Infinite Dimensional Optimization

Exercise 11

Date issued: 7th January 2025

Homework Problem 11.1.

- (a) (*i*) Let *X*, *Y*, *Z* be normed linear spaces and $F: X \to Y$ and $G: Y \to Z$ be Fréchet differentiable at $x \in X$ and $F(x) \in Y$, respectively. Show that $G \circ F: X \to Z$ is Fréchet differentiable at *x*.
 - (*ii*) Give an example of normed linear spaces X, Y, Z and functions $F: X \to Y$ and $G: Y \to Z$, that are Gâteaux differentiable at $x \in X$ and $F(x) \in Y$, respectively, where $G \circ F$ is not Gâteaux-differentiable at x.
- (b) Let $F: X \to Y$ be a function between two linear spaces X and Y, and let $\|\cdot\|_X$ and $\|\cdot\|_{X'}$ as well as $\|\cdot\|_Y$ and $\|\cdot\|_{Y'}$ be norms on X and Y, respectively. Further, let $x \in X$.
 - (*i*) Show that if *F* is Fréchet differentiable with respect to $\|\cdot\|_X$ and $\|\cdot\|_Y$, then it is Fréchet differentiable with respect to $\|\cdot\|_{X'}$ and $\|\cdot\|_{Y'}$, if $\|\cdot\|_{X'}$ is stronger than $\|\cdot\|_X$ and $\|\cdot\|_{Y'}$ is weaker than $\|\cdot\|_Y$.
 - (*ii*) Show that the operator $u \mapsto \sin(u)$ is Fréchet-differentiable as an operator from $L^{p_1}(0, 1)$ to $L^{p_2}(0, 1)$ for $p_1, p_2 \in [1, \infty)$ if and only if $p_2 < p_1$.

Hint: Taylor's theorem will be helpful. In the proof of differentiability, consider $q \ge \frac{p}{2}$. In the counter example, consider step functions *h* and u = 0.

You are not expected to turn in your solutions.

https://tinyurl.com/scoop-ido