R. Herzog, G. Müller Universität Heidelberg

Infinite Dimensional Optimization

Exercise 9

Date issued: 9th December 2024

Homework Problem 9.1. (Traces in L^p)

Let $\Omega := B_1^{\|\cdot\|_2}(0) \subseteq \mathbb{R}^2$. Show that there can not be an extension of the trace map $\tau : C(\Omega) \to C(\partial\Omega)$ to a continuus map on $L^2(\Omega)$.

Homework Problem 9.2. (The Lax-Milgram lemma)

- (a) Let $n \in \mathbb{N}$, $b \in \mathbb{R}^n$ and a symmetric $A \in \mathbb{R}^{n \times n}$ such that $x^T A x > c ||x||_2^2$ for a $c \in \mathbb{R}_>$. Use the Lax-Milgram lemma to show that the linear system Ax = b has a unique solution $x \in \mathbb{R}^n$.
- (b) Let *H* be a Hilbert space and let $A: H \mapsto H$ be a bounded, linear operator such that $(Ax, x) \ge 0$ for every $x \in H$. Use the Lax-Milgram lemma to show that the operator id $+ \alpha A: H \to H$ is bijective for every $\alpha \ge 0$. Show boundedness of A^{-1} .

You are not expected to turn in your solutions.

https://tinyurl.com/scoop-ido