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Übungsaufgabe I-4.1. (Kardinalität)

(a) Bestimmen Sie für gegebenes𝑚 ∈ N die Kardinalität der Menge der Restklassen von Z
modulo𝑚.

(b) Zeigen Sie, dass die Aussage von Satz 6.35 des Skripts für abzählbar unendliche Mengen
𝑋 , 𝑌 i. A. nicht gilt.

(c) Zeigen Sie, dass Gleichmächtigkeit eine Äquivalenzrelation auf der Klasse aller Mengen
definiert.

(d) Es seien 𝐼 eine abzählbar unendliche Indexmenge und für jedes 𝑖 ∈ 𝐼 seien 𝑋𝑖 paarweise
disjunkte abzählbar unendliche Mengen. Skizzieren Sie einen Beweis für die Aussage,
dass

⋃
𝑖∈𝐼 𝑋𝑖 eine abzählbar unendliche Menge ist.

Lösung.

(a) Die Menge der Restklassen von Z modulo 𝑚 ist endlich, denn es gibt genau 𝑚 dieser
Restklassen. Die Menge der Restklassen ist durch

𝐴 :=
{
[0], . . . , [𝑚 − 1]

}
gegeben, denn keine Klasse kommt zweimal vor und jede weitere Menge [𝑟 ] für 𝑟 aus
Z ist bereits vertreten, denn 𝑟 mod 𝑚 ∈ {0, . . . ,𝑚 − 1}. Um zu zeigen, dass #𝐴 = 𝑚 ist
geben wir eine Bijektion zwischen Z modulo𝑚 und ⟦1,𝑚⟧ an. Eine Möglichkeit ist die
Umkehrfunktion der kanonischen Wahl

𝑓 : ⟦1,𝑚⟧ → Z /
𝑚≡

𝑓 (𝑛) = [𝑛]
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oder die Funktion

𝑔 : Z /
𝑚≡ → ⟦1,𝑚⟧

𝑔( [𝑛]) = (𝑛 mod 𝑚) + 1.

(b) Für ein entsprechendes Gegenbeispiel benötigt man nicht einmal überabzählbare Mengen,
schon bei abzählbar unendlichen Mengen beobachtet man, dass die Aussage von Satz 6.35
nicht gelten kann, also dass Injektivität und Surjektivität nicht äquivalent sind. Das zeigt
zum Beispiel die injektive, aber nicht surjektive, Funktion

𝑓 : N→ N

𝑓 (𝑛) = 2𝑛.

(c) Die konkrete Relation auf der Klasse der Mengen, die es zu untersuchen gilt, ist

𝑅 := {(𝑋,𝑌 ) | ∃ Bijektion 𝑓 : 𝑋 → 𝑌 }.

Wir prüfen für 𝑅 die definierenden Eigenschaften einer Äquivalenzrelation nach, also
Reflexivität, Symmetrie und Transitivität.
Es seien dafür 𝑋,𝑌, 𝑍 Mengen. Dann können wir für den Nachweis von 𝑋𝑅𝑋 (der Refle-
xivität von 𝑅) die (natürlich bijektive) Identität id : 𝑋 → 𝑋 angeben.
Für die Symmetrie sei nun 𝑋𝑅𝑌 , d. h. es existiert eine Bijektion 𝑓 : 𝑋 → 𝑌 . Da die
Abbildung 𝑓 bijektiv ist, existiert ihre Inverse 𝑓 −1 : 𝑌 → 𝑋 , die ebenfalls bijektiv ist, daher
ist 𝑌𝑅𝑋 .
Für die Transitivität sei nun 𝑋𝑅𝑌 und 𝑌𝑅𝑍 , es existieren also Bijektionen 𝑓 : 𝑋 → 𝑌

und 𝑔 : 𝑌 → 𝑍 . Dann ist die Komposition 𝑔 ◦ 𝑓 : 𝑋 → 𝑍 ebenfalls eine Bijektion, siehe
Satz 6.28 des Skripts, und damit 𝑋𝑅𝑍 .

(d) Zu zeigen ist, dass eine Bijektion 𝑓 :
⋃

𝑖∈𝐼 𝑋𝑖 → N existiert. Wir nutzen den Fakt, dass
für die Menge 𝐼 und für die Mengen 𝑋𝑖 für 𝑖 ∈ 𝐼 jeweils Bijektionen in die natürlichen
Zahlen existieren, das Auswahlaxiom (das uns solche Bijektionen zum Weiterverarbeiten
in die Hand gibt) und ein geschicktes Abzählverfahren, um zu zeigen, dass ein solches 𝑓
existiert.
Wenn man das Auswahlaxiom akzeptiert und es als nicht notwenig erachtet, dessen
Nutzung weiter auszuführen, startet man an dieser Stelle für gewöhnlich ohne weitere
Bemerkung dazu wie folgt in den Beweis: „Es seien also 𝑔 : 𝐼 → N eine Bijektion und
für jedes der 𝑖 ∈ 𝐼 Bijektionen 𝑓𝑖 : 𝑋𝑖 → N gegeben. Wir definieren nun die Abbildung...“
und macht weiter mit der Definition der Funktion 𝑓 in (0.1). An dieser Stelle hat man
dann eine abzählbar unendliche Auswahl von Bijektionen getroffen, mit der man weiter
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arbeitet. Ein 𝑔 aus der Menge der Bijektionen von 𝐼 nach N zu wählen(bzw. zu benennen)
ist in Hinsicht auf das Auswahlaxiom unkritisch, dieser endliche Vorgang geht ohne das
Auswahlaxiom. Für jedes einzelne 𝑖 ∈ 𝐼 ein 𝑓𝑖 zu wählen wäre auch kein Problem, wir
benötigen aber abzählbar undendlich viele von ihnen zur gleichen Zeit (weil 𝐼 abzählbar
unendlich ist) – dafür braucht man das Auswahlaxiom. Für eine ausführliche Angabe, wie
man das Auswahlaxiom anwendet, würde man entsprechend Mengen von Bijektionen zu
definieren, nämlich die Mengen der Bijektion von 𝑋𝑖 nach N, also die Mengen

𝐵𝑖 := {ℎ : 𝑋𝑖 → N | ℎ bijektiv }.

Das Auswahlaxiom sichert nun die Existenz einer Auswahlfunktion 𝐹 : 𝐼 → ⋃
𝑖∈𝐼 𝐵𝑖

mit 𝐹 (𝑖) ∈ 𝐵𝑖 für alle 𝑖 ∈ 𝐼 . Die vorhin angegebenen Bijektionen 𝑓𝑖 sind also genau die
Funktionswerte 𝐹 (𝑖) für eine solche Auswahlfunktion. So hat manwieder alles beisammen
um die Funktion 𝑓 aufbauend auf den anderen Bijektionen anzugeben.
Wir definieren nun die Abbildung

𝑓 :
⋃
𝑖∈𝐼

𝑋𝑖 → N (0.1)

𝑓

(
(𝑓𝑔−1 (𝑘 ) )−1( 𝑗)

)
:=

(
𝑖+𝑗−2∑︁
𝑙=1

𝑙

)
+ 𝑘 für 𝑗, 𝑘 ∈ N. (0.2)

Wenn wir zeigen können, dass dies eine Bijektion von
⋃

𝑖∈𝐼 𝑋𝑖 nach N ist, dann zeigt
das entsprechend die Abzählbarkeit von

⋃
𝑖∈𝐼 𝑋𝑖 . Dass die Abbildung 𝑓 tatsächlich eine

Bijektion ist, ist allerdings nicht direkt ersichtlich, wird aber klar, wenn man sich genauer
mit ihrer Konstruktion beschäftigt. Die Abbildung 𝑓 formalisiert nämlich das Vorgehen,
die Elemente der 𝑋𝑖 jeweils zeilenweise in dem Recheckschema

𝑓 −1
𝑔−1 (1) (1) 𝑓 −1

𝑔−1 (1) (2) 𝑓 −1
𝑔−1 (1) (3) · · · (Aufzählung von 𝑋𝑔−1 (1) )

𝑓 −1
𝑔−1 (2) (1) 𝑓 −1

𝑔−1 (2) (2) 𝑓 −1
𝑔−1 (2) (3) · · · (Aufzählung von 𝑋𝑔−1 (2) )

𝑓 −1
𝑔−1 (3) (1) 𝑓 −1

𝑔−1 (3) (2) 𝑓 −1
𝑔−1 (3) (3) · · · (Aufzählung von 𝑋𝑔−1 (3) )

...
...

...

anzugeben und dieses Schema dann entlang der Diagonalen von oben rechts nach unten
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links zu traversieren und abzuzählen, also

𝑓 −1
𝑔−1 (1) (1) → 𝑓 −1

𝑔−1 (1) (2) 𝑓 −1
𝑔−1 (1) (3) · · ·

↙ ↙ ↙
𝑓 −1
𝑔−1 (2) (1) 𝑓 −1

𝑔−1 (2) (2) 𝑓 −1
𝑔−1 (2) (3) · · ·

↙ ↙ ↙
𝑓 −1
𝑔−1 (3) (1) 𝑓 −1

𝑔−1 (3) (2) 𝑓 −1
𝑔−1 (3) (3) · · ·

... ↙
... ↙

....

Die Funktion 𝑓 ergibt sich dann daraus, dass wir für das Bild des Elements 𝑓 −1
𝑔−1 (𝑖 ) ( 𝑗) ∈

𝑋𝑔−1 (𝑖 ) die Anzahl der Elemente bestimmen müssen, die sich im Schema links oben
von 𝑓 −1

𝑔−1 (𝑖 ) ( 𝑗) befinden, und dann die Position von 𝑓 −1
𝑔−1 (𝑖 ) ( 𝑗) auf seiner Diagonalen drauf

addierenmüssen. Das Element 𝑓 −1
𝑔−1 (𝑖 ) ( 𝑗) steht auf der Diagonalenmit der Nummer (𝑖+ 𝑗−1).

Für jedes 𝑘 ∈ N hat die jeweils 𝑘-te Diagonal genau 𝑘 Elemente, die Anzahl der Elemente
links oben von 𝑓 −1

𝑔−1 (𝑖 ) ( 𝑗) ergeben sich also genau zu
∑𝑖+𝑗−2

𝑘=1 𝑘 . Die Position von 𝑓 −1
𝑔−1 (𝑖 ) ( 𝑗)

auf seiner Diagonalen ist genau 𝑖 . Damit ist die Injektivität und Surjektivität von 𝑓 sofort
erkenntlich. Dass die Abbildung tatsächlich rechtseindeutig ist, folgt aus der Disjunktheit
der 𝑋𝑖 , während die Linkstotalität aus der Bijektionseigentschaft der 𝑓𝑖 folgt.
Beachte:Wenn die Mengen 𝑋𝑖 nicht mehr disjunkt sind, dann gilt die Aussage weiterhin.
Die Konstruktion der Bijektion ist aber deutlich schwieriger explizit anzugeben, weil man
doppelt vorkommende Elemente überspringen muss.

Übungsaufgabe I-4.2. (Familien und Mächtigkeit)

Es sei 𝑌 eine Menge. Zeigen Sie, dass durch

(𝑦𝑖)𝑖∈𝐼1 ≼ (𝑦̃𝑖)𝑖∈𝐼2 :⇔ (𝑦𝑖)𝑖∈𝐼1 ist Teilfamilie von (𝑦̃𝑖)𝑖∈𝐼2

eine Ordnungsrelation auf der Klasse aller Familien mit Werten in 𝑌 definiert ist.

Lösung.

Wir überprüfen die definierenden Eigenschaften einer Ordnungsrelation, also Reflexivität,
Antisymmetrie und Transitivität.

Für die Reflexivität genügt es festzustellen, dass jede Familie (𝑦𝑖)𝑖∈𝐼 eine Teilfamilie von sich
selbst ist, da man als Teilindexmenge die gesamte Menge wählen kann.
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Die Antisymmetrie folgt, da wenn (𝑦𝑖)𝑖∈𝐼1 Teilfamilie von (𝑦̃𝑖)𝑖∈𝐼2 ist und (𝑦̃𝑖)𝑖∈𝐼2 Teilfamilie
von (𝑦̃𝑖)𝑖∈𝐼1 ist, dann gilt 𝐼1 ⊆ 𝐼2 und 𝐼2 ⊆ 𝐼1 und damit 𝐼1 = 𝐼2, außerdem gilt 𝑦𝑖 = 𝑦̃𝑖 für alle
𝑖 ∈ 𝐼1 = 𝐼2.

Für die Transitivität seien (𝑦𝑖)𝑖∈𝐼1 Teilfamilie von (𝑦̃𝑖)𝑖∈𝐼2 und (𝑦̃𝑖)𝑖∈𝐼2 Teilfamilie von (𝑦𝑖)𝑖∈𝐼3 .
Dann gilt 𝐼1 ⊆ 𝐼2 ⊆ 𝐼3 und 𝑦𝑖 = 𝑦̃𝑖 = 𝑦𝑖 für alle 𝑖 ∈ 𝐼1 und damit ist (𝑦𝑖)𝑖∈𝐼1 Teilfamilie von
(𝑦𝑖)𝑖∈𝐼3 .

Übungsaufgabe I-4.3. (Beispiele von Halbgruppen)

Es sei 𝑋 eine nichtleere Menge. Entscheiden Sie, welche der folgenden Beispiele Halbgruppen
bzw. Monoide sind. Begründen Sie Ihre Entscheidung. Geben Sie für Monoide das jeweilige
neutrale Element an.

(R𝑋 , ·)a)
(
Z \ {0}, (𝑎, 𝑏) ↦→ 𝑎

𝑏

)
b)

(P(𝑋 ),∪)c) (P(𝑋 ), \)d)

Lösung.

Für jedes Paar aus einer Menge und einer Abbildung ist für die Halbgruppeneigenschaft zu
prüfen, ob die Abbildung eine Verknüpfung ist und ob diese assoziativ ist. Ob es sich bei einem
Paar um ein Monoid handelt, ist gleichbedeutend mit der Frage, ob ein neutrales Element bzgl.
der angegebenen Verknüpfung existiert.

Die Angaben der Abbildungen müssen zu einem gewissen Grad aus dem Kontext interpretiert
werden. Z. B. ist mit der „+“ Verknüpfung auf Funktionen die punktweise Addition gemeint, das
kann man aber natürlich auch falsch verstehen und argumentieren, dass man in die reelle Addi-
tion keine Funktionen stecken kann. Wir versuchen hier immer den „best case“ zu untersuchen,
also versuchen alles daran zu setzen, Halbgruppen zu erhalten.

(a) Bei dem Paar (R𝑋 , ·) besteht die Grundmenge, wie im vorherigen Beispiel, aus der Menge
aller Funktionen aus der nichtleeren Menge 𝑋 nach R wobei „·“ die punktweise Mul-
tiplikation der Funktionen bzw. ihrer Funktionswerte ist. Für Funktionen 𝑓 , 𝑔 aus R𝑋

liefert die Abbildung (𝑓 , 𝑔) ↦→ 𝑓 · 𝑔 also wieder eine Funktion aus R𝑋 , die Abbildung „·“
ist also eine Verknüpfung auf R𝑋 . Sie erbt die Assoziativität von der Multiplikation
in den reellen Zahlen. Bei diesem Beispiel handelt es sich also um eine Halbgruppe.
Die konstante Einsfunktion ist weiterhin ein neutrales Element bzgl. der punktweisen
Multiplikation, entsprechend handelt es sich sogar um einMonoid.
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(b) Das Paar
(
Z \ {0}, (𝑎, 𝑏) ↦→ 𝑎

𝑏

)
könnenwir nur sinnvoll interpretieren, wennwir „(𝑎, 𝑏) ↦→

𝑎
𝑏
“ als Abbildung in die rationalen Zahlen bzw. die Menge aller Brüche verstehen, womit

der Bildbereich der Abbildung die GrundmengeZ\{0} verlässt, da z. B. (1, 2) ↦→ 1
2 ∉ Z\{0}.

Es handelt sich bei der Abbildung also um keine Verknüpfung und damit haben wir
keine Halbgruppe und entsprechend kein Monoid vorliegen.

(c) In dem Paar (P(𝑋 ),∪) bildet die Mengenvereinigung zwei Mengen aus P(𝑋 ) wieder auf
eine Menge in P(𝑋 ) ab, es handelt sich also um eine Verknüpfung auf P(𝑋 ). Dass die
Vereinigungsoperation für Mengen assoziativ ist folgt sofort aus der Assoziativität des
logischen ∨ und ist in dieser Veranstaltung bereits mehrfach thematisiert worden, wir
haben haben also eineHalbgruppe vorliegen. Das neutrale Element bzgl. der Vereinigung
auf P(𝑋 ) ist die leere Menge, wir haben also sogar einMonoid.

(d) In dem Paar (P(𝑋 ), \) bildet die Mengendifferenz zwar zwei Mengen aus P(𝑋 ) wieder auf
eine Menge in P(𝑋 ) ab und ist damit eine Verknüpfung auf P(𝑋 ), dass diese Operation
jedoch nicht assoziativ ist, wissen wir aus Übungsaufgabe I-2.2 . Hier liegt also keine
Halbgruppe vor.

Übungsaufgabe I-4.4. (Neutralität in Halbgruppen)

Wir erweitern die Definition 7.6 des Skripts für eine Halbgruppe (𝐻,★) wie folgt:
Ein Element 𝑒ℓ ∈ 𝐻 heißt linksneutrales Element von (𝐻,★), wenn 𝑒ℓ ★ 𝑥 = 𝑥 ∀𝑥 ∈ 𝐻 gilt.
Ein Element 𝑒𝑟 ∈ 𝐻 heißt rechtsneutrales Element von (𝐻,★), wenn 𝑥 ★𝑒𝑟 = 𝑥 ∀𝑥 ∈ 𝐻 gilt.

Zeigen Sie:

(a) I. A. sind linksneutrale Elemente nicht eindeutig. Das Gleiche gilt für rechtsneutrale
Elemente.

(b) Wenn in einer Halbgruppe (𝐻,★) ein linksneutrales Element 𝑒ℓ und ein rechtsneutrales
Element 𝑒𝑟 existieren, dann stimmen beide überein und sind ein neutrales Element, mit
dem (𝐻,★) ein Monoid ist.

Lösung.

(a) Für jede Menge 𝑋 mit mindestens zwei Elementen können wir ★ : 𝑋 × 𝑋 → 𝑋 durch
(𝑥, 𝑦) ↦→ 𝑦 (die „Rechtsauswahl“) definieren. Diese ist eine Verknüpfung auf 𝑋 und
assoziativ, denn es ist für 𝑥, 𝑦, 𝑧 aus 𝑋 immer

(𝑥 ★ 𝑦) ★ 𝑧 = 𝑦 ★ 𝑧 = 𝑧 = 𝑥 ★ 𝑧 = 𝑥 ★ (𝑦 ★ 𝑧) .
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Entsprechend ist das so definierte (𝑋,★) eine Halbgruppe und da ∀𝑥, 𝑦 ∈ 𝑋 𝑥 ★ 𝑦 = 𝑦 gilt
ist jedes Element aus 𝑋 linksneutral. Um zu zeigen, dass rechtsneutrale Elemente nicht
eindeutig sind, definiert man analog die Linksauswahl und erhält, dass jedes Element
rechtsneutral ist.

(b) Es seien (𝐻,★) eine Halbgruppe, 𝑒ℓ ein linksneutrales Element und 𝑒𝑟 ein rechtsneutrales
Element. Dann ist

𝑒ℓ
𝑒𝑟 rechtsneutral

= 𝑒ℓ ★ 𝑒𝑟
𝑒ℓ linksneutral

= 𝑒𝑟 .

Entsprechend ist 𝑒 := 𝑒ℓ = 𝑒𝑟 ein links- und rechtsneutrales Element und damit ein
neutrales Element – welches auf Grund von Lemma 7.7 des Skripts eindeutig ist – und
(𝐻,★) mit 𝑒 ein Monoid.
Beachte: Dieser Punkt zeigt direkt, dass eine Halbgruppe keine Monoid sein kann, wenn
mehrere links- bzw. rechtsinverse Elemente existieren.
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Hausaufgabe I-4.1 (Charakterisierung der Injektivität) 3 Punkte

Es sei 𝑓 : 𝑋 → 𝑌 eine Funktion und 𝑋 ≠ ∅. Zeigen Sie die verbleibenden Implikationen für den
Beweis von Satz 6.29 des Skripts, also für die Äquivalenz der folgenden Aussagen:

(𝑖) 𝑓 ist injektiv.
(𝑖𝑖) Es existiert eine Abbildung 𝑔 : 𝑌 → 𝑋 mit der Eigenschaft 𝑔 ◦ 𝑓 = id𝑋 . Eine solche

Abbildung heißt eine Linksinverse (englisch: left inverse) von 𝑓 . Sie ist notwendig
surjektiv. Ihre Einschränkung 𝑔 |

𝑓 (𝑋 ) auf das Bild von 𝑓 ist eindeutig.

(𝑖𝑖𝑖) Für beliebige Mengen𝑋0 und beliebige Abbildungen 𝑓1, 𝑓2 : 𝑋0 → 𝑋 gilt: Aus 𝑓 ◦ 𝑓1 = 𝑓 ◦ 𝑓2
folgt 𝑓1 = 𝑓2.

Lösung.

Für die Implikation (𝑖) ⇒ (𝑖𝑖) wurde bereits im Skript eine Konstruktion angegeben.

Für die Implikation (𝑖𝑖) ⇒ (𝑖𝑖𝑖) seien entsprechende 𝑓1 und 𝑓2 mit dazugehörigem 𝑋0 gegeben.
Dann nutzen wir die Linksinverse 𝑔 und erhalten

𝑓1 = id𝑋 ◦ 𝑓1 = 𝑔 ◦ 𝑓 ◦ 𝑓1 = 𝑔 ◦ 𝑓 ◦ 𝑓2 = id𝑋 ◦ 𝑓2 = 𝑓2.

(1.5 Punkte)

Für die Implikation (𝑖𝑖𝑖) ⇒ (𝑖) führen wir einen Beweis über Kontraposition und starten also
mit nicht-injektivem 𝑓 . Per Definition existieren in der nichtleeren Menge 𝑋 also mindestens
zwei Elemente 𝑥1 ≠ 𝑥2 ∈ 𝑋 , so dass 𝑓 (𝑥1) = 𝑓 (𝑥2). Nun wählen wir 𝑋0 = 𝑋 und 𝑓1 ≡ 𝑥1 und
𝑓2 ≡ 𝑥2. Dann sind diese Funktionen per Konstruktion nicht gleich, doch es gilt 𝑓 ◦ 𝑓1(𝑥) =
𝑓 (𝑥1) = 𝑓 (𝑥2) = 𝑓 ◦ 𝑓2(𝑥) für beliebige 𝑥 ∈ 𝑋 . (1.5 Punkte)

Hausaufgabe I-4.2 (Stabilität der Mächtigkeit überabz. Mengen bei Verlust abz. Teilmengen)
2 + 2 + 2 = 6 Punkte

Es seien 𝑋 eine überabzählbare Menge und 𝑌 ⊊ 𝑋 eine abzählbar unendliche Menge.

(a) Zeigen Sie, dass 𝑋 \ 𝑌 überabzählbar ist.
(b) Zeigen Sie, dass 𝑋 \ 𝑌 eine abzählbar unendliche Teilmenge enthält.
(c) Zeigen Sie, dass 𝑋 und 𝑋 \ 𝑌 gleichmächtig sind.

Lösung.
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(a) Es ist𝑋 = 𝑋 \𝑌 ¤∪𝑌 , also darstellbar als die disjunkte Vereinigung. Angenommen𝑋 \𝑌 wäre
abzählbar unendlich und 𝑓 : 𝑋 \ 𝑌 → N eine Bijektion sowie 𝑔 : 𝑌 → N eine Bijektion.
Dann wäre ℎ : 𝑋 → N

ℎ(𝑥) =
{

2𝑓 (𝑥) 𝑥 ∈ 𝑋 \ 𝑌
2𝑔(𝑥) − 1 𝑥 ∈ 𝑌

(die Abbildung, die die Elemente aus 𝑋 \𝑌 und 𝑌 abwechselnd auf die natürlichen Zahlen
abbildet) ebenfalls eine Bijektion und damit 𝑋 abzählbar undendlich, im Widerspruch zur
Überabzählbarkeit.
Angenommen 𝑋 \ 𝑌 wäre endlich mit𝑚 ∈ N Elementen und 𝑓 : 𝑋 \ 𝑌 → ⟦1,𝑚⟧ eine
Bijektion sowie 𝑔 : 𝑌 → N eine Bijektion, dann könnten wir entsprechend die Bijektion
ℎ : 𝑋 → N mit

ℎ(𝑥) =
{
𝑓 (𝑥) 𝑥 ∈ 𝑋 \ 𝑌
𝑔(𝑥) +𝑚 𝑥 ∈ 𝑌

angeben und entsprechend einen analogen Widerspruch produzieren.
Im Fall 𝑋 \ 𝑌 = ∅ ist 𝑋 = 𝑌 abzählbar im Widerspruch zur Voraussetzung. (2 Punkte)

(b) Wir müssen zeigen, dass es eine Bijektion von einer Teilmenge aus 𝑋 in die natürlichen
Zahlen gibt.
Klar ist, dass wir für jede endliche Menge von genau 𝑛 ∈ N verschiedenen Elementen
𝑆𝑛 := {𝑥 (1) , . . . , 𝑥 (𝑛) } ein weiteres Element 𝑥 (𝑛+1) ∈ (𝑋 \𝑌 )\𝑆𝑛 wählen können, denn sonst
wäre 𝑋 \ 𝑌 endlich. Wir erhalten also induktiv für jedes beliebige aber feste 𝑛 ∈ N eine
endliche Folge paarweise verschiedener Elemente 𝑥1, . . . , 𝑥𝑛 , also das folgende Resultat:

∀𝑛 ∈ N ∃𝑥1, . . . , 𝑥𝑛 : 𝑖 ≠ 𝑗 ⇒ 𝑥𝑖 ≠ 𝑥 𝑗 . (0.3)

Dies ist aber wie schon gesagt ein induktiver Prozess, der uns nicht die Existenz einer
unendlichen Folge mit der entsprechenden Eigenschaft liefert. Das Auswahlaxiom sichert
uns, dass wir nicht nur eine endliche Folge wählen können, sondern auch eine unendliche,
also das eigentlich gewünschte Resultat

∃(𝑥𝑛)𝑛∈N ∀𝑛 ∈ N : 𝑖 ≠ 𝑗 ⇒ 𝑥𝑖 ≠ 𝑥 𝑗 . (0.4)

Ein sauberer Beweis dieser Tatsache geht wie folgt: Die Existenzaussage (0.3) zeigt, dass
für jedes 𝑛 ∈ N eine Teilmenge von 𝑋 mit Kardinalität 𝑛 existiert. Wir können also die
Familie nichtleerer Mengen

(𝑃𝑛)𝑛 := {𝐴 ∈ P(𝑋 ) | #𝐴 = 2𝑛} ∈ P(P(𝑋 ))

betrachten. Anwendung des Auswahlaxioms liefert uns eine Familie (𝑋𝑛)𝑛 von Mengen
𝑋𝑛 ∈ P(𝑋 ) mit #(𝑋𝑛) = 2𝑛 . Aus diesen definieren wir die Familie (𝑋𝑛)𝑛 der Mengen
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𝑋𝑛 := 𝑋𝑛 \ (
⋃𝑛−1

𝑘=1 𝑋𝑘 ). Da
⋃𝑛−1

𝑘=1 𝑋𝑘 höchstens
∑𝑛−1

𝑘=1 2𝑘 = 2𝑛 − 2 Elemente hat, sind alle 𝑋𝑛

nichtleer und das Auswahlaxiom liefert aus der Familie (𝑋𝑛)𝑛 eine Folge 𝑥𝑛 paarweise
ungleicher Elemente, also die Aussage (0.4). (2 Punkte)

(c) Wir konstruieren eine Bijektion zwischen𝑋 und𝑋 \𝑌 . Es seien dafür Bijektionen 𝑓 : 𝐹 →
N und 𝑔 : 𝑌 → N gegeben, wobei 𝐹 wieder die eben konstruierte abzählbar unendliche
Teilmenge von 𝑋 \ 𝑌 bezeichnet. Wir definieren dann die nach Konstruktion bijektive
Abbildung

ℎ : 𝑋 → 𝑋 \ 𝑌

ℎ(𝑥) =

𝑥 𝑥 ∈ 𝑋 \ (𝑌 ∪ 𝐹 )
𝑓 −1 (2𝑓 (𝑥) − 1

)
𝑥 ∈ 𝐹

𝑓 −1 (2𝑔(𝑥)) 𝑥 ∈ 𝑌

.

Die Idee bei der Konstruktion dieser Abbildung ist, dass man 𝑋 in 3 Teile zerlegen
kann, nämlich in zwei disjunkte abzählbar unendliche Teilmengen 𝑌 und 𝐹 und den
entsprechenden Rest 𝑋 \ (𝑌 ∪ 𝐹 ). Für die Konstruktion der Bijektion von 𝑋 auf 𝑋 \
𝑌 baut man nun eine Bijektion zwischen den abzählbar unendlichen Mengen 𝑌 ∪ 𝐹

und 𝐹 indem man die Abzählung derer Elemente alterniert und dann die Identität auf
dem überabzählbaren Rest nimmt. Die abzählbar unendliche Menge in 𝐹 ⊆ 𝑋 \ 𝑌 ist
letztendlich ausreichend mächtig, um die Bijektion auf die größere Menge 𝐹 ∪ 𝑌 zu
erlauben. (2 Punkte)

Hausaufgabe I-4.3 (Konkatenation von Familien) 1.5 + 1.5 + 1 = 4 Punkte

Es sei 𝑌 eine Menge. Für zwei Familien 𝐹1 = (𝑣 𝑗 ) 𝑗∈ 𝐽1 und 𝐹2 = (𝑣 𝑗 ) 𝑗∈ 𝐽2 ist die Konkatenation der
beiden Familien definiert als

𝐹1 ∥ 𝐹2 : ({1} × 𝐽1) ·∪ ({2} × 𝐽2) → 𝑌

𝐹1 ∥ 𝐹2(𝑖, 𝑗) :=

{
𝑣 𝑗 , 𝑖 = 1
𝑣 𝑗 , 𝑖 = 2.

(a) Erklären Sie, weshalb in der obigen Definition die neue Indexmenge ({1} × 𝐽1) ·∪ ({2} × 𝐽2)
statt der Menge 𝐽1 ∪ 𝐽2 verwendet wurde.

(b) Verallgemeinern Sie die Definition der Konkatenation zweier Familien für den Fall ei-
ner Familie (𝐹𝑖)𝑖∈𝐼 von Familien 𝐹𝑖 mit Indexmengen 𝐽𝑖 und Werten in 𝑌 über einer
Indexmenge 𝐼 . Beachte: Eine solche Konkatenation werden wir mit




𝑖∈𝐼𝐹𝑖 bezeichnen.

(c) Evaluieren Sie



𝑖∈𝐼𝐹𝑖 (15.7, {−10, 10}) für den Fall, dass 𝑌 = N0 und 𝐼 = R ist, sowie

𝐽𝑖 = {𝐴 ⊆ Z | max(𝐴) ≤ 𝑖} und 𝐹𝑖 : 𝐽𝑖 ∋ 𝐴 ↦→ #(𝐴 ∩ R>).
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Lösung.

(a) Bei der simplen Vereinigung der beiden Indexmengen ließe sich für jeden der Indizes, die
im Schnitt der Mengen 𝐽1 ∩ 𝐽2 vorkommen, keine Entscheidung treffen, welches Bild der
jeweiligen Familien verwendet werden sollte. (1.5 Punkte)

(b) Wir erweitern die Definition auf beliebige Konkatenationen via


𝑖∈𝐼𝐹𝑖 :

⋃
𝑖∈𝐼

({𝑖} × 𝐽𝑖) → 𝑌(


𝑖∈𝐼𝐹𝑖

)
(𝑖, 𝑗) := 𝐹𝑖 ( 𝑗) .

(1.5 Punkte)
(c) Wir erhalten



𝑖∈𝐼𝐹𝑖 (15.7, {−10, 10}) = 𝐹15.7({−10, 10}) = #({−10, 10} ∩ R>) = #({10}) = 1.

(1 Punkt)

Hausaufgabe I-4.4 (Beispiele von Halbgruppen) 3 Punkte

Es sei 𝑋 eine nichtleere Menge. Entscheiden Sie, welche der folgenden Beispiele Halbgruppen
bzw. Monoide sind. Begründen Sie Ihre Entscheidung. Geben Sie für Monoide das jeweilige
neutrale Element an.

(R𝑋 , +)(i) (P(𝑋 ),∩)(ii)
(P(𝑋 ), △)(iii) (𝑋𝑋 , ◦)(iv)
(Z2, ((𝑥1, 𝑥2), (𝑦1, 𝑦2)) ↦→ (𝑥1·𝑦1, 𝑥2+𝑦2))(v) (P(𝑋 ), (𝐴, 𝐵) ↦→ 𝐴𝑐 ∪ 𝐵𝑐)(vi)

Lösung.

Für jedes Paar aus einer Menge und einer Abbildung ist für die Halbgruppeneigenschaft zu
prüfen, ob die Abbildung eine Verknüpfung ist und ob diese assoziativ ist. Ob es sich bei einem
Paar um ein Monoid handelt, ist gleichbedeutend mit der Frage, ob ein neutrales Element bzgl.
der angegebenen Verknüpfung existiert.

Die Angaben der Abbildungen müssen zu einem gewissen Grad aus dem Kontext interpretiert
werden. Z. B. ist mit der „+“ Verknüpfung auf Funktionen die punktweise Addition gemeint, das
kann man aber natürlich auch falsch verstehen und argumentieren, dass man in die reelle Addi-
tion keine Funktionen stecken kann. Wir versuchen hier immer den „best case“ zu untersuchen,
also versuchen alles daran zu setzen, Halbgruppen zu erhalten.
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(a) Das Paar (R𝑋 , +) bezeichnet die Menge aller Funktionen aus der nichtleeren Menge 𝑋
nach R wobei „+“ die punktweise Addition der Funktionen bzw. ihrer Funktionswerte ist.
Für Funktionen 𝑓 , 𝑔 aus R𝑋 liefert die Abbildung (𝑓 , 𝑔) ↦→ 𝑓 +𝑔 also wieder eine Funktion
aus R𝑋 , die Abbildung „+“ ist also eine Verknüpfung auf R𝑋 . Sie erbt die Assoziativität
von der Addition in den reellen Zahlen. Bei diesem Beispiel handelt es sich also um eine
Halbgruppe. Die konstante Nullfunktion ist weiterhin ein neutrales Element bzgl. der
punktweisen Addition, entsprechend handelt es sich sogar um einMonoid. (0.5 Punkte)

(b) In dem Paar (P(𝑋 ),∩) bildet der Mengenschnitt zwei Mengen aus P(𝑋 ) wieder auf
eine Menge in P(𝑋 ) ab, es handelt sich also um eine Verknüpfung auf P(𝑋 ). Dass
die Schnittoperation für Mengen assoziativ ist, folgt sofort aus der Assoziativität des
logischen ∧ und ist in dieser Veranstaltung bereits mehrfach thematisiert worden, wir
haben haben also eine Halbgruppe vorliegen. Das neutrale Element bzgl. des Schnitts
auf P(𝑋 ) ist die Menge 𝑋 selbst, wir haben also sogar einMonoid. (0.5 Punkte)

(c) Bei dem Paar (P(𝑋 ), △) bildet die symmetrische Differenz Mengen aus P(𝑋 ) auf eine
Menge in P(𝑋 ) ab, es handelt sich also um eine Verknüpfung. Die Verknüpfung ist
sogar assoziativ, was wir bisher aber noch nicht gesehen haben, weshalb es hier noch
kurz bewiesen wird.
Es seien dafür Mengen 𝐴, 𝐵,𝐶 gegeben. Zur Erinnerung, die symmetrische Differenz war
definiert als 𝐴△𝐵 := 𝐴 \ 𝐵 ∪ 𝐵 \𝐴, was uns die folgende Gleichungskette liefert:

(𝐴△𝐵)△𝐶 = (𝐴 \ 𝐵 ∪ 𝐵 \𝐴)△𝐶 (Definition)
= (𝐴 \ 𝐵 ∪ 𝐵 \𝐴) \𝐶 ∪ 𝐶 \ (𝐴 \ 𝐵 ∪ 𝐵 \𝐴) (Definition)
= 𝐴 \ (𝐵 ∪𝐶) ∪ 𝐵 \ (𝐴 ∪𝐶) ∪ 𝐶 \ (𝐴 ∪ 𝐵) (Split der A,B-Teile)
= 𝐴 \ (𝐵 \𝐶 ∪𝐶 \ 𝐵) ∪ (𝐵 \𝐶 ∪𝐶 \ 𝐵) \𝐴 (Gruppieren der B,C Teile)
= 𝐴 \ (𝐵△𝐶) ∪ (𝐵△𝐶) \𝐴 (Definition)
= 𝐴△(𝐵△𝐶). (Definition)

Das zeigt, dass wir hier tatsächlich eine Halbgruppe vorliegen haben. Das neutrale
Element ist hier wieder die leere Menge, wir haben also sogar ein Monoid. (0.5 Punkte)

(d) Das Paar (𝑋𝑋 , ◦) beschreibt die Menge aller Funktionen 𝑓 : 𝑋 → 𝑋 mit der Komposition,
die eine Verknüpfung auf 𝑋𝑋 darstellt. Die Assoziativität ist für die Verknüpfung klar,
denn für 𝑓 , 𝑔, ℎ ∈ 𝑋𝑋 ist für alle 𝑥 ∈ 𝑋 :

((𝑓 ◦ 𝑔) ◦ ℎ) (𝑥) = (𝑓 ◦ 𝑔) (ℎ(𝑥)) = 𝑓 (𝑔(ℎ(𝑥))) = 𝑓 ((𝑔 ◦ ℎ) (𝑥)) = 𝑓 ◦ (𝑔 ◦ ℎ) (𝑥),

hier liegt also wieder eine Halbgruppe vor und das neutrale Element id ∈ 𝑋𝑋 zeigt, dass
wir sogar ein Monoid haben. (0.5 Punkte)
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(e) Das Paar (Z2, ((𝑥1, 𝑥2), (𝑦1, 𝑦2)) ↦→ (𝑥1·𝑦1, 𝑥2+𝑦2)) beschreibt dieMenge aller Paare inZmit
der Abbildung, die für zwei Paare, die ersten Komponenten multiplikativ und die zweite
Komponente additiv verknüpft. Es handelt sich also tatsächlich um eine Verknüpfung.
Die Assoziativität der Verknüpfung wird von den jeweiligen Operationen auf den ganzen
Zahlen vererbt. Hier liegt also wieder eine Halbgruppe vor und das neutrale Element
(1, 0) zeigt, dass wir sogar einMonoid haben. (0.5 Punkte)

(f) In dem Paar (P(𝑋 ), (𝐴, 𝐵) ↦→ 𝐴𝑐 ∪ 𝐵𝑐) werden Teilmengen auf 𝑋 verknüpft, denn
die Abbildung landet wieder in P(𝑋 ). Dass keine Assoziativität gilt sieht man z. B. für
𝐴 = 𝐵 = ∅,𝐶 = 𝑋 , dann ist

(𝐴𝑐 ∪ 𝐵𝑐)𝑐 ∪𝐶𝑐 = ∅ ∪ ∅ = ∅ ≠ 𝑋 = 𝑋 ∪ ∅ = 𝐴𝑐 ∪ (𝐵𝑐 ∪𝐶𝑐)𝑐 .

Es liegt also keine Halbgruppe vor. (0.5 Punkte)

Hausaufgabe I-4.5 (Invertierbarkeit in Halbgruppen) 2.5 + 1.5 = 4 Punkte

Wir erweitern die Definition 7.14 des Skripts für eine Halbguppe (𝐻,★) mit neutralem Element 𝑒
wie folgt:

Ein Element 𝑎 ∈ 𝐻 heißt linksinvertierbar, wenn ein 𝑏ℓ ∈ 𝐻 existiert mit 𝑏ℓ ★𝑎 = 𝑒 . In diesem
Fall heißt 𝑏ℓ ein linksinverses Element zu 𝑎.

Ein Element 𝑎 ∈ 𝐻 heißt rechtsinvertierbar, wenn ein 𝑏𝑟 ∈ 𝐻 existiert mit 𝑎 ★ 𝑏𝑟 = 𝑒 . In
diesem Fall heißt 𝑏𝑟 ein rechtsinverses Element zu 𝑎.

Es sei (𝐻,★) eine Halbgruppe. Zeigen Sie:

(a) I. A. sind linksinverse Elemente nicht eindeutig. Das Gleiche gilt für rechtsinverse Ele-
mente.

(b) Wenn 𝑎 aus 𝐻 links- und rechtsinvertierbar ist, dann ist 𝑎 invertierbar und jedes links-
oder rechtsinverses Element zu 𝑎 gleicht dem eindeutigen Inversen von 𝑎.

Lösung.

(a) Wir betrachten als Beispiel (NN, ◦), also die Halbgruppe der Funktionen vonN nachNmit
der Komposition. Diese bildet mit dem neutralen Element id ein Monoid, es ist aber nicht
jedes Element invertierbar, denn nicht alle Elemente sind injektiv und surjektiv zugleich.
Wir können für eine nicht injektive aber surjektive Funktion verschiedene Rechtsinverse
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konstruieren, z. B. besitzt die surjektive aber nicht injektive Funktion 𝑓 (𝑛) := max(1, 𝑛−1)
die beiden Rechtsinversen

𝑓 −𝑅1 (𝑛) := 𝑛 + 1 und 𝑓 −𝑅2 (𝑛) :=

{
1 𝑛 = 1
𝑛 + 1 𝑛 ≠ 1

mit 𝑓 ◦ 𝑓 −𝑅1 = 𝑓 ◦ 𝑓 −𝑅2 = id.
Außerdem kann man für die nicht surjektive aber injektive Funktion 𝑓 (𝑛) := 𝑛 + 1 die
abzählbar unendliche Familie von linksinversen Funktionen 𝑓 −𝐿𝑚 in Abhängigkeit vom
Index𝑚 ∈ N angeben:

𝑓 −𝐿𝑚 (𝑛) :=

{
𝑚 𝑛 = 1
𝑛 − 1 𝑛 ≠ 1

.

(2.5 Punkte)
(b) Es sei 𝑎 ∈ 𝐻 links- sowie rechtsinvertierbar und 𝑎−ℓ und 𝑎−𝑟 ein linksinverses bzw. ein

rechtsinverses Element für 𝑎. Dann ist

𝑎−ℓ = 𝑎−ℓ ★ 𝑒︸︷︷︸
𝑎★𝑎−𝑟

= 𝑎−ℓ ★ 𝑎︸  ︷︷  ︸
𝑒

★𝑎−𝑟 = 𝑎−𝑟 ,

es stimmen also alle links- und alle rechtsinversen Elemente überein (Eindeutigkeit) und
sind damit links- und rechtsinverse von 𝑎, also Inverse zu 𝑎. (1.5 Punkte)
Beachte: Der obige Beweis unterscheidet sich kaum vom Beweis von Lemma 7.15 des
Skripts.

Bitte reichen Sie Ihre Lösungen der Hausaufgaben als ein PDF auf Mampf ein.
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