Exercise 9

Date issued: 10th June 2024
Date due: 18th June 2024

Homework Problem 9.1 (Lin. Cone and CQs Depend on Description of Feasible Set) 3 Points The optimization problems

$$
\begin{align*}
\text { Minimiere } & f(x) \text { über } x \in \mathbb{R} \tag{1}\\
\text { unter } & x=0
\end{align*}
$$

and

$$
\begin{align*}
\text { Minimiere } & f(x) \text { über } x \in \mathbb{R} \\
\text { unter } & x^{2}=0 \tag{2}
\end{align*}
$$

for any $f \in C^{1}(\mathbb{R})$ have their obvious solution (because sole feasible point) at $x^{*}=0$.
Show that the Abadie and Guignard constraint qualifications are satisfied at $x^{*}=0$ for $\left(P_{1}\right)$ but not $\left(P_{2}\right)$.

Homework Problem 9.2 (ACQ for Problems with Affine Constraints)
Consider

$$
\begin{equation*}
F:=\left\{x \in \mathbb{R}^{n} \mid g_{i}(x) \leq 0 \text { for all } i=1, \ldots, n_{\text {ineq }}, h_{j}(x)=0 \text { for all } j=1, \ldots, n_{\text {eq }}\right\} \tag{5.2}
\end{equation*}
$$

and

$$
F^{\operatorname{lin}}(x)=\left\{\begin{array}{l|l}
y \in \mathbb{R}^{n} & \begin{array}{ll}
g_{i}(x)+g_{i}^{\prime}(x)(y-x) \leq 0 & \text { for all } i=1, \ldots, n_{\text {ineq }} \\
h_{j}(x)+h_{j}^{\prime}(x)(y-x)=0 & \text { for all } j=1, \ldots, n_{\text {eq }}
\end{array}
\end{array}\right\}
$$

for $x \in F$.
(i) Show that $\mathcal{T}_{F}^{\operatorname{lin}}(x)=\mathcal{T}_{F}{ }^{\ln (x)}(x)$ for $x \in F$. (Remark 5.6 Statement (i))
(ii) Show that $\mathcal{T}_{F}^{\operatorname{lin}}(x)$ is a closed convex cone. (Remark 5.6 Statement (ii))
(iii) Prove Theorem 6.9 by showing that the Abadie CQ holds at any feasible point of problems of the form
$\left.\begin{array}{rll}\text { Minimize } & f(x) & \text { where } x \in \mathbb{R}^{n} \\ \text { subject to } & A_{\text {ineq }} x \leq b_{\text {ineq }} & \\ \text { and } & A_{\text {eq }} x=b_{\text {eq }} & \end{array}\right\}$

Homework Problem 9.3 (Alternative formulation of the second MFCQ condition)
6 Points
Prove Lemma 6.11, i.e. show that the following three statements are equivalent for $x \in F$.
(ii) There exists a vector $d \in \mathbb{R}^{n}$ such that

$$
\begin{array}{ll}
g_{i}^{\prime}(x) d<0 & \text { for all } i \in \mathcal{A}(x), \tag{0.1}\\
h_{j}^{\prime}(x) d=0 & \text { for all } j=1, \ldots, n_{\mathrm{eq}} .
\end{array}
$$

(iii) There exists a vector $d \in \mathbb{R}^{n}$ such that

$$
\begin{align*}
& g(x)+g^{\prime}(x) d<0, \tag{0.2}\\
& h(x)+h^{\prime}(x) d=0 .
\end{align*}
$$

(iv) There exists a vector $d \in \mathbb{R}^{n}$ such that

$$
\begin{array}{ll}
g_{i}^{\prime}(x) d \leq-1 & \text { for all } i \in \mathcal{A}(x), \\
h_{j}^{\prime}(x) d=0 & \text { for all } j=1, \ldots, n_{\mathrm{eq}} . \tag{o.3}
\end{array}
$$

Homework Problem 9.4 (Multiplier Compactness is Equivalent to MFCQ)
(i) Use Farkas' Lemma (Lemma 5.11 in the lecture notes) to show that for $A \in \mathbb{R}^{p \times n}$ and $B \in \mathbb{R}^{n_{\mathrm{eq}} \times n}$ with $\operatorname{rank}(B)=n_{\text {eq }}$ and $p \leq n_{\text {ineq }}$ either the system

$$
\begin{equation*}
A d<0, \quad B d=0 \tag{0.4}
\end{equation*}
$$

has a solution $d \in \mathbb{R}^{n}$ or

$$
\begin{equation*}
A^{\top} \mu+B^{\top} \lambda=0 \tag{o.5}
\end{equation*}
$$

has a solution $(\mu, \lambda) \neq 0$ with $\mu \geq 0$.
Hint: Start with the existence of a nontrivial solution to (o.5). Focus the nontriviality on μ. Transform the conditions $\mu \neq 0, \mu \geq 0$ into a linear condition with a sign condition using a normalization step with respect to $\|\cdot\|_{1}$. Split λ into its positive and negative part. Apply Farkas' Lemma. Success.
(ii) Let ($x^{*}, \lambda^{*}, \mu^{*}$) be a KKT-point of (5.1). Show that MFCQ is satisfied at x^{*} if and only if the set of Lagrange multipliers that solve the KKT system for x^{*} is compact.

Please submit your solutions as a single pdf and an archive of programs via moodle.

