n. Terzog, O. Muner
Universität Heidelberg **Infinite Dimensional Optimization**

EXERCISE 9 (SOLUTION)

Date issued: 9th December 2024

Homework Problem 9.1. (Traces in L^p)

Let $\Omega \coloneqq B_1^{\|\cdot\|_2}$ $\mathbb{I}^{\|\cdot\|_2}(0) \subseteq \mathbb{R}^2$. Show that there can not be an extension of the trace map $\tau: C(\overline{\Omega}) \to C(\partial \Omega)$ to a continuus map on $L^2(\Omega)$.

Solution.

Consider the family of functions $(f^{(k)}) \in C(\Omega)$, where $f^{(k)}: x \mapsto ||x||^k$. Then

$$
||f^{(k)}||_{L^2}^2 = \int_{\Omega} ||x||^k dx = \int_0^{2\pi} \int_0^1 r^k dr d\varphi = 2\pi \frac{1}{k+1} \xrightarrow{k \to \infty} 0,
$$

meaning that the $f^{(k)}$ converge to 0 in $L^2(\Omega),$ but as they are continuous, their boundary values on $\partial\Omega = S_2$ are 1 constantly, however the constant zero function is continuous as well with boundary values 0. This shows that the boundary trace operator can not be L^2 -continuous (even on $C(\Omega)$). It really is the L^2 topology that does not work well with the continuity of the extension.

Homework Problem 9.2. (The Lax-Milgram lemma)

- (a) Let $n \in \mathbb{N}$, $b \in \mathbb{R}^n$ and a symmetric $A \in R^{n \times n}$ such that $x^T A x > c ||x||_2^2$ for a $c \in \mathbb{R}_>$. Use the Lax-Milgram lemma to show that the linear system $Ax = b$ has a unique solution $x \in \mathbb{R}^n$.
- (b) Let H be a Hilbert space and let $A: H \mapsto H$ be a bounded, linear operator such that $(Ax, x) \ge 0$ for every $x \in H$. Use the Lax-Milgram lemma to show that the operator $id + \alpha A$: $H \to H$ is bijective for every $\alpha \geqslant 0$. Show boundedness of A^{-1} .

Solution.

(a) We define the bilinear form $a: x \mapsto x^{\mathsf{T}} Ax$ on the Hilbert space \mathbb{R}^2 with the euclidean inner product. By assumption, we have that

$$
a(x, x) = x^{\mathsf{T}} A x > c ||x||_2^2,
$$

i. e., ellipticity of the bilinear form. Additionally, we have that

$$
|a(x, y)| = |x^{T}Ay| = (x, Ay)_2 \le ||x||_2||Ay||_2 \le ||x||_2||A||_{2\mapsto 2}||y||_2
$$

where $||A||_{2\mapsto 2}$ denotes the operator norm, so *a* is bounded. By the Lax-Milgram theorem, we obtain existence and uniqueness of the solution (and even the estimate $||x||_2 \le \frac{1}{c} ||b||_2$.

(b) For injectivity, let $x, y \in H$ with $(id + \alpha A)x = (id + \alpha A)y$, then

$$
0 = ((id + \alpha A)(x - y), x - y)
$$

= (id(x - y), x - y) + \alpha (A(x - y), x - y)
= $||x - y||^2 + \alpha (A(x - y), x - y)$
 $\geq (1 + \alpha) ||x - y||^2 \geq 0$

meaning that $x = y$.

For surjectivity, let $v \in H$ and consider its image under the Riesz map, i. e., $(v, \cdot) \in H^*$. As id and A are linear an bounded, their (scaled) sum is as well. Accordingly, we have the boundedness of the bilinear form $(x, y) \mapsto ((id + \alpha A)x, x)$ because

$$
((id + \alpha A)x, y) \le ||(id + \alpha A)x|| ||y|| \le ||id + \alpha A||||x|| ||y||.
$$

Additionally, by the same computation as for the injectivity, we obtain ellipticity with the constant $1 + \alpha \ge 0$. Lax-Milgram's lemma therefore yields a unique x such that $(Ax, \cdot) = (v, \cdot)$ and invertability of the Riesz map yields $Ax = v$ uniquely.

That A^{-1} is linear is clear, boundedness follows from

$$
||A^{-1}v|| = ||x|| \le \frac{1}{1+\alpha} ||v||
$$

by the a-priori estimate in Lax-Milgram's lemma.

You are not expected to turn in your solutions.

<https://tinyurl.com/scoop-ido> page 2 of 2