Lineare Algebra II Woche 11

25.06.2024 und 27.06.2024

Quadratische Form

Definition 32.1

Es sei V ein Vektorraum über dem Körper K.

- \bullet $q: V \to K$ heißt eine quadratische Form auf V, wenn gilt:

 - Die Abbildung

$$\Gamma \colon V \times V \ni (u,v) \mapsto q(u+v) - q(u) - q(v) \in K$$

ist eine Bilinearform.

② Die Menge aller quadratischen Formen auf V bezeichnen wir mit $\operatorname{QF}(V)$.

Quadratische Formen bilden einen Vektorraum

Lemma 32.2

Es sei V ein Vektorraum über dem Körper K.

Dann ist QF(V) ein Unterraum des Vektorraumes $K^V = \{f : V \to K\}$ aller Abbildungen $V \to K$.

Beweis. Übung

Bilinearformen induzieren quadratische Formen

Lemma 32.3

Es sei V ein Vektorraum über dem Körper K.

Ist $\gamma \colon V \times V \to K$ eine Bilinearform auf V, dann ist

$$q_{\gamma}(u) \coloneqq \gamma(u,u)$$

eine quadratische Form auf V mit zugehörigem $\Gamma = \gamma + \gamma^*$.

Satz 32.4

Es sei V ein Vektorraum über dem Körper K mit $\operatorname{char}(K) \neq 2$.

$$q_{ullet} \colon \mathsf{Bil}_{\mathsf{sym}}(V,V)
i \gamma \mapsto q_{\gamma} \in \mathsf{QF}(V)$$

 $q_{\gamma}(u) \coloneqq \gamma(u,u)$

ist ein Isomorphismus von Vektorräumen. Die zu q_{ullet} inverse Abbildung ist

$$\gamma_{ullet} \colon \mathsf{QF}(V) \ni q \mapsto \gamma_q \in \mathsf{Bil}_{\mathsf{sym}}(V,V)$$

$$\gamma_q(u,v) := \frac{1}{2} \big(q(u+v) - q(u) - q(v) \big).$$

Satz 32.4

$$q_{ullet} \colon \mathsf{Bil}_{\mathsf{sym}}(V,V) o \mathsf{QF}(V), \quad q_{\gamma}(u) \coloneqq \gamma(u,u)$$

$$\gamma_ullet \colon \mathsf{QF}(V) o \mathsf{Bil}_{\mathsf{sym}}(V,V), \quad \gamma_q(u,v) \coloneqq rac{1}{2} ig(q(u+v) - q(u) - q(v) ig)$$

Beweis.

Satz 32.4

$$q_{ullet} \colon \mathsf{Bil}_{\mathsf{sym}}(V,V) o \mathsf{QF}(V), \quad q_{\gamma}(u) \coloneqq \gamma(u,u)$$

$$\gamma_ullet \colon \mathsf{QF}(V) o \mathsf{Bil}_{\mathsf{sym}}(V,V), \quad \gamma_q(u,v) \coloneqq rac{1}{2} ig(q(u+v) - q(u) - q(v) ig)$$

Beweis.

Beispiel 32.6

$$A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} \in \mathbb{Q}^{2 \times 2} \quad \text{und} \quad B = \begin{bmatrix} 1 & 1 \\ 1 & 3 \end{bmatrix} \in \mathbb{Q}^{2 \times 2}$$

induzieren verschiedene Bilinearformen:

$$\gamma_A(x, y) = y^T A x =$$

 $\gamma_B(x, y) = y^T B x =$

Diese jedoch induzieren dieselbe quadratische Form, nämlich

$$q(x) = \gamma_A(x, x) = \gamma_B(x, x).$$

Beispiel 32.6

② Die quadratische Form

$$q(x) = -x_1^2 - 8x_1x_2 + 5x_2^2$$

induziert die symmetrische Bilinearform

$$\gamma_q(x,y) = y^{\mathsf{T}} \left[\qquad \right] x.$$

Beispiel 32.6

3 Die Abbildung

$$f: \mathbb{Q}^2 \times \mathbb{Q}^2 \ni (x, y) \mapsto 3x_1y_1 + y_1y_2 \in \mathbb{Q}$$

ist keine Bilinearform, denn

$$f(2x, y) = 6x_1 y_1 + y_1 y_2$$

2 f(x, y) = 6x_1 y_1 + 2y_1 y_2

sind verschiedene Abbildungen.

Quadratischer Raum und Orthogonalität

Definition 33.1

1 Ist $\gamma \in \mathsf{Bil}_{\mathsf{sym}}(V,V)$ eine symmetrische Bilinearform auf V und q die zugehörige quadratische Form, dann heißt (V,γ) ein quadratischer Raum über V.

2 Zwei Vektoren $u, v \in V$ heißen orthogonal bzgl. γ , wenn $\gamma(u, v) = 0$ gilt.

3 Wir führen auch die Mengenschreibweise $E_1 \perp E_2$ für $E_1, E_2 \subseteq V$ ein. Diese bedeutet $u_1 \perp u_2$ für alle $u_1 \in E_1$ und alle $u_2 \in E_2$.

Quadratischer Raum und Orthogonalität

Definition 33.1

- **3** Eine Menge $E \subseteq V$ in V heißt **orthogonal bzgl**. γ , wenn ihre Elemente paarweise orthogonal sind, d. h., wenn gilt: $u \perp v$ für alle $u, v \in E$ mit $u \neq v$.
- **3** Eine Familie $(v_i)_{i \in I}$ in V heißt **orthogonal bzgl.** γ , wenn ihre Mitglieder paarweise orthogonal sind, d. h., wenn gilt: $v_i \perp v_j$ für alle $i, j \in I$ mit $i \neq j$.
- O Der Unterraum

$$E^{\perp} := \{ v \in V \, | \, \gamma(u, v) = 0 \text{ für alle } u \in E \}$$

heißt das orthogonale Komplement bzgl. γ der Menge $E \subseteq V$.

Quadratischer Raum und Orthogonalität

Beispiel 33.2

- **1** Es sei V ein Vektorraum über dem Körper K mit $\operatorname{char}(K) \neq 2$. Mit der Nullform γ wird (V, γ) zu einem quadratischen Raum, in dem zwei beliebige Vektoren stets orthogonal sind.
- ② In $V = \mathbb{R}^n$ erzeugt die symmetrische Bilinearform $\gamma(x, y) := y^\mathsf{T} x$ den bekannten Begriff von Orthogonalität.

Satz des Pythagoras

Satz 33.3

Es sei (V, γ) ein quadratischer Raum über K mit char $(K) \neq 2$.

Ist die Familie (v_1, \ldots, v_k) orthogonal, dann gilt

$$\gamma\left(\sum_{i=1}^k v_i, \sum_{j=1}^k v_j\right) = \sum_{i=1}^k \gamma(v_i, v_i).$$

Beweis.

$$\gamma\left(\sum_{i=1}^k v_i, \sum_{j=1}^k v_j\right) = \sum_{i=1}^k \gamma(v_i, v_i)$$

Orthogonalbasis, orthogonale direkte Summe

Definition 33.4

Es sei (V, γ) ein quadratischer Raum über K mit char $(K) \neq 2$.

- Eine Familie $B := (v_i)_{i \in I}$ von Vektoren in V heißt eine Orthogonalbasis, wenn B eine Basis von V und außerdem orthogonal bzgl. γ ist.
- ② Es sei $(U_i)_{i \in I}$ eine nichtleere Familie von Unterräumen von V. Die Summe $\sum_{i \in I} U_i = \left\langle \bigcup_{i \in I} U_i \right\rangle$ dieser Familie heißt eine **orthogonale direkte Summe**, wenn die Summe direkt ist und $U_i \perp U_j$ gilt für alle $i, j \in I$ mit $i \neq j$.

Wir schreiben für eine orthogonale direkte Summe auch $\bigoplus_{i\in I} U_i$.

Orthogonale direkte Summe, Orthogonalbasis

Satz 33.5

Es sei (V, γ) ein quadratischer Raum über K mit char $(K) \neq 2$.

- Ist B eine Orthogonalbasis von V und $(B_i)_{i\in I}$ eine Partition von B mit nichtleerer Indexmenge I, dann gilt $V = \bigoplus_{i\in I} \langle B_i \rangle$.
- ② Ist $(U_i)_{i \in I}$ eine nichtleere Familie von Unterräumen von V mit Orthogonalbasen B_i , $i \in I$, und gilt $V = \bigoplus_{i \in I} U_i$, so ist $\bigcup_{i \in I} B_i$ eine Orthogonalbasis von V.

Orthogonalbasen und diagonale Darstellungsmatrizen

Lemma 33.7

Es sei (V, γ) ein quadratischer Raum über K mit char $(K) \neq 2$.

Für eine Basis B_V von V sind äquivalent:

- $oldsymbol{0}$ B_V ist eine Orthogonalbasis von V.
- ② Die Darstellungsmatrix $\mathcal{M}_{B_{V}^{*}}^{B_{V}}(\gamma)$ ist diagonal.

Homomorphismus quadratischer Räume

Definition 33.8

Es seien (V, γ_1) und (W, γ_2) quadratische Räume über K mit char $(K) \neq 2$.

• Eine Abbildung $f: V \to W$ heißt ein Homomorphismus quadratischer Räume von (V, γ_1) in (W, γ_2) , wenn gilt:

$$f$$
 ist linear $\gamma_2(f(u),f(v))=\gamma_1(u,v)$ für alle $u,v\in V$

② Ist $f: V \to W$ bijektiv, so heißt f auch ein Isomorphismus quadratischer Räume. (V, γ_1) und (W, γ_2) heißen dann auch zueinander isomorphe quadratische Räume.

Inverse eines Isomorphismus quadratischer Räume

Lemma 33.9

Es seien (V, γ_1) und (W, γ_2) quadratische Räume über K mit $\mathrm{char}(K) \neq 2$.

Ist $f: V \to W$ ein Isomorphismus quadratischer Räume, dann auch f^{-1} . Außerdem gilt $Rang(\gamma_1) = Rang(\gamma_2)$.

Beweis. Übung

Normalform symmetrischer Bilinearformen

Satz 33.10

Es sei (V, γ) ein endlich-dimensionaler quadratischer Raum über K mit char $(K) \neq 2$. Dann gilt:

- V besitzt eine Orthogonalbasis B_V . In dieser ist die Darstellungsmatrix $\mathcal{M}_{B_v^*}^{B_V}(\gamma)$ diagonal.
- ② Die Basis B_V kann so gewählt werden, dass die Darstellungsmatrix die folgende Gestalt hat:

Normalform symmetrischer BLF in reellen Vektorräumen

Satz 33.13

Es sei (V, γ) ein endlich-dimensionaler quadratischer Raum über \mathbb{R} . Dann gilt: V besitzt eine Orthogonalbasis B_V , bzgl. der die Darstellungsmatrix die Gestalt

$$\mathcal{M}_{\mathcal{B}_{V}^{*}}^{\mathcal{B}_{V}}(\gamma) = \begin{bmatrix} I_{n_{+}} & & & \\ & -I_{n_{-}} & & \\ & & 0_{n_{0}} \end{bmatrix}$$

hat. Dabei ist die **Signatur** (n_+, n_-, n_0) eindeutig bestimmt.

Trägheitssatz von Sylvester

Satz 33.14

Weiter sei $A \in \mathbb{R}^{n \times n}$, $n \in \mathbb{N}_0$. Dann gibt es eine reguläre Matrix $T \in K^{n \times n}$, sodass $T^{-\mathsf{T}}AT^{-1}$ eine Diagonalmatrix der Gestalt

$$\begin{bmatrix} I_{n_+} & & & \\ & -I_{n_-} & & \\ & & 0_{n_0} \end{bmatrix}$$

ist. Die Anzahl der Diagonaleinträge, die gleich +1, -1 oder 0 sind, also die Signatur der durch A induzierten Bilinearform γ_A , ist durch A eindeutig festgelegt.

Normalform symmetrischer BLF in komplexen Vektorräumen

Satz 33.16

Es sei (V, γ) ein endlich-dimensionaler quadratischer Raum über \mathbb{C} .

Dann gilt: V besitzt eine Orthogonalbasis B_V , bzgl. der die

Darstellungsmatrix die Gestalt

$$\mathcal{M}_{\mathcal{B}_{V}^{*}}^{\mathcal{B}_{V}}(\gamma) = \begin{bmatrix} I_{r} \\ 0 \end{bmatrix}$$

hat.

Definitheit und Indefinitheit von Bilinearformen

Definition 34.1

Es sei (V, γ) ein quadratischer Raum über \mathbb{R} .

Eine Bilinearform $\gamma \in Bil(V, V)$ heißt

- **1** positiv definit, wenn $\gamma(v, v) > 0$ gilt für alle $v \in V \setminus \{0\}$.
- **2** positiv semidefinit, wenn $\gamma(v, v) \ge 0$ gilt für alle $v \in V$.
- **3** negativ definit, wenn $\gamma(v, v) < 0$ gilt für alle $v \in V \setminus \{0\}$.
- **1** negativ semidefinit, wenn $\gamma(v, v) \leq 0$ gilt für alle $v \in V$.
- **3** indefinit, wenn γ weder positiv semi-definit noch negativ semi-definit ist, wenn es also Vektoren $v_1, v_2 \in V$ gibt mit $\gamma(v_1, v_1) > 0$ und $\gamma(v_2, v_2) < 0$.

Innenprodukt, Euklidischer Raum

Definition 34.3

Es sei (V, γ) ein quadratischer Raum über \mathbb{R} .

Die symmetrische Bilinearform γ heißt ein Innenprodukt auf V, wenn γ positiv definit ist.

In diesem Fall heißt (V, γ) auch ein reeller Innenproduktraum oder Euklidischer Raum.

Innenprodukt, Euklidischer Raum

Beispiel 34.5

$$\gamma \colon \mathbb{R}^n \times \mathbb{R}^n \ni (x, y) \mapsto y^\mathsf{T} x = \sum_{i=1}^n x_i \, y_i \in \mathbb{R}$$

heißt das Standardinnenprodukt auf K^n .

Innenprodukt, Euklidischer Raum

Beispiel 34.5

Für

$$A = \begin{bmatrix} 1 & -2 \\ -2 & 1 \end{bmatrix} \in \mathbb{R}^{2 \times 2}$$

und die induzierte Bilinearform γ_A gilt

$$\gamma(e_1,e_1) = \gamma(e_2,e_2) = ,$$

aber

$$\gamma\left(\begin{pmatrix}1\\1\end{pmatrix},\begin{pmatrix}1\\1\end{pmatrix}\right) = \begin{pmatrix}1\\1\end{pmatrix}^{\mathsf{T}} \begin{bmatrix}1 & -2\\-2 & 1\end{bmatrix} \begin{pmatrix}1\\1\end{pmatrix} =$$

Orthogonalität impliziert lineare Unabhängigkeit

Lemma 34.7

Es sei (V, γ) ein Euklidischer Raum.

Ist (v_1, \ldots, v_k) eine orthogonale Familie von Vektoren in $V \setminus \{0\}$, $k \in \mathbb{N}_0$, dann ist (v_1, \ldots, v_k) linear unabhängig.

Beweis.

Cauchy-Schwarz-Ungleichung

Satz 34.8

Es sei (V, γ) ein Euklidischer Raum. Dann gilt:

$$\gamma(u,v)^2 \leqslant \gamma(u,u) \gamma(v,v)$$

für alle $u, v \in V$.

Gleichheit gilt genau dann, wenn (u, v) linear abhängig ist.

Norm auf einem reellen Vektorraum

Definition 34.10

Es sei V ein Vektorraum über \mathbb{R} .

1 Eine Abbildung $\|\cdot\|: V \to \mathbb{R}$ heißt eine Norm auf V, wenn gilt:

$$\begin{split} \|u\| \geqslant 0 \quad \text{und} \quad \|u\| = 0 \ \Rightarrow \ u = 0 \quad \text{positive Definitheit} \\ \|\alpha \, u\| = |\alpha| \, \|u\| \quad \quad \text{absolute Homogenit\"{a}t} \\ \|u + v\| \leqslant \|u\| + \|v\| \quad \quad \text{Dreiecksungleichung} \end{split}$$

für alle $u, v \in V$ und alle $\alpha \in \mathbb{R}$.

② Das Paar $(V, \|\cdot\|)$ heißt ein normierter reeller Vektorraum.

Jedes Innenprodukt induziert eine Norm

Satz 34.11

Es sei (V, γ) ein Euklidischer Raum. Dann definiert

$$\|\cdot\|_{\gamma} \colon V \ni u \mapsto \|u\|_{\gamma} \coloneqq \sqrt{\gamma(u,u)} \in \mathbb{R}$$

eine Norm auf V.

Beweis.

Satz des Pythagoras

Satz 34.12

Es sei (V, γ) ein Euklidischer Raum. Ist die Familie (v_1, \dots, v_k) orthogonal, dann gilt

$$\left\| \sum_{i=1}^k v_i \right\|^2 = \sum_{i=1}^k \|v_i\|^2.$$

Normierter Vektor, orthonormale Familie, Orthonormalbasis

Definition 34.13

Es sei (V, γ) ein Euklidischer Raum mit Norm $\|\cdot\|$.

- Ein Vektor $u \in V$ heißt ein normierter Vektor oder Einheitsvektor, wenn ||u|| = 1 gilt.
- ② Eine Menge $E \subseteq V$ in V heißt orthonormal bzgl. γ , wenn die Menge orthogonal ist und alle Elemente normiert sind.
- **3** Eine Familie $(v_i)_{i \in I}$ in V heißt orthonormal bzgl. γ , wenn die Familie orthogonal ist und alle ihre Mitglieder normiert sind.
- **4** Eine Familie $B := (v_i)_{i \in I}$ in V heißt eine **Orthonormalbasis**, wenn B eine Basis von V und außerdem orthonormal bzgl. γ ist.

Normalform von Innenprodukten

Satz 34.14

Es sei (V, γ) ein endlich-dimensionaler Euklidischer Raum.

Dann gilt: V besitzt eine Orthonormalbasis B_V .

Die Darstellungsmatrix erfüllt daher

Orthogonale Projektion auf einen Vektor

Definition 34.15

Es sei (V, γ) ein Euklidischer Raum und $u \in V$, $u \neq 0$.

Dann ist durch

$$\operatorname{proj}_{u}^{\gamma} \colon V \ni \mathbf{v} \mapsto \operatorname{proj}_{u}^{\gamma}(\mathbf{v}) \coloneqq \frac{\gamma(\mathbf{v}, u)}{\|u\|^{2}} u \in V$$

die orthogonale Projektion bzgl. γ auf $\langle u \rangle$ definiert.

Eigenschaften der orthogonalen Projektion

Lemma 34.16

Es sei (V, γ) ein Euklidischer Raum und $u \in V$, $u \neq 0$. Dann gilt:

0

$$\mathsf{proj}_u^\gamma \colon V \ni {\color{red} \mathbf{v}} \mapsto \mathsf{proj}_u^\gamma({\color{red} \mathbf{v}}) \coloneqq \frac{\gamma({\color{red} \mathbf{v}},u)}{\|u\|^2} \, u \in V$$

definiert eine Projektion.

② Es gilt $V = \text{Bild}(\text{proj}_u^{\gamma}) \oplus \text{Kern}(\text{proj}_u^{\gamma}).$

Jedes
$$v \in V$$
 besitzt also eine eindeutige Zerlegung

$$v = u_{\parallel} + u_{\perp} \quad \text{mit} \quad u_{\parallel} \in \langle u \rangle \quad \text{und} \quad u_{\perp} \in \langle u \rangle^{\perp}.$$

Gram-Schmidt-Verfahren

Algorithmus 34.17

Eingabe: K Körper mit char $(K) \neq 2$ **Eingabe**: V ein Vektorraum über K

Eingabe: γ ein Innenprodukt auf V

Eingabe: linear unabhängige Familie (v_1, \ldots, v_k) in V

Ausgabe: orthogonale Familie mit $\langle u_1, \ldots, u_k \rangle = \langle v_1, \ldots, v_k \rangle$

- 1: for $j = 1, \ldots, k$ do
- 2: Setze $u_j \leftarrow v_j \sum_{i=1}^{j-1} \frac{\gamma(v_j, u_i)}{\alpha_i} u_i$
- 3: Bestimme $\alpha_j := ||u_j||^2$
- 4: end for
- 5: **return** (u_1, \ldots, u_k)

Gram-Schmidt-Verfahren

Satz 34.19

Es sei (V, γ) ein Euklidischer Raum.

Ist (u_1, \ldots, u_k) eine linear unabhängige Familie in V, dann liefert das Gram-Schmidt-Verfahren eine orthogonale Familie (v_1, \ldots, v_k) von V mit der Eigenschaft $\langle v_1, \ldots, v_j \rangle = \langle u_1, \ldots, u_j \rangle$ für alle $j = 1, \ldots, k$.

Beweis. Übung