Infinite Dimensional Optimization

Exercise 10

Date issued: 16th December 2024

Homework Problem 10.1. (Modified heating problem)

Consider the modification of the floor heating problem (7.3) of the lecture notes:

Minimize
$$\frac{1}{2} \| \mathbf{y} - \mathbf{y}_d \|_{L^2(\Omega_{obs})}^2 + \frac{\gamma}{2} \| \mathbf{u} \|_{L^2(\Gamma)}^2$$

s.t.
$$\begin{cases} -\operatorname{div}(\kappa \nabla \mathbf{y}) = 0 & \text{in } \Omega \\ \kappa \frac{\partial}{\partial n} \mathbf{y} = \alpha (\mathbf{u} - \mathbf{y}) & \text{on } \Gamma \end{cases}$$

and $\mathbf{u} \in L^2(\Gamma).$ (0.1)

- (a) Explain how the problem that is modeled by (0.1) differs from the one modeled by (7.3) of the lecture notes.
- (b) Derive the weak formulation of the PDE constraint.
- (c) Show existence of a bounded linear control-to-state map $G: L^2(\Gamma) \to H^1(\Omega)$ for the PDE constraint in variational formulation given Assumption 7.6.
- (d) Show existence of a globally optimal control $u \in L^2(\Gamma)$ provided Assumption 7.6 holds and $\gamma > 0$.
- (e) Explain how additional bound constraints on the control or a nonzero right hand side in the PDE change the results presented above.

Homework Problem 10.2. (Differentiability results for operators)

- (a) Let $\Omega \subseteq \mathbb{R}^n$ be an open and bounded set. Compute the directional derivative of the 1-norm $\|\cdot\|_1 \colon L^1(\Omega) \to \mathbb{R}$. When is the map Gâteaux differentiable?
- (b) Give examples of Banach spaces *X*, *Y* and operators $F: X \to Y$ such that at a point $x \in X$:

- (i) every directional derivative of F exists but F is not Gâteaux-differentiable,
- (*ii*) *F* is Gâteaux differentiable but not Fréchet differentiable.

You are not expected to turn in your solutions.

https://tinyurl.com/scoop-ido