Lineare Algebra II Woche 07

27.05.2024 und 28.05.2024

Eigenwerte eines Endomorphismus bzw. einer Matrix

Lemma 24.10

Es sei V ein Vektorraum über dem Körper K mit dim $(V) = n \in \mathbb{N}_0$. Weiter sei $f \in \text{End}(V)$ und $\lambda \in K$. Dann sind äquivalent:

- **1** λ ist ein Eigenwert von f.

Beweis.

Lemma 24.11

Es sei K ein Körper, $A \in K^{n \times n}$ und $\lambda \in K$. Dann sind äquivalent:

- **1** λ ist ein Eigenwert von A.

Der Ausdruck $det(\lambda I - A)$

Beispiel

• Was ist
$$\det(\lambda I - A)$$
 für $A = \begin{bmatrix} 2 & 1 \\ -1 & -3 \end{bmatrix} \in \mathbb{R}^{2 \times 2}$?

Was ist $\det(\lambda I - A)$ für $A = \begin{bmatrix} 2 & 1 \\ -1 & -3 \end{bmatrix} \in \mathbb{Z}_5^{2 \times 2}$?

Charakteristisches Polynom einer Matrix

Definition 24.12

Es sei K ein Körper und $A \in K^{n \times n}$ für $n \in \mathbb{N}_0$.

$$\det(\lambda I - A)$$

heißt das charakteristische Polynom der Matrix A, geschrieben χ_A .

Lemma 24.13

Es sei K ein Körper und $A \in K^{n \times n}$ für $n \in \mathbb{N}_0$. Dann sind äquivalent:

- **1** $\lambda \in K$ ist ein Eigenwert von A.
- ② $\lambda \in K$ ist eine Nullstelle des charakteristischen Polynoms χ_A .

Algebraische Vielfachheit eines Eigenwertes

Definition 24.14

Es sei K ein Körper und $A \in K^{n \times n}$ für $n \in \mathbb{N}_0$.

Die Zahlen $n_i \in \mathbb{N}$ heißen die algebraischen Vielfachheiten der Eigenwerte $\lambda_1, \ldots, \lambda_s$ von A. Wir schreiben $\mu^{alg}(A, \lambda_i) = n_i$.

Lemma 24.15

Für die alg. Vielfachheit $\mu^{\mathrm{alg}}(A,\lambda_i)$ eines Eigenwertes λ_i von A gilt

$$\mu^{\mathsf{alg}}(A, \lambda_i) = \max\{k \in \mathbb{N} \, | \, (\lambda - \lambda_i)^k \, | \, \chi_A\}.$$

Charakteristisches Polynom einer Matrix

Beispiel 24.16

Die Darstellungsmatrix der Spiegelungsabbildung

$$A = \begin{bmatrix} \cos^2(\alpha) - \sin^2(\alpha) & 2\cos(\alpha)\sin(\alpha) \\ 2\cos(\alpha)\sin(\alpha) & \sin^2(\alpha) - \cos^2(\alpha) \end{bmatrix} = \begin{bmatrix} \cos(2\alpha) & \sin(2\alpha) \\ \sin(2\alpha) & -\cos(2\alpha) \end{bmatrix}$$

besitzt das charakteristische Polynom

$$\chi_A = \det \begin{pmatrix} \lambda - \cos(2\alpha) & -\sin(2\alpha) \\ -\sin(2\alpha) & \lambda + \cos(2\alpha) \end{pmatrix}$$

Charakteristisches Polynom einer Matrix

Beispiel 24.16

2 Die Darstellungsmatrix der Drehabbildung

$$A = \begin{bmatrix} \cos(\alpha) & \sin(\alpha) \\ -\sin(\alpha) & \cos(\alpha) \end{bmatrix}$$

besitzt das charakteristische Polynom

$$\chi_{\mathcal{A}} = \det \begin{pmatrix} \lambda - \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \lambda - \cos(\alpha) \end{pmatrix}$$
$$= (\lambda - \cos(\alpha))(\lambda - \cos(\alpha)) + \sin^{2}(\alpha)$$
$$= \lambda^{2} - 2\lambda \cos(\alpha) + 1.$$

Dürfen wir Polynome in Matrizen einsetzen?

$$\det\begin{pmatrix} \lambda-2 & -1 \\ 1 & \lambda+3 \end{pmatrix}$$

Dürfen wir Polynome in Matrizen einsetzen?

$$\lambda I - A = \begin{pmatrix} \lambda - 2 & -1 \\ 1 & \lambda + 3 \end{pmatrix}$$

Spur einer Matrix

Definition 24.18

Es sei K ein Körper und $A \in K^{n \times n}$ für $n \in \mathbb{N}_0$.

Die **Spur** von *A* ist definiert als

$$\mathsf{Spur}(A) \coloneqq \sum_{i=1}^n a_{ii}$$

Eigenschaften des charakteristischen Polynoms

Satz 24.19

Es sei K ein Körper und $A \in K^{n \times n}$ für $n \in \mathbb{N}_0$.

$$\chi_A = \lambda^n - \operatorname{Spur}(A) \lambda^{n-1} + \dots + (-1)^n \det(A) \lambda^0.$$

Geometrische und algebraische Vielfachheit

Satz 24.20

Es sei K ein Körper und $A \in K^{n \times n}$ für $n \in \mathbb{N}_0$.

Für jeden Eigenwert $\lambda \in K$ von A gilt

$$1 \leqslant \mu^{\mathsf{geo}}(A, \lambda) \leqslant \mu^{\mathsf{alg}}(A, \lambda).$$

Beweis.

Ähnliche Matrizen haben dasselbe charakteristische Polynom

Lemma 24.21

Es sei K ein Körper und $n \in \mathbb{N}_0$.

Sind $A, \widehat{A} \in K^{n \times n}$ ähnlich, dann gilt $\chi_A = \chi_{\widehat{A}}$.

Beweis.

Charakteristisches Polynom eines Endomorphismus

Definition 24.22

Es sei V ein endlich-dimensionaler Vektorraum über dem Körper K.

Das charakteristische Polynom eines Endomorphismus $f \in End(V)$ ist definert als

$$\chi_f := \chi_A$$

für die Darstellungsmatrix $A = \mathcal{M}_{B_V}^{B_V}(f)$ bzgl. irgendeiner Basis B_V .

Eigenwerte sind Nullstellen des charakteristischen Polynoms

Lemma 24.23

Es sei V ein endlich-dimensionaler Vektorraum über dem Körper K. Weiter sei $f \in \text{End}(V)$. Dann sind äquivalent:

- **1** $\lambda \in K$ ist ein Eigenwert von f.
- ② $\lambda \in K$ ist eine Nullstelle des charakteristischen Polynoms χ_f .

Spur eines Endomorphismus

Lemma 24.24

Es sei K ein Körper und $n \in \mathbb{N}_0$.

Sind $A, \widehat{A} \in K^{n \times n}$ ähnlich, dann gilt $Spur(A) = Spur(\widehat{A})$.

Definition 24.25

Es sei V ein endlich-dimensionaler Vektorraum über dem Körper K.

Die **Spur** eines Endomorphismus $f \in \text{End}(V)$ ist definert als

$$\operatorname{\mathsf{Spur}}(f) \coloneqq \operatorname{\mathsf{Spur}}(A)$$

für die Darstellungsmatrix $A = \mathcal{M}_{B_V}^{B_V}(f)$ bzgl. irgendeiner Basis B_V .

Notwendiges Kriterium für Diagonalisierbarkeit

Lemma 24.26

Es sei V ein Vektorraum über dem Körper K mit dim $(V) = n \in \mathbb{N}_0$.

Ist $f \in \text{End}(V)$ diagonalisierbar, dann zerfällt das charakteristische Polynom χ_f in Linearfaktoren:

$$\chi_f = (\lambda - \lambda_1)^{n_1} \cdots (\lambda - \lambda_s)^{n_s}$$

mit den paarweise verschiedenen Eigenwerten $\lambda_1, \ldots, \lambda_s \in K$ und deren algebraischen Vielfachheiten $n_1, \ldots, n_s \in \mathbb{N}$ mit $n_1 + \cdots + n_s = n$.

Mögliche Ursachen fehlender Diagonalisierbarkeit

Beispiel 24.27

Ursache 1:

 χ_A zerfällt nicht vollständig in Linearfaktoren, es gilt also

$$\chi_{\mathcal{A}} = (\lambda - \lambda_1)^{n_1} \cdots (\lambda - \lambda_s)^{n_s} \cdot q$$

Mögliche Ursachen fehlender Diagonalisierbarkeit

Beispiel 24.27

Ursache 2:

Für mind. einen Eigenwert λ_i von f gilt $\mu^{\text{geo}}(A, \lambda_i) < \mu^{\text{alg}}(A, \lambda_i)$.

Einsetzen in Polynome

Bisher haben wir in ein Polynom K[t] über einem Körper K nur Elemente von K eingesetzt:

$$p = a_n t^n + a_{n-1} t^{n-1} + \cdots + a_1 t + a_0 t^0 \in K[t]$$

$$\widetilde{p}(\)=a_n + a_{n-1} + \cdots + a_1 + a_0$$

Wir brauchen folgende Verknüpfungen:

•

•

•

Definition 25.1

Es sei $(K, +, \cdot)$ ein Körper.

Eine **Algebra** $(A, +, \cdot, \star)$ **über** K ist eine Menge A mit zwei inneren Verknüpfung $+: A \times A \to A$ und $\star: A \times A \to A$ sowie einer äußeren Verknüpfung $\cdot: K \times A \to A$, die die folgenden Bedingungen erfüllen:

- **1** $(A, +, \cdot)$ ist ein K-Vektorraum.
- $(A, +, \star)$ ist ein Ring.
- Die Verknüpfung ⋆ ist verträglich mit der S-Multiplikation:

$$(\alpha \cdot a) \star b = \alpha \cdot (a \star b) = a \star (\alpha \cdot b)$$

für alle $\alpha \in K$ und $a, b \in A$.

Definition 25.1

- Eine Algebra A heißt kommutativ, wenn * kommutativ ist.
- Eine Algebra A heißt eine Algebra mit Eins, wenn es in A ein neutrales Element bzgl. ★ gibt.

Existiert dann zu $a \in A$ bzgl. \star ein inverses Element, so bezeichnen wir dieses mit a^{-1} .

Multiplikation in einer Algebra ist bilinear

Lemma 25.2

Es sei $(A, +, \cdot, \star)$ eine Algebra über dem Körper K.

Dann ist die Multiplikation * bilinear, d. h.,

$$(\alpha a + \beta b) \star c = \alpha (a \star c) + \beta (b \star c)$$
$$a \star (\beta b + \gamma c) = \beta (a \star b) + \gamma (a \star c)$$

für alle $a, b, c \in \text{und}$ alle $\alpha, \beta, \gamma \in K$.

Beispiel 25.3

9 Für jeden Körper $(K, +, \cdot)$ ist $(K, +, \cdot, \cdot)$ eine kommutative Algebra mit Einselement 1 über sich selbst.

② Für jeden Körper $(K, +, \cdot)$ ist $(K, +, \cdot_U, \cdot)$ eine kommutative Algebra mit Einselement 1 über jedem Unterkörper $(U, +, \cdot)$.

Beispiel 25.3

3 Für jeden Körper K ist $(K^{n \times n}, +, \cdot, \cdot)$ eine Algebra über K mit Einselement I_n .

• Für jeden Körper K und K-Vektorraum $(V, +, \cdot)$ ist $(\operatorname{End}(V), +, \cdot, \circ)$ eine Algebra über K mit Einselement id $_V$.

Beispiel 25.3

5 Für jeden Körper K ist $(K[t], +, \cdot, \cdot)$ eine Algebra über K mit Einselement 1.

Beispiel 25.3

lacktriangle Für jede Menge X und Algebra $(A,+,\cdot,\star)$ über einem Körper K ist

$$A^X = \{f \colon X \to A\}$$

eine Algebra über K.

Insbesondere bildet also die Menge der Funktionen $K^X = \{f : X \to K\}$ eine kommutative Algebra mit Eins über K.

Homomorphismus von Algebren

Definition 25.5

Es seien $(A_1, +_1, \cdot_1, \star)$ und $(A_2, +_2, \cdot_2, \square)$ zwei Algebren über demselben Körper K.

• Eine Abbildung $f: A_1 \to A_2$ heißt strukturverträglich oder ein Homomorphismus von $(A_1, +_1, \cdot_1, \star)$ in $(A_2, +_2, \cdot_2, \square)$, wenn gilt:

$$f(a +_1 b) = f(a) +_2 f(b)$$
 für alle $a, b \in A_1$,
 $f(\alpha \cdot_1 a) = \alpha \cdot_2 f(a)$ für alle $\alpha \in K$ und $a \in A_1$.
 $f(a \star b) = f(a) \square f(b)$ für alle $a, b \in A_1$.

② Besitzen beide Algebren ein Einselement e_{A_1} bzw. e_{A_2} und fordern wir zusätzlich $f(e_{A_1}) = e_{A_2}$, dann nennen wir f einen Homomorphismus von Algebren mit Eins.

Homomorphismus von Algebren

Definition 25.5

3 Ist zudem $f: A_1 \to A_2$ bijektiv, so heißt f auch strukturerhaltend oder ein Isomorphismus.

In diesem Fall nennen wir $(A_1,+_1,\cdot_1,\star)$ und $(A_2,+_2,\cdot_2,\square)$ auch zueinander isomorphe Algebren und schreiben

$$(A_1,+_1,\cdot_1,\star)\cong (A_2,+_2,\cdot_2,\square).$$

③ Im Fall $(A_1, +_1, \cdot_1, \star) = (A_2, +_2, \cdot_2, \Box)$ sprechen wir von einem **Endomorphismus**.

5 Ist zudem $f: A_1 \rightarrow A_2$ bijektiv, so sprechen wir auch von einem **Automorphismus**.

Homomorphismus von Algebren

Beispiel 25.6

Es sei V ein Vektorraum über dem Körper K mit dim $(V) = n \in \mathbb{N}_0$.

Dann sind

- ullet die Algebra der Endomorphismen von V (End $(V),+,\cdot,\circ)$ und
- die Algebra der Matrizen $(K^{n \times n}, +, \cdot, \cdot)$

isomorph als Algebren mit Eins.

Einsetzungshomomorphismus

Definition 25.7

Es sei $(A, +, \cdot, \star)$ eine Algebra über dem Körper K mit Eins.

Die Abbildung

$$p = a_n t^n + a_{n-1} t^{n-1} + \cdots + a_1 t + a_0 t^0 \in K[t]$$

$$\widetilde{p}(a) = a_n a^n + a_{n-1} a^{n-1} + \cdots + a_1 a + a_0 e \in A$$

heißt der Einsetzungs- oder der Auswertungshomomorphismus zu a.

Einsetzungshomomorphismus

Lemma 25.8

Es sei $(A, +, \cdot, \star)$ eine Algebra über dem Körper K mit Eins.

Für jedes $a \in A$ ist der Einsetzungshomomorphismus $\varphi_a \colon K[t] \to A$ ein Homomorphismus von Algebren mit Eins.

Induzierte Polynomfunktion

Durch $p = \sum_{i=0}^{n} a_i t^n$ induzierte Polynomfunktion $\widetilde{p}_A : A \to A$:

$$\widetilde{p}_{A}(\mathbf{a}) := a_0 \mathbf{e} + a_1 \mathbf{a} + \cdots + a_{n-1} \mathbf{a}^{n-1} + a_n \mathbf{a}^n \in A$$

Bemerkung 25.10

Es sei $(A, +, \cdot, \star)$ eine Algebra über dem Körper K mit Eins.

Die Abbildung

$$\Phi \colon (K[t], +, \cdot, \cdot) \ni p \mapsto \widetilde{p}_A \in (A^A, +, \cdot, \star)$$

ist ein Homomorphismus zwischen zwei Algebren mit Eins.

Einsetzen in Polynome

Beispiel 25.11

• Wir betrachten die Algebra mit Eins $(K^{n \times n}, +, \cdot, \cdot)$ über einem Körper K.

Einsetzen einer Matrix $A \in K^{n \times n}$ in das Polynom $p = t^2 - 1$:

$$\widetilde{p}(A)$$

Einsetzen in Polynome

Beispiel 25.11

 $oldsymbol{eta}$ Wir betrachten die Algebra mit Eins (End $(V),+,\cdot,\circ$) über einem Körper K.

Einsetzen eines Endomorphismus einer Matrix $f \in \text{End}(V)$ in das Polynom $p = t^2 - 1$:

 $\widetilde{p}(f)$