n. Terzog, O. Muner
Universität Heidelberg **Infinite Dimensional Optimization**

EXERCISE 4

Date issued: 4th November 2024

Homework Problem 4.1. (Weak derivatives)

(a) Prove the statements in Example 2.35 of the lecture notes, i. e., that the function $f: (-1,1) \to \mathbb{R}$ defined by $f(x) = |x|$ has the weak first-order derivative

$$
w(x) = \begin{cases} -1 & \text{if } x < 0, \\ 1 & \text{if } x > 0, \end{cases}
$$

but does not have a weak second-order derivative in $L^1_{loc}(-1,1)$.

(b) (Updated exercise statement)^{GM} Let $\Omega \subseteq \mathbb{R}^n$ be a non-empty, bounded, open set, $i \in \{1, \ldots, n\}$ be given and let $x = (x_1, \ldots, x_n)$ be in Ω with $a_i, b_i \in \mathbb{R}$, such that

$$
x \in B \coloneqq \{(x_1, \ldots, x_{i-1}, y, x_{i+1}, \ldots, x_n) \mid y \in (a_i, b_i)\} \subseteq \Omega.
$$

Show that every class of functions in $W^{1,p}(\Omega)$ for $p \in [1,\infty)$ has a representative that is absolutely continuous on B as a function of in the *i*-th component.

(c) Let $\Omega = (0, 1)^2$ and $f(x_1, x_2) = f_1(x_1) + f_2(x_2)$ where f_1, f_2 are in $L^1(0, 1)$ but not absolutely continuous. Show that f does not have weak derivatives of first order order, but the second derivative for the multiindex $\alpha = (1,1)$ exists.

Homework Problem 4.2. (Inner products and Sobolev spaces)

(a) Suppose that $(V, \langle \cdot, \cdot \rangle)$ is an inner product space. Show Lemma 3.2, i.e., that

$$
||u|| \coloneqq \sqrt{(u, u)}\tag{3.2}
$$

for $u \in V$ defines a norm on V.

- (b) Prove the statement of [Example 3.4](#page-0-0) [\(](#page-0-0)*i*), i. e., that on \mathbb{R}^n for $n \in \mathbb{N}_{>0}$, the possible inner products are in a bijective one-to-one correspondence with the symmetric^{GM} positive definite matrices in $\mathbb{R}^{n \times n}$.
- (c) Let $\Omega \subseteq \mathbb{R}^n$ be a non-empty, bounded, open set and let $\omega \in L^{\infty}(\Omega)$. Show that if there is a constant $c \in \mathbb{R}$, such that $0 < c \leq \omega$ almost everywhere in Ω , then

$$
(\boldsymbol{u},\boldsymbol{v}) \mapsto \sum_{|\alpha| \leq 1} \int_{\Omega} \omega \, D^{\alpha} \boldsymbol{u} \, D^{\alpha} \boldsymbol{v} \, \mathrm{d} \boldsymbol{x}^{\mathrm{GM}}
$$

defines a inner product on $W^{1,2}(\Omega)^{GM}$ that induces an equivalent norm to $\|\cdot\|_{W^{1,2}(\Omega)}^{GM}$ (as defined in (2.21)).

Why is ω 's boundedness away from zero essential in this result?

You are not expected to turn in your solutions.

<https://tinyurl.com/scoop-ido> page 2 of 2