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Heidelberg University Spring Semester 2024

EXERCISE 2 - SOLUTION

Date issued: 22nd April 2024
Date due: 30th April 2024

Homework Problem 2.1 (Solvability of quadratic polynomial minimization) 5 Points

Prove Lemma 3.1 of the lecture notes, i. e., the following statements for the optimization problem
s 1 . T n
Minimize ¢(x) = 3% Ax—-bx+c wherex e R (3.1)
with symmetric A € R™*", b € R" and ¢ € R:

(i) If Ais positive semidefinite, then the objective in (3.1) is convex. In this case, the following are
equivalent:

(a) The problem (3.1) possess at least one (global) minimizer.
(b) The objective ¢ is bounded below.
(c) Ax = b is solvable.
The global minimizers of (3.1) are precisely the solutions of the linear system A x = b.

(ii) In case A is not positive semidefinite, the objective ¢ is not bounded below, thus problem (3.1) is
unbounded.

Solution.
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(i) Since ¢ is C*°(R",R), we can resort to the characterization of convexity via the second derivative,
which is ¢”” = A and therefore positive semidefinite by assumption, yielding convexity. This
implies that all local minimizers are global ones.

As for the equivalences: Statement (c) is the first order optimality condition at x for the problem
(3.1), which, due to the convexity of the problem, is equivalent to x being a minimizer — i.e.
"Statement (c) & Statement (a)". (1 Point)

"Statement (a) = Statement (b)" is trivial because the infimal value of the function is the function
value of the minimizer and therefore real valued. (0.5 Points)

For "Statement (b) = Statement (a)", assume boundedness of ¢ from below. Then b € ker(A)*
(with orthogonality respective to the euclidean scalar product), because otherwise there were

A—00
an x € ker(A) with b"x > 0 and ¢(Ax) —— —oo. Now let’s also assume that A # 0, otherwise
every point is a minimizer anyway. Now take an infimizing sequence (x(k)), Le:

lim ¢(x®) = inf ¢(x) € R.
k—o0 x€R®

(k)

The elements of the sequence can be split up into x*) = xlik) +x, ’ for respective elements in
er

ker(A) and ker(A)*. Since ¢(x¥)) = qS(xik)), the sequence (xik)) is an infimizing sequence as

well. Since

k
[l | =00

k L (07, (k k k k
Py = 2xl Ax? — bT e 2 Al 17— 1011 + e

for Amin being the smallest nonzero eigenvalue of A, xik) needs to be bounded. Accordingly, it

has a convergent subsequence whose limit point is a minimizer. (2 Points)

Since Ax = b is the first order optimality condition, which is necessary and sufficient in the
convex case, the solutions to the linear system are precisely the (global) minimizers.

(i) When A is not positive semidefinite, it has a negative eigenvalue A < 0 with corresponding
eigenvector x; € R” and

! 1 t—+
¢(txA) = Ex;AxAtz — bTx/lt‘i'C — AE”XAHZ tz _ bTxAt +ec —+00 oo,

S e
<0

(1.5 Points)
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Homework Problem 2.2 (M-steepest descent directions coincide with descent directions) 10 Points

(i) Let f: R® — R be differentiable at x € R" with f’(x) # 0. Show that the set of directions of
steepest descent of f at x w.r.t. all inner product conincides with the set of descent directions,
i.e., that

{(-M7'Vf(x)|M e R"™"spd} ={deR"|f(x)d < 0}.

Hint: For any ¢,d € R" such that g'd > 0 and starting with any s.p.d. matrix M, the low rank

modifications
T T T
M= (Id—%)M(Id— %)+% (DFP)
g gd| g
~ Mdd™M i
M= M- ZTid (BFGS)

yield s.p.d. matrices M with Md = g.

(ii) Implement a method compute_gradient(derivative, preconditioner) that computes the M-
gradient corresponding to a derivative f’(x) and a preconditioner M and use it to visualize the
result from task ().

Solution.

(i) For the inclusion {-M~!'Vf(x) | M € R™" sp.d.} C {d € R"| f’(x)d < 0} notice that, for any
s.p.d. M € R™" we have that

£(x) (MTVf(x) = V()" MMMV f(x) = (MT'Vf(x)) MMV f(x) = IMT'VF(x)]13, > 0.
(1 Point)

For the inclusion {~M~!Vf(x) |M € R™" s;p.d.} 2 {d € R"| f'(x)d < 0} let d with f’(x)d < 0
be given. We need to find an s.p.d. M € R™" such that Md = —Vf(x) =t g. Note that this
is solving a linear system of equations for the matrix under the additional requirement, that
the matrix be s.p.d. That is part of the job that quasi-Newton update procedures take care
of (they solve these problems with the additional constraint that these updates are closest to
M in some norm), so we can employ, e.g., BFGS- or DFP-style modifications of any initial

s.p.d. matrix. Both obviously generate symmetric matrices. Additionally, by assumption, we
have that g'"d = —f"(x)d > 0.
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For the DFP update, we obtain positive semidefiniteness of the matrix by choosing v € R” and
noting that

N dT dT T T TdT dT T T
vTMvsz(Id—gT)M(Id—Tg)v+nggv:(vT—vg )M(v— gTU)+UngUZO
g'd g'd g'd g'd g'd g'd

because both summands are greater or equal to zero seperately. For any v where the inequality
holds as an equality, necessarily the first summand has to be zero itself, i. e.,

d T
v=27
g'd
which means that v is a multiple of d. Since the second term is zero as well, which means that
g'v = 0, and since g'd # 0, we know that v is 0, showing positive definiteness. (1.5 Points)
Additionally,
~ d’ dg’ 'd
Md = (1d- 2= |\ mfd- L) a+ 25 =y
g'd gd g'd
—_———— ~——
=0 =g

as expected. L. e., we can simply choose the identy matrix as M and compute the DFP update.
(1 Point)

Alternatively, one can use the BFGS update but proving that this is positive definite is best done
by knowing that its inverse has reciprocal structure to the DFP update (d and g switch roles)
and proceeding as above.

Showing that Md = g for the BFGS-Update is easy however, as

Mdd"Md  gg'd

Md = Md — + =
amd - gd 7
—_— =
=0 =g
(ii) See driver_ex_oo4_preconditioned_gradients_visualization.py. (6.5 Points)
Homework Problem 2.3 (Implications of Termination Criteria) 4 Points

Prove Lemma 3.11 of the lecture notes, i. e., that when implementing an M-gradient descent scheme for
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solving s.p.d. quadratic problems with Matrix A, then

IA

(k) _ (0) _ ,*
||r(k) ||M—1 < enl Hr(o) ”M_l - { “X X ||A \/Egrel “X X “A

Ix® = x"llwr < & et 16 = [l

A

”r(k)”M*1 < Eabs

{ Ix®) = x*||4 < (1/Var) abs
™ = x*llm < (1/@) eabs

™) = x*lla < Vicerer 19 = x4 + (1/ V@) £abs
I =2l < el =5l + Wy ews

{ %) — x*|la < max{ Vi eret 6 = x*|la, (1/VaX) eans}

e = x"llar < mas{ic eret 12 = xllag, (/) eabs}

||r(k) ”M‘1 < Erel ||r(0)”M‘1 + Ebs =
K Erel ”x

Hr(k) “M—l < maX{Erel ”r(O) ”M‘l: Eabs}

where a = Apin(A; M) and f := Anax(A; M) are the extremal generalized eigenvalues of A w.r.t. M,
and k = g is the generalized condition number.

Solution.

The relation
Ax® —xt)y = Ax® —p=r®

for the error and the residual implies that

T - * — * *
Ir N2 = rFTM ) = (2O — Y TAMTA () = ) = [0 =)

The left hand side conditions can therefore be equivalently stated replacing the residual norm.
(1 Point)

Additionally, the generalized Rayleigh quotient estimates in Equations (A.15b) and (A.12) state that

TAM™A
_%Sﬁ for all x # 0,
T
A
< ;CTM); <p forallx #0

which means that

Vallxlla < lxllam-1a < VBIIxllas
Vallxllu < lIxlla < vBllxlim,

and therefore
Vallxlla < Ixllam-1a < VBIIxla,

allxlm < llxllam-1a < Blixlla

https://tinyurl.com/scoop-nlo page 5 of 9


https://tinyurl.com/scoop-nlo

E. Herberg, M. Mari¢, V. Stein Nonlinear Optimization
Heidelberg University Spring Semester 2024

(1 Point)

We can apply these estimates to obtain that

IA

I - < et 1Pt = 16® = a4 < et 169 = x4 p-1a

. {«/Ellx(k’ —x*la < VB e Ix© = x*la

allx® = x*|lp < Bever 169 = x|

IA

[ = x*l4 < Vicerer 6 = x*|| 4
||x(k) _X*”M < K Erel ”x(O) _X*”M

which is the first implication.

Analogously, we obtain the second implication because

k k
Hr( )”M*1 < Eabs = ”x( ) = X" lam-14 < Eabs

{x/Enx(") = xlla

a”x(k) _x*”M €abs

{ I = x*la < (1/ V) eabs

“x(k) - X*”M < (1/Of) Eabs

€abs

IN A

For the remaining implications, simply combine the steps of the first and second implications. (2 Points)

Homework Problem 2.4 (M-Gradient Method for Solving s.p.d. Linear Systems) 8 Points

Implement the M-gradient descent method as outlined in Algorithm 3.6 of the lecture notes. Addition-
ally, include the option of supplying different methods for choosing the step sizes. Visualize the effects
of different choices of the preconditioner, step size strategies and initial values.

Solution.
For the implementation, see driver_ex_oo8_gradient_descent_quadratic_visualization.py.
For the preconditioners, we fix the cauchy step size strategy and consider

M € {A,1d, diag(diag(A)), A+ R, A}

where Ay is the transpose of A across the antidiagonal and R is a pseudo randomly generated s.p.d. ma-
trix. As shown in Figure o.1, the performance is greatly influenced by the preconditioners and is
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Preconditioner-Effect on convergence
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(c) Norm of the gradients ||V f(x ) ||ar = ||| g1 (d) Third subfigure.

Figure o.1: Visualization of Preconditioner Influence.
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Convergence from various (cauchy step)

Convergence from various initializations (cauchy step)
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(b) Error ||x*) — x*|| 4. Dashed lines indicate the linear

(a) Iterates for various preconditioners.
convergence bound.

Figure o.2: Visualization of the Initial Value Influence.

improved by those that capture the essence of A reasonably, such as A itself, a small permutation A+ R
of A and its diagonal. The antitranspose captures the essence of A even worse than the identity does,
leading to more zig-zagging and generally slower convergence.

For the initial values, the results match those of the lecture notes, where the choice of the initial value
highly influences the convergence speed while the upper bound remains unchanged by the choices,
see Figure o.2.

When considering various fixed step size strategies for steps in (0, 2/f), the results match those of the
lecture notes, see Figure 0.3. While small step sizes lead to a gradient-flow like sequence of iterates,
choosing the step size too large will result in eradic behavior and more and more initial values tend to
yield slow convergence. Choosing the step length only slightly larger than 2/ will immediately yield
non-convergence for some initial values. (8 Points)

Please submit your solutions as a single pdf and an archive of programs via moodle.
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Figure 0.3: Visualization of the influence of fixed step lengths 2/ /3{%, % %, 1— ¢}, top to bottom.
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