Lineare Algebra I Woche 08

05.12.2023 und 07.12.2023

Definition

Es sei $(K, +, \cdot)$ ein Körper.

Ein Vektorraum (V, \oplus, \odot) über K ist eine Menge V mit

- ullet einer inneren Verknüpfung $\oplus \colon V \times V o V$
- einer äußeren Verknüpfung \odot : $K \times V \rightarrow V$
- \bullet (V, \oplus) ist eine abelsche Gruppe.

2 Es gilt das Assoziativgesetz

$$(\alpha \cdot \beta) \odot \mathbf{v} = \alpha \odot (\beta \odot \mathbf{v})$$

Definition

Es sei $(K, +, \cdot)$ ein Körper.

Ein Vektorraum (V, \oplus, \odot) über K ist eine Menge V mit

- ullet einer inneren Verknüpfung $\oplus \colon V \times V o V$
- einer äußeren Verknüpfung \odot : $K \times V \rightarrow V$
- 3 Es gelten die Distributivgesetze

$$\alpha \odot (u \oplus v) = (\alpha \odot u) \oplus (\alpha \odot v)$$
$$(\alpha + \beta) \odot v = (\alpha \odot v) \oplus (\beta \odot v)$$

4 Das neutrale Element 1_K bzgl. \cdot in K ist auch neutral bzgl. \odot :

$$1_K \odot v = v$$
.

Beispiel

① Jeder Körper $(K, +, \cdot)$, ausgestattet mit den Verknüpfungen $\oplus := +$ und $\odot := \cdot$, ist ein Vektorraum über sich selbst.

② Allgemeiner ist jeder Körper $(K,+,\cdot)$ ein Vektorraum über jedem seinem Unterkörper $(U,+,\cdot)$.

Beispiel

3 Es sei $(K, +, \cdot)$ ein Körper und $n \in \mathbb{N}$.

Die Menge

$$K_n := \{(x_1, \ldots, x_n) \mid x_i \in K \text{ für } i = 1, \ldots, n\}$$

mit der komponentenweisen Addition

$$(x_1,\ldots,x_n)\oplus(y_1,\ldots,y_n)\coloneqq$$

und der komponentenweisen skalaren Multiplikation

$$\alpha \odot (x_1, \ldots, x_n) :=$$

heißt der **Vektorraum der Zeilenvektoren** über *K* der Dimension *n*.

Beispiel

3 Es sei $(K, +, \cdot)$ ein Körper und $n \in \mathbb{N}$.

Die Menge

$$\mathcal{K}^n \coloneqq \left\{ \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \middle| x_i \in \mathcal{K} \text{ für } i = 1, \dots, n \right\}$$

mit der komponentenweisen Addition und der komponentenweisen skalaren Multiplikation

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \oplus \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} := \qquad \qquad \text{und} \quad \alpha \odot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} :=$$

heißt der Vektorraum der Spaltenvektoren über K der Dimension n.

Beispiel

3 Es sei $(K, +, \cdot)$ ein Körper und X eine Menge.

Die Menge $K^X = \{f \mid f \colon X \to K\}$ mit den punktweisen Verknüpfungen

$$(f \oplus g)(x) :=$$

$$(\alpha \odot f)(x) :=$$

ist ein Vektorraum über K.

Beispiel

lacktriangle Es sei $(K,+,\cdot)$ ein Körper und K[t] der Polynomring.

Dann ist K[t] mit der Addition

$$p \oplus q \coloneqq \sum_{i=0}^{\max\{m,n\}} (a_i + b_i) \cdot t^i$$

und der skalaren Multiplikation

$$\alpha \odot p \coloneqq \sum_{i=0}^{m} \alpha \cdot a_i \cdot t^i$$

der Polynomraum über K.

Rechenregeln in Vektorräumen

Lemma

Rechenregeln in Vektorräumen

Lemma

Linearkombination

Definition

Es sei (V, \oplus, \odot) ein Vektorraum über dem Körper $(K, +, \cdot)$ und $E \subseteq V$.

Ein Vektor der Form

$$\alpha_1 \odot v_1 \oplus \cdots \oplus \alpha_n \odot v_n$$
 oder kurz $\sum_{j=1}^n \alpha_j \odot v_j$

mit $n \in \mathbb{N}_0$ und

- Koeffizienten $\alpha_i \in K$
- Vektoren $v_i \in E$

heißt eine Linearkombination der Menge E.

Linearkombination

Beispiel

$$\begin{pmatrix} 3 \\ -7 \end{pmatrix} = \qquad \odot \begin{pmatrix} 1 \\ 0 \end{pmatrix} \oplus \qquad \odot \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 3 \\ -7 \end{pmatrix} = \odot \begin{pmatrix} 1 \\ 0 \end{pmatrix} \oplus \odot \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Linearkombination

Beispiel

Oie Funktion

ist eine Linearkombination der Menge $\{\sin,\,\cos\}$ in $\mathbb{R}^{[0,2\pi]}$.

Oas Polynom

ist eine Linearkombination der Menge $\{t^2, t, 1\}$ in $\mathbb{Q}[t]$.

Oas Polynom

ist keine Linearkombination der Menge $\{t^2, t, 1\}$ in $\mathbb{Q}[t]$.

Unterraum

Definition

Es sei (V, \oplus, \odot) ein Vektorraum über dem Körper $(K, +, \cdot)$.

- **1** Eine Teilmenge $U \subseteq V$ heißt ein **Unter(vektor)raum** von (V, \oplus, \odot) ,
 - ullet wenn U bzgl. \oplus abgeschlossen ist
 - ullet und wenn U bzgl. \odot mit Elementen in K abgeschlossen ist
 - und wenn (U, \oplus, \odot) selbst wieder ein Vektorraum ist.

2 Ein Unterraum (U, \oplus, \odot) von (V, \oplus, \odot) heißt **echt**, wenn $U \subsetneq V$ gilt.

Unterraumkriterium

Satz

Es sei (V, \oplus, \odot) ein Vektorraum über dem Körper $(K, +, \cdot)$.

Dann sind äquivalent:

- **1** (U, \oplus, \odot) ist ein Unterraum von (V, \oplus, \odot) .
- ② $U \neq \emptyset$, und es gilt $U \oplus U \subseteq U$ sowie $K \odot U \subseteq U$.
- **3** $U \neq \emptyset$, und es gilt $K \odot U \oplus K \odot U \subseteq U$.

Unterraumkriterium

Satz

Es sei (V, \oplus, \odot) ein Vektorraum über dem Körper $(K, +, \cdot)$.

Dann sind äquivalent:

- **1** (U, \oplus, \odot) ist ein Unterraum von (V, \oplus, \odot) .
- ② $U \neq \emptyset$, und es gilt $U \oplus U \subseteq U$ sowie $K \odot U \subseteq U$.
- **3** $U \neq \emptyset$, und es gilt $K \odot U \oplus K \odot U \subseteq U$.

Unterraumkriterium

Satz

Es sei (V, \oplus, \odot) ein Vektorraum über dem Körper $(K, +, \cdot)$.

Dann sind äquivalent:

- **1** (U, \oplus, \odot) ist ein Unterraum von (V, \oplus, \odot) .
- ② $U \neq \emptyset$, und es gilt $U \oplus U \subseteq U$ sowie $K \odot U \subseteq U$.
- **3** $U \neq \emptyset$, und es gilt $K \odot U \oplus K \odot U \subseteq U$.

Unterraum

Beispiel

1 Es sei (V, \oplus, \odot) ein Vektorraum über dem Körper $(K, +, \cdot)$.

Dann sind

- $(\{0_V\}, \oplus, \odot)$
- (V, \oplus, \odot)

die trivialen Unterräume von (V, \oplus, \odot) .

2

$$U := \left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \middle| x_1 - 2x_2 = 0 \right\}$$

Unterraum

Beispiel

3

$$U := \left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \middle| x_1 - 2x_2 = 1 \right\}$$

4

$$U := \left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \middle| x_1 \geqslant 0, \ x_2 \geqslant 0 \right\}$$

Vereinfachung der Notation

• Wir schreiben + an Stelle von \oplus .

② Wir schreiben \cdot an Stelle von \odot oder lassen es sogar weg.

3 Wir schreiben 0 an Stelle von 0_K und auch an Stelle von 0_V .

• Wir schreiben 1 an Stelle von 1_K .

Wir nennen den zugrundeliegenden K\u00f6rper eines Vektorraumes nur bei Bedarf.

Durchschnitt von Unterräumen

Lemma

Es sei $(V, +, \cdot)$ ein Vektorraum und $(U_i, +, \cdot)$ eine Familie von Unterräumen mit Indexmenge $I \neq \emptyset$.

Dann ist auch $\bigcap_{i \in I} U_i$ mit + und \cdot ein Unterraum von $(V, +, \cdot)$.

Beweis. Hausaufgabe

Definition

Es sei $(V, +, \cdot)$ ein Vektorraum und $E \subseteq V$.

Dann heißt

$$\langle E \rangle \coloneqq \bigcap \{U \, | \, (U,+,\cdot) \text{ ist Unterraum von } (V,+,\cdot) \text{ und } E \subseteq U\}$$

- der von E erzeugte Unterraum
- oder die lineare Hülle Lin(E) von E
- oder auch der Spann Span(E) von E in $(V, +, \cdot)$.

Darstellung des erzeugten Unterraumes

Satz

Es sei $(V, +, \cdot)$ ein Vektorraum über dem Körper $(K, +, \cdot)$ und $E \subseteq V$.

Dann gilt für den von E erzeugten Unterraum:

$$\langle E \rangle = \Big\{ \sum_{i=1}^{n} \alpha_i \, v_i \, \Big| \, \exists n \in \mathbb{N}_0 \, \forall i = 1, \ldots, n \, (v_i \in E, \, \alpha_i \in K) \Big\}.$$

Darstellung des erzeugten Unterraumes

$$\langle E \rangle := \bigcap \{ U \, \big| \, (U, +, \cdot) \text{ ist Unterraum von } (V, +, \cdot) \text{ und } E \subseteq U \}$$

$$M := \Big\{ \sum_{i=1}^{n} \alpha_{i} \, v_{i} \, \Big| \, \exists n \in \mathbb{N}_{0} \, \forall i = 1, \dots, n \, (v_{i} \in E, \, \alpha_{i} \in K) \Big\}$$

Darstellung des erzeugten Unterraumes

$$\langle E \rangle := \bigcap \{ U \, \big| \, (U, +, \cdot) \text{ ist Unterraum von } (V, +, \cdot) \text{ und } E \subseteq U \}$$

$$M := \Big\{ \sum_{i=1}^{n} \alpha_{i} \, v_{i} \, \Big| \, \exists n \in \mathbb{N}_{0} \, \forall i = 1, \dots, n \, (v_{i} \in E, \, \alpha_{i} \in K) \Big\}$$

Beispiel

 $lackbox{0} E = \{1, t, \dots, t^n\}$ im Polynomraum K[t] über einem Körper K

$$\langle E \rangle =$$

 $m{Q}$ $E = \{1, t, t^2, \ldots\}$ im Polynomraum K[t] über einem Körper K

$$\langle E \rangle =$$

Beispiel

3 Es sei $(K, +, \cdot)$ ein Körper und $X = \{x_1, \dots, x_n\}$ eine endliche Menge. Die Menge

$$E = \{ | i = 1, \dots, n \}$$

bildet ein Erzeugendensystem des Vektorraumes ($K^X, +, \cdot$):

Beispiel

• Es sei $(K, +, \cdot)$ ein Körper und X eine beliebige Menge. Die Menge

$$E = \{ | x \in X \}$$

erzeugt den Unterraum

$$\langle E \rangle =$$

Familien statt Mengen

Definition

Es sei $F = (v_i)_{i \in I}$ eine Familie von Vektoren in einem Vektorraum V.

Ein Vektor der Form

$$\alpha_1 \odot v_1 \oplus \cdots \oplus \alpha_n \odot v_n$$
 oder kurz $\sum_{j=1}^n \alpha_j \odot v_{i_j}$

mit $n \in \mathbb{N}_0$ und

- Koeffizienten $\alpha_i \in K$
- Vektoren $v_{i_i} \in E$ mit Indizes $i_j \in I$

heißt eine Linearkombination der Familie F.

Familien statt Mengen

Definition

Es sei $F = (v_i)_{i \in I}$ eine Familie von Vektoren in einem Vektorraum V.

Dann heißt

$$\left\langle F\right\rangle \coloneqq\bigcap\big\{U\,\big|\,(U,+,\cdot)\text{ ist Unterraum von }(V,+,\cdot)\text{ und }\{v_i\,|\,i\in I\}\subseteq U\big\}$$

- der von F erzeugte Unterraum
- oder die lineare Hülle Lin(F) von F
- oder auch der **Spann** Span(F) von F in $(V, +, \cdot)$.

Es gilt

$$\langle F \rangle = \Big\{ \sum_{i=1}^{n} \alpha_{j} \, v_{i_{j}} \, \Big| \, \exists n \in \mathbb{N}_{0} \, \forall j = 1, \ldots, n \, \exists i_{j} \in I \, (v_{i_{j}} \in F, \, \alpha_{j} \in K) \Big\}.$$