Exercise 8

Date issued: 3rd June 2024
Date due: 11th June 2024

Homework Problem 8.1 (Two-Loop Recursion for Inverse BFGS Update)
6 Points
Show that Algorithm 4.53 in fact computes the action of the inverse BFGS updated matrix $B_{\mathrm{BFGS}}^{(k)}$.

Homework Problem 8.2 (Examples for Tangent-, Linearizing and Normal Cones)
Consider the feasible set

$$
\begin{equation*}
F:=\left\{x \in \mathbb{R}^{n} \mid g_{i}(x) \leq 0 \text { for all } i=1, \ldots, n_{\text {ineq }}, h_{j}(x)=0 \text { for all } j=1, \ldots, n_{\text {eq }}\right\} \tag{5.2}
\end{equation*}
$$

without any equality restrictions h and with the inequality constraints $g: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ defined by

$$
g(x)=\left(\begin{array}{c}
\left(x_{1}-1\right)^{2}+x_{2}^{2}-1 \\
\left(x_{1}-3\right)^{2}+x_{2}^{2}-1 \\
x_{3}+1 \\
-x_{3}-2
\end{array}\right) \quad \text { at } \quad x^{*}=(2,0,-1)^{\top} \in F .
$$

Find the set of active indices $\mathcal{A}\left(x^{*}\right)$, an explicit representation of F, the tangent cone $\mathcal{T}_{F}\left(x^{*}\right)$, the normal cone $\mathcal{T}_{F}\left(x^{*}\right)^{\circ}$ and the linearizing cone $\mathcal{T}_{F}^{\text {lin }}\left(x^{*}\right)$ and sketch F and the cones.

Homework Problem 8.3 (Linearizing Cone Depends on Description of Feasible Set) 2 Points
Consider the sets

$$
F^{(1)}:=\left\{x \in \mathbb{R}^{2} \left\lvert\,\binom{-x_{1}-1}{x_{1}-1} \leq 0\right., x_{2}=0\right\}, \quad \text { and } \quad F^{(2)}:=\left\{x \in \mathbb{R}^{2} \left\lvert\,\binom{ x_{2}-\left(x_{1}+1\right)^{3}}{x_{1}-1} \leq 0\right., x_{2}=0\right\} .
$$

Find an explicit description of the sets $F^{(1 / 2)}$ and compare the linearizing cones $\mathcal{F}_{F^{(1 / 2)}}^{\operatorname{lin}}(x)$ at $x^{*}=(-1,0)$.

Homework Problem 8.4 (Examples and Properties of Polar Cones)
(i) Prove Lemma 5.9 of the lecture notes, i. e., for arbitrary sets $M, M_{1}, M_{2} \subseteq \mathbb{R}^{n}$ the statements
(a) M° is a closed convex cone.
(b) $M_{1} \subseteq M_{2}$ implies $M_{2}^{\circ} \subseteq M_{1}^{\circ}$.
(ii) Verify the claimed forms of the polar cones in Example 5.10, i. e., the following:
(a) Suppose that A is an affine subspace of \mathbb{R}^{n} of the form $A=U+\{\bar{x}\}$. Then $A^{\circ}=\{\bar{x}\}^{\circ} \cap U^{\perp}$.
(b) In the absence of inequality constraints, the polar of the linearizing cone $\mathcal{T}_{F}^{\operatorname{lin}}(x)$ for $x \in F$ has the representation

$$
\begin{aligned}
\mathcal{T}_{F}^{\operatorname{lin}}(x)^{\circ} & =\left\{s \in \mathbb{R}^{n} \mid s \text { is some linear combination of } h_{j}^{\prime}(x)^{\top}, j=1, \ldots, n_{\mathrm{eq}}\right\} \\
& =\text { range } h^{\prime}(x)^{\top}
\end{aligned}
$$

(c) Let $N:=\left(\mathbb{R}_{\geq 0}\right)^{n}$ denote the non-negative orthant in \mathbb{R}^{n}. Then $N^{\circ}=\left(\mathbb{R}_{\leq 0}\right)^{n}$ is the nonpositive orthant.

Please submit your solutions as a single pdf and an archive of programs via moodle.

