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Homework Problem 8.1. (Compact operators in the direct method of variational calculus)

Let 𝑋,𝑌 and 𝑍 be Banach spaces. A linear operator 𝐴 : 𝑋 → 𝑌 is called compact if it maps bounded
sets to sets whose closure is compact.

(a) Show that 𝐴 : 𝑋 → 𝑌 is compact if and only if the sequence of images 𝐴(𝑥 (𝑘 ) ) in 𝑌 for any a
bounded sequence 𝑥 (𝑘 ) in 𝑋 has a convergent subsequence.

(b) Show that if 𝐴 : 𝑋 → 𝑌 is compact, then 𝐴 is continuous.
(c) Show that if 𝐴 is compact, then for any 𝐵 ∈ L(𝑌, 𝑍 ) the operators 𝐵 ◦𝐴 and 𝐴 ◦ 𝐵 are compact.
(d) Explain how compactness of an operator can play a role in the proof of the existence of optimizers

for optimization problems of the type (5.8) when applying the direct method of variational
calculus.

Solution.

(a) Let 𝐴 be linear and compact as defined. Further, let 𝑥 (𝑘 ) be a bounded sequence in 𝑋 . Then the
set of images 𝐼 := {𝐴(𝑥 (𝑘 ) | 𝑘 ∈ N} has compact closure, i. e., any sequence in the close of the set
has a convergent subsequence with a limit point in 𝐼 , this especially applies to the sequence of
images itself.
Now for the converse, let 𝐴 map bounded sequences to those with convergent subsequences.
Let𝑈 be a bounded subset of 𝑋 and consider a sequence 𝑦 (𝑘 ) in 𝐴(𝑈 ). If there is a subsequence
with preimage sequence such that 𝑦 (𝑘 (𝑙 ) ) = 𝐴

(
𝑥 (𝑘 (𝑙 ) )

)
for 𝑥 (𝑘 (𝑙 ) ) in𝑈 , which is also bounded of

course, we immediately obtain that 𝐴
(
𝑥 (𝑘 (𝑙 ) )

)
has a convergent subsequence. Otherwise, due to
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the definition of the closure, we can choose a sequence 𝑦 (𝑘 ) with the required preimage property
and ∥𝑦 (𝑘 ) − 𝑦 (𝑘 ) ∥𝑌 ⩽ 1

𝑘
which provides the convergent subsequence in 𝐴(𝑈 ) and therefore

compactness of 𝐴(𝑈 ).
(b) We show boundedness of 𝐴. We assume that 𝐴 is not the zero map, otherwise, there is nothing

to show. Now, consider a sequence 𝑥 (𝑘 ) with

∥𝐴𝑥 (𝑘 ) ∥𝑌
∥𝑥 (𝑘 ) ∥𝑋

→ sup
𝑥∈𝑋\{0}

∥𝐴𝑥 ∥𝑌
∥𝑥 ∥𝑋

.

Then the set { 𝑥 (𝑘 )

∥𝑥 (𝑘 ) ∥ | 𝑘 ∈ N} is bounded and hence their images contain a convergent subse-
quence, meaning that the sup is finite and coincides with the norm of 𝐴.

(c) If 𝐴 is compact and 𝐵 is continuous, then 𝐵 is bounded and maps bounded sets to bounded sets,
which 𝐴 maps to precompact sets, i. e., 𝐵 ◦𝐴 is compact. Additionally, since 𝐴 maps bounded
sets to precompact sets,𝐴(𝑈 ) for bounded𝑈 ⊆ 𝑋 is precompact and since 𝐵 is continuous, 𝐵 ◦𝐴
is compact as well.

(d) In the DMVC, we have shifted some of the work of showing nice properties of the admissible set
(compactness of the set, in the best case) to having to show stronger results for the functional,
i. e., weak sequential l.s.c. We know that convexity and strong continuity yield w.s.l.s.c., but
for nonconvex functionals, we are not well prepared. Often times, one can identify a target
functional structure of the type 𝑓 (𝑢) = 𝑔(𝐴(𝑢)), for a continuous functional 𝑔 mapping some
space 𝑌 to R and 𝐴 : 𝑋 → 𝑌 a compact operator. If 𝐴 is compact (e.g., the embedding of𝑊 1,2

into 𝐿2 on bounded Lipschitz domains) it is sufficient for 𝑔 to be strongly l.s.c. in order to obtain
the desired result.

Homework Problem 8.2. (Optimizer invariance for control-reduced problems)

Suppose that 𝑌 and𝑈 are normed linear spaces. Show Lemma 6.1, i. e., the following statements:

(a) Suppose that 𝐺 : 𝑈 ad → 𝑌 provides, for any 𝑢 ∈ 𝑈ad, the unique solution 𝑦 = 𝐺 (𝑢) of the
constraint 𝑒 (𝑦,𝑢) = 0.
(𝑖) If (𝑦∗, 𝑢∗) is a global minimizer of the original (6.1), then 𝑢∗ is a global minimizer of the

reduced problem (6.2).
(𝑖𝑖) If 𝑢∗ is a global minimizer of the reduced problem (6.2), then (𝐺 (𝑢∗), 𝑢∗) is a global mini-

mizer of the original problem (6.1).
(b) Suppose in addition that 𝐺 : 𝑈 ad → 𝑌 is continuous on𝑈ad.

(𝑖) If (𝑦∗, 𝑢∗) is a local minimizer of the original (6.1), then 𝑢∗ is a local minimizer of the
reduced problem (6.2).
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(𝑖𝑖) If 𝑢∗ is a local minimizer of the reduced problem (6.2), then (𝐺 (𝑢∗), 𝑢∗) is a local minimizer
of the original problem (6.1).

Solution.

(a) We prove this on indirectly.
(𝑖) Suppose there were a 𝑢 ∈ 𝑈ad such that 𝑓 (𝑢) < 𝑓 (𝑢∗) in the reduced problem (6.2). Then

we can apply 𝐺 to 𝑢 and obtain the state 𝑦 := 𝐺 (𝑢) and

𝐽 (𝑦,𝑢) = 𝐽 (𝐺 (𝑢), 𝑢) = 𝑓 (𝑢) < 𝑓 (𝑢∗) = 𝐽 (𝐺 (𝑢∗), 𝑢∗) = 𝐽 (𝑦∗, 𝑢∗).

Since the pair (𝑦,𝑢) is feasible by assumption on 𝐺 , this shows suboptimality of (𝑦∗, 𝑢∗)
in the original problem and therefore a contradiction.

(𝑖𝑖) Suppose there were a feasible pair (𝑦,𝑢) with 𝐽 (𝑦,𝑢) < 𝐽 (𝑦∗, 𝑢∗) in the original problem
(6.1). Then by definition of feasibility, 𝑢 ∈ 𝑈ad and 𝐺 (𝑢) = 𝑦 . Accordingly, feasiblity of
(𝑦∗, 𝑢∗) shows that

𝑓 (𝑢) = 𝐽 (𝐺 (𝑢), 𝑢) = 𝐽 (𝑦,𝑢) < 𝐽 (𝑦∗, 𝑢∗) = 𝐽 (𝐺 (𝑢∗), 𝑢∗) = 𝑓 (𝑢∗),

i. e., suboptimality of 𝑢∗ in the reduced problem and therefore a contradiction.
(b) We prove this one directly and assume that ∥·∥𝑌×𝑈 = ∥𝑌 ∥ + ∥𝑈 ∥.

(𝑖) Let (𝑦∗, 𝑢∗) be locally optimal for the original problem. Then there is an 𝜀 > 0 such
that 𝐽 (𝑦∗, 𝑢∗) ⩽ 𝐽 (𝑦,𝑢) for all feasible (𝑦,𝑢) ∈ 𝐵𝜀 ((𝑦∗, 𝑢∗)). Now there is a 𝛿 > 0
with 𝛿 < 1

2𝜀 such that ∥𝐺 (𝑢) − 𝐺 (𝑢∗)∥𝑌 ⩽ 1
2𝜀 for all feasible 𝑢 ∈ 𝐵

𝛿
(𝑢∗) and therefore

(𝐺 (𝑢), 𝑢) ⊆ 𝐵𝜀 ((𝑦∗, 𝑢∗)) for all feasible 𝑢 ∈ 𝐵
𝛿
(𝑢∗), which shows local optimality of 𝑢∗ in

the reduced problem because (𝐺 (𝑢), 𝑢) is feasible for 𝑢 ∈ 𝑈ad by definition of 𝐺 .
(𝑖𝑖) Let 𝑢∗ ∈ 𝑈ad be locally optimal for the reduced problem. Then there is an 𝜀 > 0 such that

𝑓 (𝑢∗) ⩽ 𝑓 (𝑢) for all feasible 𝑢 ∈ 𝐵𝜀 (𝑢∗). Now let (𝑦,𝑢) ∈ 𝐵𝜀 ((𝐺 (𝑢∗), 𝑢∗)), be a feasible
point, then of course 𝑢 ∈ 𝑈ad ∩ 𝐵𝜀 (𝑢∗) and therefore

𝐽 (𝑦,𝑢) = 𝐽 (𝐺 (𝑢), 𝑢) = 𝑓 (𝑢) ⩾ 𝑓 (𝑢∗) = 𝐽 (𝐺 (𝑢∗), 𝑢∗) = 𝐽 (𝑦∗, 𝑢∗) .

You are not expected to turn in your solutions.
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