R. Herzog, G. Müller Universität Heidelberg

Infinite Dimensional Optimization

Exercise 9 (Solution)

Date issued: 9th December 2024

Homework Problem 9.1. (Traces in L^p)

Let $\Omega := B_1^{\|\cdot\|_2}(0) \subseteq \mathbb{R}^2$. Show that there can not be an extension of the trace map $\tau \colon C(\overline{\Omega}) \to C(\partial\Omega)$ to a continous map on $L^2(\Omega)$.

Solution.

Consider the family of functions $(f^{(k)}) \in C(\Omega)$, where $f^{(k)} \colon x \mapsto ||x||^k$. Then

$$\|f^{(k)}\|_{L^{2}}^{2} = \int_{\Omega} \|x\|^{k} \, \mathrm{d}x = \int_{0}^{2\pi} \int_{0}^{1} r^{k} \, \mathrm{d}r \, \mathrm{d}\varphi = 2\pi \frac{1}{k+1} \xrightarrow{k \to \infty} 0,$$

meaning that the $f^{(k)}$ converge to 0 in $L^2(\Omega)$, but as they are continuous, their boundary values on $\partial \Omega = S_2$ are 1 constantly, however the constant zero function is continuous as well with boundary values 0. This shows that the boundary trace operator can not be L^2 -continuous (even on $C(\Omega)$). It really is the L^2 topology that does not work well with the continuity of the extension.

Homework Problem 9.2. (The Lax-Milgram lemma)

- (a) Let $n \in \mathbb{N}$, $b \in \mathbb{R}^n$ and a symmetric $A \in \mathbb{R}^{n \times n}$ such that $x^T A x > c ||x||_2^2$ for a $c \in \mathbb{R}_>$. Use the Lax-Milgram lemma to show that the linear system Ax = b has a unique solution $x \in \mathbb{R}^n$.
- (b) Let *H* be a Hilbert space and let $A: H \mapsto H$ be a bounded, linear operator such that $(Ax, x) \ge 0$ for every $x \in H$. Use the Lax-Milgram lemma to show that the operator id $+ \alpha A: H \to H$ is bijective for every $\alpha \ge 0$. Show boundedness of A^{-1} .

Solution.

(a) We define the bilinear form $a: x \mapsto x^{\mathsf{T}}Ax$ on the Hilbert space \mathbb{R}^2 with the euclidean inner product. By assumption, we have that

$$a(x, x) = x^{\mathsf{T}}Ax > c ||x||_{2}^{2},$$

i. e., ellipticity of the bilinear form. Additionally, we have that

$$|a(x, y)| = |x^{\mathsf{T}}Ay| = (x, Ay)_2 \leq ||x||_2 ||Ay||_2 \leq ||x||_2 ||A||_{2\mapsto 2} ||y||_2$$

where $||A||_{2\mapsto 2}$ denotes the operator norm, so *a* is bounded. By the Lax-Milgram theorem, we obtain existence and uniqueness of the solution (and even the estimate $||x||_2 \leq \frac{1}{c} ||b||_2$.

(b) For injectivity, let $x, y \in H$ with $(id + \alpha A)x = (id + \alpha A)y$, then

$$0 = ((id + \alpha A)(x - y), x - y)$$

= $(id(x - y), x - y) + \alpha(A(x - y), x - y)$
= $||x - y||^2 + \alpha(A(x - y), x - y)$
 $\ge (1 + \alpha)||x - y||^2 \ge 0$

meaning that x = y.

For surjectivity, let $v \in H$ and consider its image under the Riesz map, i. e., $(v, \cdot) \in H^*$. As id and *A* are linear an bounded, their (scaled) sum is as well. Accordingly, we have the boundedness of the bilinear form $(x, y) \mapsto ((id + \alpha A)x, x)$ because

$$((\mathrm{id} + \alpha A)x, y) \leq \|(\mathrm{id} + \alpha A)x\|\|y\| \leq \|\mathrm{id} + \alpha A\|\|x\|\|y\|.$$

Additionally, by the same computation as for the injectivity, we obtain ellipticity with the constant $1 + \alpha \ge 0$. Lax-Milgram's lemma therefore yields a unique *x* such that $(Ax, \cdot) = (v, \cdot)$ and invertability of the Riesz map yields Ax = v uniquely.

That A^{-1} is linear is clear, boundedness follows from

$$||A^{-1}v|| = ||x|| \le \frac{1}{1+\alpha} ||v||$$

by the a-priori estimate in Lax-Milgram's lemma.

You are not expected to turn in your solutions.

https://tinyurl.com/scoop-ido