𝑓 ∈ RR | 𝑓 bijektiv} tatsächlich um eine Gruppe (die
symmetrische Gruppe 𝑆 (R)), wir können also (spaßeshalber) die Menge

𝑈 :=
{
𝑓 ∈ RR

��∀𝑥 ∈ R (𝑓 (𝑥) ⩾ 0) und 𝑓 bijektiv
}
,

die tatsächlich eine Teilmenge von {𝑓 ∈ RR | 𝑓 bijektiv} ist, untersuchen. In 𝑈
existiert aber nichtmal ein neutrales Element, denn das müsste die Identität sein,
welche bzgl. der Komposition in {𝑓 ∈ RR | 𝑓 bijektiv} auch auf der Teilmenge 𝐴 das
eindeutige neutrale Element ist. Die Identität nimmt aber auch negative Werte an
und liegt daher nicht in𝑈 .

(b) Es gilt

𝑒 ★ 𝑒𝑈 = 𝑒𝑈 (𝑒 neutral in G)
= 𝑒𝑈 ★𝑈 𝑒𝑈 (𝑒𝑈 neutral in U)
= 𝑒𝑈 ★ 𝑒𝑈 . (Einschränkung der Verknüpfung)

Mit der Kürzungsregel aus (7.8b) des Skripts für die Gruppe (𝐺,★) folgt dann 𝑒 = 𝑒𝑈 .
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Beachte: Wir haben die Gruppeneigenschaft von 𝑈 hier nicht genutzt und damit eigent-
lich gezeigt, dass schon das neutrale Element jedes Untermonoid (𝑈 ,★𝑈 ) dem neutralen
Element der Gruppe (𝐺,★) entspricht. Ein Beispiel für einen Untermonoid in einer Grup-
pe, der aber keine Teilgruppe ist, ist (N0, +) mit dem neutralen Element 0 in (Z, +). Der
Begriff des Untermonoids ist allerdings eher ungewöhnlich und daher nicht Teil der
Vorlesung.
Es sei nun 𝑎 ∈ 𝑈 . Bezeichnen wir mit 𝑎′

𝑈
das Inverse von 𝑎 in𝑈 (das ja in𝑈 enthalten ist)

und mit 𝑎′ das Inverse von 𝑎 in 𝐺 (das möglicherweise nicht in𝑈 enthalten ist). Dann ist

𝑎′𝑈 ★ 𝑎 = 𝑎′𝑈 ★𝑈 𝑎 = 𝑒𝑈 = 𝑒

und damit wieder auf Grund der Kürzungsregeln also 𝑎′
𝑈
= 𝑎′.

Übungsaufgabe I-5.5. (Erzeugung und Ordnung)

Es sei (𝐺, ·) eine Gruppe.

Beachte: In dieser Aufgabe werden wir in multiplikativer Notation arbeiten.

(a) Zeigen Sie, dass ⟨𝑎⟩ = {𝑎𝑧 | 𝑧 ∈ Z} für 𝑎 ∈ 𝐺 ist, sowie, dass ord(𝑎) = #⟨𝑎⟩, wenn ord(𝑎)
endlich ist, und ansonsten ⟨𝑎⟩ abzählbar unendlich ist.

(b) Zeigen Sie, dass zyklische Untergruppen von (𝐺, ·) immer kommutativ sind.

Lösung.

Beachte: Die multiplikative Notation ist in dieser Aufgabe hauptsächlich für die erste Teilaufga-
be gewählt, um eine explizite, abkürzende Darstellung der zyklischen Gruppen zu ermöglichen.
Die Resultate sind, wie immer, von der Notation völlig unabhängig.

(a) Die Darstellung in der Aussage ist exakt die Darstellung in Satz 7.50 des Skripts, also der
Darstellung von erzeugten Untergruppen, wenn die erzeugende Menge nur ein Element
beinhaltet.
Für zwei natürliche Zahlen 𝑛,𝑚 ∈ N ist auf Grund der Kürzungsregeln außerdem 𝑎𝑛 = 𝑎𝑚

genau dann, wenn 𝑎𝑛−𝑚 = 𝑒 = 𝑎𝑚−𝑛 und damit genau dann, wenn die Differenz 𝑛 −𝑚
ein Vielfaches der ord𝑎 ist.
Für 𝑎 mit unendlicher Ordnung passiert das daher nie, insbesondere sind in diesem Fall die
𝑎𝑧 für 𝑧 ∈ Z in ⟨𝑎⟩ alle von einander verschieden. Es gibt für die Menge ⟨𝑎⟩ = {𝑎𝑧 | 𝑧 ∈ Z}
also die naheliegende Bijektion 𝑎𝑧 ↦→ 𝑧 in die abzählbar unendliche Menge Z, womit ⟨𝑎⟩
abzählbar unendlich ist.
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Wenn 𝑎 endliche Ordnung ord(𝑎) hat, dann ist entsprechend 𝑎𝑧 = 𝑎𝑧 mod ord(𝑎) , es gibt in
⟨𝑎⟩ also genau ord(𝑎) verschiedene Elemente, nämlich die Elemente 𝑎0, . . . , 𝑎ord𝑎−1 (für
die wir die Bijektion 𝑎𝑖 ↦→ 𝑖 + 1 nach {1, . . . , ord(𝑎)} angeben können).

(b) Die zyklischen Untergruppen von (𝐺, ·) sind genau die Mengen ⟨𝑎⟩ für 𝑎 aus 𝐺 , von
denen wir gerade die Darstellung {𝑎𝑧 | 𝑧 ∈ Z} gezeigt haben. Für 𝑎1 = 𝑎𝑧1 und 𝑎2 = 𝑎𝑧2
aus ⟨𝑎⟩ ist dann

𝑎1 · 𝑎2 = 𝑎𝑧1 · 𝑎𝑧2 = 𝑎𝑧1+𝑧2 = 𝑎𝑧2 · 𝑎𝑧1 = 𝑎2 · 𝑎1.

Übungsaufgabe I-5.6. (Nebenklassen)

Es sei (𝐺,★) eine Gruppe und (𝑈 ,★) eine Untergruppe. Zeigen Sie Folgerung 7.57 des Skripts,
also dass, wenn (𝐺,★) abelsch ist, die Äquivalenzrelationen ∼𝑈 und 𝑈∼ identisch sind und
entsprechend für alle 𝑎 ∈ 𝐺 die Nebenklassen 𝑎 ★𝑈 und𝑈 ★ 𝑎 übereinstimmen.

Lösung.

In abelschen Gruppen ist 𝑎 ★𝑢 = 𝑢 ★ 𝑎 für alle 𝑎,𝑢 ∈ 𝐺 , also ist

𝑎 ★𝑈 = {𝑎 ★𝑢 |𝑢 ∈ 𝑈 } = {𝑢 ★ 𝑎 |𝑢 ∈ 𝑈 } = 𝑈 ★ 𝑎

für jedes 𝑎 ∈ 𝐺 . Entsprechend ist

[𝑎]∼𝑈 = 𝑎 ★𝑈 = 𝑈 ★ 𝑎 = [𝑎]𝑈∼.
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Hausaufgabe I-5.1 (Gruppen) 2.5 + 1 + 3.5 = 7 Punkte

(a) Entscheiden Sie, welche der Beispiele aus Hausaufgabe I-4.4 Gruppen sind. Begründen
Sie Ihre Entscheidung.

(b) Es sei 𝐺 nichtleer und (𝐺,★) eine Gruppe. Wir definieren auf P(𝐺) die Abbildung ∼
★

durch
𝐴

∼
★ 𝐵 := {𝑎 ★𝑏 | 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵} für 𝐴, 𝐵 ∈ P(𝐺) .

Beweisen oder widerlegen Sie, dass
(
P(𝐺), ∼★

)
eine Gruppe ist.

(c) Zeigen Sie Lemma 7.25 des Skripts, also die folgenden Aussagen:
(𝑖) Ist (𝐺,★) eine Gruppe, so sind die Links- und Rechtstranslationen★𝑎 und 𝑎★ für alle

𝑎 ∈ 𝐺 bijektive Abbildungen 𝐺 → 𝐺 .
(𝑖𝑖) Ist (𝐻,★) eine nichtleere Halbgruppe und gilt für alle 𝑎 ∈ 𝐻 , dass die Links- und

Rechtstranslationen ★𝑎 und 𝑎★ surjektive Abbildungen sind, dann ist (𝐻,★) eine
Gruppe.

Lösung.

(a) In Frage kommen nur die Monoide, also die Paare (i), (ii), (iii), (iv) und (v).
(i): Für (R𝑋 , +) mit der konstanten Nullfunktion als neutrales Element vererbt sich die
Invertierbarkeit jedes Funktionswerts und für jedes 𝑓 ∈ R𝑋 lässt sich −𝑓 als Inverses
Element angeben. Hier handelt es sich also um eine Gruppe. (0.5 Punkte)
(ii): Für (P(𝑋 ),∩) mit der gesamten Menge 𝑋 als neutralem Element ist lediglich 𝑋 selbst
invertierbar, hier liegt also keine Gruppe vor. (0.5 Punkte)
(iii) : Für (P(𝑋 ), △) mit der leeren Menge als neutralem Element ist jedes Element selbstin-
vers, hier liegt also eine Gruppe vor. (0.5 Punkte)
(iv): Für (𝑋𝑋 , ◦) mit der Identität als neutralem Element ist jede nicht bijektive Funktion
nicht invertierbar, hier liegt also keine Gruppe vor, sobald mindestens zwei Elemente in
𝑋 existieren. Anderenfalls handelt es sich um die triviale Gruppe. (0.5 Punkte)
(v): Für (Z2, ((𝑥1, 𝑥2), (𝑦1, 𝑦2)) ↦→ (𝑥1 · 𝑦1, 𝑥2 + 𝑦2)) mit dem neutralen Element (1, 0) ist das
Element (0, 0) nicht invertierbar, da die ersten Komponente kein multiplikatives Inverses
besitzt. (0.5 Punkte)

(b) Es handelt sich i. A. nicht um eine Gruppe, denn i. A. ist nicht jedes Element invertierbar.
Das führen wir unten weiter aus, jetzt schauen wir aber erstmal, wie weit wir in der
Strukturanalyse kommen. (1 Punkt)
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Die definierte Abbildung ist tatsächlich eine Verknüpfung auf P(𝐺), denn 𝑎 ★ 𝑏 für
𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 mit 𝐴, 𝐵 ∈ P(𝑋 ) liegt wieder in 𝐺 , da ★ eine Verknüpfung auf 𝐺 ist.
Auch assoziativ ist die Verknüpfung ∼

★ (wieder eine vererbte Eigenschaft von ★), denn es
ist

𝐴
∼
★ (𝐵 ∼

★ 𝐶) = 𝐴 ∼
★ {𝑏 ★ 𝑐 | 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶}

= {𝑎 ★ (𝑏 ★ 𝑐) | 𝑎 ∈ 𝐴 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)}
= {(𝑎 ★𝑏) ★ 𝑐 | (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) ∧ 𝑐 ∈ 𝐶}
= {𝑎 ★𝑏 | 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵} ∼

★ 𝐶

= (𝐴 ∼
★ 𝐵) ∼

★ 𝐶.

Wir haben also schonmal eine Halbgruppe.
Ein neutrales Element gibt es in (P(𝐺), ∼★) ebenfalls, nämlich die Menge 𝐸 := {𝑒}, die nur
das neutrale Element 𝑒 der Gruppe (𝐺,★) enthält. Hier ist nämlich für jedes 𝐴 ∈ P(𝐺):

𝐸
∼
★ 𝐴 = {𝑒 ★ 𝑎 | 𝑎 ∈ 𝐴} = {𝑎 | 𝑎 ∈ 𝐴} = 𝐴.

Wir haben also ein Monoid.
Invertierbarkeit können wir allerdings nur in Spezialfällen zeigen. Klar ist, dass einele-
mentige Mengen 𝐴 = {𝑎} für 𝑎 ∈ 𝐺 in P(𝐺) bzgl. ∼★ invertierbar sind (deren Inverse sind
𝐴′ := {𝑎′}). Sobald mindestens zwei verschiedene Elemente in 𝐴 liegen, also 𝐴 = {𝑎1, 𝑎2}
darf𝐴′ jedoch nur noch aus Inversen zu 𝑎1 und 𝑎2 gleichzeitig bestehen, was nur möglich
ist, wenn diese übereinstimmen. Zudem gibt es ja da noch die leere Menge, für die kein
Inverses existiert. Entsprechend ist (P(𝐺), ∼★) keine Gruppe.

(c) Aussage (𝑖): Es sei (𝐺,★) eine Gruppe und 𝑎 ∈ 𝐺 beliebig. Wir betrachten die Recht-
stranslation ★𝑎 : 𝐺 ∋ 𝑥 ↦→ 𝑥 ★ 𝑎 ∈ 𝐺 . Die Gleichung 𝑥 ★ 𝑎 = 𝑏 hat für jedes 𝑏 ∈ 𝐺 die
Lösung 𝑥 = 𝑏 ★ 𝑎′, d. h., ★𝑎 ist surjektiv. (1 Punkt)
Gilt andererseits 𝑥1 ★ 𝑎 = 𝑥2 ★ 𝑎, so folgt aus der Kürzungsregel in (7.18), dass 𝑥1 = 𝑥2
gelten muss, also ist ★𝑎 auch injektiv. (1 Punkt)
Für die Linkstranslation argumentieren wir entsprechend.
Aussage (𝑖𝑖): Es sei (𝐻,★) eine Halbgruppe. Zu zeigen ist, dass 𝐻 ein neutrales Element
besitzt und dass jedes 𝑎 ∈ 𝐻 invertierbar ist.
Für beliebiges 𝑎 ∈ 𝐻 sind nach Voraussetzung ★𝑎 und 𝑎★ surjektiv. Es gibt also zu jedem
𝑎 ∈ 𝐻 und jedem 𝑏 ∈ 𝐻 Lösungen 𝑥, 𝑦 ∈ 𝐻 der Gleichungen 𝑥 ★ 𝑎 = 𝑏 und 𝑎 ★ 𝑦 = 𝑏.
Wir wählen zunächst ein beliebiges, aber festes 𝑎 ∈ 𝐻 . Dann gibt es nach Voraussetzung
𝑒1, 𝑒2 ∈ 𝐻 mit 𝑒1 ★ 𝑎 = 𝑎 und 𝑎 ★ 𝑒2 = 𝑎. Es sei weiter 𝑏 ∈ 𝐻 beliebig und 𝑥, 𝑦 Lösungen
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der Gleichungen 𝑥 ★ 𝑎 = 𝑏 und 𝑎 ★ 𝑦 = 𝑏. Dann haben wir

𝑒1 ★𝑏 = 𝑒1 ★ (𝑎 ★ 𝑦) = (𝑒1 ★ 𝑎) ★ 𝑦 = 𝑎 ★ 𝑦 = 𝑏

und 𝑏 ★ 𝑒2 = (𝑥 ★ 𝑎) ★ 𝑒2 = 𝑥 ★ (𝑎 ★ 𝑒2) = 𝑥 ★ 𝑎 = 𝑏.

(𝑒1 und 𝑒2 sind also nicht nur für 𝑎, sondern für alle 𝑏 ∈ 𝐻 links- bzw.. rechtsneutrale
Elemente.) Aus Hausaufgabe I-4.4 wissen wir, dass dieses Element (wir nennen es ab
jetzt 𝑒) eindeutig ist und ein neutrales Element für das Monoid. (1 Punkt)
Schließlich existieren für beliebiges 𝑎 ∈ 𝐻 Lösungen 𝑥, 𝑦 der Gleichungen 𝑥 ★ 𝑎 = 𝑒 und
𝑎 ★ 𝑦 = 𝑒 . Wegen

𝑥 = 𝑥 ★ 𝑒 = 𝑥 ★ (𝑎 ★ 𝑦) = (𝑥 ★ 𝑎) ★ 𝑦 = 𝑒 ★ 𝑦 = 𝑦

ist 𝑥 = 𝑦 das eindeutige Inverse zu 𝑎. (0.5 Punkte)

Hausaufgabe I-5.2 (Kommutativität in Gruppen) 1 + 3 = 4 Punkte

(a) Entscheiden Sie, welche Beispiele aus Hausaufgabe I-4.4 abelsche Gruppen sind. Begrün-
den Sie Ihre Entscheidung.

(b) Zeigen Sie, dass jede Gruppe mit höchstens vier Elementen abelsch ist.

Lösung.

(a) In Frage kommen nur die Gruppen aus Übungsaufgabe I-5.1 , also (R𝑋 , +) und (P(𝑋 ), △).
Wegen der vererbten Kommutativität der Addition in R handelt es sich bei (R𝑋 , +) um
eine abelsche Gruppe. (0.5 Punkte)
Bei (P(𝑋 ), △) handelt es sich ebenso um eine abelsche Gruppe, denn die Definition der
symmetrischen Differenz ist natürlich symmetrisch. (0.5 Punkte)

(b) Nachweisoption 1: Jede einelementige Gruppe besteht nur aus dem neutralen Element
und ist damit automatisch kommutativ. Für Gruppen mit zwei, drei und vier Elementen
zeigen wir Kommutativität, indem wir nutzen, dass die Verknüpfung einer Gruppe genau
dann kommutativ ist, wenn ihre Verknüpfungstabelle symmetrisch ist. Wichtige Zutaten
in der folgenden Argumentation sind das Gruppenkriterium in Lemma 7.25 des Skripts
und Satz 6.35, also die Aussage, dass Injektivität und Bijektivität auf endlichen Mengen
übereinstimmen. Zusammengenommen sagen diese beiden Aussagen, dass in jeder Zeile
und in jeder Spalte der Verknüpfungstabelle alle Elemente der Gruppe vorkommenmüssen
und das keines doppelt vorkommen darf. In der Verknüpfungstabelle sind die Spalte und
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die Zeile zu dem neutralen Element schon vorgegeben und von da aus können wir ganz
ähnlich wie bei der Lösung eines Sudoku argumentieren.
Im Folgenden nennen wir die Elemente, die in den Gruppen vorkommen können stellver-
tretend 𝑒, 𝑎, 𝑏, 𝑐 , wobei 𝑒 das neutrale Element bezeichnet. Wir müssen also die möglichen
Verknüpfungen auf Mengen {𝑒, 𝑎}, {𝑒, 𝑎, 𝑏} und {𝑒, 𝑎, 𝑏, 𝑐} darauf untersuchen, ob sie eine
Gruppe liefern.
Im Fall von zwei Elementen, also für {𝑒, 𝑎}, ist die Verknüpfungstabelle schon wie folgt
durch das neutrale Element vorgegeben

★ 𝑒 𝑎

𝑒 𝑒 𝑎

𝑎 𝑎 ·
wobei uns egal ist, was in dem letzten verbleibenden Platz steht, denn symmetrisch ist
die Tabelle definitiv. Wir wissen, dass in der letzten Spalte und in der letzten Zeile noch
das 𝑒 fehlt, die volle Tabelle ergibt sich also zu

★ 𝑒 𝑎

𝑒 𝑒 𝑎

𝑎 𝑎 𝑒

(wobei man hier auch mit der Invertierbarkeit von 𝑎 argumentieren könnte). (0.5 Punkte)
Im Fall von drei Elementen ist die Verknüpfungstabelle durch das neutrale Element
vorgegeben als

★ 𝑒 𝑎 𝑏

𝑒 𝑒 𝑎 𝑏

𝑎 𝑎 · ·
𝑏 𝑏 · ·

Wie bei einem Sudoku können wir jetzt direkt ablesen, dass in der mittleren Zeile das 𝑏
nicht an die letzte Stelle kann (denn dann hätte die letzte Spalte zwei 𝑏s). Entsprechend
für die letzte Zeile argumentiert erhalten wir die eindeutige Verknüpfungstabelle

★ 𝑒 𝑎 𝑏

𝑒 𝑒 𝑎 𝑏

𝑎 𝑎 𝑏 𝑒

𝑏 𝑏 𝑒 𝑎

Wie schon zuvor brauchen wir hier garnicht nachweisen, dass es sich wirklich um eine
Gruppe handelt (Assoziativität der Vernüpfung), denn wir wissen, dass jede mögliche
Gruppe kommutativ ist. (1 Punkt)

https://tinyurl.com/scoop-la Seite 12 von 21

https://tinyurl.com/scoop-la


R. Herzog, G. Müller

Universität Heidelberg

Lineare Algebra

Wintersemester 2025 - Sommersemester 2026

Im Fall von vier Elementen in 𝐺 ist die Tabelle vorgegeben als

★ 𝑒 𝑎 𝑏 𝑐

𝑒 𝑒 𝑎 𝑏 𝑐

𝑎 𝑎 · · ·
𝑏 𝑏 · · ·
𝑐 𝑐 · · ·

Für den linken oberen Eintrag des verbleibenden 3𝑥3 Blocks haben wir die Möglichkeiten
𝑒, 𝑏 oder 𝑐 . Setzen wir hier𝑏, dann ergibt sich, durch analoge Argumente zu den bisherigen,
die folgende Tabelle

★ 𝑒 𝑎 𝑏 𝑐

𝑒 𝑒 𝑎 𝑏 𝑐

𝑎 𝑎 𝑏 · ·
𝑏 𝑏 · · ·
𝑐 𝑐 · · 𝑏

und damit als Folgerung für die Positionierung des Werts 𝑐 in der Tabelle nur die Option

★ 𝑒 𝑎 𝑏 𝑐

𝑒 𝑒 𝑎 𝑏 𝑐

𝑎 𝑎 𝑏 𝑐 ·
𝑏 𝑏 𝑐 · ·
𝑐 𝑐 · · 𝑏

In der zweiten Zeile sowie Spalte bleibt nur das neutrale Element, wir haben also die
Belegung

★ 𝑒 𝑎 𝑏 𝑐

𝑒 𝑒 𝑎 𝑏 𝑐

𝑎 𝑎 𝑏 𝑐 𝑒

𝑏 𝑏 𝑐 · ·
𝑐 𝑐 𝑒 · 𝑏

und damit die letzte verbleibende Möglichkeit

★ 𝑒 𝑎 𝑏 𝑐

𝑒 𝑒 𝑎 𝑏 𝑐

𝑎 𝑎 𝑏 𝑐 𝑒

𝑏 𝑏 𝑐 𝑒 𝑎

𝑐 𝑐 𝑒 𝑎 𝑏
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Analog argumentiert man, wenn 𝑐 links oben im verbleibenden Block steht und erhält

★ 𝑒 𝑎 𝑏 𝑐

𝑒 𝑒 𝑎 𝑏 𝑐

𝑎 𝑎 𝑐 𝑒 𝑏

𝑏 𝑏 𝑒 𝑐 𝑎

𝑐 𝑐 𝑏 𝑎 𝑒

Alle verbleibenden Optionen haben eine symmetrische Tabelle.
Beginnt man links oben im verbleibenden Block mit 𝑒 , dann hat man

★ 𝑒 𝑎 𝑏 𝑐

𝑒 𝑒 𝑎 𝑏 𝑐

𝑎 𝑎 𝑒 · ·
𝑏 𝑏 · · ·
𝑐 𝑐 · · ·

vorgegeben. Die zweite Spalte und Zeile ergeben sich dann weiter zu

★ 𝑒 𝑎 𝑏 𝑐

𝑒 𝑒 𝑎 𝑏 𝑐

𝑎 𝑎 𝑒 𝑐 𝑏

𝑏 𝑏 𝑐 · ·
𝑐 𝑐 𝑏 · ·

wobei wir den letzten verbleibenden 2𝑥2 Block auf zwei verschiede Weisen mit 𝑎 und 𝑒
belegen können, die möglichen Verknüpfungen sind also

★ 𝑒 𝑎 𝑏 𝑐

𝑒 𝑒 𝑎 𝑏 𝑐

𝑎 𝑎 𝑒 𝑐 𝑏

𝑏 𝑏 𝑐 𝑒 𝑎

𝑐 𝑐 𝑏 𝑎 𝑒

und

★ 𝑒 𝑎 𝑏 𝑐

𝑒 𝑒 𝑎 𝑏 𝑐

𝑎 𝑎 𝑒 𝑐 𝑏

𝑏 𝑏 𝑐 𝑎 𝑒

𝑐 𝑐 𝑏 𝑒 𝑎

Beide sind symmetrisch. (1.5 Punkte) Beachte: Bei dieser Nachweisoption sieht man
gleich, wieviele Gruppen es in der jeweiligen Größe maximal geben kann.
Nachweisoption 2: Wir zeigen, dass jede nichtkommutative Gruppe mindestens 5 ver-
schiedene Elemente besitzt. Mit sich selbst und dem neutralen Element kommutiert aber
jedes Element einer Gruppe, wir wissen also, dass eine nichtkommutative Gruppe min-
destens drei verschiedene Elemente {𝑒, 𝑎, 𝑏} besitzen muss, von denen 𝑒 das neutrale
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Element ist. Die einzige Verknüpfung von Elementen aus {𝑒, 𝑎, 𝑏}, die nicht kommutiert,
muss also die von 𝑎 und 𝑏 sein, also 𝑎 ★𝑏 ≠ 𝑏 ★ 𝑎.
Da inverse Elemente in einer Gruppe eindeutig sind und sowohl links- als auch recht-
sinvers, kommutieren also alle Elemente mit ihren Inversen, es muss also 𝑎 ★𝑏 ≠ 𝑒 und
𝑏 ★ 𝑎 ≠ 𝑒 gelten.
Da neutrale Elemente in einer Gruppe eindeutig sind und sowohl links- als auch rechts-
neutral sind muss außerdem 𝑎 ★ 𝑏 ≠ 𝑎 und 𝑏 ★ 𝑎 ≠ 𝑎 sowie 𝑎 ★ 𝑏 ≠ 𝑏 und 𝑏 ★ 𝑎 ≠ 𝑏

gelten.
Zusammengenommen ist keines der Elemente 𝑎★𝑏 und 𝑏★𝑎 also schon in {𝑒, 𝑎, 𝑏} vertre-
ten, damit★ eine Verknüpfung sein kann, muss die Gruppemindestens die 5 verschiedenen
Elemente {𝑒, 𝑎, 𝑏, 𝑎 ★𝑏,𝑏 ★ 𝑎} enthalten.
Beachte: Bei dieser Nachweisoption sieht man schön, dass Nichtkommutativität zusätzli-
che Elemente generiert.
Es ist im Übrigen so, dass die kleinste nicht-abelsche Gruppe die 𝑆3 ist, also eine Gruppe
mit gerade 3! = 6 Elementen. Dass keine Gruppe mit 5 Elementen nicht-abelsch sein
kann (es gibt davon nur eine, nämlich Z /

5≡), kann man sich noch wie folgt überlegen:
Angenommen es würden zwei Elemente nicht kommutieren (o. B. d. A. seien das wie oben
die Elemente 𝑎 und 𝑏), also 𝑎 ★𝑏 ≠ 𝑏 ★ 𝑎, dann sind wir in dem Setting, das wir bisher
auch für die Argumentation verwendet haben. Nun ist 𝑎★𝑎 ∉ {𝑎★𝑏, 𝑏 ★𝑎, 𝑎}, auf Grund
der Kürzungsregeln, denn sonst wäre 𝑎 ∈ {𝑏, 𝑒}, was nach Voraussetzung nicht gelten
kann. Zudem kann nicht 𝑎 ★ 𝑎 = 𝑏 gelten, denn dann wäre 𝑎 ★𝑏 = 𝑎 ★ 𝑎 ★ 𝑎 = 𝑏 ★ 𝑎 im
Widerspruch zur Nichtkommutativität. Bleibt also nur, dass 𝑎★𝑎 = 𝑒 sein muss. Betrachtet
man nun 𝑎 ★𝑏 ★ 𝑎, findet man mit den Kürzungsregeln, dass 𝑎 ★𝑏 ★ 𝑎 ∉ {𝑎 ★𝑏, 𝑏 ★ 𝑎, 𝑎},
indem man wie oben mit der Verschiedenheit der bisherigen Elemente argumentiert.
Wäre 𝑎 ★𝑏 ★𝑎 = 𝑒 , dann wäre 𝑏 ★𝑎 = 𝑎′ = 𝑎 ★𝑏 (𝑎′ von links und rechts ranknüpfen) im
Widerspruch zu Nichtkommutativität und wäre 𝑎 ★𝑏 ★ 𝑎 = 𝑏, dann wäre 𝑏 ★ 𝑎 = 𝑎 ★𝑏 (𝑎
von links ranknüpfen). Also ist jede Gruppe mit 5 Elementen abelsch.

Hausaufgabe I-5.3 (Symmetrische Gruppe) 3 Punkte

Bestimmen Sie die Fehlstände, eine Zerlegung in Transpositionen und das Signum der Permuta-
tion

𝜎 :=
(
1 2 3 4 5 6 7 8
1 6 7 8 3 4 5 2

)
.

Lösung.
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Die Fehlstände lesen wir ab, indem wir für jedes Indexpaar (𝑖, 𝑗) mit 𝑖 < 𝑗 prüfen, ob 𝜎 (𝑖) > 𝜎 ( 𝑗)
ist. Wir prüfen also für jeden Index 𝑖 aus ⟦1, 8⟧ und alle größeren Indizes, also die 𝑗 aus ⟦𝑖 + 1, 8⟧,
die Werte aus der Permutation (untere Reihe). Beispielsweise ist (4, 5) ein Fehlstand, denn
𝜎 (4) = 8 > 3 = 𝜎 (5). Es ergeben sich die Fehlstände

(2, 𝑗) für alle 𝑗 ∈ {5, 6, 7, 8}
(3, 𝑗) für alle 𝑗 ∈ {5, 6, 7, 8}
(4, 𝑗) für alle 𝑗 ∈ {5, 6, 7, 8}
(5, 𝑗) für alle 𝑗 ∈ {8}
(6, 𝑗) für alle 𝑗 ∈ {8}
(7, 𝑗) für alle 𝑗 ∈ {8}.

(1 Punkt)

Eine Zerlegung in Transpositionen können wir dadurch bestimmen, dass wir durch Trans-
positionen die Permutation 𝜎 zurück in die Identität überführen. Dabei gibt es mindestens 4
gleichwertige Möglichkeiten vorzugehen. Entweder führt man die Transpositionen im Bildbe-
reich von 𝜎 (also nach/links der ursprünglichen Permutation) aus oder im Definitionsbereich
von 𝜎 (also vor/rechts der ursprünglichen Permutation).

Tauscht man im Bildbereich (und beginnt mit den kleinen Urbildern), dann ergibt sich die
folgende Kette von Umformungen:

𝜎 =

(
1 2 3 4 5 6 7 8
1 6 7 8 3 4 5 2

)
= 𝜏 (6, 2) ◦

(
1 2 3 4 5 6 7 8
1 2 7 8 3 4 5 6

)
= 𝜏 (6, 2) ◦ 𝜏 (7, 3) ◦

(
1 2 3 4 5 6 7 8
1 2 3 8 7 4 5 6

)
= 𝜏 (6, 2) ◦ 𝜏 (7, 3) ◦ 𝜏 (8, 4) ◦

(
1 2 3 4 5 6 7 8
1 2 3 4 7 8 5 6

)
= 𝜏 (6, 2) ◦ 𝜏 (7, 3) ◦ 𝜏 (8, 4) ◦ 𝜏 (7, 5) ◦

(
1 2 3 4 5 6 7 8
1 2 3 4 5 8 7 6

)
= 𝜏 (6, 2) ◦ 𝜏 (7, 3) ◦ 𝜏 (8, 4) ◦ 𝜏 (7, 5) ◦ 𝜏 (8, 6) ◦

(
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8

)
︸                              ︷︷                              ︸

id

= 𝜏 (6, 2) ◦ 𝜏 (7, 3) ◦ 𝜏 (8, 4) ◦ 𝜏 (7, 5) ◦ 𝜏 (8, 6).
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Dabei fällt auf, dass wir uns wirklich in jedem Schritt merken müssen, wie die verbleibende
Permutation aussieht, denn es können sich Transpositionen ergeben, die eine verbleibende Stelle
mehrfach verwenden, in diesem Beispiel also der Tausch der 2 und der 6 jeweils aus der Stelle
8 heraus. Außerdem haben wir eine Transposition weniger ausführen müssen als höchstens
erforderlich, denn die 7 hatten wir zufällig zwischendurch an die richtige Stelle getauscht und
konnten nach der 6 aufhören. Schön zu sehen ist, wie die verbleibende Permutation einen immer
weiter wachsenden Identitätsblock auf der linken Seite stehen hat, also zum Beispiel nach dem
dritten Tauschschritt die Struktur(

1 2 3 4 5 6 7 8
1 2 3 4 7 8 5 6

)
hat.

Tauscht man im Definitionsbereich (was etwas weniger übersichtlich ist), dann ergibt sich:

𝜎 =

(
1 2 3 4 5 6 7 8
1 6 7 8 3 4 5 2

)
=

(
1 2 3 4 5 6 7 8
1 2 7 8 3 4 5 6

)
◦ 𝜏 (2, 8)

=

(
1 2 3 4 5 6 7 8
1 2 3 8 7 4 5 6

)
◦ 𝜏 (3, 5) ◦ 𝜏 (2, 8)

=

(
1 2 3 4 5 6 7 8
1 2 3 4 7 6 5 6

)
◦ 𝜏 (4, 6) ◦ 𝜏 (3, 5) ◦ 𝜏 (2, 8)

=

(
1 2 3 4 5 6 7 8
1 2 3 4 5 8 7 6

)
◦ 𝜏 (5, 7) ◦ 𝜏 (4, 6) ◦ 𝜏 (3, 5) ◦ 𝜏 (2, 8)

=

(
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8

)
︸                              ︷︷                              ︸

id

◦𝜏 (6, 8) ◦ 𝜏 (5, 7) ◦ 𝜏 (4, 6) ◦ 𝜏 (3, 5) ◦ 𝜏 (2, 8)

= 𝜏 (6, 8) ◦ 𝜏 (5, 7) ◦ 𝜏 (4, 6) ◦ 𝜏 (3, 5) ◦ 𝜏 (2, 8)

Tauscht man die größeren Zahlen zuerst ergibt sich ganz analog Zerlegungen. (1 Punkt)

Wir können das Signum nun aus der Anzahl der Fehlstände 𝑑 = 15 als (−1)𝑑 = (−1)15 = −1
oder mit der Anzahl 𝑟 = 5 der Transpositionen in einer Zerlegung von 𝜎 als (−1)𝑟 = (−1)5 = −1
ermitteln. (1 Punkt)

Hausaufgabe I-5.4 (Untergruppen) 1 + 2 + 1 = 4 Punkte

https://tinyurl.com/scoop-la Seite 17 von 21

https://tinyurl.com/scoop-la


R. Herzog, G. Müller

Universität Heidelberg

Lineare Algebra

Wintersemester 2025 - Sommersemester 2026

(a) Es sei 𝑋 eine nichtleere Menge und 𝐴 ⊆ 𝑋 sowie 𝑛 ∈ N. Beweisen oder widerlegen Sie,
dass
(𝑖) (P(𝐴), △) eine Untergruppe von (P(𝑋 ), △) ist;

(𝑖𝑖) ({𝜎 ∈ 𝑆𝑛 | sgn𝜎 = 1}, ◦) eine Untergruppe von (𝑆𝑛, ◦) ist.
(b) Es sei (𝐺,★) eine Gruppe mit neutralem Element 𝑒 und (𝑈𝑖 ,★)𝑖∈𝐼 eine Familie von Unter-

gruppen mit der nichtleeren Indexmenge 𝐼 . Zeigen Sie Lemma 7.47 des Skripts, also dass
dann auch

⋂
𝑖∈𝐼 𝑈𝑖 mit ★ eine Untergruppe von (𝐺,★) ist.

(c) Es seien (𝐺,★) eine Gruppe und (𝑈1,★), (𝑈2,★) Untergruppen. Zeigen Sie, dass (𝑈1∪𝑈2,★)
genau dann eine Untergruppe von (𝐺,★) ist, wenn𝑈1 ⊆ 𝑈2 oder𝑈2 ⊆ 𝑈1 ist.

Lösung.

(a) Hier kann man schon anfangen mit dem Untergruppenkriterium zu arbeiten. In diesem
Lösungsvorschlag werden wir den Nachweis aber nochmal händisch führen.
(𝑖) Tatsächlich ist P(𝐴) ⊆ P(𝑋 ) und für 𝐵1, 𝐵2 ⊆ 𝐴 ist 𝐵1△𝐵2 ⊆ 𝐵1 ∪ 𝐵2 ⊆ 𝐴, also

ist P(𝐴) bezüglich △ abgeschlossen. Außerdem ist P(𝐴) nichtleer, denn es enthält
mindestens die leere Menge, also das neutrale Element bezüglich △. Dass es sich
um eine Gruppe handelt folgt aus den gleichen Überlegungen, wie für die Menge 𝑋
selbst, also dass die Teilmengen jeweils selbstinvers sind. (0.5 Punkte)

(𝑖𝑖) Die angegebene Menge ist eine Untermenge der 𝑆𝑛 , das neutrale Element ist au-
ßerdem darin enthalten. Die Abgeschlossenheit und die Existenz der Inversen folgt
direkt aus der Eigenschaften des Signums in Satz 7.40 (0.5 Punkte)

(b) Da jedes der𝑈𝑖 eine Teilmenge von𝐺 ist, ist auch
⋂

𝑖∈𝐼 𝑈𝑖 eine Teilmenge von𝐺 . (0.5 Punkte)
Alternative 1 für den Nachweis der Gruppeneigenschaft: Wir wenden das Untergruppen-
kriterium Satz 7.44 aus dem Skript an. Wegen Lemma 7.43 wissen wir, dass die neutralen
Elemente der𝑈𝑖 alle mit 𝑒 übereinstimmen, die Menge

⋂
𝑖∈𝐼 𝑈𝑖 enthält also das Element 𝑒

und ist nichtleer. (0.5 Punkte)
Es seien nun 𝑎, 𝑏 ∈ ⋂

𝑖∈𝐼 𝑈𝑖 . Dann ist wegen der Gruppeneigenschaft jeder der𝑈𝑖 und auf
Grund von Lemma 7.43 auch das Inverse 𝑏′ zu 𝑏 in jedem der 𝑈𝑖 und damit in

⋂
𝑖∈𝐼 𝑈𝑖 .

Wegen der Abgeschlossenheit aller𝑈𝑖 ist dann auch 𝑎 ★𝑏′ in𝑈𝑖 für alle 𝑖 ∈ 𝐼 und damit
in

⋂
𝑖∈𝐼 𝑈𝑖 . Nach dem Untergruppenkriterium handelt es sich dann bei

⋂
𝑖∈𝐼 𝑈𝑖 mit ★ um

eine Gruppe. (1 Punkt)
Alternative 2 für den Nachweis der Gruppeneigenschaft: Wir prüfen alle definierenden
Eigenschaften. Weiterhin ist

⋂
𝑖∈𝐼 𝑈𝑖 bezüglich★ abgeschlossen, denn jedes der𝑈𝑖 ist bzgl.
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★ abgeschlossen, also ist für 𝑎, 𝑏 ∈ ⋂
𝑖∈𝐼 𝑈𝑖

𝑎 ★𝑏 ∈ 𝑈𝑖 ∀𝑖 ∈ 𝐼

also 𝑎 ★𝑏 ∈ ⋂
𝑖∈𝐼 𝑈𝑖 .

Wegen Lemma 7.43 wissen wir, dass die neutralen Elemente der𝑈𝑖 alle mit 𝑒 übereinstim-
men und die Neutralität überträgt sich direkt auf jedes Element in

⋂
𝑖∈𝐼 𝑈𝑖 . Hier sehen

wir wieder, dass
⋂

𝑖∈𝐼 𝑈𝑖 ≠ ∅.
Für 𝑎 ∈ 𝑈𝑖 existiert jeweils ein 𝑈𝑖-inverses Element 𝑎′

𝑈𝑖
, die wieder auf Grund von

Lemma 7.43 mit dem 𝐺-inversen Element 𝑎′ übereinstimmen, entsprechend ist für 𝑎 ∈⋂
𝑖∈𝐼 𝑈𝑖 auch 𝑎′ ∈

⋂
𝑖∈𝐼 𝑈𝑖 , also alle Elemente invertierbar. Damit ist

⋂
𝑖∈𝐼 𝑈𝑖 mit ★ eine

Untergruppe.
(c) „⇐“: Wenn𝑈1 ⊆ 𝑈2 oder𝑈2 ⊆ 𝑈1 ist, dann ist𝑈1 ∪𝑈2 = 𝑈1 oder𝑈1 ∪𝑈2 = 𝑈2, und damit

(𝑈1 ∪𝑈2,★) = (𝑈1,★) oder (𝑈1 ∪𝑈2,★) = (𝑈2,★), was beides Gruppen sind. (0.5 Punkte)
„⇒“: Vorausgesetzt 𝑈1 ∪𝑈2 ist mit ★ eine Gruppe, dann wählen wir 𝑢1 ∈ 𝑈1 und 𝑢2 ∈ 𝑈2
beliebig. Wegen der Abgeschlossenheit von 𝑈1 ∪ 𝑈2 unter ★ ist 𝑢1 ★ 𝑢2 ∈ 𝑈1 ∪ 𝑈2. Ist
𝑢1★𝑢2 ∈ 𝑈1, dann ist auch das zu𝑢1 inverse Element𝑢′1 in𝑈1 und somit𝑢′1★𝑢1★𝑢2 = 𝑢2 ∈ 𝑈1.
Analog erhält man, dass wenn 𝑢1 ★𝑢2 ∈ 𝑈2 auch 𝑢1 ∈ 𝑈2 ist. Wir haben also gezeigt, dass
die folgende Aussage wahr ist:

∀𝑢1 ∈ 𝑈1 ∀𝑢2 ∈ 𝑈2 ((𝑢1 ∈ 𝑈1 ∧ 𝑢2 ∈ 𝑈1) ∨ (𝑢1 ∈ 𝑈2 ∧ 𝑢2 ∈ 𝑈2)) ,

also insbesondere (denn wir schränken nur die Grundmenge ein, für welche die Aussage-
form in den Klammern ausgewertet wird)

∀𝑢1 ∈ 𝑈1 \𝑈2 ∀𝑢2 ∈ 𝑈2 \𝑈1 ((𝑢1 ∈ 𝑈1 ∧ 𝑢2 ∈ 𝑈1) ∨ (𝑢1 ∈ 𝑈2 ∧ 𝑢2 ∈ 𝑈2))︸                                                    ︷︷                                                    ︸
immer falsch auf der Grundmenge

Also muss eine der beiden Differenzmengen leer sein, was genau dann der Fall ist, wenn
eine der Mengen eine Teilmenge der anderen ist. (0.5 Punkte)
Alternative 2 für den Beweis der Hinrichtung per Widerspruch: Wenn weder 𝑈1 ⊆ 𝑈2
noch𝑈2 ⊆ 𝑈1 gilt, dann gibt es Elemente 𝑢1 ∈ 𝑈1 \𝑈2 und 𝑢2 ∈ 𝑈2 \𝑈1. Wäre𝑈1 ∪𝑈2 eine
Untergruppe, dann muss 𝑢1★𝑢2 ∈ 𝑈1 ∪𝑈2 sein. Ist 𝑢1★𝑢2 ∈ 𝑈1 (wo auch 𝑢′1 liegt), dann ist
𝑢′1 ★𝑢1 ★𝑢2 = 𝑢2 ∈ 𝑈1 im Widerspruch zur Annahme. Ist 𝑢1 ★𝑢2 ∈ 𝑈2 (wo auch 𝑢′2 liegt),
dann ist 𝑢1 ★𝑢2 ★𝑢′2 = 𝑢1 ∈ 𝑈2 im Widerspruch zur Annahme.

Hausaufgabe I-5.5 (Erzeugung und Ordnung) 1 + 2 = 3 Punkte

Es sei (𝐺, ·) eine Gruppe.

Beachte: In dieser Aufgabe werden wir in multiplikativer Notation arbeiten.
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(a) Zeigen Sie, dass ord(𝑎) = ord(𝑎−1).
(b) Die Menge {𝑎 · 𝑏 · 𝑎−1 · 𝑏−1 | 𝑎, 𝑏 ∈ 𝐺} der Kommutatoren aus𝐺 erzeugt die sogenannte

Kommutatorgruppe 𝐾 (𝐺) := ⟨{𝑎 · 𝑏 · 𝑎−1 · 𝑏−1 | 𝑎, 𝑏 ∈ 𝐺}⟩, eine Untergruppe von (𝐺, ·).
Zeigen Sie, dass genau dann (𝐾 (𝐺), ·) = ({1}, ·) ist, wenn (𝐺, ·) abelsch ist.

Lösung.

Beachte: Die multiplikative Notation ist in dieser Aufgabe hauptsächlich für die erste Teilaufga-
be gewählt, um eine explizite, abkürzende Darstellung der zyklischen Gruppen zu ermöglichen.
Die Resultate sind, wie immer, von der Notation völlig unabhängig.

(a) Ist ord(𝑎) endlich, dann gibt es also ein 𝑛 ∈ N, so dass 𝑒 = 𝑎𝑛 . Diese Gleichung kann man
nun 𝑛-fach mit 𝑎−1 von links verknüpfen, dann ergibt sich

(
𝑎−1

)𝑛
= 𝑒 , also ord(𝑎−1) ⩽

ord(𝑎). Das gleiche Argument mit vertauschen Rollen liefert die Gleichheit.
Ist ord(𝑎) nicht endlich, dann kann ord(𝑎−1) nicht endlich sein, denn sonst könntemanmit
der obigen Argumentation das Gleiche von ord(𝑎) zeigen, im Widerspruch zur Annahme.

(1 Punkt)
(b) Wir zeigen erstmal, warum diese Objekte „Kommutatoren“ heißen, nämlich dass für

𝑎, 𝑏 ∈ 𝐺 genau dann der Kommutator 𝑎 · 𝑏 · 𝑎−1 · 𝑏−1 = 1 ist, wenn 𝑎 und 𝑏 kommutieren,
also 𝑎 · 𝑏 = 𝑏 · 𝑎 ist.
„⇒“: Es seien 𝑎, 𝑏 ∈ 𝐺 mit 𝑎 · 𝑏 · 𝑎−1 · 𝑏−1 = 1 gegeben. Dann ist (wir multiplizieren 𝑏 · 𝑎
von links mit dem Kommutator 𝑎 · 𝑏 · 𝑎−1 · 𝑏−1 = 1):

𝑏 · 𝑎 =

1︷            ︸︸            ︷
𝑎 · 𝑏 · 𝑎−1 · 𝑏−1 · 𝑏 · 𝑎︸            ︷︷            ︸

1

= 𝑎 · 𝑏,

„⇐“: Kommutieren 𝑎 und 𝑏, dann ist der Kommutator

𝑎 · 𝑏 · 𝑎−1 · 𝑏−1 = 𝑏 · 𝑎 · 𝑎−1︸︷︷︸
1

·𝑏−1 = 𝑏 · 1 · 𝑏−1 = 1.

(1 Punkt)
Den obigen Schritt kann man auch direkt in den verbleibenden Beweis einbauen, dann
sieht man aber den Grund für den Begriff Kommutator nicht so schön. Der Rest ergibt
sich nun schnell:
„⇒“: Wenn (𝐾 (𝐺), ·) = ({1}, ·) ist, dann gilt insbesondere für die Kommutatoren

𝑎 · 𝑏 · 𝑎−1 · 𝑏−1 = 1 ∀𝑎, 𝑏 ∈ 𝐺,
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es kommutieren also alle 𝑎 und 𝑏 aus 𝐺 also ist (𝐺, ·) abelsch.
„⇐“: Ist (𝐺, ·) abelsch, dann stimmen alle Kommutatoren mit dem neutralen Element
überein und die Kommutatorengruppe die zyklische, vom neutralen Element erzeugte
Untergruppe von (𝐺, ·). Sie besteht damit nur aus dem neutralen Element. (1 Punkt)

Hausaufgabe I-5.6 (Nebenklassen) 2 Punkte

Es sei (𝐺,★) eine Gruppe und (𝑈 ,★) eine Untergruppe. Zeigen Sie den Satz 7.60 von Lagrange,
also dass, wenn (𝐺,★) endlich ist, die Beziehung #𝑈 | #𝐺 gilt.

Hinweis: Sie dürfen ohne Beweis verwenden, dass #𝐴 ∪ 𝐵 = #𝐴 + #𝐵 für endliche, disjunkte
Mengen 𝐴, 𝐵 gilt.

Lösung.

Nach Folgerung 7.57 des Skripts sind alle Äquivalenzklassen [·]𝑈∼ gleichmächtig zu 𝑈 , also
#[𝑎]𝑈∼ = #𝑈 für alle 𝑎 ∈ 𝐺 und nach Satz 5.25 induziert die Äquivalenzrelation eine Partition
von 𝐺 , 𝐺 ist also die disjunkte Vereinigung von endlich vielen Teilmengen (den Äquivalenz-
klassen), die alle die Mächtigkeit #𝑈 haben. Bei der disjunkten Vereinigung addieren sich die
Kardinalitäten, daher muss #𝐺 von #𝑈 geteilt werden. Genauer entspricht #𝐺

#𝑈 genau der Anzahl
der Äquivalenzklassen. (2 Punkte)

Bitte reichen Sie Ihre Lösungen der Hausaufgaben als ein PDF auf Mampf ein.
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