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Homework Problem 2.1. (Convergent and Cauchy Sequences)

Suppose that (𝑉 , ∥·∥) is a normed linear space and that
(
𝑥 (𝑘 ) ) is a sequence in 𝑉 . Show Lemma 2.6,

i. e., the following statements.

(a) Suppose that
(
𝑥 (𝑘 ) ) converges. Then its limit is unique.

(b) Suppose that
(
𝑥 (𝑘 ) ) converges. Then it is a Cauchy sequence.

Solution.

Both subitems are essentially standard analysis results.

(a) Assume that (𝑥 (𝑘 ) ) is convergent to 𝑥 and to 𝑥 in 𝑉 . Then for any 𝜀 > 0, there is 𝑘0 ∈ N such
that

∥𝑥 (𝑘0 ) − 𝑥 ∥ ≤ 𝜀 and ∥𝑥 (𝑘0 ) − 𝑥 ∥ ≤ 𝜀.

Accordingly
∥𝑥 − 𝑥 ∥ ≤ ∥𝑥 − 𝑥 (𝑘0 ) ∥ + ∥𝑥 (𝑘0 ) − 𝑥 ∥ ≤ 2𝜀

and since 𝜀 can be chosen arbitrarily, we obtain ∥𝑥 −𝑥 ∥ = 0 and therefore 𝑥 = 𝑥 , i. e., uniqueness
of the limit point.

(b) Let 𝑥 := lim𝑘→∞ 𝑥
(𝑘 ) and let 𝜀 > 0 be given arbitrarily. By definition, there exists a 𝑘0 ∈ N such

that
∥𝑥 (𝑘 ) − 𝑥 ∥ ≤ 𝜀 ∀𝑘 ⩾ 𝑘0.

Accordingly, for any 𝑛,𝑚 ⩾ 𝑘0, we have that

∥𝑥 (𝑛) − 𝑥 (𝑚) ∥ ≤ ∥𝑥 (𝑛) − 𝑥 ∥ + ∥𝑥 − 𝑥 (𝑚) ∥ = 2𝜀.
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Homework Problem 2.2. (Completeness of Banach space subsets)

Let (𝑉 , ∥·∥) be a Banach space and let 𝐴 ⊆ 𝑉 . Show that 𝐴 is complete if and only if 𝐴 is closed.

Solution.

“⇐”: Let (𝑥 (𝑘 ) ) be a 𝑉 sequence that lies in 𝐴. Since 𝑉 is a complete space, (𝑥 (𝑘 ) ) converges to an
𝑥 ∈ 𝑉 . Since 𝐴 is closed, 𝑥 ∈ 𝐴 so 𝐴 is complete.

“⇒”: Let (𝑥 (𝑘 ) ) be a convergent subsequence of 𝐴. Since (𝑥 (𝑘 ) ) is convergent, it is a Cauchy sequence
and because 𝐴 is complete, (𝑥 (𝑘 ) ) converges to an 𝑥 ∈ 𝐴 and the limit point is unique, therefore 𝐴 is
closed.

Homework Problem 2.3. (Space Completion via Cauchy Sequences)

(a) Explain why 𝑥 (𝑘 ) :=
(
1 + 1

𝑘

)𝑘 is an example that shows incompleteness of (Q, |·|)GM. Hint:
Assume standard analysis knowledge here, i. e., that this sequence converges to 𝑒 ∈ R \ Q in the
real numbers with respect to the absolute value.

(b) Suppose that (𝑉 , ∥·∥) is a normed realGM linear space and consider the quotient space

𝑉 :=
{
(𝑥 (𝑘 ) )

��� (𝑥 (𝑘 ) ) is a 𝑉 -Cauchy sequence
}
/
{
(𝑦 (𝑘 ) )

��� (𝑦 (𝑘 ) ) is a 𝑉 -null-sequence
}

whose elements are the cosets [(𝑥 (𝑘 ) )] for 𝑉 -Cauchy-sequences (𝑥 (𝑘 ) ) of the form

[(𝑥 (𝑘 ) )] = {(𝑥 (𝑘 ) ) + (𝑦 (𝑘 ) ) | (𝑦 (𝑘 ) ) is a 𝑉 -null-sequence}.

GM

(𝑖) Show that (𝑉 , ∥·∥
𝑉
) with [(𝑥 (𝑘 ) )

]
𝑉
:= lim

𝑘→∞
∥𝑥 (𝑘 ) ∥𝑉

is a normed space.
(𝑖𝑖) Show that (𝑉 , ∥·∥

𝑉
) is complete. Hint: Consider a diagonal sequence.

(𝑖𝑖𝑖) Show that the mapping
𝐸 : 𝑉 ∋ 𝑥 ↦→ [(𝑥, 𝑥, 𝑥, . . . )] ∈ 𝑉

is an isometric embedding of (𝑉 , ∥·∥𝑉 ) into (𝑉 , ∥·∥
𝑉
), where 𝐸 (𝑉 ) is dense in 𝑉 .

(c) Suppose that (𝑉 , ∥·∥𝑉 ) is a normed linear space that is densely and isometrically embedded into
a complete space (𝑉 , ∥·∥)

𝑉
. Show that (𝑉 , ∥·∥)

𝑉
is unique up to isometric isomorphy.
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Solution.

(a) The elements of the sequence are all finite products of obviously rational numbers and therefore
rational. The sequence is well-known to converge to 𝑒 , which a real, irrational number, i. e.,
in R \ Q. Accordingly, as shown in homework problem 2.1, the sequence is convergent and
therefore Cauchy in R with elements in Q and with respect to the absolute value. It of course
remains Cauchy in Q with respect to the absolute value, but it is not convergent because its
R-limit is not in Q, meaning Q is not complete.

(b) The elements of 𝑉 are cosets of Cauchy sequences that have the form of the Minkowski sums
(𝑥 (𝑘 ) ) +

{
(𝑦 (𝑘 ) )

�� (𝑦 (𝑘 ) ) is a 𝑉 -null-sequence
}
.

To show that this is in fact a linear space (with the quotient operations), it suffices to show that
Cauchy and nullsequences are both subspaces of the sequences on 𝑉 because nullsequences are
obviously convergent and therefore Cauchy. Both facts are pretty standard facts from Analysis I
that we won’t repeat here.

(𝑖) First off, note that the norm is in fact well-defined, as the norm-sequence of a Cauchy
sequence converges in the reals, because of the inverse triangle inequality for ∥·∥𝑉 , we
have that ���𝑥 (𝑘 )


𝑉
−
𝑥 (𝑙 )


𝑉

��� ≤ 𝑥 (𝑘 ) − 𝑥 (𝑙 )

𝑉

for any 𝑉 -sequence 𝑥 (𝑘 ) , where the right hand sides form a real nullsequence, showing
that

𝑥 (𝑘 )
𝑉
form a real Cauchy Sequence, which converges because R is complete.

Now for another sequence (𝑦 (𝑘 ) ) ∈
[
(𝑥 (𝑘 ) )

]
, we have that���𝑥 (𝑘 )


𝑉
−
𝑦 (𝑘 )


𝑉

��� ≤ 𝑥 (𝑘 ) − 𝑦 (𝑘 )

𝑉

𝑘→∞−−−−→ 0,

so the definition is independent of the representative of the classes.
It remains to show that ∥·∥

𝑉
is in fact a norm on 𝑉 .

The zero-class is exactly the space of nullsequences, whose limit in norm is zero as well,
essentially by definition. It yields nonnegative numbers as the limit of nonnegative number
remains nonnegative. Now let

[
(𝑥 (𝑘 ) )

]
be a class of sequences with

[𝑥 (𝑘 ) ]

𝑉
= 0, then

lim𝑘→∞
𝑥 (𝑘 )

𝑉
=

[(𝑥 (𝑘 ) )
]
𝑉

= 0, meaning that 𝑥 (𝑘 ) is a nullsequence and therefore[
(𝑥 (𝑘 ) )

]
is the zero-class in 𝑉 . This shows positive definiteness.

For positive homogeneity, we observe that, for 𝛼 ∈ R, we have𝛼 [
(𝑥 (𝑘 ) )

]
𝑉
=

[𝛼 (𝑥 (𝑘 ) )
]
𝑉
= lim
𝑘→∞

𝛼 (𝑥 (𝑘 ) )

𝑉
= lim
𝑘→∞

|𝛼 |
(𝑥 (𝑘 ) )


𝑉

= |𝛼 | lim
𝑘→∞

(𝑥 (𝑘 ) )

𝑉
= |𝛼 |

[(𝑥 (𝑘 ) )]

𝑉
.
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Similarly, subadditivity follows, for 𝑉 -Cauchy sequences (𝑥 (𝑘 ) ) and (𝑦 (𝑘 ) ), from the sub-
additivity of ∥·∥𝑉 and monotonicity of the limit process, i. e., from(𝑥 (𝑘 ) ) + (𝑦 (𝑘 ) )


𝑉
= lim
𝑘→∞

∥𝑥 (𝑘 ) + 𝑦 (𝑘 ) ∥𝑉 ≤ lim
𝑘→∞

∥𝑥 (𝑘 ) ∥𝑉 + ∥𝑦 (𝑘 ) ∥𝑉 = lim
𝑘→∞

∥𝑥 (𝑘 ) ∥𝑉 + lim
𝑘→∞

∥𝑦 (𝑘 ) ∥𝑉

=

(𝑥 (𝑘 ) )

𝑉
+
(𝑦 (𝑘 ) )


𝑉
.

(𝑖𝑖) Let
[ (
𝑥 (𝑘 ) ) ] (𝐾 ) be a 𝑉 -Cauchy-sequence (of Cauchy sequence classes).

Since all the (fixed) representatives
(
𝑥 (𝑘 ) ) are Cauchy sequences themselves, we have that

for every 𝐾 ∈ N, there is a 𝑘𝐾 ∈ N, such that
𝑥 (𝑛) (𝐾 ) − 𝑥 (𝑚) (𝐾 )


𝑉
⩽ 1

𝐾
for all 𝑛,𝑚 ⩾ 𝑘𝐾 .

We fix the sequence (𝑦 (𝐾 ) ) :=
(
𝑥 (𝑘𝐾 ) (𝐾 ) )

𝐾
and will now show that [(𝑦 (𝐾 ) )] ∈ 𝑉 is the

limit of
[ (
𝑥 (𝑘 ) ) ] (𝐾 ) in 𝑉 . To that end, let 𝜀 > 0.

Because
[ (
𝑥 (𝑘 ) ) ] (𝐾 ) be a 𝑉 is a Cauchy sequence, there is a 𝐾0, such that[(𝑥 (𝑘 )

)] (𝑁 )
−
[(
𝑥 (𝑘 )

)] (𝑀 )

𝑉

≤ 𝜀 for all 𝑁,𝑀 ≥ 𝐾0.

Because of the limiting definition of the𝑉 norm, this means there for any 𝑁,𝑀 ≥ 𝐾0, there
is 𝑘0(𝑁,𝑀) such that

∥𝑥 (𝑘 ) (𝑁 ) − 𝑥 (𝑘 ) (𝑀 ) ∥𝑉 ⩽ 2𝜀

for all 𝑘 ⩾ 𝑘0(𝑁,𝑀).
We can therefore estimate𝑦 (𝑁 ) − 𝑦 (𝑀 )


𝑉
≤
𝑦 (𝑁 ) − 𝑥 (𝑘 ) (𝑁 )

𝑉
+
𝑥 (𝑘 ) (𝑁 ) − 𝑥 (𝑘 ) (𝑀 )

𝑉
+
𝑥 (𝑘 ) (𝑀 ) − 𝑦 (𝑀 )


𝑉
⩽ 4𝜀

for all 𝑁,𝑀 ⩾ 𝐾0 and 𝑘 = max(𝑘0(𝑁,𝑀), 𝑘𝑁 , 𝑘𝑀 ), therefore
(
𝑦 (𝑘 ) ) is a Cauchy sequence.

Now we only need to show that
[ (
𝑥 (𝑘 ) ) ] (𝐾 ) in fact converges to

[
(𝑦 (𝐾 ) )

]
. Since (𝑦 (𝐾 ) ) is

a Cauchy sequence, we know that 𝑦 (𝑁 ) − 𝑦 (𝑀 )

𝑉
⩽ 𝜀

for all 𝑁,𝑀 ⩾ 𝐾1(𝜀) for a 𝐾1(𝜀). Additionally, by definition of 𝑘𝐾 ,𝑥 (𝑘 ) (𝐾 ) − 𝑦 (𝐾 )

𝑉
=

𝑥 (𝑘 ) (𝐾 ) − 𝑥 (𝑘𝐾 ) (𝐾 )
𝑉
⩽

1
𝐾
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for all 𝑘 ⩾ 𝑘𝐾 . Accordingly,(𝑥 (𝑘 )
) (𝐾 )

− 𝑦 (𝑘 )

𝑉

⩽

(𝑥 (𝑘 )
) (𝐾 )

− 𝑦 (𝐾 )

𝑉

+
𝑦 (𝐾 ) − 𝑦 (𝑘 )


𝑉
≤ 2𝜀

for 𝐾 ⩾ max(𝐾1(𝜀), 1𝜀 ), 𝑘 ⩾ max(𝐾1(𝜀), 𝑘𝐾 ).
Hence, by the definition of ∥·∥

𝑉
, we have that[(𝑥 (𝑘 )

)] (𝐾 )
−
[(
𝑦 (𝑘 )

)]
𝑉

= lim
𝑘→∞

(𝑥 (𝑘 )
) (𝐾 )

− 𝑦 (𝑘 )

𝑉

⩽ 2𝜀

for all 𝐾 ⩾ max(𝐾1(𝜀), 1𝜀 ).
(𝑖𝑖𝑖) Linearity of the mapping as well as the mapping properties and its well-definedness are

clear. We denote the embedding by 𝐸 : 𝑉 → 𝑉 . Then, isometry follows from

∥𝐸 (𝑥)∥
𝑉
= lim
𝑘→∞

∥𝑥 ∥𝑉 = ∥𝑥 ∥𝑉 .

Density is by construction, as an element of 𝑉 , say,
[
(𝑥 (𝑘 ) )

]
, can be approximated by the

sequence of classes of constant sequences of the elements 𝑥 (𝑘 ) of the representative.

(c) Assume that (𝑉 , ∥·∥𝑉 ) is densely and isometrically embedded into (𝑉1, ∥·∥𝑉1) and (𝑉2, ∥·∥𝑉2) via
linear isometries 𝐸1 : 𝑉 → 𝑉1 and 𝐸2 : 𝑉 → 𝑉2, respectively.
Since 𝐸1 and 𝐸2 are isometries, their kernels are trivial, hence they are invertible. Therefore,
𝑓 := 𝐸2 ◦ 𝐸−11 : 𝐸1(𝑉 ) → 𝐸2(𝑉 ) is an isometric isomorphism. Since 𝐸1(𝑉 ) is dense in 𝑉1, we can
extend 𝑓 to 𝐹 : 𝑉1 → 𝑉2 as follows:

Let 𝑣1 ∈ 𝑉1 and let (𝑥 (𝑘 ) ) be a 𝑉 -sequence, such that 𝐸1(𝑥 (𝑘 ) ) 𝑘→∞−−−−→ 𝑣1 in 𝑉1. Then 𝐸1(𝑥 (𝑘 ) ) is
also a Cauchy-sequence and because of isometry, 𝑓 (𝑥 (𝑘 ) ) = 𝐸2(𝑥 (𝑘 ) ) is also a Cauchy-sequence,
that converges (because of completeness of 𝑉2) to a 𝑣2 ∈ 𝑉2. For any other 𝑉 -sequence (𝑦 (𝑘 ) )
with 𝐸1(𝑦 (𝑘 ) ) 𝑘→∞−−−−→ 𝑣1, we also get convergence of 𝑓 (𝐸1(𝑦 (𝑘 ) )) to a 𝑧2 in 𝑉2 and

∥𝑧2 − 𝑣2∥𝑉2 = ∥ lim
𝑘→∞

𝐸2(𝑦 (𝑘 ) ) − lim
𝑘→∞

𝐸2(𝑥 (𝑘 ) )∥
𝑉2

= lim
𝑘→∞

∥𝐸2(𝑦 (𝑘 ) ) − 𝐸2(𝑥 (𝑘 ) )∥
𝑉2

= lim
𝑘→∞

∥𝐸1(𝑦 (𝑘 ) ) − 𝐸1(𝑥 (𝑘 ) )∥
𝑉1

= ∥ lim
𝑘→∞

𝐸1(𝑦 (𝑘 ) ) − lim
𝑘→∞

𝐸1(𝑥 (𝑘 ) )∥
𝑉1

= ∥𝑣1 − 𝑣1∥𝑉1 = 0,
(0.1)

so the limit point in 𝑉2 is independent of the approximation Cauchy sequence, due to isometry.
We can therefore define the extension of 𝑓 : 𝐸1(𝑉 ) → 𝐸2(𝑉 ) accordingly as

𝐹 : 𝑉1 → 𝑉2, 𝐹 (𝑣1) = 𝑣2.

Linearity of 𝐹 is inherent in the construction and the arguments in (0.1) can be immediately
extended to yield the isometry property of 𝐹 , when letting one of the arguments equal 0.
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Isometry implies injectivity of 𝐹 , we are only missing surjectivity of 𝐹 . Let 𝑣2 ∈ 𝑉2. With the
same arguments as before (the situation is symmetric), we can obtain a 𝑉 -sequence (𝑥 (𝑘 ) ) such
that 𝐸2(𝑥 (𝑘 ) ) → 𝑣2 and 𝐸1(𝑥 (𝑘 ) ) → 𝑣1 for a 𝑣1 in 𝑉1. Then the constuction of 𝐹 immediately
yields

𝐹 (𝑣1) = 𝑣2,

i. e., surjectivity of 𝐹 .

You are not expected to turn in your solutions.
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