Exercise 1

Date issued: 15th April 2024

Date due: 23rd April 2024

Homework Problem 1.1 (Optimality Condition Gap)
Consider the optimization problem

$$
\text { Minimize } f(x)=\left(x_{1}-x_{2}^{2}\right)\left(2 x_{1}-x_{2}^{2}\right)=2 x_{1}^{2}-3 x_{1} x_{2}^{2}+x_{2}^{4} \quad \text { where } x \in \mathbb{R}^{2} .
$$

(i) Show that the necessary optimality conditions of first and second order are satisfied at $(0,0)^{\top}$.
(ii) Show that $(0,0)^{\top}$ is a local minimizer for f along every straight line passing through $(0,0)$.
(iii) Show that $(0,0)^{\top}$ is not a local Minimizer of f on \mathbb{R}^{2}.

Homework Problem 1.2 (First Order Conditions are Sufficient for Convex Functions) 2 Points
Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a convex function that is differentiable at $x \in \mathbb{R}^{n}$ with $f^{\prime}(x)=0$. Show that x is a global minimizer of f.

Homework Problem 1.3 (Miscellaneous on Convergence Rates)
11 Points
(i) Explain why the definition of Q-quadratic convergence of a sequence requires the initial assumption that the sequence converges at all.
(ii) Show that Q-quadratic convergence implies Q-superlinear convergence which implies Q-linear convergence which implies convergence.
(iii) (a) Show that the notions of Q-linear, Q-superlinear and Q-quadratic convergence of a sequence imply their respective R -convergence counterparts.
(b) Give an example that shows that R-convergence of any kind of a sequence generally does not imply the corresponding Q-convergence.
(iv) (a) Let $\|\cdot\|_{a},\|\cdot\|_{b}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be equivalent norms. Show that Q -superlinear resp. Q-quadratic convergence of a sequence w.r.t. $\|\cdot\|_{a}$ implies Q-superlinear resp. Q-quadratic convergence w.r.t. $\|\cdot\|_{b}$.
(b) Give an example that shows that the corresponding statement can not hold for Q-linear convergence. Does it hold for R-linear convergence?

Homework Problem 1.4

(Visualizing and Interpreting Convergence Rates)
(i) For each of the following cases, give an example of a null sequence $\left(x^{(k)}\right)$ in $(\mathbb{R},|\cdot|)$ that
(a) converges, but does not converge Q -linearly,
(b) converges Q -linearly, but does not converge Q -superlinear,
(c) converges Q-superlinearly, but does not converge Q-quadratically,
(d) converges Q-quadratically, but does not converge with higher order.
(ii) Explain what the Q-convergence rates of a sequence $x^{k} \rightarrow x^{*}$ will look like in a y-semilogarithmic plot, i. e., when plotting the map $k \mapsto \ln \left|x^{(k)}-x^{*}\right|$.
(iii) Plot the distance to the limit for the sequences from task (i) over the iterations in a standard and a y-semi-logarithmic plot. What do you observe?

Please submit your solutions as a single pdf and an archive of programs via moodle.

