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Homework Problem 7.1 (The truncated CG method generates descent directions) 7 Points

Prove the statements from Lemma 4.42.

How can property Statement (𝑖𝑖𝑖) be interpreted, when the truncated CG method is applied to the
current Newton system 𝑓 ′′(𝑥 (𝑘 ) ) 𝑑 (𝑘 ) = −∇𝑓 (𝑥 (𝑘 ) )?

Solution.

Statement (𝑖): Since we use the zero vector as initial guess, we have Z (0) = 𝐴 0 − 𝑏 = −𝑏 for the initial
residual. Therefore,

𝑏ᵀ𝑀−1Z ( 𝑗 ) = −(Z (0) )ᵀ𝑀−1Z ( 𝑗 ) = 0 for 𝑗 ≥ 1

according to Equation (3.28). (1 Point)

Statement (𝑖𝑖): The initial search direction is 𝑝 (0) = −𝑀−1Z (0) , and hence we have

𝑏ᵀ𝑝 (0) = (Z (0) )ᵀ𝑀−1Z (0) = ∥Z (0) ∥2
𝑀−1 .

By induction, we find for 𝑗 ≥ 0:

𝑏ᵀ𝑝 ( 𝑗+1) = 𝑏ᵀ
(
−𝑀−1Z ( 𝑗+1) + 𝛽 ( 𝑗+1) 𝑝 ( 𝑗 ) )

= 0 + 𝛽 ( 𝑗+1) 𝑏ᵀ𝑝 ( 𝑗 ) by Statement (𝑖)

=
∥Z ( 𝑗+1) ∥2

𝑀−1

∥Z ( 𝑗 ) ∥2
𝑀−1

𝑏ᵀ𝑝 ( 𝑗 ) by Equation (3.24)

= ∥Z ( 𝑗+1) ∥2
𝑀−1 by the induction hypothesis.
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(3 Points)

Statement (𝑖𝑖𝑖): Since Algorithm 4.41 generated the iterates 𝑑 (0) , . . . , 𝑑 (ℓ ) , the numbers \ (0) , . . . , \ (ℓ−1)

are all strictly positive. Consequently, 𝛼 ( 𝑗 ) = 𝛿 ( 𝑗 )/\ ( 𝑗 ) > 0 is also positive for 𝑗 = 0, . . . , ℓ − 1. We
consider the expression

𝑏ᵀ𝑑 (ℓ ) = 𝑏ᵀ
ℓ−1∑︁
𝑗=0

𝛼 ( 𝑗 ) 𝑝 ( 𝑗 ) =
ℓ−1∑︁
𝑗=0

𝛼 ( 𝑗 ) ∥Z ( 𝑗 ) ∥2
𝑀−1

with the last equality due to Statement (𝑖𝑖). The residuals Z (0) , . . . , Z (ℓ−1) are all ≠ 0, otherwise the
stopping criterion in Algorithm 4.41 would have been triggered. Therefore, the above expression is
strictly increasing w.r.t. ℓ . (2 Points)

The strictly increasing monotonicity of 𝑏ᵀ𝑑 (ℓ ) = −𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (ℓ ) w.r.t. the iteration counter ℓ means that
the descent properties of the iterates 𝑑 (ℓ ) progressively improve, as long as the search directions 𝑝 (ℓ )

remain directions of positive curvature for 𝐴. (1 Point)

Homework Problem 7.2 (Truncated Newton CG) 6 Points

Implement the truncated Newton-CG method (Algorithm 4.44 with Algorithm 4.41), apply it for
Rosenbrock’s and/or Himmelblau’s functions and compare its performance with the exact globalized
Newton method.

Solution.

For the implementation see the file driver_ex_021_compare_vanilla_inexact_newton.py. The modifica-
tions compared to the globalized Newton method implemented in homework problem 6.4 are minor.
Simply replace whatever linear system solver was in place until that point by the CG method, start at
the zero initial guess and only use relative tolerances generated by the driving sequence.

The results in Figure 0.1 show that in early iterations, both methods obviously differ, but the inexact
solution does not necessarily take worse steps in the beginning (though it sometimes does). The overall
convergence behavior is similar though, with superlinear/quadratic convergence being observable.
The initial step length suggestion of 1 is typically accepted after a few iterations. Both methods neither
detect nonpositive curvature nor does the computed direction violate the generalized angle condition
in this example.
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Figure 0.1: Exact Newton (top) vs truncated Newton CG (bottom) for Rosenbrock function.
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Figure 0.2: Exact Newton (top) vs truncated Newton CG (bottom) for Himmelblau function.
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The results in Figure 0.2 show that in early iterations, both methods obviously differ, which can lead
to convergence to different local minima. The overall convergence speed behaves similarly though,
with superlinear/quadratic convergence being observable. The initial step length suggestion of 1 is
also typically accepted after a few iterations. In this example, both the globalized Newton as well as
the TNCG compute some directions that don’t pass the quality check in early iterations and the CG is
actually truncated in early iterations. (6 Points)

Homework Problem 7.3 (Inverse BFGS and DFP Updates) 6 Points

Derive the inverse BFGS and DFP update formulas

ΨBFGS(𝐵, 𝑠, 𝑦) = (Id − 𝜌 𝑠 𝑦ᵀ) 𝐵 (Id − 𝜌 𝑦 𝑠ᵀ) + 𝜌 𝑠 𝑠ᵀ, (4.60)

ΨDFP(𝐵, 𝑠, 𝑦) = 𝐵 − 𝐵 𝑦 𝑦ᵀ𝐵

𝑦ᵀ𝐵 𝑦
+ 𝜌 𝑠 𝑠ᵀ (4.59)

using the Sherman-Morrison-Woodbury formula from Lemma 4.50.

Solution.

Essentially, this exercise comes down to rewriting the update structure as a rank 2 update and
identifying the correct matrix roles for the Sherman-Morrison-Woodbury formula.

We begin with the inverse BFGS update (4.60). Let the difference vectors 𝑦, 𝑠 be provided by the last
update step corresponding to the nonsingular symmetric model Hessian 𝐻 and its symmetric inverse
𝐵 = 𝐻−1. Accordingly, the secant condition is satisfied, i. e., 𝐻𝑠 = 𝑦 and 𝑠 = 𝐵𝑦 , meaning that

1
𝜌
= 𝑦ᵀ𝑠 = 𝑠ᵀ𝐻𝑠 = 𝑦ᵀ𝐵𝑦.

For the BFGS update to be well defined, we need that 𝑦ᵀ𝑠 ≠ 0, so we assume this requirement here as
well.

Since 𝐻 is nonsingular by assumption and in the assignment

ΦBFGS(𝐻, 𝑠, 𝑦) = 𝐻 − 𝐻 𝑠 𝑠ᵀ𝐻

𝑠ᵀ𝐻 𝑠
+ 𝜌 𝑦 𝑦ᵀ

= 𝐻︸︷︷︸
𝐴∈R𝑛×𝑛

+
[
𝐻𝑠 𝑦

]︸    ︷︷    ︸
𝑈 ∈R𝑛×2

[
− 1
𝑠ᵀ𝐻𝑠

0
0 𝜌

]
︸        ︷︷        ︸

𝐶∈R2×2

[
𝑠ᵀ𝐻
𝑦ᵀ

]
︸︷︷︸

𝑉=𝑈 ᵀ∈R2×𝑛

https://tinyurl.com/scoop-nlo page 5 of 9

https://tinyurl.com/scoop-nlo


E. Herberg, M. Marić, V. Stein

Heidelberg University

Nonlinear Optimization

Spring Semester 2024

the diagonal matrix 𝐶 ∈ R2×2 is clearly invertible (due to the assumptions on 𝜌), we can apply the
Sherman-Morrison-Woodbury formula

(𝐴 +𝑈 𝐶𝑉 )−1 = 𝐴−1 −𝐴−1𝑈 (𝐶−1 +𝑉𝐴−1𝑈 )−1𝑉𝐴−1

to obtain that when ΦBFGS(𝐻, 𝑠, 𝑦)−1 is invertible (e. g. when 𝐵 was s. p. d. and 𝑦ᵀ𝑠 > 0), then we can
obtain its inverse by the update

ΦBFGS(𝐻, 𝑠, 𝑦)−1 =
(
𝐻 +

[
𝐻𝑠 𝑦

] [
− 1
𝑠ᵀ𝐻𝑠

0
0 𝜌

] [
𝑠ᵀ𝐻
𝑦ᵀ

] )−1
= 𝐻−1 − 𝐻−1 [𝐻𝑠 𝑦

] ( [
− 1
𝑠ᵀ𝐻𝑠

0
0 𝜌

]−1
+

[
𝑠ᵀ𝐻
𝑦ᵀ

]
𝐻−1 [𝐻𝑠 𝑦

] )−1 [𝑠ᵀ𝐻
𝑦ᵀ

]
𝐻−1

= 𝐵 −
[
𝑠 𝐵𝑦

] ( [
− 1
𝑠ᵀ𝐻𝑠

0
0 𝜌

]−1
+

[
𝑠ᵀ𝐻
𝑦ᵀ

] [
𝑠 𝐵𝑦

] )−1 [ 𝑠ᵀ

(𝐵𝑦)ᵀ
]

= 𝐵 −
[
𝑠 𝐵𝑦

] ( [
−𝑠ᵀ𝐻𝑠 0

0 1
𝜌

]
+

[
𝑠ᵀ𝐻𝑠 𝑦ᵀ𝑠
𝑦ᵀ𝑠 𝑦ᵀ𝐵𝑦

] )−1 [
𝑠ᵀ

(𝐵𝑦)ᵀ
]

= 𝐵 −
[
𝑠 𝐵𝑦

] ( [
0 1

𝜌
1
𝜌

1
𝜌
+ 𝑦ᵀ𝐵𝑦

])−1 [
𝑠ᵀ

(𝐵𝑦)ᵀ
]

= 𝐵 +
[
𝑠 𝐵𝑦

] [
𝜌 + 𝜌2𝑦ᵀ𝐵𝑦 −𝜌

−𝜌 0

] [
𝑠ᵀ

(𝐵𝑦)ᵀ
]

= 𝐵 +
[
𝑠 𝐵𝑦

] [
𝜌𝑠ᵀ + 𝜌2𝑦ᵀ𝐵𝑦𝑠ᵀ − 𝜌 (𝐵𝑦)ᵀ

−𝜌𝑠ᵀ
]

= 𝐵 + 𝜌𝑠𝑠ᵀ + 𝜌2𝑠𝑦ᵀ𝐵𝑦𝑠ᵀ − 𝜌𝑠 (𝐵𝑦)ᵀ − 𝜌 (𝐵𝑦)𝑠ᵀ

= (Id − 𝜌 𝑠 𝑦ᵀ) 𝐵 (Id − 𝜌 𝑦 𝑠ᵀ) + 𝜌 𝑠 𝑠ᵀ

= ΨBFGS(𝐵, 𝑠, 𝑦) = ΦDFP(𝐵, 𝑦, 𝑠) .

To obtain the same result for the inverse DFP update, we can simply realize that we can take the
inverse of that entire chain of equalities in each step, exchange 𝐵 for 𝐻 and vice versa, and 𝑦 for 𝑠 and
vice versa.

(6 Points)

Homework Problem 7.4 (Affine-Invariance of BFGS/DFP-updated quasi Newton) 6 Points

Let 𝑓 : R𝑛 → R be differentiable, 𝐴 ∈ R𝑛×𝑛 be invertible, 𝑏 ∈ R𝑛 and 𝑔(𝑦) B 𝑓 (𝐴𝑦 + 𝑏).
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(𝑖) Let the sequences
(
𝑥 (𝑘 ) ) and (

𝑦 (𝑘 ) ) be generated by applying full quasi Newton steps as in

𝑥 (𝑘+1) = 𝑥 (𝑘 ) − 𝐻
(𝑘 )
𝑓

−1
𝑓 ′(𝑥 (𝑘 ) )ᵀ from 𝑥 (0) = 𝐴𝑦 (0) + 𝑏 with 𝐻

(0)
𝑓

s. p. d.

𝑦 (𝑘+1) = 𝑦 (𝑘 ) − 𝐻
(𝑘 )
𝑔

−1
𝑔′(𝑦 (𝑘 ) )ᵀ from 𝑦 (0) with 𝐻

(0)
𝑔 = 𝐴ᵀ𝐻 (0)

𝑓
𝐴.

Show that 𝑥 (𝑘 ) = 𝐴𝑦 (𝑘 ) + 𝑏 for all 𝑘 ∈ N, when the BFGS or the DFP update are applied to
update the model Hessians.

(𝑖𝑖) Let the sequences
(
𝑥 (𝑘 ) ) and (

𝑦 (𝑘 ) ) be generated by applying full inverse quasi Newton steps as
in

𝑥 (𝑘+1) = 𝑥 (𝑘 ) − 𝐵
(𝑘 )
𝑓

𝑓 ′(𝑥 (𝑘 ) )ᵀ from 𝑥 (0) = 𝐴𝑦 (0) + 𝑏 with 𝐵
(0)
𝑓

s. p. d.

𝑦 (𝑘+1) = 𝑦 (𝑘 ) − 𝐵
(𝑘 )
𝑔 𝑔′(𝑦 (𝑘 ) )ᵀ from 𝑦 (0) with 𝐵

(0)
𝑔 = 𝐴−1𝐵 (0)

𝑓
𝐴−ᵀ.

Show that 𝑥 (𝑘 ) = 𝐴𝑦 (𝑘 ) + 𝑏 for all 𝑘 ∈ N, when the inverse BFGS or the inverse DFP update are
applied to update the inverse of the model Hessians.

Hint: You can save yourselves some work using the connection of the updates of the Hessians and
their inverses.

Note: The restriction to unit step length scalings in this exercise is to keep the required notation
slim(er). Since we know that the Armijo and the curvature condition are affine invariant as well, we
don’t loose invariance when applying step lengths satisfying these conditions.

Solution.

(𝑖) The proof relies on the fact that the BFGS and DFP update formulas of the model hessians
preserve the property 𝐻 (𝑘 )

𝑓
= 𝐴−ᵀ𝐻 (𝑘 )

𝑔 𝐴−1 (the transformation behavior of the hessians of 𝑓 and
𝑔 in the 𝐶2-Newton setting) for all 𝑘 ∈ N – which is really the key property here.

We show the following inductively: For 𝑘 ∈ Nwe have that𝐻 (𝑘 )
𝑔 = 𝐴ᵀ𝐻 (𝑘 )

𝑓
𝐴 and 𝑥 (𝑘 ) = 𝐴𝑦 (𝑘 ) +𝑏.

The claim is correct for 𝑘 = 0 by assumption. In the induction step from 𝑘 to 𝑘 + 1, we can find
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that (due to the transformation property)

𝑥 (𝑘+1) = 𝑥 (𝑘 ) − 𝐻
(𝑘 )
𝑓

−1
𝑓 ′(𝑥 (𝑘 ) )ᵀ

= 𝐴𝑦 (𝑘 ) −
(
𝐴−ᵀ𝐻 (𝑘 )

𝑔 𝐴−1
)−1

𝐴−ᵀ𝑔′(𝑦 (𝑘 ) )ᵀ + 𝑏

= 𝐴

(
𝑦 (𝑘 ) − 𝐻

(𝑘 )
𝑔

−1
𝑔′(𝑦 (𝑘 ) )ᵀ

)
+ 𝑏

= 𝐴𝑦 (𝑘+1) + 𝑏.

Now, for the updates of 𝐻 (𝑘 )
𝑓

and 𝐻 (𝑘 )
𝑔 , we define

𝑣
(𝑘 )
𝑓
B ∇𝑓 (𝑥 (𝑘+1) ) − ∇𝑓 (𝑥 (𝑘 ) ), 𝑣

(𝑘 )
𝑔 B 𝑔′(𝑦 (𝑘+1) ) − 𝑔′(𝑦 (𝑘 ) ) = 𝐴ᵀ∇𝑓 (𝑥 (𝑘+1) ) −𝐴ᵀ∇𝑓 (𝑥 (𝑘 ) ) = 𝐴ᵀ𝑣 (𝑘 )

𝑓
,

𝑟
(𝑘 )
𝑓
B 𝑥 (𝑘+1) − 𝑥 (𝑘 ) = 𝐴𝑟

(𝑘 )
𝑔 , 𝑟

(𝑘 )
𝑔 B (𝑦 (𝑘+1) ) − (𝑦 (𝑘 ) )

and otherwise reuse the notation from the lecture notes. Note that

𝜌
(𝑘 )
𝑓

=
1

(𝑣 (𝑘 )
𝑓

)ᵀ𝑟 (𝑘 )
𝑓

=
1

(𝑣 (𝑘 )𝑔 )ᵀ𝐴−1𝐴𝑟 (𝑘 )𝑔

= 𝜌
(𝑘 )
𝑔 .

Accordingly (red marks the term that is modified when progressing to the next line):

ΦBFGS(𝐻 (𝑘 )
𝑔 , 𝑟

(𝑘 )
𝑔 , 𝑣

(𝑘 )
𝑔 ) = 𝐻

(𝑘 )
𝑔 −

𝐻
(𝑘 )
𝑔 𝑟

(𝑘 )
𝑔 (𝑟 (𝑘 )𝑔 )ᵀ𝐻 (𝑘 )

𝑔

(𝑟 (𝑘 )𝑔 )ᵀ𝐻 (𝑘 )
𝑔 𝑟

(𝑘 )
𝑔

+ 𝜌
(𝑘 )
𝑔 𝑣

(𝑘 )
𝑔 (𝑣 (𝑘 )𝑔 )ᵀ

= 𝐴ᵀ𝐻 (𝑘 )
𝑓

𝐴 −
𝐴ᵀ𝐻 (𝑘 )

𝑓
𝐴𝑟

(𝑘 )
𝑔 (𝑟 (𝑘 )𝑔 )ᵀ𝐴ᵀ𝐻 (𝑘 )

𝑓
𝐴

(𝑟 (𝑘 )𝑔 )ᵀ𝐴ᵀ𝐻 (𝑘 )
𝑓

𝐴𝑟
(𝑘 )
𝑔

+ 𝜌
(𝑘 )
𝑔 𝑣

(𝑘 )
𝑔 (𝑣 (𝑘 )𝑔 )ᵀ

= 𝐴ᵀ𝐻 (𝑘 )
𝑓

𝐴 −
𝐴ᵀ𝐻 (𝑘 )

𝑓
𝑟
(𝑘 )
𝑓

(𝑟 (𝑘 )
𝑓

)ᵀ𝐻 (𝑘 )
𝑓

𝐴

(𝑟 (𝑘 )
𝑓

)ᵀ𝐻 (𝑘 )
𝑓

𝑟
(𝑘 )
𝑓

+ 𝜌
(𝑘 )
𝑓

𝐴ᵀ𝑣 (𝑘 )
𝑓

(𝑣 (𝑘 )
𝑓

)ᵀ𝐴

= 𝐴ᵀΦBFGS(𝐻 (𝑘 )
𝑓

, 𝑟
(𝑘 )
𝑓

, 𝑣
(𝑘 )
𝑓

)𝐴.

Using essentially the same computation as above but adjusting for the inverted order of the
inputs 𝑣 (𝑘 )

𝑓 /𝑔, 𝑟
(𝑘 )
𝑓 /𝑔 , we can immediately obtain that

ΦBFGS(𝐵 (𝑘 )
𝑔 , 𝑣

(𝑘 )
𝑔 , 𝑟

(𝑘 )
𝑔 ) = 𝐴−1ΦBFGS(𝐵 (𝑘 )

𝑓
, 𝑣

(𝑘 )
𝑓

, 𝑟
(𝑘 )
𝑓

)𝐴−ᵀ
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and therefore, using the inverse relation between the BFGS and DFP updates from (4.61) as well
as that ΦDFP/BFGS(𝐻, 𝑠, 𝑦) = ΨDFP/BFGS(𝐻−1, 𝑦, 𝑠)−1, we have that

ΦDFP(𝐻 (𝑘 )
𝑔 , 𝑟

(𝑘 )
𝑔 , 𝑣

(𝑘 )
𝑔 ) = ΨDFP(𝐵 (𝑘 )

𝑔 , 𝑟
(𝑘 )
𝑔 , 𝑣

(𝑘 )
𝑔 )

−1

= ΦBFGS(𝐵 (𝑘 )
𝑔 , 𝑣

(𝑘 )
𝑔 , 𝑟

(𝑘 )
𝑔 )

−1

=

(
𝐴−1ΦBFGS(𝐵 (𝑘 )

𝑓
, 𝑣

(𝑘 )
𝑓

, 𝑟
(𝑘 )
𝑓

)𝐴−ᵀ
)−1

= 𝐴ᵀΦBFGS(𝐵 (𝑘 )
𝑓

, 𝑣
(𝑘 )
𝑓

, 𝑟
(𝑘 )
𝑓

)−1𝐴

= 𝐴ᵀΨDFP(𝐵 (𝑘 )
𝑓

, 𝑟
(𝑘 )
𝑓

, 𝑣
(𝑘 )
𝑓

)−1𝐴

= 𝐴ᵀΦDFP(𝐵 (𝑘 )
𝑓

, 𝑟
(𝑘 )
𝑓

, 𝑣
(𝑘 )
𝑓

)𝐴.

Note: We could of course have shown that property by elementary transformations, as we did
for the BFGS update above.

(𝑖𝑖) From item (𝑖), we know that the BFGS and DFP updated quasi Newton iterations are affine
invariant. The inverse BFGS/DFP updated inverse quasi Newton iterations produce exactly the
same iterates (due to the Sherman-Morrison-Woodbury formula.

(6 Points)

Please submit your solutions as a single pdf and an archive of programs via moodle.
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