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Homework Problem 5.1 (Efficiency of Wolfe-Powell Step Sizes for 𝐶1,1 Functions) 5 Points

Let 𝑓 ∈ 𝐶1 and let 𝑥 (0) ∈ R𝑛 be an initial iterate of the generic descent scheme (Algorithm 4.2). Further
assume that 𝑓 ′ is Lipschitz continuous on the sublevel setM𝑓 (𝑥 (0) ) B {𝑥 ∈ R𝑛 | 𝑓 (𝑥) ≤ 𝑓 (𝑥 (0) )}.

Show that step sizes 𝛼 (𝑘 ) that satisfy the Wolfe-Powell-conditions at 𝑥 (𝑘 ) for the descent direction
𝑑 (𝑘 ) for all 𝑘 are efficient and that there is a 𝑐 > 0 such that

𝑓 (𝑥 (𝑘 ) + 𝛼 (𝑘 )𝑑 (𝑘 ) ) − 𝑓 (𝑥 (𝑘 ) ) ≤ −𝑐
(
cos ∡

(
−∇𝑀 𝑓 (𝑥 (𝑘 ) ), 𝑑 (𝑘 ) ) ∥ 𝑓 ′(𝑥 (𝑘 ) )ᵀ∥𝑀−1

)2
for all 𝑘 ≥ 0.

Solution.

For efficiency of step sizes 𝛼 , we need to show that there exists a \ > 0 such that, as long as 𝑑 (𝑘 ) ≠ 0,
we have that

𝑓 (𝑥 (𝑘 ) + 𝛼 (𝑘 )𝑑 (𝑘 ) ) ≤ 𝑓 (𝑥 (𝑘 ) ) − \

(
𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 )

∥𝑑 (𝑘 ) ∥𝑀

)2
(4.11)

for all 𝑘 ≥ 0.

Because the Armijo conditions are satisfied, we actually have a descent scheme.

The curvature condition of the Wolfe-Powell step-lengths states that

𝑓 ′(𝑥 (𝑘 ) + 𝛼 (𝑘 ) 𝑑 (𝑘 ) ) 𝑑 (𝑘 ) ≥ 𝜏 𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 ) or 𝜑 ′(𝛼 (𝑘 ) ) ≥ 𝜏 𝜑 ′(0) (4.17)
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for a 𝜏 ∈ (𝜎, 1) and all 𝑘 ≥ 0. Subtracting 𝑓 ′(𝑥 (𝑘 ) )𝑑 (𝑘 ) from both sides, applying Cauchy-Schwarz’s
inequality and using the Lipschitz continuity of 𝑓 ′ (measured in the𝑀−1 and the𝑀 norm, respectively),
we obtain that

(𝜏 − 1) 𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 ) ≤
(
𝑓 ′(𝑥 (𝑘 ) + 𝛼 (𝑘 ) 𝑑 (𝑘 ) ) − 𝑓 ′(𝑥 (𝑘 ) )

)
𝑑 (𝑘 )

=

(
𝑓 ′(𝑥 (𝑘 ) + 𝛼 (𝑘 ) 𝑑 (𝑘 ) ) − 𝑓 ′(𝑥 (𝑘 ) )

)
𝑀−1𝑀 𝑑 (𝑘 )

≤
𝑀−1

(
𝑓 ′(𝑥 (𝑘 ) + 𝛼 (𝑘 ) 𝑑 (𝑘 ) ) − 𝑓 ′(𝑥 (𝑘 ) )

)ᵀ
𝑀

𝑑 (𝑘 )

𝑀

=

(𝑓 ′(𝑥 (𝑘 ) + 𝛼 (𝑘 ) 𝑑 (𝑘 ) ) − 𝑓 ′(𝑥 (𝑘 ) )
)ᵀ

𝑀−1

𝑑 (𝑘 )

𝑀

≤ 𝐿𝑀−1,𝑀𝛼
(𝑘 )

𝑑 (𝑘 )
2
𝑀

(2 Points)

Note: Note that we were able to use Lipschitz continuity because we are working with a descent
scheme.

Rearranging the estimate yields the following bound on the step size

𝛼 (𝑘 ) ≥ (𝜏 − 1)
𝐿𝑀−1,𝑀

𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 )𝑑 (𝑘 )
2
𝑀

.

Inserting that into the Armijo-condition

𝑓 (𝑥 (𝑘 ) + 𝛼 (𝑘 ) 𝑑 (𝑘 ) ) ≤ 𝑓 (𝑥 (𝑘 ) ) + 𝜎 𝛼 (𝑘 ) 𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 ) or 𝜑 (𝛼 (𝑘 ) ) ≤ 𝜑 (0) + 𝜎 𝛼 (𝑘 ) 𝜑 ′(0), (4.12)

we immediately obtain that

𝑓 (𝑥 (𝑘 ) + 𝛼 (𝑘 ) 𝑑 (𝑘 ) ) ≤ 𝑓 (𝑥 (𝑘 ) ) + 𝜎 𝛼 (𝑘 ) 𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 )︸          ︷︷          ︸
<0

≤ 𝑓 (𝑥 (𝑘 ) ) + 𝜎 (𝜏 − 1)
𝐿𝑀−1,𝑀︸    ︷︷    ︸
C−𝑐, 𝑐>0

(
𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 )

∥𝑑 (𝑘 ) ∥𝑀

)2

for all 𝑘 ≥ 0 which shows efficiency. (2 Points)

The additional statement simply follows from the fact that

𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 )

∥𝑑 (𝑘 ) ∥𝑀
=

(∇𝑀 𝑓 (𝑥 (𝑘 ) ), 𝑑 (𝑘 ) )𝑀
∥𝑑 (𝑘 ) ∥𝑀

∥∇𝑀 𝑓 (𝑥 (𝑘 ) )∥𝑀
∥∇𝑀 𝑓 (𝑥 (𝑘 ) )∥𝑀

= − cos ∡
(
−∇𝑀 𝑓 (𝑥 (𝑘 ) ), 𝑑 (𝑘 ) ) ∥ 𝑓 ′(𝑥 (𝑘 ) )ᵀ∥𝑀−1

and the square. (1 Point)
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Homework Problem 5.2 (Scaling Invariance of Armijo- and Curvature Conditions) 5 Points

Show the statement of remark 4.21, i. e. that when a step length 𝛼 satisfies any of the Armijo- or
curvature conditions (4.12), (4.17) and (4.18) for 𝑔(𝑥) B 𝛾 𝑓 (𝐴𝑥 + 𝑏) + 𝛿 at 𝑥 ∈ R𝑛 with search direction
𝑑 ∈ R𝑛 , where 𝐴 ∈ R𝑛×𝑛 is non-singular, 𝑏 ∈ R𝑛 , 𝛾 > 0 and 𝛿 ∈ R, then it satisfies the respective
conditions for 𝑓 at 𝐴𝑥 + 𝑏 with the search direction 𝐴𝑑 .

Solution.

If 𝛼 satisfies the Armijo condition for 𝑔 at 𝑥 and direction 𝑑 with parameter 𝜎 , then

𝑔(𝑥 + 𝛼𝑑) ≤ 𝑔(𝑥) + 𝜎𝑔′(𝑥)𝑑
⇒ 𝛾 𝑓 (𝐴(𝑥 + 𝛼𝑑) + 𝑏) + 𝛿 ≤ 𝛾 𝑓 (𝐴𝑥 + 𝑏) + 𝛿 + 𝜎𝛾 𝑓 ′(𝐴𝑥 + 𝑏)𝐴𝑑

and deviding by 𝛾 > 0 and subtracting 𝛿 from both sides yields

⇒ 𝑓 (𝐴𝑥 + 𝑏 + 𝛼𝐴𝑑) ≤ 𝑓 (𝐴𝑥 + 𝑏) + 𝜎 𝑓 ′(𝐴𝑥 + 𝑏)𝐴𝑑

meaning that 𝛼 satisfies the Armijo condition for 𝑓 at 𝐴𝑥 + 𝑏 and direction 𝐴𝑑 with parameter 𝜎 .
(2 Points)

If the curvature condition is satisfied by 𝛼 for 𝑔 at 𝑥 with direction 𝑑 and parameter 𝜏 , then

𝑔′(𝑥 + 𝛼𝑑)𝑑 ≥ 𝜏𝑔′(𝑥)𝑑
⇒ 𝛾 𝑓 ′(𝐴(𝑥 + 𝛼𝑑) + 𝑏)𝐴𝑑 ≥ 𝜏𝛾 𝑓 ′(𝐴𝑥 + 𝑏)𝐴𝑑

and deviding by 𝛾 > 0 yields

⇒ 𝑓 ′(𝐴𝑥 + 𝑏 + 𝛼𝐴𝑑)𝐴𝑑 ≥ 𝜏 𝑓 ′(𝐴𝑥 + 𝑏)𝐴𝑑,

which means that the curvature condition is satisfied by 𝛼 for 𝑓 at 𝐴𝑥 + 𝑏 with direction 𝐴𝑑 and
parameter 𝜏 . (2 Points)

If the strong curvature condition is satisfied by 𝛼 for 𝑔 at 𝑥 with direction 𝑑 and parameter 𝜏 , then

|𝑔′(𝑥 + 𝛼𝑑)𝑑 | ≤ −𝜏𝑔′(𝑥)𝑑
⇒ |𝛾 𝑓 ′(𝐴(𝑥 + 𝛼𝑑) + 𝑏)𝐴𝑑 | ≤ −𝜏𝛾 𝑓 ′(𝐴𝑥 + 𝑏)𝐴𝑑

and deviding by 𝛾 > 0 yields

⇒ |𝑓 ′(𝐴𝑥 + 𝑏 + 𝛼𝐴𝑑)𝐴𝑑 | ≤ −𝜏 𝑓 ′(𝐴𝑥 + 𝑏)𝐴𝑑

https://tinyurl.com/scoop-nlo page 3 of 12

https://tinyurl.com/scoop-nlo


E. Herberg, M. Marić, V. Stein

Heidelberg University

Nonlinear Optimization

Spring Semester 2024

which means that the strong curvature condition is satisfied by 𝛼 for 𝑓 at 𝐴𝑥 + 𝑏 with direction 𝐴𝑑

and parameter 𝜏 . (1 Point)

Note: We did not require 𝐴 to be nonsingular anywhere in the proof. This requirement is merely
needed to show the inverse by applying the result we just proved to the inverted form that generates
𝑓 from 𝑔.

Homework Problem 5.3 (Implementation of Nonlinear Steepest Descent and Armijo Backtracking)
8 Points

Implement the 𝑀-steepest descent method as outlined in Algorithm 4.22 with the original Armijo
backtracking as outlined in Algorithm 4.11. You can also try to use the modified (interpolating) Armijo
backtracking as outlined in Algorithm 4.15.

Visualize and examine the effect of the parameters of the step size strategy on the behavior of the
algorithm when applied to quadratic, strongly convex functions, Rosenbrock’s and/or Himmelblau’s
functions.

Solution.

Figures 0.1 and 0.3 show the behavior of the iterates and Figures 0.2 and 0.4 show the (approx-
imate) 𝑓 ′′(𝑥∗)-error in a semilogarithmic plot for the steepest descent method with armijo back-
tracking applied to quadratic optimization problem and the minimization of the Rosenbrock func-
tion (with minimizer 𝑥∗ = (1, 1)), respectively, for backtracking parameters 𝛽 ∈ {0.01, 0.5, 0.99} and
𝜎 ∈ {10−2, 0.3, 0.7}.

We can observe that when 𝛽 is chosen very small (top rows), the choice of 𝜎 does not influence
the behavior greatly. This is due to one backtracking step reducing the trial step size so much that
we essentially end up with gradient flow like behavior. Only when 𝜎 is really large (very relaxed
acceptance of trial steps) we can get lucky with the first trials in the rosenbrock case.

For rather strict acceptance of trial step sizes (large 𝜎 , right columns) we also observe gradient flow
type behavior (as this forces the step sizes to be small).

When 𝛽 is chosen large (bottom rows) we can expect fine adjustments of the step sizes. When 𝜎 is
small an we are lenient with accepting step sizes, we end up with pretty extreme zig-zagging. We
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observe the best behavior for moderate parameter choices. Small 𝛽 and large 𝜎 dominate the behavior
in any case.

Near minimizers with s. p. d. 𝑓 ′′(𝑥∗) (this is the sufficient second order condition) we can expect
nonlinear problems to behave alsmost quadratically, so the difference in function values 𝑓 (𝑥 (𝑘 ) ) −
𝑓 (𝑥∗) ≈ ∥𝑥 (𝑘 ) − 𝑥∗∥ 𝑓 ′′ (𝑥∗ ) , which conincides with the 𝐴-error in the quadratic case. Looking at
those plots over the iterations in semilogarithmic axes shows the expected behavior once close to the
minimizer. Zig-zagging and sudden drops are experienced well outside close neighbourhoods of the
minimizer.

Note that the steepest descent method is struggling strongly with the rosenbrock function due to zig
zagging along the barely-sloping banana-shaped valley leading to the minimizer, as no local curvature
information is used in the model hessians (identity preconditioner for all plots). Depending on the
safe-guarding conditions on might actually end up with the step size computation failing because step
sizes become to small and the function almost appears locally constant.

Additionally, using interpolation over simple backtracking can improve the number of iterations
needed until the termination criteria is used, but it actually may increase them as well.

(8 Points)
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Figure 0.1: Iterates for steepest descent with armijo step length rule applied to quadratic optimization.
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Figure 0.2: 𝐴- norm of errors for steepest descent with armijo step length rule applied to quadratic
optimization.
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Figure 0.3: Iterates for steepest descent with armijo step length rule applied to rosenbrock optimization.
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Figure 0.4: Approximate 𝑓 ′′(𝑥∗)-error for steepest descent with armijo step length rule applied to
rosenbrock optimization.
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Homework Problem 5.4 (Affine Invariance of Newton’s Method for Root Finding) 10 Points

Prove the statement in remark 4.29(𝑖𝑖𝑖) of the lecture notes concerning affine invariance of local
Newton’s method for solving the root finding problem 𝐹 (𝑥) = 0 with continuously differentiable
𝐹 : R𝑛 → R𝑛 (Algorithm 4.23 of the lecture notes).

I. e., let 𝐴 ∈ R𝑛×𝑛 be regular and 𝑏 ∈ R𝑛 and consider a sequence (𝑥 (𝑘 ) )𝑘∈N0 of iterates produced by
Newton’s method for 𝐹 started from 𝑥 (0) ∈ R𝑛 . Prove that:

(𝑖) Newton’s method for the function

𝐺 : R𝑛 ↦→ R𝑛, 𝐺 (𝑦) B 𝐹 (𝐴𝑦 + 𝑏)

with initial value 𝑦 (0) ∈ R𝑛 such that 𝑥 (0) = 𝐴𝑦 (0) +𝑏 is well defined and produces the sequence
(𝑦 (𝑘 ) )𝑘∈N0 of iterates with

𝑥 (𝑘 ) = 𝐴𝑦 (𝑘 ) + 𝑏.

(𝑖𝑖) Newton’s method for the function

𝐻 : R𝑛 ↦→ R𝑛, 𝐻 (𝑦) B 𝐴𝐹 (𝑦)

with initial value 𝑦 (0) ∈ R𝑛 such that 𝑥 (0) = 𝑦 (0) is well defined and produces the sequence
(𝑦 (𝑘 ) )𝑘∈N0 of iterates with

𝑥 (𝑘 ) = 𝑦 (𝑘 ) .

(𝑖𝑖𝑖) Explain whywe can not expect a similar transformation result to hold for the iterates of Newton’s
method when we expand the transformation in Part (𝑖𝑖) by an additional constant shift, as in

𝐻 : R𝑛 ↦→ R𝑛, 𝐻 (𝑦) B 𝐴𝐹 (𝑦) + 𝑏.

Solution.

(𝑖) The claim is true for 𝑘 = 0 by assumption. Now let Newton’s method for 𝐺 started at 𝑦 (0) have
been well defined and successfull up until the 𝑘-th iterate with

𝑥 (𝑘 ) = 𝐴𝑦 (𝑘 ) + 𝑏.
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Then we have that
𝑥 (𝑘+1) = 𝑥 (𝑘 ) − 𝐹 ′(𝑥 (𝑘 ) )−1𝐹 (𝑥 (𝑘 ) )
𝑦 (𝑘+1) = 𝑦 (𝑘 ) −𝐺 ′(𝑦 (𝑘 ) )−1𝐺 (𝑦 (𝑘 ) )

where
𝐺 (𝑦) := 𝐹 (𝐴𝑦 + 𝑏)
𝐺 ′(𝑦) = 𝐹 ′(𝐴𝑦 + 𝑏)𝐴.

(2 Points)

Accordingly,𝐺 ′(𝑦 (𝑘 ) ) is singular if and only if 𝐹 ′(𝑥 (𝑘 ) ) is singular, which it is not (by assumption),
so the next iteration step is well defined as well, and we obtain that

𝐴𝑦 (𝑘+1) + 𝑏 = 𝐴

(
𝑦 (𝑘 ) −𝐺 ′(𝑦 (𝑘 ) )−1𝐺 (𝑦 (𝑘 ) )

)
+𝑏

= 𝑥 (𝑘 ) −𝐴𝐺 ′(𝑦 (𝑘 ) )−1︸       ︷︷       ︸
𝐴−1𝐹 ′ (𝑥 (𝑘 ) )−1

𝐺 (𝑦 (𝑘 ) )︸   ︷︷   ︸
𝐹 (𝑥 (𝑘 ) )

= 𝑥 (𝑘 ) − 𝐹 ′(𝑥 (𝑘 ) )−1𝐹 (𝑥 (𝑘 ) )
= 𝑥 (𝑘+1)

(3 Points)

(𝑖𝑖) The claim is true for 𝑘 = 0 by assumption. Now let Newton’s method for 𝐻 started at 𝑦 (0) have
been well defined and successfull up until the 𝑘-th iterate with

𝑥 (𝑘 ) = 𝑦 (𝑘 ) .

Then we have that
𝑥 (𝑘+1) = 𝑥 (𝑘 ) − 𝐹 ′(𝑥 (𝑘 ) )−1𝐹 (𝑥 (𝑘 ) )
𝑦 (𝑘+1) = 𝑦 (𝑘 ) − 𝐻 ′(𝑦 (𝑘 ) )−1𝐻 (𝑦 (𝑘 ) )

where
𝐻 (𝑦) := 𝐴𝐹 (𝑦)
𝐻 ′(𝑦) = 𝐴𝐹 ′(𝑦).

(2 Points)

Accordingly,𝐻 ′(𝑦 (𝑘 ) ) is singular if and only if 𝐹 ′(𝑥 (𝑘 ) ) is singular, which it is not (by assumption),
so the next iteration step is well defined as well, and we obtain that

𝑦 (𝑘+1) = 𝑦 (𝑘 ) − 𝐻 ′(𝑦 (𝑘 ) )−1𝐻 (𝑦 (𝑘 ) )
= 𝑦 (𝑘 )︸︷︷︸

𝑥 (𝑘 )

−𝐹 ′( 𝑦 (𝑘 )︸︷︷︸
=𝑥 (𝑘 )

)−1𝐴−1𝐴𝐹 ( 𝑦 (𝑘 )︸︷︷︸
=𝑥 (𝑘 )

)

= 𝑥 (𝑘+1) .
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(2 Points)

(𝑖𝑖𝑖) As long as 𝐹 is an affine linear function with nonsingular linear part, we can actually expect
a similar transformation result to hold. When 𝐹 is a fully nonlinear function though, then
truely affine transformation in the image space can modify the location of the function’s roots
nonlinearly/non-affine. This of course influences the Newton steps because the directions will
be influenced by the constant shift in the image space. Note that each update is affine-linearly
dependent on the shift, but the entire sequence will depend on it nonlinearly.

Accordingly, we can expect to find examples of functions 𝐹 and affine-linear transformations
in the image space where there is no affine-linear connection between the iterates whatsoever.
(1 Point)

The function 𝐹 (𝑥) = 𝑒𝑥 on R with vertical shift comes to mind. We can set 𝐻 (𝑥) = 𝑒𝑥 + 𝑏 and
examine the first three iterates for two different initial values and shifts 𝑏. We need three iterates
each because for two, we can always find an affine linear transformation between the iterates.
We omit further details here.

Note:

• The scaling (in-)variance property of Newton’s and the steepest descent method in optimization
can be nicely discussed when the cost functional is a quadratic function, where Newton always
converges in a single step while the steepest descent scheme’s convergence depends on the
scaling matrix 𝐴.

• Keep in mind that some of the analytical results, especially the size of the basin of attraction of
a root, may be transformed by such transformations

Please submit your solutions as a single pdf and an archive of programs via moodle.
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