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1 Introduction

Regularized approximation techniques are crucial in the field of con-
vex optimization, particularly when dealing with ill-posed problems or
problems where the solution needs to meet specific practical require-
ments. Here are some details about the background.

Background
• Ill-Posed Problems: Many real-world problems do not have a

unique or stable solution. For example, when solving Ax = b
whereA is an ill-conditionedmatrix or nearly singular, leading
to unstable solutions. Regularization helps stabilize these so-
lutions by adding additional constraints or modifying the ob-
jective function.

• Overfitting: In machine learning and statistical modeling,
overfitting occurs when a model captures the noise in the
data rather than the underlying trend. Regularization tech-
niques such as Ridge Regression (Tikhonov Regularization)
and Lasso (l1-Norm Regularization) add penalties to the
model complexity, thus reducing overfitting.

• Noise: Real-world data is often noisy and contains measure-
ment errors. Regularization methods help in obtaining solu-
tions that are robust to these inaccuracies by smoothing or fil-
tering out the noise.

Applications: signal processing, statistical estimation, and optimal de-
sign.

2 Bi-Criterion formulation

The goal is to balance two objectives: the residual norm∥Ax−b∥ and the
solution norm∥x∥.

Formulation
minimize(w.r.t.R2

+) (∥Ax− b∥, ∥x∥)

2.1 Trade-off curve

2.2 Pareto optimal points

Pareto optimality is a key concept inmulti-objective optimization, where
we aim to optimize multiple conflicting objectives simultaneously. A
solution is considered Pareto optimal if there is no other solution that
improves one objective without worsening another.
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3 Regularization Techniques

This is a scalarization method to solve the bi-criterion problem.

3.1 Scalarization methods
Weighted sum

min∥Ax− b∥+ γ∥x∥

Weighted sum of squares

min∥Ax− b∥2 + δ∥x∥2

3.2 Tihkonov regularization

It is also known as Ridge Regression and themethodminimizes the sum
of squared residuals and a penalty term. The main idea is to limit the
size of model parameters by adding a penalty term, thereby improving
the generalization ability of the model.

Quadratic optimization problem

minimize∥Ax− b∥22 + δ∥x∥22 = xT (ATA+ δI)x− 2bTAx+ bT b

The Tihkonov regularization problem has the analytical solution

x = (ATA+ δI)−1AT b

3.3 Smoothing regularization

Here we add a regularization term of the form ∥Dx∥ in place of ∥x∥,
where thematrixD represents an approximate differentiation or second-
order differentiation operator, so ∥Dx∥ represents a measure of the vari-
ation or smoothness of x.

Tihkonov regularized problem

minimize∥Ax− b∥22 + δ∥△x∥22

The parameter δ is used to control the amount of regularization re-
quired, or to plot the optimal trade-off curve of fit versus smooth-
ness.

Further
minimize∥Ax− b∥22 + δ∥△x∥22 + η∥x∥22

We can add many regularization terms where δ is used to control the
smoothness of the approximate solution and η is used to control its size.

3.4 l1-norm regularization

Finding sparse solution

minimize∥Ax− b∥2 + γ∥x∥1

3.5 Examples
3.5.1 Example: Optimal input design

Consider a dynamical system

y(t) =

t∑
τ=0

h(τ)u(t− τ), t = 0, 1, ..., N

Goal:
1) Output tracking

Jtrack =
1

N + 1

N∑
t=0

(y(t)− ydes(t))
2

2) Small input

Jmag =
1

N + 1

N∑
t=0

u(t)2

3) Small input variations

Jder =
1

N

N−1∑
t=0

(u(t+ 1)− u(t))2
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This can be traded off by minimizing the weighted sum

Jtrack + δJder + ηJmag

Here is a specific example. With N=200, and impulse response

h(t) =
1

9
(0.9)t(1− 0.4cos(2t))

The optimal input and corresponding output for three values of the reg-
ularization parameters δ and η are as below. (See fig 6.6)

3.5.2 Example: Regressor selection problem

By varying the parameter γ, we can sweep out the optimal trade-off
curve. Here is a specific example. (See fig 6.7) The problem is to choose
the subset of k regressors to be used, and the associated coefficients. The
problem is

minimize∥Ax− b∥2 subject to card(x) ≤ k

4 Reconstruction, smoothing, and de-nosing
In reconstruction problems, we start with a signal represented by a vec-
tor. The coefficients correspond to the value of some function of time,
evaluated (or sampled, in the language of signal processing) at evenly
spaced points. Usually, we have xi ≈ xi+1. The signal is corrupted by
an additive noise:

xcor = x+ v

where the noise is unknown, small, and rapidly varying. The goal is
to form an estimate x̂ of the original signal x, given the corrupted sig-
nal xcor. This process is called signal reconstruction or de-nosing. Most
reconstruction methods end up performing some sort of smoothing op-
eration on xcor to produce x̂, so the process is also called smoothing. The
reconstruction problem in this case can be expressed as

bi-criterion problem

minimize(w.r.t.R2
+) (∥x̂− xcor∥2, ϕ(x̂))

Our goal is to find a signal that is as smooth as possible under the l2-
norm as close to the contaminated signal and make a trade-off between

3



regularized approximation Du

closeness and smoothness to effectively reconstruct the original signal.

4.1 Quadratic smoothing

Smoothing function

Φquad(x) =

n−1∑
i=1

(xi+1 − xi)
2 = ∥Dx∥22

In this function, D ∈ R(n−1)×n is the bidiagonal matrix. (See fig 6.8-fig
6.10)

4.2 Total variation reconstruction
Smoothing function

Φtv(x̂) =
n−1∑
i=1

| ˆxi+1 − x̂i| = ∥Dx̂∥1

(See fig 6.11-fig 6.14)
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5 Summary
5.1 l1-norm regularization and l2-norm regularization
▶ When we perform feature selection, we can use the l1-norm regu-

larization ∥Dx∥1 =
∑

i |Dxi|. It tends to produce sparse solutions,
and it is a convex optimization problem that can be solved by stan-
dard convex optimization algorithms.
Applications: Lasso regression, Sparse coding

▶ When we want to prevent overfitting and do not care about spar-
sity, we can use the l2-norm regularization ∥Dx∥2 =

√∑
i(Dxi)2. It

tends to produce smaller but non-zero weights. It will not produce
sparse solutions like the l1-norm regularization but will smoothly
reduce all weights, which helps prevent model overfitting. In addi-
tion, it limits the size of weights and makes the model less sensitive
to noise in the training data.
Applications: Ridge regression, Neural network

5.2 Quadratic smoothing and Total variation reconstruction
▶ Quadratic smoothing works well when the original signal is very

smooth, and the noise is rapidly varying. However, this method
will attenuate or remove the fast changes in the original signal be-
cause it imposes a large penalty on fast changes.

▶ Total variation reconstruction also assigns a large value to rapidly
changing signal x̂, but this method imposes a relatively small
penalty on |xi+1 − xi|, meaning that it is more tolerant of rapid
changes in the signal and does not strongly weaken these features.
So it is more suitable for signals or images that contain significant
edges or discontinuities.
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