Lineare Algebra II Woche 12

01.07.2024 und 02.07.2024

Nachtrag: positive Definitheit impliziert Invertierbarkeit

Lemma 34.6 (Version für Matrizen)

Es sei $A \in \mathbb{R}^{n \times n}$ für $n \in \mathbb{N}_0$ eine (nicht notwendig symmetrische) positiv definite Matrix.

Dann ist A invertierbar, und die inverse Matrix A^{-1} ist wieder positiv definit.

Beweis.

Homomorphismen Euklidischer Räume

Definition 34.20

Es seien (V, γ_1) und (W, γ_2) zwei Euklidische Räume.

Eine Abbildung $f: V \to W$ heißt orthogonal oder eine (lineare) Isometrie bzgl. (γ_1, γ_2) , wenn f ein Homormophismus der quadratischen Räume $(V, \gamma_1) \to (W, \gamma_2)$ ist, wenn also gilt:

Charakterisierung orthogonaler Abbildungen

Satz 34.21

Es seien (V, γ_1) und (W, γ_2) zwei Euklidische Räume und $f \in \text{Hom}(V, W)$. Dann sind äquivalent:

- f ist (γ_1, γ_2) -orthogonal.
- ② $||f(v)||_{\gamma_2} = ||v||_{\gamma_1}$ für alle $v \in V$.
- $\|f(v_1) f(v_2)\|_{\gamma_2} = \|v_1 v_2\|_{\gamma_1} \text{ für alle } v_1, v_2 \in V.$
- **③** Ist $(v_i)_{i \in I}$ eine orthonormale Familie in (V, γ_1) , dann ist auch $(f(v_i))_{i \in I}$ eine orthonormale Familie in (W, γ_2) .
- **3** Ist v ein Einheitsvektor in (V, γ_1) , dann ist f(v) ein Einheitsvektor in (W, γ_2) .

Orthogonale Abbildungen sind injektiv

Lemma 34.22

Es seien (V, γ_1) und (W, γ_2) zwei Euklidische Räume.

- Ist $f \in \text{Hom}(V, W)$ eine (γ_1, γ_2) -orthogonale Abbildung, dann ist f injektiv.
- ② Gilt zusätzlich dim $(V) = \dim(W) = n \in \mathbb{N}_0$, dann ist f bijektiv und f^{-1} ebenfalls eine bijektive orthogonale Abbildung.

Beweis. Übung

Komposition orthogonaler Abbildungen

Lemma 34.23

Es seien (U, γ_1) und (V, γ_2) , (W, γ_3) Euklidische Räume. Sind

- ullet $g\colon U o V$ eine (γ_1,γ_2) -orthogonale Abbildung und
- $f: V \to W$ eine (γ_2, γ_3) -orthogonale Abbildung,

dann ist $f \circ g \colon U \to W$ eine (γ_1, γ_3) -orthogonale Abbildung.

Bijektive Isometrie in den Koordinatenraum

Lemma 34.24

Es sei (V, γ) ein Euklidischer Raum mit dim $(V) = n \in \mathbb{N}_0$. Weiter sei B_V eine Basis von V und $M := \mathcal{M}_{B_*^{\mathcal{B}_V}}^{\mathcal{B}_V}(\gamma)$ die Darstellungsmatrix von γ .

Dann ist die Abbildung

$$\Phi_{B_V}: (\mathbb{R}^n, \gamma_M) \to (V, \gamma)$$

eine bijektive Isometrie. Das heißt, für alle $u, v \in V$ gilt

Orthogonalität in Darstellungsmatrizen: Homomorphismen

Lemma 34.25

Es seien (V, γ_1) und (W, γ_2) zwei endlich-dimensionale Euklidische Räume mit Basen B_V bzw. B_W . Weiter seien $f \in \text{Hom}(V, W)$ und

$$\bullet \ \ \mathit{M}_1 \coloneqq \mathcal{M}_{B_V^*}^{\mathit{B}_V}(\gamma_1)$$

$$\bullet \ A = \mathcal{M}_{B_W}^{B_V}(f)$$

$$\bullet \ \ \mathit{M}_{2} \coloneqq \mathcal{M}_{B_{W}^{*}}^{B_{W}}(\gamma_{2})$$

Dann sind äquivalent:

- f ist (γ_1, γ_2) -orthogonal.
- ② Die Darstellungsmatrix A erfüllt $A^{T}M_{2}A = M_{1}$.

Beweis.

Orthogonalität in Darstellungsmatrizen: Endomorphismen

Folgerung 34.26

Es sei (V, γ) ein endlich-dimensionaler Euklidischer Raum mit Basis B_V . Weiter seien $f \in \text{End}(V)$ und

•
$$M := \mathcal{M}_{B_{\mathcal{V}}^*}^{B_{\mathcal{V}}}(\gamma)$$

$$\bullet \ A = \mathcal{M}_{B_V}^{B_V}(f)$$

Dann sind äquivalent:

- **1** f ist γ -orthogonal.
- ② Die Darstellungsmatrix A erfüllt $A^TMA = M$.

Orthogonale Matrizen

Definition 34.27

• Es seien $m, n \in \mathbb{N}_0$, $M_1 \in \mathbb{R}^{m \times m}$ und $M_2 \in \mathbb{R}^{n \times n}$ symmetrisch und positiv definit.

Eine Matrix $A \in \mathbb{R}^{n \times m}$ heißt (M_1, M_2) -orthogonal im Fall

$$A^{\mathsf{T}} M_2 A = M_1$$

② Es sei $n \in \mathbb{N}_0$ und $M \in \mathbb{R}^{n \times n}$ symmetrisch und positiv definit.

Eine Matrix $A \in \mathbb{R}^n$ heißt *M*-orthogonal im Fall

$$A^{\mathsf{T}}MA = M$$

Eigenwerte orthogonaler Endomorphismen

Lemma 34.29

Es sei (V, γ) ein Euklidischer Raum.

Ist $f \in \text{End}(V)$ γ -orthogonal, dann gilt $\Lambda(f) \subseteq \{\pm 1\}$.

Beweis.

Orthogonale Endomorphismen bilden eine Gruppe

Lemma 34.30

Es sei (V, γ) ein endlich-dimensionaler Euklidischer Raum. Dann gilt:

• Die γ -orthogonalen Endomorphismen von (V, γ) bilden eine Gruppe bzgl. der Komposition, genannt die **orthogonale Gruppe** des Euklidischen Raumes (V, γ) :

$$O(V, \gamma) := \{ f \in End(V) | f \text{ ist } \gamma\text{-orthogonal} \}.$$

② Die γ -orthogonalen Endomorphismen $f \in O(V, \gamma)$ mit $\det(f) = 1$ bilden einen Normalteiler von $O(V, \gamma)$, genannt die spezielle orthogonale Gruppe des Euklidischen Raumes (V, γ) :

$$SO(V, \gamma) := \{ f \in O(V, \gamma) \mid \det(f) = 1 \}.$$

Beweis. Übung

Orthogonale (Darstellungs)matrizen bilden eine Gruppe

Folgerung 34.31

Es sei $M \in \mathbb{R}^{n \times n}$ symmetrisch und positiv definit. Dann gilt:

① Die M-orthogonalen Matrizen in $\mathbb{R}^{n \times n}$ bilden eine Gruppe bzgl. der Matrix-Multiplikation, genannt die orthogonale Gruppe des Euklidischen Raumes (\mathbb{R}^n, γ_M) :

$$O(\mathbb{R}^n, \gamma_M) := \{A \in \mathbb{R}^{n \times n} \mid A \text{ ist } M\text{-orthogonal}\}.$$

② Die M-orthogonalen Matrizen $A \in \mathbb{R}^{n \times n}$ mit $\det(A) = 1$ bilden einen Normalteiler von $O(\mathbb{R}^n, \gamma_M)$, genannt die spezielle orthogonale Gruppe des Euklidischen Raumes (\mathbb{R}^n, γ_M) :

$$SO(\mathbb{R}^n, \gamma_M) := \{A \in O(\mathbb{R}^n, \gamma_M) \mid \det(A) = 1\}.$$

Orthogonale Endomorphismen und Matrizen

Beispiel 34.33

Die Matrix

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \in \mathbb{R}^{2 \times 2}$$

ist *I*-orthogonal, denn:

A ist aber nicht M-orthogonal bzgl. der Innenproduktmatrix

$$M = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$
, denn:

Orthogonale Endomorphismen und Matrizen

2 Die Drehabbildung, dargestellt durch

$$A = \begin{bmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{bmatrix} \in \mathbb{R}^{2 \times 2}$$

bzgl. der Standardbasis, ist *I*-orthogonal, denn:

Orthogonale Endomorphismen und Matrizen

3 Die Spiegelungsabbildung, dargestellt durch

$$A = \begin{bmatrix} \cos(2\alpha) & \sin(2\alpha) \\ \sin(2\alpha) & -\cos(2\alpha) \end{bmatrix} \in \mathbb{R}^{2 \times 2}$$

bzgl. der Standardbasis, ist *I*-orthogonal, denn:

Endlich-dimensionaler Vektorraum und Dualraum

Motivation

- Zwischen einem Vektorraum V und seinem Dualraum V^* gibt es auch bei endlicher Dimension keinen kanonischen Isomorphismus.
- Wenn wir jedoch ein Innenprodukt in V gewählt haben, dann induziert dieses eine bevorzugte Wahl eines solchen Isomorphimus in Γ ∈ Hom(V, V*).
- Γ ist mit den Innenprodukten γ in V und kompatibel ist, also eine lineare Isometrie.
- Dieser Isomorphismus wird der Riesz-Isomorphismus des Euklidischen Raumes (V, γ) genannt.

Darstellungssatz von Riesz

Satz 34.34

Es sei (V, γ) ein endlich-dimensionaler Euklidischer Raum.

Dann ist die Abbildung $\Gamma \colon V \ni v \mapsto \gamma(\cdot, v) \in V^*$ ein Isomorphismus.

Wird V^* mit dem Innenprodukt γ^{-1} ausgestattet, dann ist $\Gamma\colon (V,\gamma)\to (V^*,\gamma^{-1})$ eine bijektive Isometrie. Es gilt

Rieszscher Darstellungssatz für (\mathbb{R}^n, γ_M)

Folgerung 34.36

Es sei $n \in \mathbb{N}_0$ und $M \in \mathbb{R}^{n \times n}$ symmetrisch und positiv definit.

Dann ist die Abbildung

$$\Gamma \colon \mathbb{R}^n \ni x \mapsto Mx \in (\mathbb{R}^n)^*$$

eine bijektive Isometrie der Euklidischen Räume (\mathbb{R}^n, γ_M) und $((\mathbb{R}^n)^*, \gamma_{M^{-1}})$.

Es gilt

Orthogonalität dualer Homomorphismen

Satz 34.37

Es seien (V, γ_1) und (W, γ_2) zwei endlich-dimensionale Euklidische Räume derselben Dimension und $f \in \text{Hom}(V, W)$. Dann sind äquivalent:

- f ist (γ_1, γ_2) -orthogonal.
- 2 f^* ist $(\gamma_2^{-1}, \gamma_1^{-1})$ -orthogonal.

Orthogonalität dualer Endomorphismen

Folgerung 34.38

Es sei (V, γ) ein endlich-dimensionaler Euklidischer Raum und $f \in \text{End}(V)$. Dann sind äquivalent:

- **1** f ist γ -orthogonal.
- 2 f^* ist γ^{-1} -orthogonal.

Adjungierter Homomorphismus

Definition 34.39

Es seien (V, γ_1) und (W, γ_2) zwei endlich-dimensionale Euklidische Räume. Weiter sei $f \in \text{Hom}(V, W)$ eine lineare Abbildung. Dann heißt

$$f^{\circ} := \Gamma_{V \to V^*}^{-1} \circ f^* \circ \Gamma_{W \to W^*} \colon W \to V$$

der zu $f(\gamma_1, \gamma_2)$ -adjungierte Homomorphismus.

$$(V, \gamma_1) \stackrel{f^{\circ}}{\longleftarrow} (W, \gamma_2)$$

$$\Gamma_{V \to V^*} \downarrow \qquad \qquad \downarrow \Gamma_{W \to W^*}$$

$$(V^*, \gamma_1^{-1}) \stackrel{f^*}{\longleftarrow} (W^*, \gamma_2^{-1})$$

Vergleich dualer und adjungierter Homomorphismen

Es sei $f \in \text{Hom}(V, W)$.

dualer Homomorphismus

- $f^* \in \text{Hom}(W^*, V^*)$
- keine Abhängigkeit von Innenprodukten

$$\langle w^*, f(v) \rangle_{W^*,W} = \langle f^*(w^*), v \rangle_{V^*,V}$$

adjungierter Homomorphismus

- $f^{\circ} \in \operatorname{Hom}(W, V)$
- erfordert Innenprodukte in V und W

$$\gamma_2(w, f(v)) = \gamma_1(f^{\circ}(w), v)$$

Darstellungsmatrizen adjungierter Homomorphismen

Satz 34.41

Es seien (V, γ_1) und (W, γ_2) zwei endlich-dimensionale Euklidische Räume mit Basen B_V bzw. B_W . Weiter seien $f \in \text{Hom}(V, W)$ und

•
$$M_1 := \mathcal{M}_{B_V^*}^{B_V}(\gamma_1)$$

$$\bullet \ A = \mathcal{M}_{B_W}^{B_V}(f)$$

•
$$M_2 := \mathcal{M}_{B_W^*}^{B_W}(\gamma_2)$$

Dann gilt für die Darstellungsmatrix von $f^{\circ} \in \text{Hom}(W, V)$

$$A^{\circ} := \mathcal{M}_{B_V}^{B_W}(f^{\circ}) = M_1^{-1}A^{\mathsf{T}}M_2$$

Biadjungierte Abbildung

Lemma 34.42

Es seien (V, γ_1) und (W, γ_2) endlich-dimensionale Euklidische Räume.

Dann ist die (γ_1, γ_2) -biadjungierte Abbildung $f^{\circ \circ} := (f^{\circ})^{\circ}$ identisch zu f, unabhängig von den Innenprodukten γ_1 und γ_2 .

Nochmal vier fundamentale Unterräume

Es seien (V, γ_1) und (W, γ_2) endlich-dimensionale Euklidische Räume und $f \in \text{Hom}(V, W)$.

Satz 21.36

$$Bild(f^*) = Kern(f)^0 \quad \text{in } V^*$$

$$Kern(f^*) = Bild(f)^0 \quad \text{in } W^*$$

$$Bild(f) = {}^{0}Kern(f^*) \quad \text{in } W$$

$$Kern(f) = {}^{0}Bild(f^*) \quad \text{in } V$$

Satz 34.43
$$\operatorname{Bild}(f^{\circ}) = \operatorname{Kern}(f)^{\perp} \quad \text{in } V$$

$$\operatorname{Kern}(f^{\circ}) = \operatorname{Bild}(f)^{\perp} \quad \text{in } W$$

$$\operatorname{Bild}(f) = \operatorname{Kern}(f^{\circ})^{\perp} \quad \text{in } W$$

$$\operatorname{Kern}(f) = \operatorname{Bild}(f^{\circ})^{\perp} \quad \text{in } V$$

Endomorphismen induzieren orthogonale direkte Summen

Folgerung 34.44

Es sei (V, γ) ein endlich-dimensionaler Euklidischer Raum.

Weiter sei $f \in \text{End}(V)$ mit γ -adjungierter Abbildung $f^{\circ} \in \text{End}(V)$.

Dann gilt:

$$V = \mathsf{Kern}(f) \oplus \mathsf{Bild}(f^\circ)$$

$$V = \mathsf{Kern}(f^\circ) \oplus \mathsf{Bild}(f)$$

Beweis