ÜBUNG II - 12

Ausgabedatum: 1. Juli 2024 Abgabedatum: 8. Juli 2024

Hausaufgabe II-12.1 (Orthogonalität und Isometrie)

3 + 2 + 6 = 11 Punkte

- (a) Es sei V ein \mathbb{R} -Vektorraum ungleich dem Nullraum und für $\alpha \in \mathbb{R}$ sei $f_{\alpha} \colon V \ni v \mapsto \alpha v \in V$. Zeigen Sie:
 - (i) Für $\alpha \in \{\pm 1\}$ und jedes beliebige Innenprodukt γ auf V ist f_{α} ein γ -orthogonaler Endomorphismus auf (V, γ) .
 - (ii) Für $\alpha \notin \{\pm 1\}$ gibt es kein Innenprodukt γ auf V, so dass f_{α} ein γ -orthogonaler Endomorphismus auf (V, γ) ist.
 - (iii) Für $\alpha \in \mathbb{R} \setminus \{0\}$ und jedes beliebige Innenprodukt γ_1 auf V existiert ein Innenprodukt γ_2 , so dass f_{α} (γ_1, γ_2)-orthogonal als Homomorphismus von (V, γ_1) nach (V, γ_2) ist.
- (b) Es seien (V, γ_1) und (W, γ_2) zwei Euklidische Räume. Zeigen Sie Lemma 34.22, also die folgenden Aussagen:
 - (i) Ist $f \in \text{Hom}(V, W)$ eine (γ_1, γ_2) -orthogonale Abbildung, dann ist f injektiv.
 - (ii) Ist $f \in \text{Hom}(V, W)$ eine (γ_1, γ_2) -orthogonale Abbildung und gilt zusätzlich $\dim(V) = \dim(W) = n \in \mathbb{N}_0$, dann ist f bijektiv und f^{-1} ebenfalls eine bijektive orthogonale Abbildung.
- (c) Es sei (V, γ) ein Euklidischer Raum und $U = \langle u \rangle$ für $u \in V \setminus \{0\}$. Die Abbildung

$$S_U \colon V \to V$$
, $S_U(v) := v - 2 \operatorname{proj}_U^{\gamma}(v)$

heißt die **Spiegelung an** U^{\perp} .

- (i) Zeigen Sie, dass S_U ein γ -orthogonaler, selbstinverserser Endomorphismus ist.
- (ii) Bestimmen Sie die Eigenwerte und Eigenräume von S_U .
- (iii) Zeigen Sie, dass es für jedes Paar $v, w \in V$ mit ||v|| = ||w|| und $v \neq w$ genau einen eindimensionalen Unterraum U gibt, so dass $S_U(v) = w$ ist.

Hausaufgabe II-12.2 (Orthogonale Gruppe)

2 + 3 = 5 Punkte

Es sei (V, γ) ein endlichdimensionaler Euklidischer Raum. Zeigen Sie Lemma 34.30 zur orthogonalen und speziellen orthogonalen Gruppe, also die folgenden Aussagen:

(i) Die Menge

$$O(V, \gamma) := \{ f \in \text{End}(V) \mid f \text{ ist } \gamma \text{-orthogonal} \}$$
 (34.13)

bildet mit der Komposition eine Gruppe.

(ii) Ist V endlich-dimensional, dann ist die Menge

$$SO(V, \gamma) := \{ f \in O(V, \gamma) \mid \det(f) = 1 \}$$
 (34.14)

ein Normalteiler in $O(V, \gamma)$.

Hausaufgabe II-12.3 (Riesz-Isomorphismus und Adjungierte)

3 + 3 + 2 = 8 Punkte

- (a) Es sei $\mathbb{R}_2[t]$ mit dem Innenprodukt $\gamma \colon \mathbb{R}_2[t]^2 \ni (p,q) \mapsto \sum_{i=0}^2 p(i)q(i) \in \mathbb{R}$ gegeben. Bestimmen Sie $(\Gamma_{\mathbb{R}_2[t]} \to \mathbb{R}_2[t]^*)^{-1}(p \mapsto p''(0)) \in \mathbb{R}_2[t]$.
- (b) Für $m, n \in \mathbb{N}$ sei auf $\mathbb{R}^{m \times n}$ das Innenprodukt $\gamma_{m,n}(A, B) := \operatorname{Spur}(A^{\mathsf{T}}B)$ definiert.

Nun seien $m, n, r, s \in \mathbb{N}$ und $C \in \mathbb{R}^{r \times m}$, $D \in \mathbb{R}^{n \times s}$. Bestimmen Sie die $(\gamma_{m,n}, \gamma_{r,s})$ -adjungierte Abbildung von $\mathbb{R}^{m \times n} \ni X \mapsto CXD \in \mathbb{R}^{r \times s}$.

Hinweis: Für Matrizen $A \in \mathbb{R}^{n \times m}$ und $B \in \mathbb{R}^{m \times n}$ gilt Spur(AB) = Spur(BA).

- (c) Es sei (V, γ) ein Euklidischer Raum sowie $f, g \in \text{End}(V)$. Zeigen Sie, dass
 - (i) $(\alpha f)^{\circ} = \alpha (f^{\circ})$
 - (ii) $(f \circ q)^{\circ} = q^{\circ} \circ f^{\circ}$

Bitte reichen Sie Ihre Lösungen als ein PDF auf Mampf ein.