Infinite Dimensional Optimization

Exercise 4

Date issued: 4th November 2024

Homework Problem 4.1. (Weak derivatives)

(a) Prove the statements in Example 2.35 of the lecture notes, i. e., that the function $f: (-1, 1) \to \mathbb{R}$ defined by f(x) = |x| has the weak first-order derivative

$$w(x) = \begin{cases} -1 & \text{if } x < 0, \\ 1 & \text{if } x > 0, \end{cases}$$

but does not have a weak second-order derivative in $L^1_{loc}(-1, 1)$.

(b) (Updated exercise statement)^{GM} Let $\Omega \subseteq \mathbb{R}^n$ be a non-empty, bounded, open set, $i \in \{1, ..., n\}$ be given and let $x = (x_1, ..., x_n)$ be in Ω with $a_i, b_i \in \mathbb{R}$, such that

$$x \in B \coloneqq \{(x_1, \ldots, x_{i-1}, y, x_{i+1}, \ldots, x_n) \mid y \in (a_i, b_i)\} \subseteq \Omega.$$

Show that every class of functions in $W^{1,p}(\Omega)$ for $p \in [1, \infty)$ has a representative that is absolutely continuous on *B* as a function of in the *i*-th component.

(c) Let $\Omega = (0,1)^2$ and $f(x_1, x_2) = f_1(x_1) + f_2(x_2)$ where f_1, f_2 are in $L^1(0,1)$ but not absolutely continuous. Show that f does not have weak derivatives of first order order, but the second derivative for the multiindex $\alpha = (1, 1)$ exists.

Homework Problem 4.2. (Inner products and Sobolev spaces)

(a) Suppose that $(V, (\cdot, \cdot))$ is an inner product space. Show Lemma 3.2, i. e., that

$$\|u\| \coloneqq \sqrt{(u,u)} \tag{3.2}$$

for $u \in V$ defines a norm on V.

page 1 of 2

- (b) Prove the statement of Example 3.4 (*i*), i. e., that on \mathbb{R}^n for $n \in \mathbb{N}_{>0}$, the possible inner products are in a bijective one-to-one correspondence with the symmetric^{GM} positive definite matrices in $\mathbb{R}^{n \times n}$.
- (c) Let $\Omega \subseteq \mathbb{R}^n$ be a non-empty, bounded, open set and let $\omega \in L^{\infty}(\Omega)$. Show that if there is a constant $c \in \mathbb{R}$, such that $0 < c \leq \omega$ almost everywhere in Ω , then

$$(u,v)\mapsto \sum_{|\alpha|\leqslant 1}\int_{\Omega}\omega D^{\alpha}u D^{\alpha}v \,\mathrm{d}x^{\mathrm{GM}}$$

defines a inner product on $W^{1,2}(\Omega)^{\text{GM}}$ that induces an equivalent norm to $\|\cdot\|_{W^{1,2}(\Omega)}^{\text{GM}}$ (as defined in (2.21)).

Why is ω 's boundedness away from zero essential in this result?

You are not expected to turn in your solutions.

https://tinyurl.com/scoop-ido