n. Terzog, O. Muner
Universität Heidelberg **Infinite Dimensional Optimization**

Exercise 6 (Solution)

Date issued: 18th November 2024

Homework Problem 6.1. (Riesz's represetation theorem)

- (a) Compute the Riesz-representatives of the following linear, bounded operators:
	- (*i*) Φ : $(L^2(0,1), (\cdot, \cdot)_{L^2}) \ni f \mapsto \int_0^{\frac{1}{2}} f(x) dx \in \mathbb{R}$
	- (*ii*) Φ : $\left(L^2(0,1), (\cdot, \cdot)_{L^2_{1+x}}\right)$ $\Big) \ni f \mapsto \int_0^1 f(x) \,\mathrm{d} x \in \mathbb{R}$ where $(\cdot,\cdot)_{L^2_{1+x}}$ is the weighted inner product $(f, g) \mapsto \int_0^1 (1+x) f(x) g(x) dx$
- (b) Let $C([-1,1])$ denote the space of continuous functions to be equipped with the inner product

$$
(f,g)\mapsto \int_{-1}^1 f(x)g(x)\,\mathrm{d} x.
$$

Show that the mapping $\Phi: C([-1,1]) \ni f \mapsto f(0) \in \mathbb{R}$ is a linear functional and that there does not exist any $g \in C([-1,1])$ representing $Φ$ with respect to the given inner product. Why is this not a contradiction of Riesz's representation theorem?

Solution.

 (a) (i) As

$$
\int_0^{\frac{1}{2}} f(x) dx = \int_0^1 \chi_{(0,\frac{1}{2})}(x) f(x) dx = (\chi_{(0,\frac{1}{2})}, f)_L^2
$$

for the characteristic function $\chi_{(0,\frac{1}{2})} \in L^{\infty}((0,1)) \subseteq L^2((0,1))$, clearly the representative is $\chi_{(0,\frac{1}{2})}$.

(*ii*) We are looking for a $q \in L^2(0,1)$, such that

$$
\int_0^1 (1+x)f(x)g(x) \, \mathrm{d}x = \int_0^1 f(x) \, \mathrm{d}x,
$$

which holds exactly if $g(x) = \frac{1}{1+x}$, which is an L^{∞} -function and therefore an L^2 -function on (0,1).

(b) Linearity is follows from the definition of the pointwise evaluation of the sum of linear functionals. If there were a Riesz representative for Φ, then, by Cauchy-Schwarz, the functional would be continuous (i. e. bounded). However, the functional is not continuous with respect to the L^2 -inner product induced norm, as shown by the sequence of functions defined by

$$
f_k(x) = \begin{cases} k\sqrt{\frac{1}{k} - x} & x \in [0, \frac{1}{k}] \\ k\sqrt{x + \frac{1}{k}} & x \in [-\frac{1}{k}, 0] \\ 0 & \text{else} \end{cases}
$$

which all have L^2 -norm 1 but evaluate to k at 0. Therefore Φ is a member of the algebraic dual space, not the topological dual space, for which the Riesz representation theorem provides representatives. Additionally, in [homework problem 3.2](#page-0-0) we have seen, that this space is not L^1 complete, and similarly, we can show, that it is not L^2 complete, so it is an inner product space but not a Hilbert space, as required by the Ries representation theorem.

Homework Problem 6.2. (Box-bounded L^p functions)

Show that the set

$$
A = \{ f \in L^p(\Omega) \mid a \le f(x) \le b \text{ for a.a. } x \in \Omega \}
$$
\n
$$
(5.1)
$$

is bounded and closed in L^p as stated in [Example 5.3.](#page-0-0)

Hint: If $f^{(k)} \to f$ in L^1 , then there is a subsequence $f^{(k^{(l)})}$ converging to f pointwise almost everywhere.

Solution.

Since the Ω in [Example 5.3](#page-0-0) is bounded, the essential boundedness of f in A by max(|a|, |b|) immediately yields L^p -boundedness of A due to the norm estimates in [Lemma 2.25.](#page-0-0)

As for closedness, consider a L^p -convergent sequence of functions $f^{(k)}$ in A with limit $f.$ By definition of A, they are pointwise almost everywhere bounded by a and b respectively. Since convergence in L^p implies L^1 convergence, we can extract $f^{(k^{(l)})}$ converging to f pointwise almost everywhere, meaning that f is pointwise almost everywhere bounded by a and b (from below and above) as well.

Homework Problem 6.3. (The weak topology)

Let $(V, \|\cdot\|_V)$ be a normed space. Show the following:

- (a) The weak limit of a weakly-convergent sequence is unique. Hint: You may apply the Hahn-Banach theorem.
- (b) Norms equivalent to $\|\cdot\|_V$ induce the same weak topology.
- (c) Show that if V is infinite-dimensional, then the weak topology is not induced by any norm. Hint: You may use that in infinite dimensional spaces, weakly open sets are unbounded in the norm.

Solution.

- (a) Let $x^{(k)} \rightharpoonup x$ and $x^{(k)} \rightharpoonup y$. By definition, $\langle f, x \rangle = \langle f, y \rangle$, i.e. $\langle f, x y \rangle = 0$ for all $f \in V^*$. However, if $x \neq y$, then $x - y \neq 0$ and by Hahn-Banach, there exists a functional that is nonzero on $\{x - y\}$ yielding a contradiction, meaning that $x = y$.
- (b) We consider an equivalent norm $\|\cdot\|$. Let U be $\|\cdot\|_V$ -weakly-open, i. e., for every $x \in U$ there are ε , $n \in \mathbb{N}$ and $\lVert \cdot \rVert$ -continuous linear functionals f_1, \ldots, f_n such that

 $\{y \in V \mid |\langle f_i, y - x \rangle| < \varepsilon \text{ for } i = 1, \dots, n\} \subseteq U.$

As implied by [Lemma 2.12,](#page-0-0) the f_i are $\|\cdot\|$ continuous as well, immediately showing that U is $\|\cdot\|$ weakly-open as well and by symmetrie of norm equivalence, we obtain that the weak topologies of $\|\cdot\|_V$ and $\|\cdot\|$ coincide.

(c) Let V be infinite-dimensional. Assume that the weak topology is induced by a norm $\lVert \cdot \rVert$ on V . Then the open $\|\cdot\|$ -balls $B_1(0)$ for $k \in \mathbb{N}$ are all $\|\cdot\|_V$ -weakly-open sets. Therefore, the balls $B_{\frac{1}{k}}(0)$ are $\|\cdot\|_V$ -unbounded. Accordingly, there exists a sequence $x^{(k)}$ where

$$
||x^{(k)}|| \leq \frac{1}{k}
$$
 but $||x^{(k)}||_V \geq k$.

Now, since all $f \in V^*$ are continuous w.r.t. the weak topology, which is the same as the $\lVert \cdot \rVert$ topology, we also have that $x^{(k)}$ is weakly convergent to 0 and therefore bounded, giving a contradiction.

You are not expected to turn in your solutions.