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Homework Problem 1. (The brachistochrone problem)

The brachistochrone problem (Example 1.1) is the problem of finding the time-optimal trajectory of a
mass moving from point 𝐴 to point 𝐵 under gravitational load.

Derive the corresponding optimization problem (1.1), i. e., expand the description from the lecture
notes.

Solution.

We fix 𝐴 = (0, 0) and 𝐵 = (𝑏1, 𝑏2) with 𝑏1 > 0, 𝑏2 ⩽ 0. The gravitational constant is denoted by 𝑔 > 0.
The mass is𝑚 > 0 and the mass is at rest at 𝐴 at the initial time 0.

Brachistochrone curve

Non-optimal path

𝐴

𝐵

𝑥

−𝑦

For any time interval [0,𝑇 ] with 𝑇 > 0, we consider the mass to be travelling on the trajectory

𝑧 (𝑡) =
(
𝑥 (𝑡)
𝑦 (𝑡)

)
=

(
𝑥 (𝑡)

𝛾 (𝑥 (𝑡))

)
.
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Note that this is the first direct integration of a physical side constraint into the problem formulation,
because we fix the 𝑦-component of the trajectory to the prediscribed 𝛾 , whose optimal form we will
be searching for. Aside from this physical constraint, the second constraint is energy conservation.
Since the mass is at rest at the initial time, both its kinetic and potential energy are 0. We therefore
obtain the equation

𝐸kin(𝑡) + 𝐸pot(𝑡) = 0

and substituting 𝐸kin(𝑡) = 1
2𝑚𝑣 (𝑡)2 as well as 𝐸pot =𝑚𝑔𝑦 (𝑡) for the speed 𝑣 (𝑡), we obtain

0 = 𝐸kin(𝑡) + 𝐸pot(𝑡) =
1
2
𝑚𝑣 (𝑡)2 +𝑚𝑔𝑦 (𝑡) = 1

2
𝑚 ( ¤𝑥 (𝑡))2

(
1 +

(
𝑑

𝑑𝑥
𝛾 (𝑥 (𝑡))

)2)
+𝑚𝑔𝛾 (𝑥 (𝑡))

For an appropriate function space 𝑍 to choose the trajectories from, the optimization problem therefore
is

Minimize 𝑇, where 𝑧 ∈ 𝑍

s. t. 𝑧 (0) = 𝐴

and 𝑧 (𝑇 ) = 𝐵

and 0 =
1
2
𝑚𝑣 (𝑡)2 +𝑚𝑔𝑦 (𝑡) ∀𝑡 ∈ [0,𝑇 ] .

(0.1)

Assuming sufficient regularity and strict monotonicity of the trajectory component 𝑥 , we can reparam-
eterize the problem with respect to 𝑥 , i. e., apply an integral transformation from [0,𝑇 ] with respect to
𝑡 to [0, 𝑏1] with respect to 𝑥 , i. e.,

𝑇 =

∫ 𝑇

0
1 d𝑡 =

∫ 𝑥−1 (𝑏1 )

𝑥−1 (0)

¤𝑥 (𝑡)
¤𝑥 (𝑡) d𝑡 =

∫ 𝑏1=𝑥 (𝑇 )

0=𝑥 (0)

1
¤𝑥 (𝑡) d𝑥

where we now only need a representation of ¤𝑥 (𝑡) dependent on 𝑥 , which is supplied by the energy
conservation constraint. The mass travelling on the trajectory 𝑧 (𝑡) has the velocity

𝑣 := ∥ ¤𝑧 (𝑡)∥2 =
√︁
¤𝑥 (𝑡)2 + ¤𝑦 (𝑡)2 =

√︄
¤𝑥 (𝑡)2 +

(
𝑑

𝑑𝑡
𝛾 (𝑥 (𝑡))

)2
=

√︄
¤𝑥 (𝑡)2 +

(
𝑑

𝑑𝑥
𝛾 (𝑥 (𝑡)) ¤𝑥 (𝑡)

)2
= | ¤𝑥 (𝑡) |

√︄
1 +

(
𝑑

𝑑𝑥
𝛾 (𝑥 (𝑡))

)2
.

and therefore

¤𝑥 (𝑡) =
√︁
−2𝑔𝛾 (𝑥 (𝑡))√︂

1 +
(
𝑑
𝑑𝑥
𝛾 (𝑥 (𝑡))

)2 ,
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which means

1
¤𝑥 (𝑡) =

√︂
1 +

(
𝑑
𝑑𝑥
𝛾 (𝑥 (𝑡))

)2√︁
−2𝑔𝛾 (𝑥 (𝑡))

.

Expanding the side constraints on 𝑧 yields the optimization problem

Minimize
∫ 𝑏1

0

√︁
1 + 𝛾 ′(𝑥)2√︁
−2𝑔𝛾 (𝑥)

d𝑥, where 𝛾 ∈ 𝑋

s. t. 𝛾 (0) = 0
and 𝛾 (𝑎) = 𝑏

as well as 𝛾 ⩽ 0 on [0, 𝑏1]

(1.1)

for an appropriate function space 𝑋 . The energy constraint is directly incorporated due to the utilized
representation of the velocity.

Homework Problem 2. (The crane-trolley-problem)

The crane-trolley-problem (Example 1.5) is the problem of finding the time-optimal control for steering
the state-trajectory of a system comprised of a mass connected to a vertically fixed carriage system
(which control forces can act on horizontally) by a massless fixed rod into a target state under
gravitational load.

Derive the corresponding optimization problem (1.9), i. e., expand the description from the lecture
notes.

Solution.

The modelling part of the crane-trolley-problem is pretty basic mechanics. Below you can find a sketch
of the situation with labels of all relevant quantities.
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𝑠

𝑑 𝑧 = 𝑠 − 𝑑

𝑙

𝑢 (𝑡 )

𝑚𝑔

𝑚𝑔 sin(𝜃 )

𝑚𝑔 cos(𝜃 )

𝑚𝑔 cos(𝜃 )

𝑚𝑔 cos(𝜃 ) sin(𝜃 )

𝑚𝑔 sin(𝜃 ) cos(𝜃 )

𝐸0
𝑀

𝑚

𝜃

where

(a) 𝑀 is the mass of the carriage,𝑚 is the mass of the hanging load
(b) 𝑠 is the 𝑥-displacement of the carriage, 𝑑 that of the load and 𝑧 its relative 𝑥-displacement
(c) 𝑙 is the length of the massless rod connecting the carriage and the load, 𝐸 is the final 𝑥-position

that both the carriage and the load are supposed to end up at in rest
(d) 𝑢 (𝑡) are the forces applied to the carriage by us at time 𝑡 , gravitational forces act on the load

with gravitational constant 𝑔
(e) Θ is the angle of the rod at the carriage relative to vertical

We need to compute the combined forces acting at the carriage and the load, respectively, to obtain
their acceleration. The carriage being vertically fixed means that we can reduce the system to the
horizontal dynamics.

We have three external forces acting on the system. The first forces are the gravitational forces on the
carriage, which is assumed to be fixed vertically, so the fixing system compensates those forces so
they don’t have any effect on the system – we won’t be addressing them further. The second force is
that of the control, acting horizontally on the carriage. The last one is the gravitational force acting on
the load. We are only interestend in horizontal force components. The massless rod will transfer some
of the forces on either of its ends to the other end.

Starting at the top, we have the forces 𝑢 (𝑡) acting on the carriage in horizontal direction. Since the
rod has fixed length, it will transfer the partial forces of 𝑢 (𝑡) acting parallely to its orientation (i. e.
𝑢 (𝑡) sin(𝜃 )) down to the load, where the horizontal part contributes to the forces at the load with
magnitude 𝑢 (𝑡) sin2(𝜃 ). At the bottom, the gravitational force is acting on the load, i. e. −𝑚𝑔𝑒𝑦 where
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the 𝑦 coordinate corresponds to the vertical one. The components acting parallely to the rod will be
transferred to additionally act on the carriage (𝑚𝑔 sin(𝜃 ) cos(𝜃 )) while the part acting normal to the
rod (i. e. tangential to the circle around the carriage that the load can move on) will accelerate the load,
where the horizontal component has the same magnitude as the forces transmitted.

Accordingly, the linearized system of ordinary differential equations describing the horizontal dynamics
is

𝑀 ¥𝑠 = −𝑚𝑔 cos(𝜃 ) sin(𝜃 ) + 𝑢 (𝑡)
𝑚 ¥𝑑 =𝑚𝑔 sin(𝜃 ) cos(𝜃 ) + 𝑢 (𝑡) sin2(𝜃 )

Now we know that sin(𝜃 ) = 𝑠−𝑑
𝑙

= 𝑧
𝑙
≈ 𝜃 and we assume small angles 𝜃 and drop all terms of at least

second order in 𝜃 (linearizing cos/sin at 𝜃 = 0). This removes the sin2 term and yields cos(𝜃 ) ≈ 1 to
yield the final system

¥𝑠 = −𝑚
𝑀

𝑔

𝑙
𝑧 + 1

𝑀
𝑢 (𝑡)

¥𝑧 = ¥𝑠 − ¥𝑑 = − (𝑚 +𝑀)
𝑀

𝑔

𝑙
𝑧 + 1

𝑀
𝑢 (𝑡) .

Reformulating the system of second order ODEs as a system of first order and adding the target
functional, we obtain precisely the system

Minimize
∫ 𝑇

0
1 d𝑡, where (𝑢, 𝑥,𝑇 ) ∈ 𝑈 × 𝑋 × R

s. t. ¤𝑥 = 𝐴𝑥 + 𝐵𝑢 in [0,𝑇 ]
and 𝑥 (0) = (0, 0, 0, 0)ᵀ

and 𝑥 (𝑇 ) = (𝐸, 0, 0, 0)ᵀ

as well as 𝑇 > 0.

(1.8)

We can renormalize the unknown time interval [0,𝑇 ] to the fixed interval [0, 1]. Replacing the
unknowns 𝑥 and 𝑢 by their counterparts on the fixed interval, the dynamics need to be rescaled and
the problem becomes

Minimize
∫ 1

0
𝑇 d𝑡, where (𝑢, 𝑥,𝑇 ) ∈ 𝑈 × 𝑋 × R

s. t. ¤𝑥 =
1
𝑇
(𝐴𝑥 + 𝐵𝑢) in [0, 1]

and 𝑥 (0) = (0, 0, 0, 0)ᵀ

and 𝑥 (1) = (𝐸, 0, 0, 0)ᵀ

as well as 𝑇 > 0.

(1.9)
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You are not expected to turn in your solutions.
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