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Homework Problem 8.1 (Two-Loop Recursion for Inverse BFGS Update) 6 Points

Show that Algorithm 4.53 in fact computes the action of the inverse BFGS updated matrix 𝐵 (𝑘 )
BFGS.

Solution.

We reuse the notation 𝜌 (𝑘 ) B 1/(𝑦 (𝑘 ) )ᵀ𝑠 (𝑘 ) and 𝑉 (𝑘 ) B Id − 𝜌 (𝑘 )𝑦 (𝑘 ) (𝑠 (𝑘 ) )ᵀ from the lecture notes
and note that the inverse BFGS update can then be written as

𝐵
(𝑘+1)
BFGS = (𝑉 (𝑘 ) )ᵀ𝐵 (𝑘 )

BFGS𝑉
(𝑘 ) + 𝜌 (𝑘 )𝑠 (𝑘 ) (𝑠 (𝑘 ) )ᵀ.

For a fixed 𝑘 ∈ N and an input vector 𝑟 ∈ R𝑛 , the two-loop recursion in Algorithm 4.53 computes the
quantities 𝑞 (𝑖 ) by setting (in the following the loop index 𝑖 facilitates the move from the counter 𝑖 to
𝑖 − 1 or 𝑖 + 1, respectively):

𝑖 = 𝑘 : 𝑞 (𝑘 ) B 𝑟

𝑖 = 𝑘 − 1 : 𝑞 (𝑘−1) B 𝑉 (𝑘−1)𝑞 (𝑘 )

...

𝑖 : 𝑞 (𝑖 ) B 𝑉 (𝑖 )𝑞 (𝑖+1)

...

𝑖 = 0 : 𝑞 (0) B 𝑉 (0)𝑞 (1)

in the backward loop storing the 𝛼 (𝑖 ) but always rewriting the 𝑞 (𝑖 ) to the storage of 𝑟 . In the forward
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loop, the values 𝑧 (𝑖 ) are computed as

𝑖 = 0 : 𝑧 (0) B 𝐵
(0)
BFGS𝑞

(0)

𝑖 = 1 : 𝑧 (1) B 𝑧 (0) + (𝛼 (0) − 𝛽 (0) )𝑠 (0)

...

𝑖 + 1 : 𝑧 (𝑖+1) B 𝑧 (𝑖 ) + (𝛼 (𝑖 ) − 𝛽 (𝑖 ) )𝑠 (𝑖 )

...

𝑖 = 𝑘 : 𝑧 (𝑘 ) B 𝑧 (𝑘 ) + (𝛼 (𝑘 ) − 𝛽 (𝑘 ) )𝑠 (𝑘 ) .

Where we can inductively show that 𝑧 (𝑖 ) = 𝐵
(𝑖 )
BFGS𝑞

(𝑖 ) , because

𝑧 (𝑖+1) B 𝑧 (𝑖 ) + (𝛼 (𝑖 ) − 𝛽 (𝑖 ) )𝑠 (𝑖 )

= 𝑧 (𝑖 ) − 𝛽 (𝑖 )︸︷︷︸
𝜌 (𝑖 ) (𝑦 (𝑖 ) )ᵀ𝑧 (𝑖 )

𝑠 (𝑖 ) + 𝛼 (𝑖 )𝑠 (𝑖 )

= (𝑉 (𝑖 ) )ᵀ𝑧 (𝑖 ) + 𝛼 (𝑖 )𝑠 (𝑖 )

= (𝑉 (𝑖 ) )ᵀ𝐵 (𝑖 )
BFGS𝑞

(𝑖 ) + 𝛼 (𝑖 )𝑠 (𝑖 )

= (𝑉 (𝑖 ) )ᵀ𝐵 (𝑖 )
BFGS𝑉

(𝑖 )𝑞 (𝑖+1) + 𝜌 (𝑖 ) (𝑠 (𝑖 ) )ᵀ𝑞 (𝑖+1)𝑠 (𝑖 )

= 𝐵
(𝑖+1)
BFGS𝑞

(𝑖+1)

so after 𝑘 iterations, we end up with 𝐵
(𝑘 )
BFGS𝑞

(𝑘 ) = 𝐵
(𝑘 )
BFGS𝑟 as expected. (6 Points)

Homework Problem 8.2 (Examples for Tangent-, Linearizing and Normal Cones) 5 Points

Consider the feasible set

𝐹 B
{
𝑥 ∈ R𝑛

��𝑔𝑖 (𝑥) ≤ 0 for all 𝑖 = 1, . . . , 𝑛ineq, ℎ 𝑗 (𝑥) = 0 for all 𝑗 = 1, . . . , 𝑛eq
}

(5.2)

without any equality restrictions ℎ and with the inequality constraints 𝑔 : R3 → R4 defined by

𝑔(𝑥) =
©«
(𝑥1 − 1)2 + 𝑥2

2 − 1
(𝑥1 − 3)2 + 𝑥2

2 − 1
𝑥3 + 1
−𝑥3 − 2

ª®®®¬ at 𝑥∗ = (2, 0, −1)ᵀ ∈ 𝐹 .

Find the set of active indices A(𝑥∗), an explicit representation of 𝐹 , the tangent cone T𝐹 (𝑥∗), the
normal cone T𝐹 (𝑥∗)◦ and the linearizing cone T lin

𝐹
(𝑥∗) and sketch 𝐹 and the cones.
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Solution.

We have that

𝑔(𝑥∗) =
©«
(2 − 1)2 − 1
(2 − 3)2 − 1

−1 + 1
−(−1) − 2

ª®®®¬ =
©«

0
0
0
−1

ª®®®¬ ≤ 0

and therefore that in fact 𝑥 ∈ 𝐹 with the set of active inequality constraint indices A(𝑥∗) = {1, 2, 3}.

The feasible set is the intersection of two cylinders of cross-section radius 1 with (1, 0, 𝑥3)- and (3, 0, 𝑥3)-
axes, respectively, and two 𝑥3-halfspaces, i. e., the line segment

𝐹 = {(2, 0, 𝑥3) ∈ R3 | 𝑥3 ∈ [−2,−1]}.

This makes it easy to compute the tangent cone, because all sequences in 𝐹 are on a line, so the tangent
cone ends up being the ray

T𝐹 (𝑥∗) B
{
𝑑 ∈ R𝑛

���� there exist sequences 𝑥 (𝑘 ) ∈ 𝐹 and 𝑡 (𝑘 ) ↘ 0 such that 𝑑 = lim
𝑘→∞

𝑥 (𝑘 ) − 𝑥∗

𝑡 (𝑘 )

}
= {𝑑 ∈ R3 | 𝑑1 = 𝑑2 = 0, 𝑑3 ≤ 0}.

Accordingly the normal cone

T𝐹 (𝑥∗)◦ B {𝑠 ∈ R𝑛 | 𝑠ᵀ𝑥 ≤ 0 for all 𝑥 ∈ T𝐹 (𝑥∗)}

=

𝑠 ∈ R3

������ 𝑠ᵀ ©«
0
0
𝑥3

ª®¬ ≤ 0 for all 𝑥3 ≤ 0


= {𝑠 ∈ R3 | 𝑠3 ≥ 0}

is the closed halfspace at 0 defined by the normal vector to be any nonzero element from the tangent
ray.
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Figure 0.1: Constraining cylinders (blue), limiting hyperplanes of constraints on 𝑥3 (gray), feasible set
(red), point 𝑥∗, tangent cone (teal, dashed) shifted to 𝑥∗ and limiting hyperplane of the half
space normal cone (coincides with upper limiting hyperplane).

To find T lin
𝐹

(𝑥∗), we compute the derivatives of the active inequality constraints, which are

𝑔′1 (𝑥) =
©«
2(𝑥1 − 1)

2𝑥2
0

ª®¬ ⇒ 𝑔′1 (𝑥∗) =
©«
2
0
0

ª®¬
𝑔′2(𝑥) =

©«
2(𝑥1 − 3)

2𝑥2
0

ª®¬ ⇒ 𝑔′2(𝑥∗) =
©«
−2
0
0

ª®¬
𝑔′3(𝑥) =

©«
0
0
1

ª®¬ ⇒ 𝑔′3(𝑥∗) =
©«
0
0
1

ª®¬ .
Therefore

T lin
𝐹 (𝑥∗) B

{
𝑑 ∈ R𝑛

����� 𝑔′𝑖 (𝑥∗) 𝑑 ≤ 0 for all 𝑖 ∈ A(𝑥∗)
ℎ′𝑗 (𝑥∗) 𝑑 = 0 for all 𝑗 = 1, . . . , 𝑛eq

}
= {𝑑 ∈ R3 | 𝑑1 = 0, 𝑑3 ≤ 0}
⊋ T𝐹 (𝑥∗)

(5 Points)

Homework Problem 8.3 (Linearizing Cone Depends on Description of Feasible Set) 2 Points

Consider the sets

𝐹 (1) B

{
𝑥 ∈ R2

���� (−𝑥1 − 1
𝑥1 − 1

)
≤ 0, 𝑥2 = 0

}
, and 𝐹 (2) B

{
𝑥 ∈ R2

���� (𝑥2 − (𝑥1 + 1)3

𝑥1 − 1

)
≤ 0, 𝑥2 = 0

}
.

Find an explicit description of the sets 𝐹 (1/2) and compare the linearizing cones T lin
𝐹 (1/2) (𝑥) at 𝑥∗ = (−1, 0).
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Solution.

Due to the equality constraint, both sets in fact coincide with the line segment

𝐹 (1) = 𝐹 (2) = {𝑥 ∈ R2 | 𝑥1 ∈ [−1, 1], 𝑥2 = 0}.

This automatically implies that their tangent- and normal cones (rays and closed halfspaces, re-
spectively) coincide as well, as those are independent of the description of the sets. As long as the
first inequality is inactive, the active inequalities conincide, so the linearizing cones of the two set
descriptions coincide there as well.

At 𝑥∗ = (−1, 0) the active constraints differ. Due to A(𝑥∗) = {1} in both cases, we compute

𝑔
(1)
1

′
(𝑥) =

(
−1
0

)
⇒ 𝑔

(1)
1

′
(𝑥∗) =

(
−1
0

)
𝑔
(2)
1

′
(𝑥) =

(
−3(𝑥1 + 1)2

1

)
⇒ 𝑔

(2)
1

′
(𝑥∗) =

(
0
1

)
ℎ′(𝑥) =

(
0
1

)
⇒ ℎ′(𝑥∗) =

(
0
1

)
and therefore obtain that

T lin
𝐹 (1) (𝑥∗) = {𝑑 ∈ R2 | 𝑑1 ≥ 0, 𝑑2 = 0}≠{𝑑 ∈ R2 | 𝑑2 = 0} = T lin

𝐹 (2) (𝑥∗) .

(2 Points)

Homework Problem 8.4 (Examples and Properties of Polar Cones) 4 Points

(𝑖) Prove Lemma 5.9 of the lecture notes, i. e., for arbitrary sets𝑀,𝑀1, 𝑀2 ⊆ R𝑛 the statements

(a) 𝑀◦ is a closed convex cone.

(b) 𝑀1 ⊆ 𝑀2 implies𝑀◦
2 ⊆ 𝑀◦

1 .

(𝑖𝑖) Verify the claimed forms of the polar cones in Example 5.10, i. e., the following:

(a) Suppose that 𝐴 is an affine subspace of R𝑛 of the form 𝐴 = 𝑈 + {𝑥}. Then 𝐴◦ = {𝑥}◦ ∩𝑈 ⊥.
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(b) In the absence of inequality constraints, the polar of the linearizing cone T lin
𝐹

(𝑥) for 𝑥 ∈ 𝐹

has the representation

T lin
𝐹 (𝑥)◦ = {𝑠 ∈ R𝑛 | 𝑠 is some linear combination of ℎ′𝑗 (𝑥)ᵀ, 𝑗 = 1, . . . , 𝑛eq}

= rangeℎ′(𝑥)ᵀ.

(c) Let 𝑁 B (R≥0)𝑛 denote the non-negative orthant in R𝑛 . Then 𝑁 ◦ = (R≤0)𝑛 is the non-
positive orthant.

Solution.

(𝑖) (a) Closedness of𝑀◦ is simply due the fact that the definition involves a non strict inequality.
Convexity is due to the linearity of the defining condition.

(b) This is due to the fact, that having to check a condition for all elements of a larger set is
more restrictive.

(𝑖𝑖) (a) Let 𝐴 = 𝑈 + {𝑥}. Clearly, for all 𝑠 ∈ {𝑥}◦ ∩𝑈 ⊥, and all 𝑥 + 𝑢 ∈ {𝑥} +𝑈 ,

𝑠ᵀ(𝑥 + 𝑢) = 𝑠ᵀ𝑥 ≤ 0,

so {𝑥}◦ ∩𝑈 ⊥ ⊆ ({𝑥} +𝑈 )◦.

Conversely, if 𝑠 ∈ ({𝑥} +𝑈 )◦, then 𝑠ᵀ𝑥 = 𝑠ᵀ(𝑥 + 0︸︷︷︸
∈𝑈

) ≤ 0, so 𝑠 ∈ {𝑥}◦. Also, assuming

there were a 𝑢 ∈ 𝑈 with 𝑠ᵀ𝑢 ≠ 0, we know that _𝑢 is in the linear subspace𝑈 for all _ ∈ R,
and therefore

𝑠ᵀ(𝑥 + _𝑢) = 𝑠ᵀ𝑥 + _𝑠ᵀ𝑢
_→sgn (𝑠ᵀ𝑢 )∞
−−−−−−−−−−−→ ∞

which is a contradiction to 𝑠 ∈ ({𝑥} +𝑈 ◦), showing that in fact {𝑥}◦ ∩𝑈 ⊥ ⊇ ({𝑥} +𝑈 )◦.

(b) This is of course a consequence of Lemma 5.13, which we did not know anything about at
the time the remark was made. Luckily, in this special case, we immediately obtain that

T lin
𝐹 (𝑥) = {𝑑 ∈ R𝑛 | ℎ′𝑖 (𝑥)𝑑 = 0, 𝑖 = 1, . . . , 𝑛eq} = {𝑑 ∈ R𝑛 | ℎ′(𝑥)𝑑 = 0} = kerℎ′(𝑥),

which is a linear subspace, hence

kerℎ′(𝑥)◦ = kerℎ′(𝑥)⊥ = rangeℎ′(𝑥)ᵀ.
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(c) Let 𝑠 be in the the non-positive orthant (R≤0)𝑛 and 𝑑 in the non-negative orthant (R≥0)𝑛 ,
then

𝑠ᵀ𝑑 =

𝑛∑︁
𝑖=1

𝑠𝑖︸︷︷︸
≤0

𝑑𝑖︸︷︷︸
≥0

≤ 0

showing that (R≤0)𝑛 ⊆ (R≥0)𝑛◦.

Assuming there were an 𝑠 ∈ (R≥0)𝑛◦ and an index 𝑖 such that 𝑠𝑖 > 0, then

𝑠ᵀ 𝑒𝑖︸︷︷︸
∈R𝑛≥0

= 𝑠𝑖 > 0,

which finalizes the proof.

(4 Points)

Please submit your solutions as a single pdf and an archive of programs via moodle.
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