n. Terzog, O. Muner
Universität Heidelberg **Infinite Dimensional Optimization**

EXERCISE 5 (SOLUTION)

Date issued: 11th November 2024

Homework Problem 5.1. (examples of operators and their norms)

Decide which of the following operators is a linear and bounded operator, and, if applicable, compute their respective operator norm. Here, Ω is assumed to be an open, bounded subset of \mathbb{R}^n for an $n \in \mathbb{N}$ and $[a, b]$ is a non-degenerated interval in R for $a, b \in \mathbb{R}$.

- (a) $(L^2(\Omega), \|\cdot\|_{L^2}) \ni f \mapsto f \in (L^2(\Omega), \|\cdot\|_{L^2})$
- (b) $(L^2(\Omega), \|\cdot\|_{L^2}) \ni f \mapsto f \in (L^1(\Omega), \|\cdot\|_{L^1})$
- (c) $(L^6(\Omega), \|\cdot\|_{L^6}) \ni f \mapsto f^3 \in (L^2(\Omega), \|\cdot\|_{L^2})$
- (d) $(C([a, b]), ||\cdot||_{\infty}) \ni f \mapsto f \cdot g \in (C([a, b]), ||\cdot||_{\infty})$ for a fixed $g \in C([a, b])$
- (e) $(C([a, b]), \| \cdot \|_{\infty}) \ni f \mapsto f \int_a^b f(t) dt \in (C([a, b]), \| \cdot \|_{\infty})$
- (f) $(W^{1,2}(\Omega), \|\cdot\|_{W^{1,2}}) \ni f \mapsto f' \in (L^2(\Omega), \|\cdot\|_{L^2})$ (mapping every function to its weak derivative)

Solution.

All operators are linear, so we need to examine boundedness of them all.

- (a) The identity map has operator norm 1, as $||f||_{L^2} \le 1 ||f||_{L^2}$ for all $f \in L^2(\Omega)$, of course, and any f is an example showing that any constant lower than 1 is impossible.
- (b) The Cauchy-Schwarz inequality yields that

$$
||f||_{L^1} = \int_{\Omega} |f| 1 \, \mathrm{d}x = (f, 1)_{L^2} \le ||f||_{L^2} ||1||_2 = \sqrt{|\Omega|} ||f||_{L^2}
$$

showing that the operator is bounded and its norm is bounded by $\sqrt{|\Omega|}$, whereas the constant 1

function is an example showing, that this is in fact the norm, because

$$
||1||_{L^{1}} = \int_{\Omega} 1 \, dx = |\Omega| = \sqrt{|\Omega|} \sqrt{|\Omega|} = \sqrt{|\Omega|} \sqrt{\int_{\Omega} 1^{2} \, dx} = \sqrt{|\Omega|} ||1||_{L^{2}}.
$$

(c) We have that

$$
||f^3||_{L^2} = \sqrt{\int_{\Omega} (f^3(x))^2 dx} = \sqrt{\int_{\Omega} f^6(x) dx} = (||f||_{L^6})^3
$$

so the sequence of constant functions that map any input to $n \in \mathbb{N}$ shows that this is an unbounded operator.

(d) We have that

$$
||f \cdot g||_{\infty} = \sup_{x \in [a,b]} f(x) \cdot g(x) \le \sup_{x \in [a,b]} f(x) \cdot \sup_{x \in [a,b]} g(x) = ||f||_{\infty} ||g||_{\infty},
$$

so the operator is bounded, and we actually obtain that its norm is $||g||_{\infty}$, as $f \equiv 1$ shows.

(e) The operator maps a continuous function to the same function shifted by its integral value over the same interval. We have that

$$
\left\| f - \int_{a}^{b} f(s) \, ds \right\|_{\infty} = \sup_{x \in [a, b]} \left| f - \int_{a}^{b} f(s) \, ds \right| \le \sup_{x \in [a, b]} |f| + \left| \int_{a}^{b} f(s) \, ds \right| \le ||f||_{\infty} + (b - a) ||f||_{\infty}
$$

$$
= (1 + (b - a)) ||f||_{\infty},
$$

showing that the operator is in fact bounded. Its norm turns out to be the constant $1+(b-a)$ seen above, because we can consider the family of continuous functions that are linear on [a, $a + \varepsilon$] and constant on the remainder of the interval defined by

$$
f_{\varepsilon}(x) \coloneqq \begin{cases} -1 + 2\frac{x-a}{\varepsilon} & x \in [a, a+\varepsilon] \\ 1 & x \in [a+\varepsilon, b] \end{cases},
$$

whose integral values are $(b - a) - \varepsilon$ and whose minimum value (at *a*) is $1 + (b - a) - \varepsilon$.

This is an interesting example because here, there is no single continuous function where the supremum/infimum in the definition of the operator norm is actually attained.

(f) This is a bounded operator, because

$$
||f'||_{L^2} = \sqrt{||f'||_{L^2}^2} \le \sqrt{||f'||_{L^2}^2 + ||f||_{L^2}^2} = ||f||_{W^{1,2}}.
$$

The norm is in fact 1, as for any f with f' , we can shift the values of f up or down arbitrarily without changing f' to obtain an f with $||f||_{L^2} = 0$.

Homework Problem 5.2. (convergence in the operator norm implies pointwise convergence)

Suppose that X and Y are normed linear spaces and $(A^{(k)})$ is a sequence of bounded linear operators $X \to Y$. Show [Lemma 4.6](#page-0-0) of the lecture notes, i.e., that if $A^{(k)}$ converges to $A \in \mathcal{L}(X, Y)$ in the operator norm, then $A^{(k)}(x)$ converges to $A(x)$ for all $x \in X$.

Solution.

Let $x \in X$ be given arbitrarily. Then

$$
||A^{(k)}(x) - A(x)||_Y = ||A^{(k)} - A||_{\mathcal{L}(X,Y)} ||x||_X \xrightarrow{k \to \infty} 0.
$$

Homework Problem 5.3. (boundedness is continuity)

Suppose that X and Y are normed linear spaces and $A: X \rightarrow Y$ is a linear operator. Prove [Lemma 4.5](#page-0-0) of the lecture notes, i. e., the equivalence of the following statements:

- (a) A is continuous at 0.
- (b) \overline{A} is continuous on X .
- (c) \overline{A} is Lipschitz continuous.
- (d) A is bounded.

Solution.

The fact that [statement \(c\)](#page-2-0) \Rightarrow [statement \(b\)](#page-2-1) \Rightarrow [statement \(a\)](#page-2-2) is well known from basic analysis classes.

To show that [statement \(a\)](#page-2-2) \Rightarrow [statement \(d\),](#page-2-3) let ε and δ be positive real numbers from the corresponding definition of continuity at 0 be given. Then for all $x \neq 0$, we have that

$$
||A(x)||_Y = \frac{||x||_X}{\delta} ||A(\frac{\delta x}{||x||} - 0)||_Y \le \frac{||x||_X}{\delta} \varepsilon = \underbrace{\frac{\varepsilon}{\delta}}_{=:c} ||x||_X,
$$

while obviously $A(0) = 0$ because of linearity.

Now, from boundedness [\(statement \(d\)\)](#page-2-3), we show Lipschitz continuity [\(statement \(c\)\)](#page-2-0) by choosing

 x_1, x_2 from X, arbitrarily and obtain that

$$
||A(x_1) - A(x_2)||_Y = ||A(x_1 - x_2)||_Y = \underbrace{||A||_{\mathcal{L}(X,Y)}}_{=:L} ||x_1 - x_2||_X.
$$

Homework Problem 5.4. (composition of bounded linear operators)

Suppose that X, Y and Z are normed linear spaces and B: $Y \to Z$ as well as $A: X \to Y$ are bounded linear operators. Show that $B \circ A$ is a bounded linear operator from $X \to Z$ and show that

$$
||B \circ A||_{\mathcal{L}(X,Z)} \le ||B||_{\mathcal{L}(Y,Z)} ||A||_{\mathcal{L}(X,Y)}.
$$

Give an example each for when this estimate holds with equality or strict inequality.

Solution.

Linearity of the composition is a standard linear algebra result. Since A and B are both bounded, we immediately obtain boundedness of $B \circ A$ because of

$$
||(B \circ A)(x)||_Z = ||B(A(x))||_Z \le ||B||_{\mathcal{L}(Y,Z)} ||A(x)||_Y \le ||B||_{\mathcal{L}(Y,Z)} ||A||_{\mathcal{L}(X,Y)} ||x||_X
$$

and accordingly the estimate $||B \circ A||_{\mathcal{L}(X,Z)} \le ||B||_{\mathcal{L}(Y,Z)} ||A||_{\mathcal{L}(X,Y)}$.

This inequality does not necessarily holds with equality, but can. An example, where equality holds, is if one of the two operators is the zero map. An example, where a strict inequality holds is linear operators on $X = Y = Z = \mathbb{R}^2$ defined by the matrices

$$
A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}, \quad BA = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix},
$$

which alle have norm 2.

Equality holds when considering the setting where A is applied twice, i. e., A^2 .

You are not expected to turn in your solutions.

<https://tinyurl.com/scoop-ido> page 4 of 4