Nachsk Woche nochmal Vorlesung Mo/Di

Lineare Algebra II Woche 03

29.04.2024 und 30.04.2024

Der Bidualraum eines Vektorraumes

Definition 21.41

Es sei V ein Vektorraum über dem Körper K mit Dualraum V^* .

Der Dualraum von V^* heißt der Bidualraum von V.

Der Bidualraum V^{**} besteht also aus Linearformen auf V^* .

Die kanonische Injektion $i_V: V \to V^{**}$

Satz 21.42

Es sei V ein Vektorraum über dem Körper K mit Dualraum V^* .

Die Abbildung

$$i_V := V \ni v \mapsto \langle \cdot \,, v \rangle \in V^{**}$$

ist ein injektiver Homomorphismus, genannt die kanonische **Injektion** von V in V^{**} .

nicht abhängig von eller Wahl der Basis

Einbetrug Beweis. Additivitat!

(i, (v,+v2))(v+) = < v*, v, +v2> = < v*, v, > + < v*, vz>

$$=(i_{V}(v_{1}))(v^{*})+(i_{V}(v_{2}))(v^{*})=(i_{V}(v_{1})+i_{V}(v_{2}))(v^{*})$$

- thomogenitat: $(iv(\alpha v))(v^*) = --- = (\alpha iv)(v^*)$ Injectivitat: $v \in \ker(iv)$, dh. $(iv(v))(v^*) = < v^*, v > = 0$ for all voev. Das height ve of = 109. D.h. is cist injection.

Die kanonische Injektion $i_V \colon V \to V^{**}$

Satz 21.42

Es sei V ein Vektorraum über dem Körper K mit Dualraum V^* .

② Ist V endlich-dimensional, dann ist i_V auch surjektiv, also ein Isomorphismus. In diesem Fall gilt $\dim(V) = \dim(V^{**})$.

Beweis. dim(V) = n = No = 0 dim(V) = n = 0 dim(V**) = n. iv: V > V** ist injectio, also nach Folgerup 10.9 and sujettà.

Bidualer Homomorphismus

Es seien V, W Vektorräume über dem Körper K und $f \in \text{Hom}(V, W)$.

• dualer Homomorphismus $f^* \in \text{Hom}(W^*, V^*)$

$$f^* \colon W^* \ni w^* \mapsto v^* \coloneqq w^* \circ f \in V^*$$

• bidualer Homomorphismus $f^{**} \in \text{Hom}(V^{**}, W^{**})$

$$f^{**} = - \circ f^* f^{**} : V^{**} \ni v^{**} \mapsto w^{**} := v^{**} \circ f^* \in W^{**}$$

for versaudelt Lineaformen auf V* in tokke auf W*.

Zusammenhang zwischen f und f^{**}

Lemma 21.44

Es seien V, W Vektorräume über dem Körper K und $f \in \text{Hom}(V, W)$.

Dann gilt

$$i_W \circ f = f^{**} \circ i_V$$
. in $Hom(V_1 \mathcal{W}^*)$

Mit anderen Worten, folgendes Diagramm kommutiert:

$$V \xrightarrow{f} W$$

$$i_{V} \downarrow \qquad \downarrow i_{W}$$

$$V^{**} \xrightarrow{f^{**}} W^{**}$$

Bilineare Abbildungen となば: (ロルの) md しいり)

$$(U_{x}V)$$
 $(u_{1},v_{1})+(u_{2},v_{2})=(u_{1}+u_{2},v_{1}+v_{2})$

Definition 22.1

Es seien U, V, W Vektorräume über dem Körper K.

Eine Abbildung

$$f: U \times V \rightarrow W$$

heißt **bilinear**, wenn für jedes feste $\overline{u} \in U$ und jedes feste $\overline{v} \in V$ die Abbildungen

$$f(\overline{u}, \cdot) : V \Rightarrow V \mapsto f(\overline{u}, v) \in \omega$$

 $f(\cdot, \overline{v}) : U \Rightarrow u \mapsto f(u, \overline{v}) \in \omega$

beide linear sind. « linear in jedem Argument"

② Die Menge aller bilinearen Abbildungen $U \times V \to W$ bezeichnen wir mit Bil(U, V; W).

Bilineare Abbildungen

Definition 22.1

Es seien U, V, W Vektorräume über dem Körper K.

3 Eine bilineare Abbildung in den Vektorraum W = K nennen wir eine Bilinearform auf $U \times V$.

"Form" bedeutet immer! " Weste in K"

• Die Menge aller Bilinearformen $U \times V \to K$ bezeichnen wir mit Bil(U, V) oder Bil(U, V; K).

Bilineare Abbildungen

Beispiel 22.2

Die duale Paarung

$$\langle \cdot , \cdot \rangle \colon V^* \times V \ni (v^*, v) \mapsto \langle v^*, v \rangle \in K$$

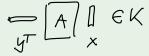
ist eine Bilinearform auf $V^* \times V$.

<; > ist linear in beiden Argumenter

② Für jede Matrix $A \in K^{n \times m}$ ist die Abbildung

$$K^m \times K^n \ni (x, y) \mapsto y^\mathsf{T} A x \in K$$

eine Bilinearform auf $K^m \times K^n$.



Bilineare Abbildungen

Beispiel 22.2

3 Die Multiplikation zweier Polynome über einem Körper K $K[t] imes K[t]
ightarrow (p,q) \mapsto p \cdot q \in K[t]$

$$\mathcal{K}[t] imes \mathcal{K}[t]
i (p,q) \mapsto p \cdot q \in \mathcal{K}[t]$$

ist eine bilineare Abbildung in Bil(K[t], K[t]; K[t]).

Die Multiplikation zweier Polynome in verschiedenen Variablen über einem Körper K

$$K$$
 $K[s] imes K[t]
ightarrow (p,q) \mapsto p \cdot q \in K[s,t]$ Variables

ist eine bilineare Abbildung in Bil(K[s], K[t]; K[s, t]).

Bilineare Abbildungen bilden einen Vektorraum

Lemma 22.3

Es seien U, V, W Vektorräume über dem Körper K.

Dann ist Bil(U, V; W) ein Unterraum des Vektorraumes

$$W^{U\times V}=\{f\colon U\times V\to W\}$$

aller Abbildungen $U \times V \rightarrow W$.

Beweis. Übung

Existenz und Eindeutigkeit bilinearer Abbildungen

Satz 22.4

Es seien U, V, W Vektorräume über dem Körper K. Weiter sei

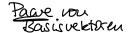
- $(u_i)_{i \in I}$ eine Basis von U
- $(v_j)_{j \in J}$ eine Basis von V
- $(w_{ij})_{(i,j)\in I\times J}$ eine Familie von Vektoren in W.

Dann gibt es genau eine bilineare Abbildung

$$f: U \times V \rightarrow W$$

mit der Eigenschaft

$$f(u_i, v_{\underline{j}}) = w_{ij}$$
 für alle $(i, j) \in I \times J$.



Kortesisches Produkt von Basen

Welche Eigenschaften hat die Menge $(u_i, v_j)_{(i,j) \in I \times J}$?

Henweis: #(IxJ) = #(I). #(J) = dim(U). dim(V)
Bemerkung 22.5 We dim(UxV) = dim(U) + dim(U)

 $(u_i, v_j)_{(i,j) \in I \times J}$ ist im Allgemeinen weder linear unabhängig noch ein Erzeugendensystem für $U \times V!$

Beisprel: $U=V=\mathbb{R}^3$ mit Stabasis (e, ez, es) Die q Veletoren (e, e), -- (es, es) konnen nicht linear math. sein im 6-dim Veletoraum UrV.

Auderseit kann $\left(\begin{pmatrix}1\\1\end{pmatrix},\begin{pmatrix}-1\\-1\end{pmatrix}\right)$ nicht excyft werden.

Motivation für den Tensorproduktraum

- Bilineare Abbildungen Bil(U, V; W) verhalten sich anders als lineare Abbildungen.
- Bilineare Abbildungen sind eindeutig festgelegt durch die Bilder auf der Nicht-Basis-Menge $(u_i, v_j)_{(i,j) \in I \times J}$.
- Für bilineare Abbildungen gilt

$$f(\alpha u, v) = \alpha f(u, v) = f(u, \alpha v).$$
 (Reducedouse)

- Gibt es einen Vektorraum, in dem unter anderem Paare wie $(\alpha u, v)$ und $(u, \alpha v)$ dieselben Vektoren sind?
- Bilineare Abbildungen auf $U \times V$ wären dann lineare Abbildungen auf diesem neuen Vektorraum, dem Tensorproduktraum $U \otimes V$.

Konstruktion des Tensorproduktraumes

Forderung

Ist $(u_i)_{i\in I}$ eine Basis von U und $(v_j)_{j\in J}$ eine Basis von V, dann soll $(u_i,v_j)_{(i,j)\in I\times J}$ gleichmächtig zu einer Basis von $U\otimes V$ sein.

Union V" endlither Trages
$$\boxed{U \otimes V} := \left\{ T \colon I \times J \to K \,\middle|\, T(i,j) \neq 0 \text{ für endlich viele } (i,j) \in I \times J \right\}$$
 Das ist ein Vektorraum, eni Unteranm von $\left\{T \colon T \times J \to \mathcal{K} \right\}$ ausgezeichnete Elemente in $U \otimes V$:

Basis des Tensorproduktraumes

Lemma 22.6

Es seien U, V Vektorräume über dem Körper K Weiter sei

- $(u_i)_{i \in I}$ eine Basis von U
- $(v_i)_{i \in J}$ eine Basis von V.

Dann ist $B := (u_i \otimes v_j)_{(i,j) \in I \times J}$ eine Basis des Tensorproduktraumes

$$U \otimes V = \big\{ T \colon I \times J \to K \, \big| \, T(i,j) \neq 0 \text{ für endlich viele } (i,j) \in I \times J \big\}.$$

Beweis. Bereigt UEV, denn jedes TEUEV hat dui
Darstellung T = I T(i,j), (ui OVj), E= Trâge unt

B cet lines weakharges: Es sei T = I Cij (ui OVj)
mit endliches Menge E der Nulvekter in UEV,
also die Nullabordung IrJ-K. = Cij = Ofer alle
(i,j) EE.

Das Tensorprodukt $U \otimes V$

Definition 22.7

Es seien U, V Vektorräume über dem Körper K Weiter sei

- $(u_i)_{i \in I}$ eine Basis von U
- $(v_i)_{i \in J}$ eine Basis von V.
- Der Vektorraum

$$U \otimes V = \{T : I \times J \to K \mid T(i,j) \neq 0 \text{ für endlich viele } (i,j) \in I \times J \}$$
heißt ein Tensorproduktraum $U \otimes V$.

2 Elemente von $U \otimes V$ heißen **Tensoren**.

Der Nullvektor in $U \otimes V$, also die Nullabbildung $T: I \times J \to K$ mit T(i,j) = 0 für alle $(i,j) \in I \times J$, heißt der **Nulltensor**.

Das Tensorprodukt $U \otimes V$

Definition 22.7

Es seien U, V Vektorräume über dem Körper K Weiter sei

- $(u_i)_{i \in I}$ eine Basis von U
- $(v_j)_{j \in J}$ eine Basis von V.

, bilineare

Die universelle bilineare Abbildung ist diejenige Abbildung

$$\otimes \colon \underline{U \times V} \ni (u, v) \mapsto \otimes (u, v) =: U \otimes V \in U \otimes V,$$

die durch die Bilder von $(u_i, v_j)_{(i,j) \in I \times J} \subseteq U \times V$ gemäß

$$\otimes(u_i,v_j):=u_i\otimes v_j$$
 Folce 15

eindeutig definiert wird.

Das Tensorprodukt $U \otimes V$

Definition 22.7

Es seien U, V Vektorräume über dem Körper K Weiter sei

- $(u_i)_{i \in I}$ eine Basis von U
- $(v_i)_{i \in J}$ eine Basis von V.
- **1** Das Paar $(U \otimes V, \otimes)$ heißt ein **Tensorprodukt** von U und V.
- Wir nennen $u \otimes v$ das Tensorprodukt von $u \in U$ und $v \in V$.
- **6** Elemente von $U \otimes V$ der Form $u \otimes v$ mit $u, v \neq 0$ heißen Elementartensoren oder einfache Tensoren.

Rechenregeln für das Tensorprodukt

Für $u = \sum_{i \in I'} \alpha_i \ u_i \in U$ und $v = \sum_{j \in J'} \beta_j \ v_j \in V$ gilt

$$u \otimes v = \left(\sum_{i \in \mathcal{I}'} \alpha_i u_i^* \right) \otimes \left(\sum_{j \in \mathcal{J}'} \beta_j v_j \right) = \sum_{i \in \mathcal{I}'} \sum_{j \in \mathcal{J}'} \alpha_i \beta_j \left(u_i \otimes y \right)$$

Descendere:

Leotimorker Purster

Inbesondere:

Lemma 22.9

Es seien U und V Vektorräume über dem Körper K und $(U \otimes V, \otimes)$ ein Tensorprodukt von U und V. Dann gilt

$$(u \otimes v) + (u \otimes \overline{v}) = u \otimes (v + \overline{v})$$

für alle $u, \overline{u} \in U, v, \overline{v} \in V$ sowie $\alpha \in K$.

Der Rang eines Tensors

Koeff. in use vorkchen

Jeder Tensor $T \in U \otimes V$ kann als Summe von Elementartensoren geschrieben werden: $T = \sum_{k=0}^{n} u_k \otimes v_k$

Definition 22.10

Es seien U und V Vektorräume über dem Körper K und $(U \otimes V, \otimes)$ ein Tensorprodukt von U und V.

Der Rang eines Tensors $T \in U \otimes V$ ist die minimale Anzahl von Summanden, mit denen eine Darstellung dieser Form möglich ist.

Der Rang von Elementartensoren

Lemma 22.11

Es seien U und V Vektorräume über dem Körper K und $(U \otimes V, \otimes)$ ein Tensorprodukt von U und V.

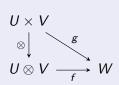
- O Der Nulltensor ist der einzige Tensor vom Rang 0.
- ② Jeder Elementartensor, also $u \otimes v$ mit $u, v \neq 0$, ist vom Rang 1.

Die universelle bilineare Abbildung \otimes

Satz 22.12

Es seien U, V Vektorräume über dem Körper K. Weiter sei

- $(u_i)_{i \in I}$ eine Basis von U
- $(v_j)_{j \in J}$ eine Basis von V
- $(U \otimes V, \otimes)$ das zugehörige Tensorprodukt
- Für jedes $g \in \text{Bil}(U \times V; W)$ gibt es ein eindeutig bestimmtes $f \in \text{Hom}(U \otimes V; W)$ mit der Eigenschaft $g = f \circ \otimes$. $g(u, v) = f(u \otimes v)$
- ② Ist umgekehrt $f \in \text{Hom}(U \otimes V; W)$, dann ist $g := f \circ \otimes \in \text{Bil}(U \times V; W)$.



Da universelle bilinear Abb, vernitelt Zwischen bilinear Abb, and URV und linear Abb, and UOV.

die Zuordnung $g \mapsto f$ ist ein Vektorraumisomorphismus

Satz 22.14

Es seien U, V, W Vektorräume über dem Körper K und $(U \otimes V, \otimes)$ ein Tensorprodukt von U und V.

Dann ist die Abbildung

$$\mathsf{Bil}(U\times V;W)\ni g\mapsto f\in\mathsf{Hom}(U\otimes V;W)$$

ein Isomorphismus von Vektorräumen.

Bilán. Abb. and UXV und lineare Abb. and UOV Sind zwei verschiedene Ansichter deruben Sache!

Tensorprodukte

Beispiel 22.15

Bei Darstellung des Tensorproduktraumes als Matrixraum verwenden wir die universelle bilineare Abbildung

die Universelle bilineare Abbildung
$$K^{n} \times K^{m} \ni (u, v) \mapsto u v^{T} \in K^{n \times m}.$$

mögliche Basis:

Tensorprodukte

Beispiel 22.15

Jeder Tensor kann eindeutig in der Form

$$T = \sum_{i=1}^{n} \sum_{j=1}^{m} a_{ij} \left(e_i e_j^{\mathsf{T}} \right)$$

dargestellt werden mit einer Koeffizientenmatrix $A \in K^{n \times m}$.

Rangfaktorisierung der Koeffizientenmatrix:

$$A = \overset{\bigcap}{B} \overset{\bigcap}{C} = \sum_{k=1}^{r} b_{\bullet k} c_{k \bullet} = \sum_{k=1}^{r} b_{\bullet k} \otimes (c_{k \bullet})^{\mathsf{T}}$$

mit r = Rang(A).

Interpretation bilinearer Abbildungen

Lemma 22.16

Es seien U, V, W endlich-dimensionale Vektorräume über dem Körper K und $(U \otimes V, \otimes)$ ein Tensorprodukt von U und V.

Dann bestehen Isomorphismen

$$\text{Hom}(U \otimes V; W) \\
 \text{Folie 24} \\
 \cong \text{Bil}(U \times V; W) \\
 \cong \text{Hom}(U, \text{Hom}(V, W)) \\
 \text{Hom}(V, \text{Hom}(V, W))$$

$$\text{Hom}(V, \text{Hom}(U, W))$$

Interpretation von Bilinearformen

Folgerung 22.17 W≃K

Es seien U, V endlich-dimensionale Vektorräume über dem Körper K und $(U \otimes V, \otimes)$ ein Tensorprodukt von U und V.

Dann bestehen Isomorphismen