Lineare Algebra II Woche 13

09.07.2024 und 11.07.2024

Selbstadjungierte und normale Endomorphismus

Definition 34.45

Es sei (V, γ) ein Euklidischer Raum.

/∈ Endo(V)

② $f \in \text{End}(V)$ heißt γ -normal, wenn $f \circ f^{\circ} = f^{\circ} \circ f$ gilt.

I komunutiert mit seiner Adjuspierten So

Selbstadjungiertheit in Darstellungsmatrizen

Lemma 34.46 μ Lemma 34.46 Es sei (V, γ) ein Euklidischer Raum mit Basis B_V . Weiter seien $f \in End(V)$ und

$$\bullet \ M \coloneqq \mathcal{M}_{B_V^*}^{B_V}(\gamma)$$

$$\bullet \ A = \mathcal{M}_{B_V}^{B_V}(f)$$

Dann sind äquivalent:

- f ist γ-selbstadjungiert.
- ② Die Darstellungsmatrix A erfüllt $M^{-1}A^{T}M = A$. $A^{\circ} = A$

Normalität in Darstellungsmatrizen

Lemma 34.47 Udli'dr dimensionals Es sei (V, γ) ein Euklidischer Raum mit Basis B_V .

Weiter seien $f \in End(V)$ und

$$\bullet \ M \coloneqq \mathcal{M}_{B_V^*}^{B_V}(\gamma)$$

$$\bullet \ A = \mathcal{M}_{B_V}^{B_V}(f)$$

- Dann sind äquivalent: f ist γ -selbstadjungiert:
 - ② Die Darstellungsmatrix A erfüllt $A M^{-1}A^{T}M = M^{-1}A^{T}MA$. $A A^{\circ} = A^{\circ} A$

Orthogonalität, Selbstadjungiertheit, Normalität

Lemma 34.48

Es sei (V, γ) ein endlich-dimensionaler Euklidischer Raum.

Weiter sei $f \in End(V)$. Dann gilt:

f ist γ -selbstadjungiert f ist γ -orthogonal f ist γ -normal

Orthogonalität, Selbstadjungiertheit, Normalität

Beispiel 34.49

Die Drehabbildung, dargestellt durch

$$A = \begin{bmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{bmatrix} \in \mathbb{R}^{2 \times 2}$$

bzgl. der Standardbasis, ist *I*-orthogonal (Beispiel 34.33).

Also ist A auch γ_I -normal.

Im Allgemeinen ist
$$A$$
 aber nicht γ_I -selbstadjungiert, denn $A^{\circ} = D$ rchung $I = A^{\circ} = A$

$$I^{-1}A^{\top}I = \begin{bmatrix} C & S \\ -S & C \end{bmatrix} + \begin{bmatrix} C & -S \\ S & C \end{bmatrix} = A$$

one for in Tall sin(a) = 0 a, a=0 ode a=T

Orthogonalität, Selbstadjungiertheit, Normalität

Beispiel 34.49

2 Die Spiegelungsabbildung, dargestellt durch

$$A = \begin{bmatrix} \cos(2\alpha) & \sin(2\alpha) \\ \sin(2\alpha) & -\cos(2\alpha) \end{bmatrix} \in \mathbb{R}^{2 \times 2}$$

bzgl. der Standardbasis, ist I-orthogonal (Beispiel 34.33).

Also ist A auch γ_I -normal.

Darüber hinaus ist A auch γ_I -selbstadjungiert, denn

$$A^0 = I^{-1}A^T I = \begin{bmatrix} c & s \\ s & -c \end{bmatrix} = A$$

Normale Endomorphismen induzieren Zerlegungen ortuguale autelde

Folgerung 34.50

Es sei (V, γ) ein endlich-dimensionaler Euklidischer Raum.

Weiter sei $f \in \text{End}(V)$ γ -normal.

Dann gilt:

$$Kern(f^{\circ}) = Kern(f)$$

 $Bild(f^{\circ}) = Bild(f)$

und daher

$$V = \mathsf{Kern}(f) \oplus \mathsf{Bild}(f)$$

 $V = \mathsf{Kern}(f^\circ) \oplus \mathsf{Bild}(f^\circ)$

4 identische Zelesungen

Eigenvektoren selbstadjungierter Endomorphismen

Lemma 34.51

Es sei (V, γ) ein Euklidischer Raum und $f \in \operatorname{End}(V)$ γ -selbstadjungiert.

Sind $\lambda_1, \lambda_2 \in \mathbb{R}$ verschiedene Eigenwerte von f mit Eigenvektoren v_1 bzw. v_2 , dann sind (v_1, v_2) γ -orthogonal.

Beweis.
$$\lambda_{1} \gamma (v_{1}, v_{2}) = \gamma (\lambda_{1} v_{1}, v_{2})$$

$$= \gamma (f(v_{1}), v_{2})$$

$$= \gamma (v_{1}, f(v_{2})) \text{ wegen } f = f^{0}$$

$$= \gamma (v_{1}, \lambda_{2}, v_{2})$$

$$= \lambda_{2} \gamma (v_{1}, v_{2}) = 0$$

Invariante Unterräume selbstadjungierter Endomorphismen

Lemma 34.52

Es sei (V, γ) ein Euklidischer Raum und $f \in \operatorname{End}(V)$ γ -selbstadjungiert. Ist $U \subseteq V$ ein f-invarianter Unterraum, dann ist auch U^{\perp} ein f-invarianter Unterraum.

Beweis. Übung

Wichtig for dué Herleitung von Normalformen von Endomorphismen: Finde f-invariante LeR, sodass ein dazu komplementater UR weider f-invariant ist.

Einheitssphäre, Rayleigh-Quotient

Definition 34.53

=\$\phi\$ im Fall dim(V)=0

Es sei (V, γ) ein endlich-dimensionaler Euklidischer Raum.

Die Menge

Die Menge

Einheitskupel, - bay $S(V,\gamma) := \{ v \in V \mid ||v||_{\gamma} = 1 \}$

heißt die Einheitssphäre des Raumes (V, γ) .

② Für $f \in \text{End}(V)$ γ -selbstadjungiert heißt die Funktion

der Rayleigh-Quotient von f.

D-homosen

Maximum des Rayleigh-Quotienten

Satz 34.54

Es sei (V, γ) ein Euklidischer Raum mit dim $(V) = n \in \mathbb{N}$. Weiter sei $f \in \text{End}(V)$ γ -selbstadjungiert. Dann gilt:

• Der Rayleigh-Quotient ist auf $V \setminus \{0\}$ nach oben beschränkt und nimmt sein Supremum als Maximum an.

Beweis. of Rfy(v) | ves(vig) } = {Rfig(v) | vev 1204 }

Loupalet | D-Homogenitat

(abg. + beachant)

Sate von Weierstraf! Jede stetige Funktion minut and einer kompaleten Mense ihr Sypremum als Maximum an. Pos ich stetig and V 1203: In Kordinatu!

Maximum des Rayleigh-Quotienten

Satz 34.54

Es sei (V, γ) ein Euklidischer Raum mit dim $(V) = n \in \mathbb{N}$.

Weiter sei $f \in \text{End}(V)$ γ -selbstadjungiert. Dann gilt:

② Das Maximum $m := \max\{R_{f,\gamma}(v) \mid v \in V \setminus \{0\}\}$ ist der größte Eigenwert von f. Die Maximierer sind genau die Eigenvektoren:

$$\{v \in V \setminus \{0\} \mid R_{f,\gamma} = m\} = \operatorname{Eig}(f,m) \setminus \{0\}.$$

Spektralsatz für γ -selbstadjungierte Endomorphismen

gelit nicht ohne reelle Analytis

Satz 34.55

Es sei (V, γ) ein endlich-dimensionaler Euklidischer Raum.

Für $f \in \text{End}(V)$ sind äquivalent:

- f ist γ -selbstadjungiert.
- **2** f ist diagonalisierbar, und es gibt es Basis aus Eigenvektoren von f, die γ -orthonormal ist.

Beweis. ① = ② $\dim(v) = 0$ Induktion $n = \dim(v)$. $m := \max_{x \in V} \{P_{i,v}(v) | v \in V \mid v \in V \}$ ist ein $\in U$. $m := \max_{x \in V} \{P_{i,v}(v) | v \in V \mid v \in V \}$ ist ein $\in U$. $m := \max_{x \in V} \{P_{i,v}(v) | v \in V \mid v \in V \}$ ist orthogonal diagonalisters and

Spektralsatz für γ -selbstadjungierte Endomorphismen

Satz 34.55

Es sei (V, γ) ein endlich-dimensionaler Euklidischer Raum.

Für $f \in \text{End}(V)$ sind äquivalent:

- f ist γ -selbstadjungiert.
- \bullet f ist diagonalisierbar, und es gibt es Basis aus Eigenvektoren von f, die γ -orthonormal ist. "f ist orthogonal diagonalisierbar"

Orthogonale Diagonalisierbarkeit

Bemerkung 34.56

- **1** Besonderheit der γ -orthogonalen Diagonalisierbarkeit eines Endomorphismus auf V:
 - Es existiert eine Basis aus Eigenvektoren, die alle auch über die Eigenräume hinweg paarweise orthogonal gewählt werden können.
- 2 Zu einem diagonalisierbaren Endomorphismus mit Eigenvektorbasis $B_V = (v_1, \ldots, v_n)$ können wir ein Innenprodukt γ auf V so wählen, dass f γ -orthogonal diagonalisierbar ist:

Spektralsatz für M-selbstadjungierte Matrizen

Folgerung 34.57

Innenprodukt

Es sei (\mathbb{R}^n, γ_M) ein Euklidischer Raum, also $M \in \mathbb{R}^{n \times n}$ symmetrisch und positiv definit. Weiter sei $A \in \mathbb{R}^{n \times n}$. Dann sind äquivalent:

- A ist M-selbstadjungiert, erfüllt also $M^{-1}A^{T}M = A$.
- ② A ist diagonalisierbar, und es gibt eine Basis (v_1, \ldots, v_n) aus Eigenvektoren von A, die M-orthonormal ist.

$$A V = V \wedge mit V^T M V = I$$

$$|||| = |||||(\frac{\lambda_n}{\lambda_n})$$
Eigenwerk

Innenprodukte in komplexen Vektorräumen?

lacktriangle C ist kein geordneter Körper.

Wir könnten aber fordern:
$$f(x,x) \in \mathbb{R}$$
 and $f(x,x) > 0 + x \neq 0$

Es ist aber

$$\widehat{f_{\gamma(i\,x,i\,x)}} = i^2 \gamma(x,x) = -\gamma(x,x)$$

• Fazit: Innenprodukte in komplexen Vektorräumen können <u>nicht mit</u> Hilfe von Bilinearformen definiert werden!

Antilineare Abbildungen

Definition 35.1

Es seien V, W komplexe Vektorräume.

• Eine Abbildung $f: V \to W$ heißt antilinear oder konjugiert linear, wenn gilt:

$$f(u+v)=f(u)+f(v)$$
 für alle $u,v\in V,$ addition $f(\alpha\,u)=\overline{\alpha}\,f(u)$ für alle $u\in V$ und alle $\alpha\in\mathbb{C}.$ Rough komplexe \mathcal{L} and \mathcal{L} komplexe \mathcal{L} and \mathcal{L} komplexe \mathcal{L} and \mathcal{L} confidence \mathcal{L} für alle \mathcal{L} confidence \mathcal{L} confidence \mathcal{L} for \mathcal{L} confidence \mathcal{L} confidence

Antilineare Abbildungen werden auch als antilineare Homomorphismen bezeichnet.

Antilineare Abbildungen

Beispiel 35.2

① Die komponentenweise komplexe Konjugation in \mathbb{C}^n , $n \in \mathbb{N}_0$, also

$$\mathbb{C}^n \ni \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} \mapsto \begin{pmatrix} \overline{v_1} \\ \vdots \\ \overline{v_n} \end{pmatrix} \in \mathbb{C}^n,$$

ist eine antilineare Abbildung.

② Für $A \in \mathbb{C}^{n \times m}$ ist die Matrix-Vektor-Multiplikation mit dem komplex konjugierten Vektor

$$\mathbb{C}^m \ni z \mapsto A \overline{z} \in \mathbb{C}^n$$

eine antilineare Abbildung.

Darstellungssatz für antilineare Abbildungen

Satz 35.3

Es seien V, W zwei endlich-dimensionale komplexe Vektorräume mit Basen $B_V = (v_1, \dots, v_m)$ und $B_W = (w_1, \dots, w_n)$.

Dann gibt es zu jeder antilinearen Abbildung $f\colon V\to W$ eine eindeutig definierte **Darstellungsmatrix** $A\in\mathbb{C}^{n\times m}$ mit der Eigenschaft

$$f(v_j) = \sum_{i=1}^n a_{ij} \ w_i \quad \text{für alle } j=1,\ldots,m. \quad \begin{array}{c} \text{linear.} \\ \text{Abb.} \end{array} \ /$$

$$v = \sum_{j=1}^{m} \alpha_{j} v_{j} \quad \Rightarrow \quad f(v) = \sum_{i=1}^{n} \sum_{j=1}^{m} a_{ij} \alpha_{j} w_{i}, \quad \text{wenn } f \text{ linear ist}$$

$$v = \sum_{j=1}^{m} \alpha_{j} v_{j} \quad \Rightarrow \quad f(v) = \sum_{i=1}^{n} \sum_{j=1}^{m} a_{ij} \overline{\alpha_{j}} w_{i}, \quad \text{wenn } f \text{ antilinear ist}$$

Sesquilinearformen

Ersatz fur Bilineaformen

Definition 35.4

Es sei V ein komplexer Vektorraum.

• Eine Abbildung $\theta \colon V \times V \to \mathbb{C}$ heißt eine Sesquilinearform auf V, wenn θ im ersten Argument antilinear und im zweiten Argument linear ist:

$$\theta(\alpha u + \beta v, w) = \overline{\alpha} \theta(u, w) + \overline{\beta} \theta(v, w)$$

$$\theta(u, \alpha v + \beta w) = \alpha \theta(u, v) + \beta \theta(u, w)$$

② Die Menge aller Sesquilinearformen $V \times V \to \mathbb{C}$ bezeichnen wir mit Sesq(V, V).

Sesquilinearformen

Definition 35.4

Es sei V ein komplexer Vektorraum.

- is Eine Sesquilinearform heißt analog zu Symu. / schieftymu.

 hermitesch im Fall $\theta(u,v)=\overline{\theta(v,u)}$ für alle $u,v\in V$ schiefhermitesch im Fall $\theta(u,v)=-\overline{\theta(v,u)}$ für alle $u,v\in V$
- Die Menge aller hermiteschen Sesquilinearformen $V \times V \to \mathbb{C}$ bezeichnen wir mit $\operatorname{Sesq_{herm}}(V,V)$ und die der schiefhermiteschen Sesquilinearformen mit $\operatorname{Sesq_{skew}}(V,V)$.
- **3** Zwei Vektoren $u, v \in V$ heißen orthogonal bzgl. der hermiteschen Sesquilinearform θ , wenn $\theta(u, v) = 0$ gilt.

ulv oder ulp V

Hermitesche Sesquilinearformen sind auf der Diagonale reell

Lemma 35.5

Es sei V ein komplexer Vektorraum.

Für $\theta \in Sesq(V, V)$ sind äquivalent:

- \bullet ist hermitesch.
- $\theta(v,v) \in \mathbb{R}$ für alle $v \in V$.

Definitheit und Indefinitheit von Sesquilinearformen

Definition 35.6 / I'm reclien Fall branchen with du Symm. nicht!

Es sei V ein komplexer Vektorraum. Eine (notwendigerweise hermitesche) Sesquilinearform θ auf V heißt

- **1** positiv definit, wenn $\theta(v, v) > 0$ gilt für alle $v \in V \setminus \{0\}$
- 2 positiv semidefinit, wenn $\theta(v, v) \geqslant 0$ gilt für alle $v \in V$
- **3** negativ definit, wenn $\theta(v, v) < 0$ gilt für alle $v \in V \setminus \{0\}$
- **1** negativ semidefinit, wenn $\theta(v, v) \leq 0$ gilt für alle $v \in V$
- indefinit, wenn θ weder positiv semidefinit noch negativ semidefinit ist, wenn es also Vektoren $v_1, v_2 \in V$ gibt mit $\theta(v_1, v_1) > 0$ und $\theta(v_2, v_2) < 0$

Innenprodukt, unitärer Raum

Definition 35.7

Es sei V ein komplexer Vektorraum.

Die hermitesche Sesquilinearform $\theta \in Sesq(V, V)$ heißt ein Innenprodukt auf V, wenn θ positiv definit ist.

In diesem Fall heißt (V, θ) auch ein komplexer Innenproduktraum oder ein unitärer Raum.

- θ sesquilinear $\theta(u,v) = \overline{\theta(v,u)}$
- · B(v,v) >0 +VeV \{0}

Innenprodukt, unitärer Raum

Beispiel 35.8

① Die durch die Einheitsmatrix $I \in \mathbb{C}^{n \times n}$ induzierte Sesquilinearform köning und Fraus por Leit $\theta_I : \mathbb{C}^n \times \mathbb{C}^n \ni (x,y) \mapsto x^\mathsf{H} y = \sum_i \overline{x_i} \, y_i \in \mathbb{C}$

$$\theta_I : \mathbb{C}^n \times \mathbb{C}^n \ni (x, y) \mapsto x^H y = \sum_{i=1}^n \overline{x_i} \, y_i \in \mathbb{C}$$

heißt das Standardinnenprodukt auf \mathbb{C}^n .

2 Im Vektorraum $\mathbb{C}^{n\times m}$ ist N'MEIM

$$\theta(A, B) := \mathsf{trace}(A^{\mathsf{H}}B)$$

ein Innenprodukt, genannt das Frobenius-Innenprodukt.

Darstellungsmatrix einer Sesquilinearform

Definition 35.9

Es sei V ein endlich-dimensionaler komplexer Vektorraum mit Basis $B_V = (v_1, \dots, v_n), n \in \mathbb{N}_0$. Weiter sei $\theta \in \text{Sesq}(V, V)$.

Die Matrix

wie bei

$$A = \mathcal{M}_{B_{v}^{w}}^{B_{v}}(\theta) = (\theta(v_{i}, v_{j}))_{i,j=1}^{n} \in \mathbb{C}^{n \times n}$$
 Bilines -

heißt die Darstellungsmatrix der Sesquilinearform θ bzgl. der Basis B_V .

$$\theta(u,v) = \frac{\alpha^{H} A \beta}{\alpha^{H} \beta}$$

$$\log f \alpha \qquad \log f \beta$$

Konjugiert transponierte Matrix

Definition 35.10

Es sei $A \in \mathbb{C}^{n \times m}$, $n, m \in \mathbb{N}_0$.

Die konjugiert transponierte Matrix oder hermitesch transponierte Matrix zu $A = (a_{ii})$ ist die Matrix mit den Einträgen $\overline{a_{ii}}$.

Wir bezeichnen sie mit $\overline{A}^{\mathsf{T}}$ oder kurz: $\overline{A}^{\mathsf{H}} \in \mathbb{C}^{m \times n}$.

Rechenregeln für die konjugierte Transposition

Lemma 35.11

Für $A, B \in \mathbb{C}^{n \times m}$ und $C \in \mathbb{C}^{m \times \ell}$, $n, m, \ell \in \mathbb{N}_0$, und $\alpha \in \mathbb{C}$ gelten die folgenden Eigenschaften:

$$(A^{\rm H})^{\rm H}=A$$
 involutorich $(A+B)^{\rm H}=A^{\rm H}+B^{\rm H}$ addition of anti-homogen of anti-homogen $(AC)^{\rm H}=C^{\rm H}A^{\rm H}$

Hermitesche und schiefhermitesche Matrizen

Definition 35.12

Es $A \in \mathbb{C}^{n \times n}$, $n \in \mathbb{N}_0$.

- **1** A heißt hermitesch, wenn $A = A^H$ gilt.
- ② A heißt antihermitesch oder schiefhermitesch, wenn $A = -A^H$ gilt.

Die Menge der hermiteschen bzw. schiefhermiteschen $n \times n$ -Matrizen bezeichnen wir mit $\mathbb{C}_{\text{herm}}^{n \times n}$ bzw. $\mathbb{C}_{\text{skew}}^{n \times n}$.

Sesquilinearform

Beispiel 35.13

Für jede Matrix $A \in \mathbb{C}^{n \times n}$ ist die Abbildung

$$\theta_A\colon \mathbb{C}^n\times\mathbb{C}^n\ni (x,y)\mapsto x^\mathsf{H}A\,y\in\mathbb{C}$$
 eine Sesquilinearform auf \mathbb{C}^n .

Da homiterds can A homiterds

A ist die Darstellungsmatrix von θ_A bzgl. der Standardbasis (e_1, \dots, e_n) von \mathbb{C}^n .

Transform. der Darstellungsmatrix einer Sesquilinearform

Satz 35.14

Es sei V ein endlich-dimensionaler komplexer Vektorraum. Weiter seien B_V und \widehat{B}_V Basen von V.

Dann gilt für die Darstellungsmatrix einer Sesquilinearform $\theta \colon V \times V \to K$:

$$\mathcal{M}_{\widehat{\mathcal{B}}_{\boldsymbol{\mathcal{V}}}^{\boldsymbol{\mathcal{R}}}}^{\widehat{\mathcal{B}}_{\boldsymbol{\mathcal{V}}}}(\boldsymbol{\theta}) = \overline{\mathcal{T}_{\widehat{\mathcal{B}}_{\boldsymbol{\mathcal{V}}}^{\boldsymbol{\mathcal{V}}}}^{\mathcal{B}_{\boldsymbol{\mathcal{V}}}^*}} \, \mathcal{M}_{\mathcal{B}_{\boldsymbol{\mathcal{V}}}^*}^{\mathcal{B}_{\boldsymbol{\mathcal{V}}}}(\boldsymbol{\theta}) \, \mathcal{T}_{\mathcal{B}_{\boldsymbol{\mathcal{V}}}}^{\widehat{\mathcal{B}}_{\boldsymbol{\mathcal{V}}}}.$$

Hermitesche Kongruenztransformation

Definition 35.15

Zwei Matrizen $A, \widehat{A} \in \mathbb{C}^{n \times n}$, $n \in \mathbb{N}_0$, heißen hermitesch kongruent, wenn es eine invertierbare Matrix $T \in \mathbb{C}^{n \times n}$ gibt, sodass gilt:

$$\widehat{A} = T^{-H}A T^{-1}$$
.

Der Übergang von A zu $T^{-H}AT^{-1}$ heißt auch eine hermitesche Kongruenztransformation von A.

Cauchy-Schwarz-Ungleichung

Satz 35.17

Es sei (V, θ) ein unitärer Raum. Dann gilt:

$$\theta(u,v)\,\overline{\theta(u,v)} = |\theta(u,v)|^2 \leqslant \theta(u,u)\,\theta(v,v)$$
 für alle $u,v\in V$.
$$\mathcal{O}(u,v) = |\theta(u,v)|^2 \leqslant \frac{\theta(u,u)\,\theta(v,v)}{\theta(u,v)}$$

Gleichheit gilt genau dann, wenn (u, v) linear abhängig ist.

Norm auf einem komplexen Vektorraum

Definition 35.18

Es sei V ein Vektorraum über \mathbb{C} .

1 Eine Abbildung $\|\cdot\|:V\to\mathbb{R}$ heißt eine Norm auf V, wenn gilt:

$$\begin{split} \|u\| \geqslant 0 \quad \text{und} \quad \|u\| = 0 \ \Rightarrow \ u = 0 \quad \text{positive Definitheit} \\ \|\alpha \, u\| = |\alpha| \, \|u\| \quad \quad \text{absolute Homogenit\"at} \\ \|u + v\| \leqslant \|u\| + \|v\| \quad \quad \text{Dreiecksungleichung} \end{split}$$

für alle $u, v \in V$ und alle $\alpha \in \mathbb{C}$.

② Das Paar $(V, \|\cdot\|)$ heißt ein normierter komplexer Vektorraum.

Jedes Innenprodukt induziert eine Norm

Satz 35.19

Es sei (V, θ) ein unitärer Raum. Dann definiert

$$\|\cdot\|_{\theta} \colon V \ni u \mapsto \|u\|_{\theta} \coloneqq \sqrt{\theta(u,u)} \in \mathbb{R}_{\geqslant 0}$$

eine Norm auf V.

Jedes Innenprodukt induziert eine Norm

Beispiel 35.20

lacksquare Das Standardinnenprodukt auf \mathbb{C}^n

$$\theta_I \colon \mathbb{C}^n \times \mathbb{C}^n \ni (x, y) \mapsto x^{\mathsf{H}} y = \sum_{i=1}^n \overline{x_i} \, y_i \in \mathbb{C}$$

induziert die Norm (hier quadradiert)

$$||x||^2 := \sum_{i=1}^n \overline{x_i} x_i = \sum_{i=1}^n |x_i|^2,$$

die manchmal die **Standardnorm** auf \mathbb{C}^n genannt wird.

Jedes Innenprodukt induziert eine Norm

Beispiel 35.20

2 Die vom Frobenius-Innenprodukt auf $\mathbb{C}^{n\times m}$

$$\theta(A, B) := \operatorname{trace}(A^{\mathsf{H}}B)$$

induzierte Norm ist (hier quadradiert)

$$||A||_F^2 := \operatorname{trace}(A^H A) = \sum_{i=1}^m \sum_{j=1}^m \overline{a_{ij}} \, a_{ij} = \sum_{i=1}^m \sum_{j=1}^m |a_{ij}|^2,$$

genannt die Frobenius-Norm auf $\mathbb{C}^{n\times m}$.

Homomorphismen unitärer Räume

Definition 35.29

Es seien (V, θ_1) und (W, θ_2) zwei unitäre Räume.

Eine Abbildung $f: V \to W$ heißt unitär oder eine (lineare) Isometrie bzgl. (θ_1, θ_2) , wenn f ein Homormophismus der unitären Räume $(V, \theta_1) \to (W, \theta_2)$ ist, wenn also gilt:

f ist linear

$$\theta_2(f(u), f(v)) = \theta_1(u, v)$$
 für alle $u, v \in V$.

Statt unitär bzgl. (θ_1, θ_2) sagen wir auch kurz (θ_1, θ_2) -unitär.

Charakterisierung unitärer Abbildungen

Satz 35.30

Es seien (V, θ_1) und (W, θ_2) zwei unitäre Räume und $f \in \text{Hom}(V, W)$. Dann sind äquivalent:

- f ist (θ_1, θ_2) -unitär.
- ② $||f(v)||_{\theta_2} = ||v||_{\theta_1}$ für alle $v \in V$, d. h., f ist längentreu.
- **3** $||f(v_1) f(v_2)||_{\theta_2} = ||v_1 v_2||_{\theta_1}$ für alle $v_1, v_2 \in V$, d. h., f ist abstandstreu.
- ② Ist $(v_i)_{i \in I}$ eine orthonormale Familie in (V, θ_1) , dann ist auch $(f(v_i))_{i \in I}$ eine orthonormale Familie in (W, θ_2) .
- **5** Ist v ein Einheitsvektor in (V, θ_1) , dann ist f(v) ein Einheitsvektor in (W, θ_2) .

Unitarität in Darstellungsmatrizen: Homomorphismen

Lemma 35.34

Es seien (V, θ_1) und (W, θ_2) zwei endlich-dimensionale unitäre Räume mit Basen B_V bzw. B_W . Weiter seien $f \in \text{Hom}(V, W)$ und

$$\bullet \ M_1 := \mathcal{M}_{B_V^*}^{B_V}(\theta_1)$$

$$\bullet \ A = \mathcal{M}_{B_W}^{B_V}(f)$$

$$\bullet \ M_2 := \mathcal{M}_{B_W^*}^{B_W}(\theta_2)$$

Dann sind äquivalent:

- f ist (θ_1, θ_2) -unitär.
- ② Die Darstellungsmatrix A erfüllt $A^H M_2 A = M_1$.

Unitarität in Darstellungsmatrizen: Endomorphismen

Folgerung 35.35

Es sei (V, θ) ein endlich-dimensionaler unitärer Raum mit Basis B_V . Weiter seien $f \in \text{End}(V)$ und

•
$$M := \mathcal{M}_{B_{V}^{*}}^{B_{V}}(\theta)$$

$$\bullet \ A = \mathcal{M}_{B_V}^{B_V}(f)$$

Dann sind äquivalent:

- **1** f ist θ -unitär.
- ② Die Darstellungsmatrix A erfüllt $A^H M A = M$.

Unitäre Matrizen

Definition 35.36

• Es seien $m, n \in \mathbb{N}_0$, $M_1 \in \mathbb{C}^{m \times m}$ und $M_2 \in \mathbb{C}^{n \times n}$ hermitesch und positiv definit.

Eine Matrix $A \in \mathbb{C}^{n \times m}$ heißt (M_1, M_2) -unitär im Fall

$$A^{\mathsf{H}} M_2 A = M_1$$
.

② Es sei $n \in \mathbb{N}_0$ und $M \in \mathbb{C}^{n \times n}$ hermitesch und positiv definit.

Eine Matrix $A \in \mathbb{C}^n$ heißt M-unitär im Fall

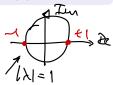
$$A^{\mathsf{H}}MA=M.$$

Eigenwerte unitärer Endomorphismen

Lemma 35.38

Es sei (V, θ) ein unitärer Raum.

Ist $f \in \text{End}(V)$ θ -unitär, dann gilt $|\lambda| = 1$ für alle $\lambda \in \Lambda(f)$.



Unitäre Endomorphismen bilden eine Gruppe

Lemma 35.39

Es sei (V, θ) ein endlich-dimensionaler unitärer Raum. Dann gilt:

• Die θ -unitären Endomorphismen von (V, θ) bilden eine Gruppe bzgl. der Komposition, genannt die **unitäre Gruppe** des unitären Raumes (V, θ) :

$$U(V, \theta) := \{ f \in End(V) | f \text{ ist } \theta\text{-unit\"ar} \}.$$

② Die θ -unitären Endomorphismen $f \in U(V, \theta)$ mit $\det(f) = 1$ bilden einen Normalteiler von $U(V, \theta)$, genannt die spezielle unitäre Gruppe des unitären Raumes (V, θ) :

$$\mathsf{SU}(V,\theta) := \{ f \in \mathsf{U}(V,\theta) \mid \mathsf{det}(f) = 1 \}.$$

Unitäre (Darstellungs)matrizen bilden eine Gruppe

Folgerung 35.40

Es sei $M \in \mathbb{C}^{n \times n}$ hermitesch und positiv definit. Dann gilt

1 Die M-unitären Matrizen in $\mathbb{C}^{n\times n}$ bilden eine Gruppe bzgl. der Matrix-Multiplikation, genannt die unitäre Gruppe des Euklidischen Raumes (\mathbb{C}^n, γ_M):

unitaren

$$\mathsf{U}(\mathbb{C}^n, \mathcal{J}_M) := \{ A \in \mathbb{C}^{n \times n} \mid A \text{ ist } M\text{-unitar} \}.$$

② Die *M*-unitären Matrizen $A \in \mathbb{C}^{n \times n}$ mit det(A) = 1 bilden einen Normalteiler von $U(\mathbb{C}^n, \gamma_M)$, genannt die spezielle unitäre **Gruppe** des Euklidischen Raumes (\mathbb{C}^n , \mathbb{A}^n):

$$\Theta_{\mathsf{H}}$$
 $\mathsf{SU}(\mathbb{C}^n, \gamma_{\mathsf{M}}) := \{A \in \mathsf{U}(\mathbb{C}^n, \gamma_{\mathsf{M}}^{\mathsf{M}}) \mid \mathsf{det}(A) = 1\}.$

Darstellungssatz von Riesz

Satz 35.42

unitato

Es sei (V, θ) ein endlich-dimensionaler Euklidischer Raum.

Dann ist Riesz-Isomorphismus von V nach V^*

$$\Theta \colon V \ni u \mapsto \theta(u, \cdot) \in V^*$$

ein antilinearer Isomorphismus.

Wird V^* mit dem Innenprodukt θ^{-1} ausgestattet, dann ist $\Theta\colon (V,\theta) \to (V^*,\theta^{-1})$ eine bijektive Isometrie. Es gilt

$$\theta(u, v) = \langle \Theta(u), v \rangle = \overline{\langle \Theta(v), u \rangle} = \theta^{-1} (\Theta(u), \Theta(v))$$

für alle $u, v \in V$.

Rieszscher Darstellungssatz für (\mathbb{C}^n, θ_M)

Folgerung 35.44

Es sei $n \in \mathbb{N}_0$ und $M \in \mathbb{C}^{n \times n}$ hermitesch und positiv definit.

Dann ist die Abbildung

$$\Theta \colon \mathbb{C}^n \ni x \mapsto (\underbrace{M \, x^{\mathsf{H}}})^{\mathsf{T}} = M^{\mathsf{T}} \, \overline{x} \in (\mathbb{C}^n)^*$$

eine bijektive antilineare Isometrie der Euklidischen Räume (\mathbb{C}^n, θ_M) und $((\mathbb{C}^n)^*, \theta_{M^{-1}})$.

Es gilt

$$x^{\mathsf{H}} M y = (x^{\mathsf{H}} M) y = \overline{(y^{\mathsf{H}} M) x} = (x^{\mathsf{H}} M) M^{-1} (M y)$$

für alle $x, y \in \mathbb{C}^n$.

Adjungierter Homomorphismus

Definition 35.47

Es seien (V, θ_1) und (W, θ_2) zwei endlich-dimensionale unitäre Räume.

Weiter sei $f \in \text{Hom}(V, W)$ eine lineare Abbildung. Dann heißt

$$f^\circ := \Theta_{V \to V^*}^{-1} \circ f^* \circ \Theta_{W \to W^*} \colon W \to V$$

der zu $f(\theta_1, \theta_2)$ -adjungierte Homomorphismus.

Die Definition lautet ausgeschrieben:

$$\theta_2(w, f(v)) = \theta_1(f^{\circ}(w), v)$$

$$(V,\theta_1) \xleftarrow{f^{\circ}} (W,\theta_2)$$
 antilinear $\Theta_{V \to V^*} \downarrow \underbrace{\downarrow \Theta_{W \to W^*}} (V^*,\theta_1^{-1}) \xleftarrow{f^*} (W^*,\theta_2^{-1})$

Darstellungsmatrizen adjungierter Homomorphismen

Satz 35.49

Es seien (V, θ_1) und (W, θ_2) zwei endlich-dimensionale unitäre Räume mit Basen B_V und B_W . Weiter seien $f \in \text{Hom}(V, W)$ und

$$\bullet \ M_1 \coloneqq \mathcal{M}_{B_V^*}^{B_V}(\theta_1)$$

$$\bullet \ A = \mathcal{M}_{B_W}^{B_V}(f)$$

•
$$M_2 := \mathcal{M}_{B_w^*}^{B_W}(\theta_2)$$

Dann gilt für die Darstellungsmatrix von $f^{\circ} \in \text{Hom}(W, V)$

$$A^\circ:=\mathcal{M}^{B_W}_{B_V}(f^\circ)=M_1^{-1}A^\mathsf{H}M_2$$

Statt A^T we fine were Antilinean tat

Selbstadjungierte und normale Endomorphismen

Definition 35.53

Es sei (V, Θ) ein unitärer Raum.

- $f \in \text{End}(V)$ heißt f-selbstadjungiert, wenn $f = f^{\circ}$ gilt.
- ② $f \in \text{End}(V)$ heißt $\{f\}$ -normal, wenn $f \circ f^{\circ} = f^{\circ} \circ f$ gilt.

Selbstadjungiertheit in Darstellungsmatrizen

Lemma 35.54

Es sei (V, θ) ein unitärer Raum mit Basis B_V .

Weiter seien $f \in End(V)$ und

$$\bullet \ M \coloneqq \mathcal{M}_{B_V^*}^{B_V}(\theta)$$

$$\bullet \ A = \mathcal{M}_{B_V}^{B_V}(f)$$

Dann sind äquivalent:

- f ist θ -selbstadjungiert.
- ② Die Darstellungsmatrix A erfüllt $M^{-1}A^{?}M = A$.

Normalität in Darstellungsmatrizen

Lemma 35.55

Es sei (V, θ) ein unitärer Raum mit Basis B_V .

Weiter seien $f \in End(V)$ und

$$\bullet \ M \coloneqq \mathcal{M}_{B_V^*}^{B_V}(\theta)$$

$$\bullet \ A = \mathcal{M}_{B_V}^{B_V}(f)$$

Dann sind äquivalent:

- \bullet f ist θ -normal.
- ② Die Darstellungsmatrix A erfüllt $A \underbrace{M^{-1}A^{H}M}_{A} = \underbrace{M^{-1}A^{H}MA}_{A}$.

Unitarität, Selbstadjungiertheit, Normalität

Lemma 35.56

Es sei (V, θ) ein endlich-dimensionaler unitärer Raum.

Weiter sei $f \in End(V)$. Dann gilt:

f ist θ -selbstadjungiert f ist θ -unitär

Normale Endomorphismen induzieren Zerlegungen

orthogonale direkt

Folgerung 35.57

Es sei (V, γ) ein endlich-dimensionaler unitärer Raum.

Weiter sei $f \in \text{End}(V)$ γ -normal.

Dann gilt:

$$Kern(f^{\circ}) = Kern(f)$$

 $Bild(f^{\circ}) = Bild(f)$

und daher

$$V = \mathsf{Kern}(f) \oplus \mathsf{Bild}(f)$$

 $V = \mathsf{Kern}(f^{\circ}) \oplus \mathsf{Bild}(f^{\circ})$

Eigenwerte normaler Endomorphismen

Lemma 35.59

Es sei (V, θ) ein endlich-dimensionaler unitärer Raum.

Weiter sei $f \in \text{End}(V)$ θ -normal sowie $\lambda \in \mathbb{C}$. Dann gilt:

- **1** $\lambda \operatorname{id}_V f$ ist ebenfalls θ -normal.
- $\text{Eig}(f,\lambda) = \text{Eig}(f^{\circ},\overline{\lambda}). \quad \text{Glacke EV}; \quad \text{Ew sind learners} \\ \text{Insbesondere ist } \lambda \in \mathbb{C} \text{ genau dann ein Eigenwert von } f, \text{ wenn } \overline{f}.$

ein Eigenwert von f° ist.

Spektralsatz für *H*normale Endomorphismen

In Euld. Raumen branchku wir obges die j-Satz 35.60 Selbstadjungsetthe?

Es sei (V, θ) ein endlich-dimensionaler unitärer Raum.

Für $f \in \text{End}(V)$ sind äquivalent:

- **1** f ist θ -normal.
- ${f 2}$ f ist diagonalisierbar, und es gibt es Basis aus Eigenvektoren von f, die ${f heta}$ -orthonormal ist.

(Wir nennen f dann θ -orthogonal diagonalisierbar.)

Spektralsatz für M-normale Matrizen

Folgerung 35.62

Es sei (\mathbb{C}^n, θ_M) ein unitärer Raum, also $M \in \mathbb{C}^{n \times n}$ hermitesch und positiv definit. Weiter sei $A \in \mathbb{C}^{n \times n}$. Dann sind äquivalent:

1 A ist M-normal, erfüllt also $M^{-1}A^{H}M = A$.

10m Cn

② A ist diagonalisierbar, und es gibt eine Basis (v_1, \ldots, v_n) aus Eigenvektoren von A, die M-orthonormal ist.

Es gibt also eine invertierbare Matrix $V \in \mathbb{C}^{n \times n}$, sodass $V^{\mathsf{H}} M \ V = I$ gilt und

$$AV = V\Lambda$$

mit der Diagonalmatrix $\Lambda \in \mathbb{C}^{n \times n}$ der Eigenwerte von A und zugehörigen M-orthonormalen Eigenvektoren $V = \begin{bmatrix} v_1 & \cdots & v_n \end{bmatrix}$.