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Homework Problem 12.1.

Consider the operator 𝑇 : 𝐿2(0, 1) ↦→ 𝐿2(0, 1) defined by

𝑇𝑢 (𝑥) :=
∫ 𝑥

0
𝑢 (𝑡) d𝑡 for 𝑥 ∈ [0, 1] .

Find the adjoint of 𝑇 with respect to the standard inner product.

Solution.

From Fubini’s theorem, we obtain that

(𝑇𝑢, 𝑣) =
∫ 1

0

∫ 𝑥

0
𝑢 (𝑡) d𝑡𝑣 (𝑥) d𝑥

=

∫ 1

0

∫ 𝑥

0
𝑢 (𝑡)𝑣 (𝑥) d𝑡 d𝑥

=

∫ 1

0

∫ 1

𝑡

𝑢 (𝑡)𝑣 (𝑥) d𝑥 d𝑡

=

∫ 1

0
𝑢 (𝑡)

∫ 1

𝑡

𝑣 (𝑥) d𝑥 d𝑡 .

Accordingly, the adjoint operator is given by 𝑇 ◦(𝑣) (𝑥) =
∫ 1
𝑥
𝑣 (𝑡) d𝑡 .

Homework Problem 12.2. (homework problem 10.1 revisited)

Derive first order optimality conditions for the boundary-controlled modification of the floor-heating
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problem
Minimize

1
2
∥𝑦 − 𝑦𝑑 ∥2𝐿2 (Ωobs ) +

𝛾

2
∥𝑢∥2

𝐿2 (Γ)

s. t.

− div

(
𝜅 ∇𝑦

)
= 0 in Ω

𝜅
𝜕

𝜕𝑛
𝑦 = 𝛼

(
𝑢 − 𝑦

)
on Γ

and 𝑢 ∈ 𝐿2(Γ) .

Solution.

First off, we can clearly apply Theorem 10.1 to the reduced (weak) formulation of the boundary control
problem, as the result in the lecture notes is formulated on an abstract level and our boundary control
problem is of the required form. Since we have𝑈ad = 𝐿2(Γ), i. e., an entire linear space, instead of a
variational inequality, we end up with an equality. Specifically, if our reduced problem is of the form

Minimize
1
2
∥ 𝐸𝐺︸︷︷︸

=:𝑆

(𝑢) − 𝑦𝑑 ∥2𝐿2 (Ω) +
𝛾

2
∥𝑢∥2

𝐿2 (Γ) with 𝑢 ∈ 𝐿2(Γ)

with 𝐸 : 𝐻 1 → 𝐿2(Ω), 𝐺 : 𝐿2(Γ) → 𝐻 1(Ω), then the corresponding first order optimality condition is
of the form

(𝑆◦(𝑆 (𝑢) − 𝑦𝑑 ), 𝛿𝑢)𝐿2 (Γ) + 𝛾 (𝑢, 𝛿𝑢,=)0 for all 𝛿𝑢 ∈ 𝐿2(Γ),
i. e., by the isomorphism property of the Riesz operator,

𝑆◦(𝑆 (𝑢) − 𝑦𝑑 ) + 𝛾𝑢 = 0 in 𝐿2(Γ).

As in the lecture, we now need to characterize the form of the adjoint solution operator 𝑆◦. We can
make the a guess from the following observations: The operator 𝐸 is exactly the same as in the lecture.
The operator𝐺 can be decomposed into two parts, the first being the mapping from 𝐿2(Γ) to (𝐻 1(Ω))∗,
and the second being the solution operator of the PDE from an (𝐻 1(Ω))∗ element to a 𝐻 1(Ω) state.
The first will have changed while the second will not have changed. The adjoint PDE in the lecture
only has observation domain information on the right hand side, so we can expect the adjoint PDE not
to change but the change to be present in how the adjoint state plys into the gradient information.

Let’s see if the formal Lagrange method yields a more concrete guess. Our Lagrangian reads as

L(𝑦,𝑢, 𝑝) := 1
2
∥𝑦 − 𝑦𝑑 ∥2𝐿2 (Ω) +

𝛾

2
∥𝑢∥2

𝐿2 (Γ) +
∫
Ω
𝜅 ∇𝑦 · ∇𝑝 d𝑥 +

∫
Γ
𝛼 𝑦 𝑝 d𝑠 −

∫
Γ
𝛼 𝑢 𝑝 d𝑠 .

The first equality in the stationarity condition is

L𝑦 (𝑦,𝑢, 𝑝) 𝛿𝑦 =

∫
Ω
(𝑦 − 𝑦𝑑 ) 𝛿𝑦 d𝑥 +

∫
Ω
𝜅 ∇𝛿𝑦 · ∇𝑝 d𝑥 +

∫
Γ
𝛼 𝛿𝑦 𝑝 d𝑠 = 0.
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As expected, this is exactly the equation derived in the lecture for the domain controlled case. We know
the third condition L𝑝 (𝑦,𝑢, 𝑝) 𝛿𝑝 = 0 for all 𝛿𝑝 ∈ 𝐻 1(Ω) is exactly the PDE constraint we started out
with, so all the changes have to be in the second condition, namely the condition∫

Γ
(𝛾 𝑢 − 𝑝) 𝛿𝑢 d𝑥 = 0 for all 𝛿𝑢 ∈ 𝐿2(Γ),

which carries the implicit information that 𝑝 is to be restricted to 𝑝 |Γ = 𝜏 (𝑝) (i. e. in the sense of the
trace operator, not a simple restriction operator for subdomains of Ωctrl).

Consequently, we expect the optimality system to be given for 𝑢 ∈ 𝐿2(Γ), 𝑦, 𝑝, 𝑣 ∈ 𝐻 1(Ω) by∫
Ω
𝜅∇𝑝 · ∇𝑣 +

∫
Γ
𝛼 𝑝 𝑣 d𝑠 =

∫
Ω
(𝑦 − 𝑦𝑑 ) 𝑣 d𝑥 for all 𝑣 ∈ 𝐻 1(Ω) (Adjoint equation)∫

Γ
𝛾 𝑢 𝑣 d𝑠 −

∫
Γ
𝛼 𝑝 𝑣 d𝑠 = 0 for all 𝑣 ∈ 𝐿2(Γ) (Derivative condition)∫

Ω
𝜅∇𝑦 · ∇𝑣 +

∫
Γ
𝛼 𝑦 𝑣 d𝑠 =

∫
Γ
𝛼 𝑢 𝑣 d𝑠 for all 𝑣 ∈ 𝐻 1(Ω) (State equation).

Since the second and third line are a direct consequence of the definition of the solutoin operator and
Theorem 10.1, we only need to check that in fact

𝑆◦ℎ = 𝜏 (𝑝) = 𝑝 |Γ

with 𝑝 given as the solution of the adjoint equation, which has exactly the strong form givn in
Equation (10.5) of the lecture notes with 𝜒obs = 1. To that end, as in the lecture notes, we use the adjoint
state 𝑝 as a test function in the state equation and vice-versa to obtain that the left hand sides coincide
and therefor the right hand sides do as well to yield∫

Ω
ℎ 𝑝 d𝑥 =

∫
Γ
𝛼 𝑢 𝑦 d𝑠

which is exactly the defining equation of the adjoint operator.

You are not expected to turn in your solutions.
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