

Organizational Meeting

Seminar: Mathematical Machine Learning

Summer Semester 2024

Introduction

Roland Herzog roland.herzog@iwr.uni-heidelberg.de

Viktor Martinek viktor.martinek@iwr.uni-heidelberg.de

scoop-teaching @uni-heidelberg.de

General

- Language: English
- Intended for Master students

Concept of the Seminar (1)

- We will be working with Sutton and Barto's "Reinforcement learning: An introduction" (see [1]).
- Today, you choose a chapter.
- In preparation, everyone reads from the beginning up until including chapter 2.

Concept of the Seminar (2)

- Read and analyze your chapter.
- Prepare a presentation on the topic of the chapter.
- Find related material or implementations and mention or add it if appropriate.
- One presentation per meeting (approx. 1 h for the presentation).
- Questions and discussion after the presentation.

Grading

• The grade is based on the presentation and the discussion thereafter.

Regular Meetings

Starting in KW19, we will meet weekly for the presentations.
Which of the following dates suits the most participants.

Table: Potential weekly meeting dates

Date	Vote	Date	Vote	Date	Vote
Mo 14:00		Mo 16:00		Mo 18:00	
Tu 14:00		Tu 16:00		Tu 18:00	
				We 18:00	
Th 14:00				Th 18:00	

Assigning Presentations

Table: Presentation Details

Number	Week	Chapter	Pages
1	KW19	C3 - Finite Markov Decision Processes	26
2	KW20	C4 - Dynamic Programming	18
3	KW21	C5 - Monte Carlo Methods	28
4	KW22	C6 - Temporal Difference Learning	22
5	KW23	C7 - n-step Bootstrapping	18
6	KW24	C8 - Planning and Learning with Tabular Methods	36
7	KW25	C9 - On-policy Prediction with Approximation	48
8	KW26	C10 - On-policy Control with Approximation	15
9	KW27	C12 - Eligibility Traces	34
10	KW28	C13 - Policy Gradient Methods	18

What's next?

- Before the first meeting, read chapters 1 and 2 of the book.
- Resources are online: https://scoop.iwr.uni-heidelberg.de/teaching/2024ss/seminar-mathematical-machine-learning/
- These slides will be shared on the website.

Questions?

