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Homework Problem 6.1 (Example for convergence of the local Newton’s method) 6 Points

Let 𝑝 > 2 and 𝑓 : R→ R, 𝑓 (𝑥) B |𝑥 |𝑝 be given. Consider the local Newton’s method (Algorithm 4.23)
for minimization of 𝑓 , i.e. 𝐹 (𝑥) = ∇𝑓 (𝑥), with some initial guess 𝑥 (0) > 0.

(𝑖) Show that the method converges to the global minimizer 𝑥∗ = 0 of 𝑓 .

(𝑖𝑖) Which rate of convergence do you observe?

(𝑖𝑖𝑖) Why is this result not in contradiction with Theorem 4.27?

Solution.

We have 𝑓 ∈ C2(R;R) with

𝑓 (𝑥) = |𝑥 |𝑝 = (sgn(𝑥) · 𝑥)𝑝 ,
𝑓 ′(𝑥) = 𝑝 (sgn(𝑥) · 𝑥)𝑝−1 sgn(𝑥) = 𝑝 |𝑥 |𝑝−1 sgn(𝑥),
𝑓 ′′(𝑥) = 𝑝 (𝑝 − 1) (sgn(𝑥) · 𝑥)𝑝−2(sgn(𝑥))2 = 𝑝 (𝑝 − 1) |𝑥 |𝑝−2.

Note that in one dimension 𝑓 ′(𝑥) = ∇𝑓 (𝑥) ∈ R. (1 Point)
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(𝑖) For 𝑥 (𝑘 ) ≠ 0 we have by definition of the Newton’s direction

𝑥 (𝑘+1) = 𝑥 (𝑘 ) − (𝑓 ′′(𝑥 (𝑘 ) ))−1 𝑓 ′(𝑥 (𝑘 ) )

= 𝑥 (𝑘 ) − 𝑝 |𝑥 (𝑘 ) |𝑝−1 sgn(𝑥 (𝑘 ) )
𝑝 (𝑝 − 1) |𝑥 (𝑘 ) |𝑝−2

= 𝑥 (𝑘 ) − |𝑥 (𝑘 ) | sgn(𝑥 (𝑘 ) )
(𝑝 − 1)

=

(
1 − 1

𝑝 − 1

)
𝑥 (𝑘 ) .

(1 Point)

Next, we prove by induction that indeed 𝑥 (𝑘 ) > 0 ∀𝑘 :
For 𝑘 = 0 the claim holds by assumption. Let 𝑥 (𝑘 ) > 0 for some 𝑘 ∈ N0, then

𝑥 (𝑘+1) =

(
1 − 1

𝑝 − 1

)
︸        ︷︷        ︸
>0, since 𝑝>2

𝑥 (𝑘 )︸︷︷︸
>0

> 0.

(1 Point)

Together we see that (𝑥 (𝑘 ) ) converges to 𝑥∗ = 0 (from above):

𝑥 (𝑘 ) =

(
1 − 1

𝑝 − 1

)
︸        ︷︷        ︸

<1

𝑥 (𝑘−1) = . . . =

(
1 − 1

𝑝 − 1

)𝑘
𝑥 (0) 𝑘→∞−→ 0.

(1 Point)

(𝑖𝑖) To determine the convergence rate, we observe

|𝑥 (𝑘+1) − 𝑥∗ | =

������
(
1 − 1

𝑝 − 1

)
𝑥 (𝑘 ) − 𝑥∗︸︷︷︸

=0

������ =
����(1 − 1

𝑝 − 1

)
(𝑥 (𝑘 ) − 𝑥∗)

���� = (
1 − 1

𝑝 − 1

)
|𝑥 (𝑘 ) − 𝑥∗ |.

This shows 𝑄-linear convergence with factor
(
1 − 1

𝑝−1

)
∈ (0, 1). (1 Point)

(𝑖𝑖𝑖) Theorem 4.27 (iii) states the 𝑄-superlinear convergence of the local Newton’s method. Here, we
only observe𝑄-linear convergence. However, this is not a contradiction, because the assumptions
of Theorem 4.27 (iii) are not fulfilled. In detail, we have

𝑓 ′′(𝑥∗) = 𝑓 ′′(0) = 𝑝 (𝑝 − 1) |0|𝑝−2 = 0,
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which is not invertible. (1 Point)

Homework Problem 6.2 (On the Restriction 𝜎 ∈ (0, 12 ) in Globalized Newton) 7 Points

In the globalized Newton’s method for optimization (Algorithm 4.30 of the lecture notes), the Armijo-
parameter, which is typically chosen as 𝜎 ∈ (0, 1), is restricted to the interval (0, 12 ) so that the full
Newton step size 𝛼 (𝑘 ) = 1 can in fact be accepted by the Armijo condition for 𝑘 ≥ 𝑘0 and some 𝑘0 > 0,
in order to facilitate quadratic convergence in the final stages of the algorithm. We will investigate
why that is:

(𝑖) Show that the step length 𝛼 (𝑘 ) = 1 satisfies the Armijo condition for the Newton direction
𝑑 (𝑘 ) ≠ 0 for the quadratic function

𝑓 (𝑥) = 1
2
𝑥ᵀ𝐴𝑥 + 𝑏ᵀ𝑥 + 𝑐

with s. p. d. 𝐴 ∈ R𝑛×𝑛 , 𝑏 ∈ R𝑛 , und 𝑐 ∈ R if and only if 𝜎≤ 1
2 .

(𝑖𝑖) Explain why we need to restrict ourselves to 𝜎 < 1
2 for general nonquadratic problems.

Solution.

(𝑖) The Armijo condition
𝑓 (𝑥 + 𝑡 𝑑) ≤ 𝑓 (𝑥) + 𝜎 𝑡 𝑓 ′(𝑥)𝑑.

holds at 𝑡 = 1 if and only if

𝑓 (𝑥 + 𝑑) − 𝑓 (𝑥) ≤ 𝜎 𝑓 ′(𝑥)𝑑
Taylor
⇔ 1

2
𝑑ᵀ 𝑓 ′′(𝜉)𝑑 + 𝑓 ′(𝑥)𝑑 ≤ 𝜎 𝑓 ′(𝑥)𝑑

Rearrange
⇔ 1

2
𝑑ᵀ 𝑓 ′′(𝜉)𝑑 ≤ (𝜎 − 1) 𝑓 ′(𝑥)𝑑

form of 𝑑⇔ 1
2
∇𝑓 (𝑥)ᵀ 𝑓 ′′(𝑥)−1 𝑓 ′′(𝜉) 𝑓 ′′(𝑥)−1∇𝑓 (𝑥) ≤ (1 − 𝜎) ∇𝑓 (𝑥)ᵀ 𝑓 ′′(𝑥)−1∇𝑓 (𝑥) (∗)
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where 𝜉 is on the line connecting 𝑥 and 𝑥 + 𝑑 (Lagrangian form of error in Taylor’s theorem). In
the quadratic case, all second derivatives coincide with 𝐴, so that we can continue equivalently
reformulating to

𝑓 ′′ ≡ 𝐴
⇔ 1

2
∇𝑓 (𝑥)ᵀ𝐴−1𝐴𝐴−1∇𝑓 (𝑥) ≤ (1 − 𝜎) ∇𝑓 (𝑥)ᵀ𝐴−1∇𝑓 (𝑥)

⇔ 0 ≤
(
1
2
− 𝜎

)
∇𝑓 (𝑥)ᵀ𝐴−1∇𝑓 (𝑥)︸                ︷︷                ︸

>0

.

The direction 𝑑 ≠ 0 if and only if ∇𝑓 (𝑥) ≠ 0, i. e., the Armijo condition holds for 𝑡 = 1 if and
only if

𝜎 ≤ 1
2
.

(4 Points)

(𝑖𝑖) Intuitively: The previous part showed that minimizing a quadratic functional and using the
newton direction with 𝑡 = 1, we can only expect half the linearly predicted descent. For general
nonlinear problems, we can argue as above until reaching the estimate (∗). Instead of 𝑓 ′′ ≡ 𝐴,
we then have nonconstant terms. If the sequence of iterates converges and the hessians are
“sufficiently well behaved”, then we get almost quadratic behavior around the limit point, but
with an additional error (for the higher order terms in Taylor’s approximation). This error could
potentially lead to nonacceptance of 𝑡 = 1, so the criterion needs to be a bit more lenient than in
the quadratic case. (3 Points)

A bit more technical: Estimate (∗) can be obtained verbatim for any 𝐶2 function as long as we
are sufficiently close to a minimizer with nonsingular hessian. From that estimate, we can show
that 𝜎< 1

2 is sufficient for the armijo condition holding for 𝑡 = 1.

When 𝑥 (𝑘 ) converges to 𝑥∗ then 𝑓 ′(𝑥 (𝑘 ) ) converges to 0 and with sufficiently uniformly regular
hessians along the iterates, the directions 𝑑 (𝑘 ) will also converge to 0, meaning that the 𝜉 (𝑘 )
converge to 𝑥 (𝑘 ) . The error

𝑒 (𝑘 ) B
1
2
∇𝑓 (𝑥 (𝑘 ) )ᵀ 𝑓 ′′(𝑥 (𝑘 ) )−1 𝑓 ′′(𝜉 (𝑘 ) ) 𝑓 ′′(𝑥 (𝑘 ) )−1∇𝑓 (𝑥 (𝑘 ) ) − 1

2
∇𝑓 (𝑥 (𝑘 ) )ᵀ 𝑓 ′′(𝑥 (𝑘 ) )−1∇𝑓 (𝑥 (𝑘 ) )

therefore converges to 0. For 𝜎 < 1
2 we hence have a 𝑘0, such that for 𝑘 ≥ 𝑘0

1
2
∇𝑓 (𝑥 (𝑘 ) )ᵀ 𝑓 ′′(𝑥 (𝑘 ) )−1 𝑓 ′′(𝜉 (𝑘 ) ) 𝑓 ′′(𝑥 (𝑘 ) )−1∇𝑓 (𝑥 (𝑘 ) ) = 1

2
∇𝑓 (𝑥 (𝑘 ) )ᵀ 𝑓 ′′(𝑥 (𝑘 ) )−1∇𝑓 (𝑥 (𝑘 ) ) + 𝑒 (𝑘 )

≤ (1 − 𝜎)︸ ︷︷ ︸
> 1

2

∇𝑓 (𝑥 (𝑘 ) )ᵀ 𝑓 ′′(𝑥 (𝑘 ) )−1∇𝑓 (𝑥 (𝑘 ) )︸                                  ︷︷                                  ︸
>0 and converging to 0

https://tinyurl.com/scoop-nlo page 4 of 7

https://tinyurl.com/scoop-nlo


E. Herberg, M. Marić, V. Stein

Heidelberg University

Nonlinear Optimization

Spring Semester 2024

so the Armijo condition holds for 𝑡 = 1 eventually. We have already seen in the preious part,
that 𝜎< 1

2 is generally not necessary for the Armijo condition to hold for 𝑡 = 1.

Homework Problem 6.3 (Characterization of fast local convergence) 6 Points

The proof of Lemma 4.36 is given in the lecture notes. Your task is to carefully read and understand
the proof. Then write it down in your own words.

Solution.

See lecture notes. (6 Points)

Homework Problem 6.4 (Globalized Newton’s Method in Optimization) 8 Points

Implement the globalized Newton’s method for optimization (Algorithm 4.30 of the lecture notes), run
it for the Rosenbrock’s and/or Himmelblau’s functions and compare its performance to that of your
gradient descent implementation.

Solution.

For the implementation, see driver_ex_020_compare_newton_gradient_rosenbrock_himmelblau.py.

We obtain the behavior in Figures 0.1 and 0.2. Our convergence measure (difference of the function
values and the optimal value, approximately corresponds to energy norm of error) shows the typical
linear (SD) and quadratic (Newton) convergence modes. With absurdly large 𝜂 and 𝜌 , we can even
force Newton’s method to take a few gradient steps in the beginning but soon the Newton directions
will be accepted and the step length 𝑡 = 1 is in fact accepted towards the end of the method while the
gradient steps are slowed down terribly by the step size control. In Himmelblau’s function, steepest
descent is not as significantly worse than globalized newton is compared to the Rosenbrock example,
where the steepest descent method is struggling notably in the low angle curved valley towards the
minimizer.

(8 Points)

Please submit your solutions as a single pdf and an archive of programs via moodle.

https://tinyurl.com/scoop-nlo page 5 of 7

https://en.wikipedia.org/wiki/Rosenbrock_function
https://en.wikipedia.org/wiki/Himmelblau%27s_function
https://moodle.uni-heidelberg.de/course/view.php?id=21857
https://tinyurl.com/scoop-nlo


E. Herberg, M. Marić, V. Stein

Heidelberg University

Nonlinear Optimization

Spring Semester 2024

Figure 0.1: Newton (top) vs steepest descent (bottom) for Rosenbrock function.
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Figure 0.2: Newton (top) vs steepest descent (bottom) for Himmelblau function.

https://tinyurl.com/scoop-nlo page 7 of 7

https://tinyurl.com/scoop-nlo

