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Homework Problem 10.1 (Comparing the Strength of CQs) 6 Points

From the lecture notes, we know that

LICQ
Lemma 6.17
=========⇒ MFCQ

Corollary 6.14
===========⇒ ACQ

Definition 6.6
===========⇒ GCQ . (6.15)

Show that generally

LICQ
(P3)
⇍= MFCQ

(P2)
⇍= ACQ

(P1)
⇍= GCQ

by investigating the following problems P1 to P3 at 𝑥∗ = (0, 0)ᵀ:

Minimize 𝑓 (𝑥) where 𝑥 ∈ R2

subject to 𝑥1 ≤ 0
𝑥2 ≤ 0
𝑥1 𝑥2 = 0


(P1)

Minimize 𝑓 (𝑥) where 𝑥 ∈ R2

subject to 𝑞(𝑥1) − 𝑥2 ≤ 0
𝑞(𝑥1) + 𝑥2 ≤ 0

 for 𝑞(𝑥1) B


(𝑥1 + 1)2, 𝑥1 < −1,
0, −1 ≤ 𝑥1 ≤ 1,
(𝑥1 − 1)2, 𝑥1 > 1,

(P2)

Minimize 𝑓 (𝑥) where 𝑥 ∈ R2

subject to − 𝑥31 − 𝑥2 ≤ 0
− 𝑥2 ≤ 0

 (P3)
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Solution.

(𝑖) We start out showing that LICQ is not satisfied at the origin in problem P3, but MFCQ is. Note:
LICQ requires that the active constraints do not carry the same tangent information while
MFCQ only requires that there is a direction pointing into the interior of all active inequality
constraints’ feasibility regions. The example was constructed using this information.

At the point in question, both inequality constraints of problem P3 are active and we have

𝑔′1 (𝑥) =
(
−3𝑥21 ,−1

)
=⇒ 𝑔′1 (𝑥∗) = (0,−1)

𝑔′2(𝑥) = (0,−1) =⇒ 𝑔′2(𝑥∗) = (0,−1)

so LICQ in fact does not hold. However, as there are no equality constraints, the direction
𝑑 = (0, 1)ᵀ shows that MFCQ in fact holds.

(𝑖𝑖) Next up, we show that MFCQ is violated at the origin for problem P2, but ACQ holds. Note:
MFCQ requires that there is a direction pointing into the interior of all active inequality con-
straints’ feasibility regions, so this prehibits that two active, countering inequality constraints
collaps to yield an equality constraint. ACQ only requires that the tangent information and
the linearized information match up. The example was constructed using this information.
(2 Points)

At the point in question, both inequality constraints of problem P2 are active. Note that 𝑞 is
continuously differentiable with

𝑞′(𝑥1) =


2(𝑥1 + 1), 𝑥1 < −1,
0, −1 ≤ 𝑥1 ≤ 1,
2(𝑥1 − 1), 𝑥1 > 1,

(0.1)

and we have
𝑔′1 (𝑥) = (𝑞′(𝑥1),−1) =⇒ 𝑔′1 (𝑥∗) = (0,−1)
𝑔′2(𝑥) = (𝑞′(𝑥1), 1) =⇒ 𝑔′2(𝑥∗) = (0, 1)

so 𝑔′1 (𝑥∗)𝑑 = 𝑑2 = −𝑔′2(𝑥∗)𝑑 for any 𝑑 ∈ R2 cannot be simultaneously greater and less than 0, so
MFCQ is violated. However, we have that

T𝐹 (𝑥∗) = R × {0} = T lin
𝐹 (𝑥∗),
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so ACQ is satisfied. (2 Points)

(𝑖𝑖𝑖) Finally, we show that ACQ is violated in problem P1, but GCQ is satisfied. Note: ACQ needs
the tangent and linearizing information/sets to match up while GCQ only requires that their
polar cones coincide, i. e., that they look "the same on the outside" to linear functionals applied
to them. This is a property of complementarity constrained problems such as the one used in
this example.

For the feasible set 𝐹 = {𝑥 ∈ R2 | 𝑥1, 𝑥2 ≥ 0, 𝑥1𝑥2 = 0}, with 𝑥∗ = (0, 0) ∈ 𝐹 , we have that

𝑔′1 (𝑥) = (1, 0) =⇒ 𝑔′1 (𝑥∗) = (1, 0)
𝑔′2(𝑥) = (0, 1) =⇒ 𝑔′2(𝑥∗) = (0, 1)
ℎ′(𝑥) = (𝑥2, 𝑥1) =⇒ ℎ′(𝑥∗) = (0, 0)

we easily obtain the cones
T𝐹 (𝑥∗) = 𝐹

T lin
𝐹 (𝑥∗) = R2≤ = conv(𝐹 ) .

Accordingly, the cones don’t match because the linearizing cone fills in the entire lower left
quadrant. The set’s boundaries still coincide though, and we obtain

T𝐹 (𝑥∗)◦ = R2≥ = T lin
𝐹 (𝑥∗)◦,

so GCQ is satisfied. (2 Points)

Homework Problem 10.2 (Finding Solutions using First and Second Order Information) 6 Points

Consider the problem

Maximize − (𝑥1 − 2)2 − 2(𝑥2 − 1)2 where 𝑥 ∈ R2

subject to 𝑥1 + 4𝑥2 ≤ 3
and 𝑥1 ≥ 𝑥2


Determine, which admissible points satisfy a constraint qualification (ACQ/GCQ/MFCQ/LICQ) and
use first and second order information to compute all stationary points and solve the problem, i. e.,
find all optima and explain why they are local and/or global solutions.

Solution.
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We rewrite the problem as a minimization problem by considering the negative of the cost function
and consequently obtain

𝑓 (𝑥) = (𝑥1 − 2)2 + 2(𝑥2 − 1)2 𝑔1(𝑥) = 𝑥1 + 4𝑥2 − 3 𝑔2(𝑥) = 𝑥2 − 𝑥1,

𝑓 ′(𝑥) = (2𝑥1 − 4, 4𝑥2 − 4) 𝑔′1 (𝑥) = (1, 4) 𝑔′2(𝑥) = (−1, 1) .
Since 𝑔′𝑖 (𝑥) ≠ 0 for all 𝑥 and 𝑖 = 1, 2 and both are obviously always linear independent, the LICQ is
satisfied at all feasible 𝑥 . (1 Point)

The corresponding KKT system for a multiplier 𝜇 ≥ 0 ∈ R2 and feasible 𝑥 = (𝑥1, 𝑥2)ᵀ is
2𝑥1 − 4 + 𝜇1 − 𝜇2 = 0

4𝑥2 − 4 + 4𝜇1 + 𝜇2 = 0
𝜇1(𝑥1 + 4𝑥2 − 3) = 0

𝜇2(𝑥2 − 𝑥1) = 0.

Due to the complementarity conditions, there are four cases:

(𝑖) Both constraints are inactive (𝜇1 = 0, 𝜇2 = 0): The KKT system will then reduce to

2𝑥1 − 4 = 0
4𝑥2 − 4 = 0

with the solution 𝑥∗ = (𝑥∗1 , 𝑥∗2) = (2, 1), which violates the first constraint so there is no stationary
point, and hence no solution, for this case. (1 Point)

(𝑖𝑖) The first constraint is inactive and the second is active (𝜇1 = 0 and 𝑥1 = 𝑥2): Here the KKT system
is

2𝑥1 − 4 − 𝜇2 = 0,
4𝑥2 − 4 + 𝜇2 = 0,

𝑥1 = 𝑥2.

Adding the first two equations and using the active second constraint, we obtain the solution( 4
3 ,

4
3
)
with 𝜇2 = − 4

3 , which violates the nonnegativity condition so there is no stationary point,
and hence no solution, for this case. (1 Point)

(𝑖𝑖𝑖) The second constraint is inactive and the first constraint is active (𝜇2 = 0 and 𝑥1 + 4𝑥2 = 3): Here,
the KKT system is

2𝑥1 − 4 + 𝜇1 = 0
4𝑥2 − 4 + 4𝜇1 = 0

𝑥1 + 4𝑥2 = 3.
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Adding the second equation to −4 times the first equation, we get

−8𝑥1 + 4𝑥2 = −12
𝑥1 + 4𝑥2 = 3

with the unique solution
( 5
3 ,

1
3
)
and 𝜇1 =

2
3 . This is a stationary point as 𝑥 is feasible an 𝜇 is

nonnegative. (1 Point)

(𝑖𝑣) Both constraints are active (𝑥1 + 4𝑥2 = 3 and 𝑥1 = 𝑥2): Here the KKT system is

2𝑥1 − 4 + 𝜇1 − 𝜇2 = 0
4𝑥2 − 4 + 4𝜇1 + 𝜇2 = 0

𝑥1 + 4𝑥2 − 3 = 0
𝑥2 − 𝑥1 = 0

with the solution
( 3
5 ,

3
5
)
and 𝜇1 =

22
25 , 𝜇2 = − 48

25 , which violates the nonnegativity constaint for 𝜇,
so there is no stationary point, and hence no solution, for this case. (1 Point)

The feasible set is not compact, so we need second order information to check the optimality of
the stationary point. We compute

L𝑥𝑥 (𝑥, 𝜇) =
(
2 0
0 4

)
which is positive definite. Hence, the solution to the problem is a local maximizer of the original
(maximization) problem at ( 53 ,

1
3 ), with functional value −𝐽 ( 53 ,

1
3 ) = 1. Due to convexity of the

cost functional and the feasible set, the local maximizer is the only maximizer and is a global
one. (1 Point)

Homework Problem 10.3 (Solvability and global solutions of equality constrained QPs) 6 Points

Prove Lemma 9.2 of the lecture notes, i. e., the following statements for the quadratic problem

Minimize L(𝑥, 𝜆) + L𝑥 (𝑥, 𝜆) 𝑑 + 1
2
𝑑ᵀL𝑥𝑥 (𝑥, 𝜆) 𝑑, where 𝑑 ∈ R𝑛

subject to ℎ(𝑥) + ℎ′(𝑥) 𝑑 = 0.
(9.1)

(𝑖) Suppose that the linear system ℎ(𝑥) + ℎ′(𝑥) 𝑑 = 0 is solvable, and that 𝑑part is some particular
solution. Suppose, moreover, that the reduced Hessian 𝑍 ᵀL𝑥𝑥 (𝑥, 𝜆) 𝑍 is positive semidefinite.
Then the objective in the reduced QP (9.3) is convex. In this case, the following are equivalent:
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(a) The QP (9.1) possesses at least one (global) minimizer.

(b) The QP (9.1) is neither unbounded nor infeasible.

(c) The KKT conditions (9.2) are solvable.

(d) The reduced QP (9.3) possesses at least one (global) minimizer.

(e) The reduced QP (9.3) is not unbounded.

(f) The first-order optimality condition (9.4) is solvable.

The global minimizers of (9.1) are precisely the KKT points, i. e., the 𝑑-components of solutions
(𝑑, 𝜆) to the KKT system (9.2).

(𝑖𝑖) Suppose that the linear system ℎ(𝑥) + ℎ′(𝑥) 𝑑 = 0 is solvable, and that 𝑑part is some particular
solution. Suppose now that the reduced Hessian 𝑍 ᵀL𝑥𝑥 (𝑥, 𝜆) 𝑍 is not positive semidefinite. Then
the QP (9.1) and the reduced QP (9.3) are unbounded.

(𝑖𝑖𝑖) Suppose that the linear system ℎ(𝑥) + ℎ′(𝑥) 𝑑 = 0 is not solvable. Then the QP (9.1) is infeasible
and the reduced QP cannot be formulated for lack of a particular solution 𝑑part.

Solution.

(𝑖) Clearly, the reformulation in the lecture notes that used the representation of feasible 𝑑 as

𝑑 = 𝑑part + 𝑍𝑦

shows that the original constrained and the reduced problems are equivalent.

Accordingly, we immediately see that Statement (a) ⇔ Statement (d) and Statement (b) ⇔
Statement (e).

Additionally, Lemma 3.1 immediately applies to the reduced problem

Minimize
[
L𝑥 (𝑥, 𝜆) + 𝑑ᵀpartL𝑥𝑥 (𝑥, 𝜆)

]
𝑍𝑦 + 1

2
𝑦ᵀ𝑍 ᵀL𝑥𝑥 (𝑥, 𝜆) 𝑍𝑦, where 𝑦 ∈ R𝑛−𝑟 . (9.3)
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so we obtain that Statement (d)⇔ Statement (e)⇔ Statement (f) and that the global minimizers
are precisely the solutions to the reduced first order optimality conditions (9.2).

Accordingly, we only need to tie in Statement (c). Since the constraints are affine, we know that
ACQ holds at every feasible point (see homework problem 9.2), hence every (local) minimizer is
a KKT point making up the 𝑑 components of the KKT conditions. We would like to show the
reverse statement using Theorem 6.19, but that is formulated using the convexity of the cost
functional everywhere (which we only have on the feasible set). One could adjust the proof to
deal with the weaker assumption but would have to reformulate the lower linear approximation
result for convex functions as well, so instead, we proceed to notice that if (𝑑, 𝜆) is a KKT point,
then 𝑑 is feasible and accordingly

𝑑 = 𝑑part + 𝑍𝑦

Plugging this into the first line of the block system yields that

L𝑥𝑥 (𝑥, 𝜆) (𝑑part + 𝑍𝑦) + ℎ′(𝑥)ᵀ𝜆 = −∇𝑥L(𝑥, 𝜆)

and, since 𝑍 spans the kernel of ℎ′(𝑥), multiplying this line by 𝑍 ᵀ yields the first order system
(9.4), meaning that 𝑦 is a global minimizer to the reduced QP and therefore𝑑 is a global minimizer
for the original QP.

(𝑖𝑖) Both the QP and the reduced QP are equivalent. The unboundedness is easiest to see for the
reduced problem. Since 𝑍 ᵀL𝑥𝑥𝑍 is indefinite, it has at least one negative eigenvalue 𝜈 < 0
with corresponding eigenvector 𝑦̃ ≠ 0, i. e., a direction of negative curvature in the feasible set.
Accordingly: [

L𝑥 (𝑥, 𝜆) + 𝑑ᵀpartL𝑥𝑥 (𝑥, 𝜆)
]
𝑍𝑡 𝑦̃ + 1

2
𝑡 𝑦̃ᵀ𝑍 ᵀL𝑥𝑥 (𝑥, 𝜆) 𝑍𝑡 𝑦̃ =

1
2
𝑡𝜈 ∥𝑦̃ ∥22 +

[
L𝑥 (𝑥, 𝜆) + 𝑑ᵀpartL𝑥𝑥 (𝑥, 𝜆)

]
𝑍𝑡 𝑦̃

𝑡→∞−−−−→ −∞
meaning that we can reach arbitrarily small function values by feasible points.

(𝑖𝑖𝑖) This is obvious.

(6 Points)

Homework Problem 10.4 (LICQ is equivalent to a unique Lagrange multiplier for certain QPs)
3 Points
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Consider the (affine linearly) equality constrained quadratic optimization problem of the form

Minimize
1
2
𝑥ᵀ𝐴𝑥 + 𝑏ᵀ𝑥 + 𝑐, where 𝑥 ∈ R𝑛

subject to 𝐶𝑥 = 𝑑

(0.2)

for symmetric 𝐴 ∈ R𝑛×𝑛, 𝑏 ∈ R𝑛, 𝑐 ∈ R and 𝐶 ∈ R𝑛×𝑛eq, 𝑑 ∈ R𝑛eq and let 𝑥∗ be a KKT-point of (0.2).

Show that the set Λ(𝑥∗) of Lagrange multipliers corresponding to 𝑥∗ is a singleton if and only if the
LICQ is satisfied at 𝑥∗.

Note: This proves the second set of equivalences in Equation (9.5).

Solution.

The KKT system of (0.2) for 𝑥 ∈ R𝑛 , 𝜆 ∈ R𝑛eq is

𝐴𝑥 + 𝑏 +𝐶ᵀ𝜆 = 0
𝐶𝑥 = 𝑑

(0.3)

and by assumption, there exists a 𝜆∗ ∈ R𝑛eq corresponding to 𝑥∗ such that (𝑥∗, 𝜆∗) solves the system
(0.3). Due to the first line of the same system, we know that

Λ(𝑥∗) = 𝜆∗ + ker𝐶ᵀ.

Additionally, ker𝐶ᵀ = {0} if and only if 𝐶ᵀ has full column rank, which is exactly the LICQ at 𝑥∗.
(However, note that for this affine constraint, LICQ is satisfied at all feasible points or at none of them).
Otherwise the kernel is a nontrivial subspace of positive dimension, meaning Λ(𝑥∗) is a nontrivial
affine subspace (and therefore not compact, which we were to expect because LICQ is equivalent to
MFCQ for equality constrained problems and MFCQ is equivalent to compact multiplier sets).

(3 Points)

Please submit your solutions as a single pdf and an archive of programs via moodle.
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