Exercise 4 - Solution

Date issued: 6th May 2024
Date due: 14th May 2024

Homework Problem 4.1 (Angle condition implies admissibility)
2 Points
Prove Lemma 4.4 from the lecture notes, i.e. if the angle condition (4.8) holds with some $\eta \in(0,1)$, then the sequence $d^{(k)}$ of search directions is admissible.

Solution.

We have

$$
f^{\prime}\left(x^{(k)}\right) d^{(k)}=\left(\nabla f\left(x^{(k)}\right), d^{(k)}\right)=\left(\nabla_{M} f\left(x^{(k)}\right), d^{(k)}\right)_{M}
$$

The angle condition (4.8) implies

$$
-\frac{f^{\prime}\left(x^{(k)}\right) d^{(k)}}{\left\|d^{(k)}\right\|_{M}} \geq \eta\left\|\nabla_{M} f\left(x^{(k)}\right)\right\|_{M}=\eta\left\|f^{\prime}\left(x^{(k)}\right)^{\top}\right\|_{M^{-1}} \geq 0
$$

When the left-hand term goes to zero, then $f^{\prime}\left(x^{(k)}\right)$ must go to zero as well.
(1 Point)
(1 Point)

Homework Problem 4.2 (Efficient Step Sizes in Quadratic Steepest Descent)
 4 Points

Show that both constant step sizes (as in §3.3) as well as the Cauchy step size are efficient for the steepest descent method (cf. Algorithm 3.6) for solving quadratic optimization problems of the type

$$
\text { minimize } \quad f(x):=\frac{1}{2} x^{\top} A x-b^{\top} x+c \quad \text { where } x \in \mathbb{R}^{n}
$$

with s. p.d. $A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^{n}, c \in \mathbb{R}$.

Solution.

For efficiency of step sizes α, we need to show that there exists a $\theta>0$ such that, as long as $d^{(k)} \neq 0$, we have that

$$
\begin{equation*}
f\left(x^{(k)}+\alpha^{(k)} d^{(k)}\right) \leq f\left(x^{(k)}\right)-\theta\left(\frac{f^{\prime}\left(x^{(k)}\right) d^{(k)}}{\left\|d^{(k)}\right\|_{M}}\right)^{2} \tag{4.11}
\end{equation*}
$$

for all $k \geq 0$.
In the steepest descent scheme for quadratic functionals, we use

$$
d^{(k)}=-M^{-1} r^{(k)}=-M^{-1}\left(A x^{(k)}-b\right)=-M^{-1} f^{\prime}\left(x^{(k)}\right)^{\top}
$$

and therefore obtain

$$
\begin{aligned}
f\left(x^{(k+1)}\right)-f\left(x^{(k)}\right) & =f\left(x^{(k)}+\alpha^{(k)} d^{(k)}\right)-f\left(x^{(k)}\right) \\
& =\frac{1}{2} d^{(k)^{\top}} A d^{(k)} \alpha^{(k)^{2}}+\left(A x^{(k)}-b\right)^{\top} d^{(k)} \alpha^{(k)} \\
& =\frac{1}{2}\left\|d^{(k)}\right\|_{A}^{2} \alpha^{(k)^{2}}-\left\|d^{(k)}\right\|_{M}^{2} \alpha^{(k)} .
\end{aligned}
$$

(2 Points)
The Cauchy step size corresponding to $d^{(k)}$ are

$$
\alpha^{(k)}\left(d^{(k)}\right)=-\frac{f^{\prime}\left(x^{(k)}\right) d^{(k)}}{d^{(k)^{\top}} A d^{(k)}}=\frac{\left\|d^{(k)}\right\|_{M}^{2}}{\left\|d^{(k)}\right\|_{A}^{2}}
$$

(Note: This shows how the Cauchy step sizes measure the distortion of the M vs. the A isolines) Accordingly:

$$
\begin{aligned}
f\left(x^{(k+1)}\right)-f\left(x^{(k)}\right) & =\frac{1}{2}\left\|d^{(k)}\right\|_{A}^{2} \alpha^{(k)^{2}}-\left\|d^{(k)}\right\|_{M}^{2} \alpha^{(k)} \\
& =-\frac{1}{2} \frac{\left\|d^{(k)}\right\|_{M}^{4}}{\left\|d^{(k)}\right\|_{A}^{2}} \\
& =-\frac{1}{2}\left(\frac{f^{\prime}\left(x^{(k)}\right) d^{(k)}}{\left\|d^{(k)}\right\|_{A}}\right)^{2} \\
& \leq-\frac{1}{2} \frac{1}{\lambda_{\max }(A ; M)}\left(\frac{f^{\prime}\left(x^{(k)}\right) d^{(k)}}{\left\|d^{(k)}\right\|_{M}}\right)^{2}
\end{aligned}
$$

shows that the Cauchy step sizes are efficient for the M-steepest descent directions with $\theta=\frac{1}{2 \lambda_{\max }(A ; M)^{2}}$. (1 Point)

For $\alpha^{(k)}=\alpha$ constant, we obtain

$$
\begin{aligned}
f\left(x^{(k+1)}\right)-f\left(x^{(k)}\right) & =\frac{1}{2}\left\|d^{(k)}\right\|_{A}^{2} \alpha^{2}-\left\|d^{(k)}\right\|_{M}^{2} \alpha \\
& \leq \alpha\left(\frac{\alpha \lambda_{\max }(A ; M)}{2}-1\right)\left\|d^{(k)}\right\|_{M}^{2} \\
& =\alpha\left(\frac{\alpha \lambda_{\max }(A ; M)}{2}-1\right)\left(\frac{f^{\prime}\left(x^{(k)}\right) d^{(k)}}{\left\|d^{(k)}\right\|_{M}}\right)^{2}
\end{aligned}
$$

where

$$
\theta:=-\alpha^{(k)}\left(\frac{\alpha^{(k)} \lambda_{\max }(A ; M)}{2}-1\right)
$$

is positive whenever $\alpha \in\left(0, \frac{2}{\lambda_{\max }(A ; M)}\right)$, which is exactly the condition we derived for the convergence of the steepest descent scheme with constant step sizes in §3.3.
(1 Point)

Homework Problem 4.3 (Efficiency implies admissibility)
2 Points
Prove Lemma 4.8 , i.e. if the sequence of step sizes $\alpha^{(k)}$ is efficient, then it is also admissible.

Solution.

Suppose that $\alpha^{(k)}$ is efficient, i. e.,

$$
0 \leq \theta\left(\frac{f^{\prime}\left(x^{(k)}\right) d^{(k)}}{\left\|d^{(k)}\right\|_{M}}\right)^{2} \leq f\left(x^{(k)}\right)-f\left(x^{(k)}+\alpha^{(k)} d^{(k)}\right)
$$

Therefore (4.10a) is clear.

To show (4.10b), suppose

$$
f\left(x^{(k)}+\alpha^{(k)} d^{(k)}\right)-f\left(x^{(k)}\right) \rightarrow 0
$$

Since θ is strictly positive, this implies

$$
\frac{f^{\prime}\left(x^{(k)}\right) d^{(k)}}{\left\|d^{(k)}\right\|_{M}} \rightarrow 0
$$

which confirms (4.10b).

Homework Problem 4.4 (Armijo steplength is not admissible in general)

Show that the Armijo step sizes are not admissible in general.
Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}, f(x):=\frac{x^{2}}{8}$ with $M=1$, admissible search directions $d^{(k)}=$ $-2^{-k} f^{\prime}\left(x^{(k)}\right)$ and initial trial step size $\alpha^{(k, 0)}=1$ in the Armijo backtracking line search Algorithm 4.11.

Hint: Show that for any starting point $x^{(0)}>0$ the generated sequence $\left(x^{(k)}\right)$ by Algorithm 4.2 is monotonically decreasing, but converges to $\bar{x} \geq \frac{x^{(0)}}{2}$. Then explain, why \bar{x} can not be a stationary point and how this shows that the Armijo step sizes are not admissible.

Solution.

We have $f^{\prime}(x)=\frac{x}{4}$ and therefore $d^{(k)}=-2^{-k \frac{x^{(k)}}{4}}=-2^{-k-2} x^{(k)}$.
First, we show by induction that $\left(x^{(k)}\right)$ is monotonically decreasing, i.e. $0<x^{(k+1)}<x^{(k)}$ for all k.
For $k=0$ it holds $x^{(0)}>0$ by choice and we have due to $\alpha^{(0)} \in(0,1]$:

$$
x^{(1)}=x^{(0)}+\alpha^{(0)} d^{(0)}=x^{(0)}-2^{-2} \alpha^{(0)} x^{(0)}=x^{(0)} \underbrace{\left(1-\frac{\alpha^{(0)}}{4}\right)}_{<1}<x^{(0)}
$$

Now let $0<x^{(k+1)}<x^{(k)}$ hold for some k and we show the claim for $k+1$:

$$
x^{(k+1)}=x^{(k)}+\alpha^{(k)} d^{(k)}=x^{(k)} \underbrace{\left(1-\frac{\alpha^{(k)}}{2^{k+2}}\right)}_{<1}<x^{(k)}
$$

and also by assumption and $\alpha^{(k)} \in(0,1]$

$$
x^{(k+1)}=\underbrace{x^{(k)}}_{>0} \underbrace{\left(1-\frac{\alpha^{(k)}}{2^{k+2}}\right)}_{>0}>0 .
$$

This shows the claim.

Next, we show that $x^{(k)}>\frac{x^{(0)}}{2}$ for all k :

$$
\begin{aligned}
x^{(k)} & =\left(1-\frac{\alpha^{(k-1)}}{2^{k-1+2}}\right) x^{(k-1)} \\
& =\prod_{i=0}^{k-1}\left(1-\frac{\alpha^{(i)}}{2^{i+2}}\right) x^{(0)} \\
& \geq \prod_{i=0}^{k-1}\left(1-\frac{1}{2^{i+2}}\right) x^{(0)} \\
& \geq \prod_{i=0}^{\infty}\left(1-\frac{1}{2^{i+2}}\right) x^{(0)} \\
& \approx 0.5775 x^{(0)} \\
& >\frac{x^{(0)}}{2} .
\end{aligned}
$$

We used that $\alpha^{(i)} \in(0,1]$ and $\left(1-\frac{1}{2^{i+2}}\right) \in(0,1)$ for any i.
(1 Point)

Let $\bar{x}=\lim _{k \rightarrow \infty} x^{(k)}$, then $0<\frac{x^{(0)}}{2} \leq \bar{x} \leq x^{(0)}$. The only stationary point of f is given by $f^{\prime}\left(x^{*}\right)=$ $\frac{x^{*}}{4}=0$, i.e. $x^{*}=0$, hence \bar{x} can not be a stationary point.

Also, we know that $f(x)<f(y)$ for $0<x<y$ and $f(x)=0$ if and only if $x=0$. Hence, we have by continuity of f

$$
0<f\left(\frac{x^{(0)}}{2}\right) \leq f\left(x^{(k)}\right) \leq f\left(x^{(0)}\right) \quad \forall k
$$

From $f\left(x^{(k)}\right)>0>-\infty$ for all k we deduce

$$
\begin{aligned}
& \underbrace{\lim _{k \rightarrow \infty} f\left(x^{(k+1)}\right)-f\left(x^{(0)}\right)}_{=}>0-f\left(x^{(0)}\right)>-\infty \\
x^{(k+1)}<x^{(k)} & 0 \geq \sum_{i=0}^{\infty}\left(f\left(x^{(i+1)}\right)-f\left(x^{(i)}\right)\right)>-\infty \\
\Rightarrow & \lim _{k \rightarrow \infty} f\left(x^{(k+1)}\right)-f\left(x^{(k)}\right)=0
\end{aligned}
$$

(1 Point)

If the step sizes were admissible, this would directly induce

$$
\frac{f^{\prime}\left(x^{(k)}\right) d^{(k)}}{\left\|d^{(k)}\right\|_{M}} \xrightarrow{k \rightarrow \infty} 0 .
$$

However, it holds

$$
\frac{f^{\prime}\left(x^{(k)}\right) d^{(k)}}{\left\|d^{(k)}\right\|_{M}}=\frac{\frac{x^{(k)}}{4}\left(-2^{-k-2} x^{(k)}\right)}{\left\|2^{-k-2} x^{(k)}\right\|_{M}}=\frac{-2^{-k-4}\left\|x^{(k)}\right\|_{M}^{2}}{2^{-k-2}\left\|x^{(k)}\right\|_{M}}=-\frac{1}{4}\left\|x^{(k)}\right\|_{M}<0
$$

This shows that the step sizes can not be admissible.

Please submit your solutions as a single pdf and an archive of programs via moodle.

