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Homework Problem 1.1 (Optimality Condition Gap) 9 Points

Consider the optimization problem

Minimize 𝑓 (𝑥) =
(
𝑥1 − 𝑥22

) (
2𝑥1 − 𝑥22

)
= 2𝑥21 − 3𝑥1𝑥22 + 𝑥42 where 𝑥 ∈ R2.

(𝑖) Show that the necessary optimality conditions of first and second order are satisfied at (0, 0)ᵀ.

(𝑖𝑖) Show that (0, 0)ᵀ is a local minimizer for 𝑓 along every straight line passing through (0, 0).

(𝑖𝑖𝑖) Show that (0, 0)ᵀ is not a local Minimizer of 𝑓 on R2.

Solution.

(𝑖) We have

𝑓 ′(𝑥) =
(
4𝑥1 − 3𝑥22, −6𝑥1𝑥2 + 4𝑥32

)
, 𝑓 ′′(𝑥) =

(
4 −6𝑥2
−6𝑥2 −6𝑥1 + 12𝑥22

)
,

so for 𝑥∗ = (0, 0)ᵀ we know that

𝑓 (𝑥∗) = 0, 𝑓 ′(𝑥∗) = (0, 0), 𝑓 ′′(𝑥∗) =
(
4 0
0 0

)
.

Since the Hessian 𝑓 ′′(𝑥∗) is positive semidefinite with eigenvalues 𝜆1 = 4 and 𝜆2 = 0, the first
and second order optimality conditions in Theorems 2.1 and 2.2 are satisfied. The sufficient
conditions in Theorem 2.3 however are not satisfied. (2 Points)
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(𝑖𝑖) For arbitrary but fixed𝑑 ∈ R2, 𝑑 ≠ 0, we consider the line ℓ (𝑡) = 𝑥∗+𝑡 𝑑 for 𝑡 ∈ R and 𝑥∗ = (0, 0)ᵀ
to obtain

𝑓 (ℓ (𝑡)) =
(
𝑡 𝑑1 − 𝑡2 𝑑22

) (
2𝑡 𝑑1 − 𝑡2 𝑑22

)
=
(
2𝑡2 𝑑21 − 3𝑡3 𝑑1 𝑑22 + 𝑡4 𝑑42

)
,

d
d𝑡 𝑓 (ℓ (𝑡)) = 4𝑡𝑑21 − 9𝑡2 𝑑1 𝑑22 + 4𝑡3𝑑42,

d2

d𝑡2 𝑓 (ℓ (𝑡)) = 4𝑑21 − 18𝑡 𝑑1 𝑑22 + 12𝑡2𝑑42 .

(2 Points)

and hence d
d𝑡 𝑓 (ℓ (𝑡)) |𝑡=0 = 0 as well as d2

d𝑡2 𝑓 (ℓ (𝑡)) |𝑡=0 = 4𝑑21 . Accordingly, the sufficient condi-
tions of first and second order for the function restricted to the ray are satisfied at 𝑡 = 0, making
(0, 0) a strict local minimizer (2 Points)

When 𝑑1 = 0, then 𝑓 ◦ ℓ is of the form 𝑓 (ℓ (𝑡)) = 𝑡4 𝑑22 ≥ 0 = 𝑓 (ℓ (0)), making 𝑡 = 0 an obvious
(strict, global) minimizer of 𝑓 ◦ ℓ . (1 Point)

(𝑖𝑖𝑖) Looking at the plot in homework problem 1.1 and at the function definition, we notice a bi-
parabolic structure, i. e., we can make the Ansatz

𝑓 (𝑥) = 2𝑥21 − 3𝑥1𝑥22 + 𝑥42
!
= (𝑎𝑥1 + 𝑏𝑥22) (𝑐𝑥1 + 𝑑𝑥22)

to find that 𝑏𝑑 = 1 (e. g. 𝑏 = 𝑑 = −1) and accordingly 𝑎 + 𝑐 = 3 and 𝑎𝑐 = 2 (e. g. 𝑎 = 2, 𝑐 = 1), so
that

𝑓 (𝑥) = (2𝑥1 − 𝑥22) (𝑥1 − 𝑥22).
Accordingly, the parabolas 𝑥1 = 0.5𝑥22 and 𝑥1 = 𝑥22 yield the zero-levelset of 𝑓 and 𝑥1 = 𝛼𝑥22 for
𝛼 ∈ ( 12 , 1) yields negative values everywhere except for the origin.

We therefore consider the path 𝛾 (𝑡) = (3/4𝑡2, 𝑡) for 𝑡 ∈ R. Then,

𝑓 (𝛾 (𝑡)) =
(
3
4𝑡

2 − 𝑡2
) (

3
2𝑡

2 − 𝑡2
)

= − 18𝑡
4 < 0 = 𝑓 (𝑥∗) für 𝑡 ≠ 0,

making it clear that 𝑥∗ is not a local minimizer. (2 Points)

Conclusion: There is a gap between necessary and sufficient optimality conditions for the
existence of minimizers. Even the surprisingly strong property in task (𝑖𝑖) is insufficient in
addition to the first and second order necessary conditions.
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𝑓 (𝑥) = 2𝑥21 − 3𝑥1𝑥22 + 𝑥42

Figure 0.1: Plot of the function and a path with negative function values except for the origin.
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Homework Problem 1.2 (First Order Conditions are Sufficient for Convex Functions) 2 Points

Let 𝑓 : R𝑛 → R be a convex function that is differentiable at 𝑥 ∈ R𝑛 with 𝑓 ′(𝑥) = 0. Show that 𝑥 is a
global minimizer of 𝑓 .

Solution.

Since 𝑓 is differentiable at 𝑥 , we know that its directional derivatives 𝑓 ′(𝑥, 𝑑) exist for every direction
𝑑 and 𝑓 ′(𝑥, 𝑑) = 𝑓 ′(𝑥)𝑑 .

Now, let any 𝑦 ∈ R𝑛 be given. Due to the convexity, we know that for 𝑡 ∈ (0, 1)

𝑓 (𝑥 + 𝑡 (𝑦 − 𝑥)) ≤ 𝑓 (𝑥) + 𝑡 (𝑓 (𝑦) − 𝑓 (𝑥)),

and accordingly,

0 = 𝑓 ′(𝑥) (𝑦 − 𝑥)
𝑡↘0, 𝑡<1
←−−−−−− 𝑓 (𝑥 + 𝑡 (𝑦 − 𝑥)) − 𝑓 (𝑥)

𝑡
≤ 𝑓 (𝑦) − 𝑓 (𝑥),

implying that
𝑓 (𝑥) ≤ 𝑓 (𝑦) ∀𝑦 ∈ R𝑛 .

(2 Points)

Homework Problem 1.3 (Miscellaneous on Convergence Rates) 11 Points

(𝑖) Explain why the definition of Q-quadratic convergence of a sequence requires the initial as-
sumption that the sequence converges at all.

(𝑖𝑖) Show that Q-quadratic convergence implies Q-superlinear convergence which implies Q-linear
convergence which implies convergence.

(𝑖𝑖𝑖) (a) Show that the notions of Q-linear, Q-superlinear andQ-quadratic convergence of a sequence
imply their respective R-convergence counterparts.

(b) Give an example that shows that R-convergence of any kind of a sequence generally does
not imply the corresponding Q-convergence.

(𝑖𝑣) (a) Let ∥·∥𝑎, ∥·∥𝑏 : R𝑛 → R be equivalent norms. Show that Q-superlinear resp. Q-quadratic
convergence of a sequence w.r.t. ∥·∥𝑎 implies Q-superlinear resp. Q-quadratic convergence
w.r.t. ∥·∥𝑏 .
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(b) Give an example that shows that the corresponding statement can not hold for Q-linear
convergence. Does it hold for R-linear convergence?

Solution.

(𝑖) The condition that there exists 𝐶 > 0 such that

∥𝑥 (𝑘+1) − 𝑥∗∥𝑀 ≤ 𝐶 ∥𝑥 (𝑘 ) − 𝑥∗∥2𝑀 for all 𝑘 ∈ N

does not imply convergence of the sequence as the constant 𝐶 and the distance ∥𝑥 (𝑘 ) − 𝑥∗∥𝑀
may remain greater or equal than 1, see, e. g., the alternating sequence 𝑥 (𝑘 ) = (−1)𝑘 and 𝑥∗ = 0
with 𝐶 = 1. (1 Point)

(𝑖𝑖) When 𝑥 (𝑘 ) is Q-quadratically convergent to 𝑥∗, then there exists 𝐶 > 0 such that

∥𝑥 (𝑘+1) − 𝑥∗∥𝑀 ≤ 𝐶 ∥𝑥 (𝑘 ) − 𝑥∗∥𝑀︸             ︷︷             ︸
C𝜀 (𝑘 )

∥𝑥 (𝑘 ) − 𝑥∗∥𝑀 for all 𝑘 ∈ N

where 𝜀 (𝑘 ) = 𝐶 ∥𝑥 (𝑘 ) − 𝑥∗∥𝑀 is a null sequence by assumption.

When 𝑥 (𝑘 ) is Q-superlinearly convergent to 𝑥∗, then there exists a null sequence
(
𝜀 (𝑘 )

)
such

that for any 𝑐 ∈ (0, 1)

∥𝑥 (𝑘+1) − 𝑥∗∥𝑀 ≤ 𝜀 (𝑘 ) ∥𝑥 (𝑘 ) − 𝑥∗∥𝑀 ≤ 𝑐 ∥𝑥 (𝑘 ) − 𝑥∗∥𝑀 for all 𝑘 ∈ N sufficiently large

due to the null sequence property.

When 𝑥 (𝑘 ) is Q-linearly convergent to 𝑥∗, then there exists 𝑐 ∈ (0, 1) such that

∥𝑥 (𝑘+1) − 𝑥∗∥𝑀 ≤ 𝑐 ∥𝑥 (𝑘 ) − 𝑥∗∥𝑀 ≤ 𝑐𝑘 ∥𝑥 (1) − 𝑥∗∥𝑀
𝑘→∞−−−−→ 0.

(1.5 Points)

(𝑖𝑖𝑖) (a) In each case, we can define the sequence 𝜀 (𝑘 ) B ∥𝑥 (𝑘 ) − 𝑥∗∥𝑀 to trivially obtain that
∥𝑥 (𝑘 ) − 𝑥∗∥𝑀 ≤ 𝜀 (𝑘 ) with equality. Because, as we have seen, each convergent sequence
with a rate converges to its limit and therefore the distance is a nullsequence, we know
that 𝜀 (𝑘 ) is a nullsequence.

When 𝑥 (𝑘 ) is Q-linearly convergent to 𝑥∗ with constant 𝑐 ∈ (0, 1), then

𝜀 (𝑘+1) = ∥𝑥 (𝑘+1) − 𝑥∗∥𝑀 ≤ 𝑐 ∥𝑥 (𝑘 ) − 𝑥∗∥𝑀 = 𝑐𝜀 (𝑘 ) for all 𝑘 ∈ N sufficiently large.
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When 𝑥 (𝑘 ) is Q-superlinearly convergent to 𝑥∗ with nullsequence 𝜀 (𝑘 ) , then

𝜀 (𝑘+1) = ∥𝑥 (𝑘+1) − 𝑥∗∥𝑀 ≤ 𝜀 (𝑘 ) ∥𝑥 (𝑘 ) − 𝑥∗∥𝑀 = 𝜀 (𝑘 )𝜀 (𝑘 ) for all 𝑘 ∈ N.

When 𝑥 (𝑘 ) is Q-quadratically convergent to 𝑥∗ with constant 𝐶 > 0, then

𝜀 (𝑘+1) = ∥𝑥 (𝑘+1) − 𝑥∗∥𝑀 ≤ 𝐶 ∥𝑥 (𝑘 ) − 𝑥∗∥2𝑀 = 𝐶𝜀 (𝑘 )
2 for all 𝑘 ∈ N.

(2 Points)

(b) Q-convergence forces the reduction in the distance to the minimizer relative to the previous
distance in every iteration while R-convergence only requires a bound that behaves like
that as a nullsequence, i. e., R-convergent sequences have the freedom of increasing the
distance the limit an infinite number of times as long as the overall convergence remains
fast.

Consider, e. g., the sequence

𝑥 (𝑘 ) B

{
𝑐𝑘 , 𝑘 even
0, else

for 𝑐 ∈ (0, 1), which is clearly R-linearly convergent to 0 (it’s bound is the "mother of all
Q-linearly convergent sequences": 𝑐𝑘 ). It is not Q-linearly convergent, because it actually
attains its limit in every other iterate. (1 Point)

(𝑖𝑣) (a) Let the norm equivalence 𝛼 ∥·∥𝑏 ≤ ∥·∥𝑎 ≤ 𝛼 ∥·∥𝑏 hold for two constants 𝛼, 𝛼 > 0. Addition-
ally, let (𝑥 (𝑘 ) )𝑘∈N0, 𝑥∗ be in R𝑛 .

• When 𝑥 (𝑘 ) → 𝑥∗ superlinearly in ∥·∥𝑎 , then there exist 𝜀 (𝑘 ) → 0, such that

𝛼 ∥𝑥 (𝑘+1) − 𝑥∗∥𝑏 ≤ ∥𝑥 (𝑘+1) − 𝑥∗∥𝑎 ≤ 𝜀 (𝑘 ) ∥𝑥 (𝑘 ) − 𝑥∗∥𝑎 ≤ 𝛼 𝜀 (𝑘 ) ∥𝑥 (𝑘 ) − 𝑥∗∥𝑏

and hence
∥𝑥 (𝑘+1) − 𝑥∗∥𝑏 ≤

𝛼

𝛼
𝜀 (𝑘 ) ∥𝑥 (𝑘 ) − 𝑥∗∥𝑏

with 𝛼
𝛼
𝜀 (𝑘 ) → 0. (1.5 Points)

• When 𝑥 (𝑘 ) → 𝑥∗ Q-quadratically in ∥·∥𝑎 , then the sequence converges to 𝑥∗ w.r.t ∥·∥𝑎
and therefore also w.r.t. ∥·∥𝑏 . Additionally, there is 𝐶 > 0, such that

𝛼 ∥𝑥 (𝑘+1) − 𝑥∗∥𝑏 ≤ ∥𝑥 (𝑘+1) − 𝑥∗∥𝑎 ≤ 𝐶 ∥𝑥 (𝑘 ) − 𝑥∗∥2𝑎 ≤ 𝛼2𝐶 ∥𝑥 (𝑘 ) − 𝑥∗∥2
𝑏
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and hence
∥𝑥 (𝑘+1) − 𝑥∗∥𝑏 ≤

𝛼2

𝛼
𝐶 ∥𝑥 (𝑘 ) − 𝑥∗∥2

𝑏

with 𝛼2

𝛼
𝐶 > 0.

(1.5 Points)

(b) Consider R2 with the euklidean Norm und a norm that has a scaling along one of the axes,
i. e., for a parameter 𝛼 > 1 the norms

∥𝑥 ∥𝑎 =

√︄
𝑥ᵀ

(
1 0
0 1

)
𝑥 und ∥𝑥 ∥𝑏 =

√︄
𝑥ᵀ

(
𝛼2 0
0 1

)
𝑥

Then

∥𝑥 ∥𝑏 ≤ ∥𝑥 ∥𝑎 ≤ 𝛼 ∥𝑥 ∥𝑏

for all 𝑥 ∈ R2. We now consider the sequence that jumps between the axes, hitting the
unfavourable relative scaling in every other iteration. For 𝑐 B 1

𝛼
∈ (0, 1) define

𝑥 (𝑘 ) B

{
(𝑐𝑘 , 0) for k even
(0, 𝑐𝑘 ) for k uneven

It is clear that ∥𝑥 (𝑘 ) ∥𝑎 = 𝑐𝑘 → 0 and therefore

∥𝑥 (𝑘+1) ∥𝑎 = 𝑐𝑘+1 = 𝑐 𝑐𝑘 = 𝑐 ∥𝑥 (𝑘 ) ∥𝑎

shows Q-linear convergence to 0 ∈ R2 in the euclidean norm. For uneven 𝑘 ∈ N0 however,
we have that

∥𝑥 (𝑘+1) ∥𝑏 = 𝛼𝑐𝑘+1 = 𝛼𝑐 𝑐𝑘 = 𝛼𝑐 ∥𝑥 (𝑘 ) ∥𝑏 = ∥𝑥 (𝑘 ) ∥𝑏 .

Jumping to the scaled 𝑥1-Achse (ungerades 𝑘 auf gerades 𝑘) does not decrease the distance
to the limit in the 𝑏-norm, so there can be no linear convergence in this norm. (The
equivalence-constants scale the parameter 𝑐 to 1.) (2 Points)

Any sequence 𝑥 (𝑘 ) that converges R-linearly in a norm ∥·∥𝑎 will also converge R-linearly
in any equivalent norm ∥·∥𝑏 , as we have

∥𝑥 (𝑘 ) − 𝑥∗∥𝑏 ≤ 𝛼 ∥𝑥 (𝑘 ) − 𝑥∗∥𝑎 ≤ 𝛼𝜀 (𝑘 )
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for the corresponding Q-linearly convergent nullsequence 𝜀 (𝑘 ) . Of course, with the corre-
sponding 𝑐 ∈ (0, 1), we know that(

𝛼𝜀 (𝑘+1)
)
≤ 𝛼𝑐𝜀 (𝑘 ) = 𝑐

(
𝛼𝜀 (𝑘 )

)
meaning that 𝛼𝜀 (𝑘 ) is also Q-linearly convergent to 0.

(0.5 Points)

Homework Problem 1.4

(Visualizing and Interpreting Convergence Rates) 7 Points

(𝑖) For each of the following cases, give an example of a null sequence
(
𝑥 (𝑘 )

)
in (R, |·|) that

(a) converges, but does not converge Q-linearly,
(b) converges Q-linearly, but does not converge Q-superlinear,
(c) converges Q-superlinearly, but does not converge Q-quadratically,
(d) converges Q-quadratically, but does not converge with higher order.

(𝑖𝑖) Explain what the Q-convergence rates of a sequence 𝑥𝑘 → 𝑥∗ will look like in a 𝑦-semi-
logarithmic plot, i. e., when plotting the map 𝑘 ↦→ ln |𝑥 (𝑘 ) − 𝑥∗ |.

(𝑖𝑖𝑖) Plot the distance to the limit for the sequences from task (𝑖) over the iterations in a standard
and a 𝑦-semi-logarithmic plot. What do you observe?

Solution.

(𝑖) Hint: When solving this problem, think about what kind of term your quotient should be first.
E. g., for the superlinear case, you need the Quotient to be a null sequence.

(a) The sequence
(
𝑥 (𝑘 )

)
=
( 1
𝑘

)
is obviously positive and converges to 0. However, because

1 > |𝑥
(𝑘+1) − 0|
|𝑥 (𝑘 ) − 0|

=
𝑘

𝑘 + 1
𝑘→∞−−−−→ 1
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the sequence can not converge 𝑄-linearly, as the quotient is not bounded away from 1
uniformly (i. e. the quotient deteriorates and the convergence slows down progressively,
as the sequence progresses). (1 Point)

(b) The sequences
(
𝑥 (𝑘 )

)
=
(
𝑞𝑘

)
for 𝑞 ∈ (0, 1) are obviously positive and converges to 0. They

are the prime example for this class of convergent sequences, as they satisfy the Q-linear
convergence condition with equality in every iteration, and their constant coincides with
their base. I. e., we have that

|𝑥 (𝑘+1) − 0|
|𝑥 (𝑘 ) − 0|

= 𝑞 ∈ (0, 1).

The sequence is not Q-superlinearly convergent as the quotient is a constant greater than
zero, not a nullsequence as required. (1 Point)

(c) The sequence
(
𝑥 (𝑘 )

)
=

( 1
𝑘!
)
is obviously positive and converges to 0. It converges Q-

superlinearly, because

|𝑥 (𝑘+1) − 0|
|𝑥 (𝑘 ) − 0|

=
𝑘!
(𝑘 + 1)! =

1
𝑘 + 1

𝑘→∞−−−−→ 0.

However, looking at the quotient for higher order convergence, i. e., for any 𝛼 > 1, we
obtain that

|𝑥 (𝑘+1) − 0|
|𝑥 (𝑘 ) − 0|𝛼

=
(𝑘!)𝛼
(𝑘 + 1)! =

(𝑘!) (𝛼−1)
𝑘 + 1

𝑘→∞−−−−→ ∞,

meaning that this sequences converges Q-superlinearly but not with any higher (exponen-
tial) order - especially not Q-quadratically. (1 Point)

(d) The sequences
(
𝑥 (𝑘 )

)
=

(
𝑞(2𝑘)

)
for 𝑞 ∈ (0, 1) are obviously positive and converge to 0.

They converges Q-quadratically, because

|𝑥 (𝑘+1) − 0|
|𝑥 (𝑘 ) − 0|2

=
𝑞(2𝑘+1)(
𝑞(2𝑘)

)2 = 1.

They are the prime example for this class of convergent sequences, as they satisfy the
Q-quadratic convergence condition with equality in every iteration, and their constant is 1.
(1 Point)

Note: The sequences
(
𝑥 (𝑘 )

)
=

(
𝑞(𝛼𝑘)

)
for 𝑞 ∈ (0, 1) and 𝛼 > 1 are the prime examples for

the convergence order 𝛼 for the same reason.
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(𝑖𝑖) Since the logarithm is a monotonically increasing function, the conditions in the definitions of
Q-convergence rates can be equivalently transformed to the log-ed data, i. e., we investigate the
conditions for the log-ed data. Note that when a sequence attains its limit, this transformation
of course breaks down, as do the concepts of Q-convergence, as such sequences would need be
stay constant after attaining their limit.

(a) In the Q-linearly convergent case, we have

ln
(���𝑥 (𝑘+1) − 𝑥∗���) ≤ ln

(
𝑐

���𝑥 (𝑘 ) − 𝑥∗���) = ln(𝑐)+ln
(���𝑥 (𝑘 ) − 𝑥∗���) ≤ (𝑘+1−𝑘0) ln(𝑐)+ln (���𝑥 (𝑘0 ) − 𝑥∗���)

for 𝑘 sufficiently large (larger than 𝑘0) I. e., for the log-ed data, we expect the data to show
at least constant decrease (since ln(𝑐) < 0) in every iteration for sufficiently large 𝑘 , so the
semi-log plot will ultimately show a decreasing linear plot with slope ln(𝑐), shifted up by
the log-ed initial error when linear convergence starts up. (1 Point)

(b) In the Q-superlinearly convergent case, we have

ln
(���𝑥 (𝑘+1) − 𝑥∗���) ≤ ln

(
𝜀 (𝑘 )

���𝑥 (𝑘 ) − 𝑥∗���) = ln(𝜀 (𝑘 ) ) + ln
(���𝑥 (𝑘 ) − 𝑥∗���)

for a null-sequence 𝜀 (𝑘 ) ∈ R, where ln(𝜀 (𝑘 ) ) → −∞ shows that we can expect the decrease
per step in the log-ed data to become arbitrarily large in the limit, the curve will bend
down with increasing curvature. (1 Point)

(c) In the Q-quadratically convergent case, we have

ln
(���𝑥 (𝑘+1) − 𝑥∗���) ≤ ln

(
𝐶

���𝑥 (𝑘 ) − 𝑥∗���2) = ln(𝐶) + 2 ln
(���𝑥 (𝑘 ) − 𝑥∗���)

for a 𝐶 > 0. At the first glance, we should expect to see the same behavior as in the Q-
superlinear case, because

��𝑥 (𝑘 ) − 𝑥∗�� will play the role of the sequence 𝜀 (𝑘 ) , but we actually
get some additional information on how fast the increasing decrease will increase (it will
be the same as the magnitude of the log-ed sequence data).

Note that for a Q-quadratically convergent sequence, we can continue estimating the error
using the definition iteratively to obtain���𝑥 (𝑘+1) − 𝑥∗��� ≤ 𝐶

���𝑥 (𝑘 ) − 𝑥∗���2 ≤ · · · ≤ 𝐶2𝑘+1−1
���𝑥 (0) − 𝑥∗���2𝑘+1

Accordingly, for the log-ed data, we have that

ln
(���𝑥 (𝑘+1) − 𝑥∗���) ≤ 2𝑘+1 ln

(
𝐶

���𝑥 (0) − 𝑥∗���) − ln(𝐶),
showing that we can expect a plot showing negative exponential growth. (1 Point)
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Figure 0.2: Convergence rates for various sequences in linear (top row) and 𝑦-semilog (bottom row)
format.

(𝑖𝑖𝑖) See driver_ex_006_convergence_rate_visualization.py.

In the linear plots, we have no way of telling how fast a sequence is converging. In the semilog-
plots, we can tell linear from superlinear convergence. Higher order convergence will always
exhibit exponential behavior, that simply might be slower.
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Figure 0.3: Convergence rate plots in 𝑦-semilog format for 𝑞 (𝛼𝑘 ) with 𝑞 = 0.5.

Please submit your solutions as a single pdf and an archive of programs via moodle.
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