Plenarübung Lineare Algebra I (Inhalts)-Woche 06

Link zu diesen Folien

Die Umfrageergebnisse

Gehäuftes Interesse an:

- (1) Faktorgruppen und Homomorphiesatz
- (2) Kommutatorgruppe
- (3) Ringbasics, Pullback

Ziele und Vorgehen für heute

Hauptziele

- (1) Bedeutung der Normalteilereigenschaft herausarbeiten
- (2) Intuition für Faktorgruppen verbessern
- (3) Aussage des Homomorphiesatzes herausarbeiten

Arbeitsplan

- (1) Wochenüberblick
- (2) Normalteiler und Faktorgruppen wiederholen
- (3) "L/R-Faktorgruppen" untersuchen
- (4) Zwei Resultate für Normalteiler und Kommutatoren zeigen
- (5) Homomorphiesatz (noch einmal) motivieren und intuitiv erklären
- (6) Ringbasics und Pullback wiederholen (?)

Wochenüberblick

Wiederholung Normalteiler und Faktorgruppe

Definition

(1) Eine Untergruppe (N, \star) heißt eine normale Untergruppe oder Normalteiler von (G, \star) , wenn gilt:

$$\underbrace{a\star N}_{[a]_{\sim N}} = \underbrace{N\star a}_{[a]_{N_{\sim}}} \quad \text{für alle } a\in G.$$

- (2) $G / N := \{[a] = a \star N \mid a \in G\}$ heißt Faktormenge.
- (3) $(G/N, \widetilde{\star})$ mit $[a] \widetilde{\star} [b] := [a \star b]$ ist die Faktorgruppe.
- (4) $\pi: G \ni a \mapsto [a] \in G / N$ heißt kanonische Surjektion.

Die Bedeutung der Normalteilereigenschaft

Warum nehmen wir nicht eine Untergruppe U, die Verknüpfung $[a] \stackrel{\sim}{\star} [b] := [a \star b]$ und untersuchen $(\{[a]_{\sim} u \mid a \in G\}, \stackrel{\sim}{\star})$ (eine potentielle "Linksfaktorgruppe"), $(\{[a]_{\vee}, | a \in G\}, \stackrel{\sim}{\star})$ (eine potentielle "Rechtsfaktorgruppe")?

Normalteiler in der S_3

Untergruppen der S_3

Siehe Vorlesungsmitschrift: $\{e, d, d^2\}$, $\{e, s_1\}$, $\{e, s_2\}$, $\{e, s_3\}$

Für
$$U = \{e, d, d^2\}$$
 (Normalteiler)

Für
$$U = \{e, d, d^2\}$$
 (Normalteiler) Für $U = \{e, s_3\}$ (kein Normalteiler)

0	е	d	d^2	<i>s</i> ₁	<i>s</i> ₂	<i>5</i> 3
e	e	d	d^2	s_1	s ₂ s ₁ s ₃ d e	<i>s</i> ₃
d	d	d^2	e	<i>S</i> 3	s_1	<i>S</i> ₂
d^2	d^2	e	d	<i>S</i> ₂	<i>S</i> 3	s_1
s_1	s_1	<i>s</i> ₂	<i>S</i> ₃	e	d	d^2
<i>s</i> ₂	<i>s</i> ₂	<i>S</i> ₃	s_1	d^2	e	d
<i>S</i> ₃	<i>S</i> 3	s_1	<i>S</i> ₂	d	d^2	e

	e				<i>s</i> ₂	
е	e d d² s ₁ s ₂ s ₃	d	d ²	<i>s</i> ₁	<i>s</i> ₂	<i>5</i> ₃
d	d	d^2	e	<i>5</i> 3	s_1	<i>5</i> 2
d^2	d^2	e	d	<i>S</i> ₂	<i>S</i> 3	s_1
s_1	s_1	<i>s</i> ₂	<i>S</i> ₃	e	d	d^2
<i>s</i> ₂	<i>s</i> ₂	<i>S</i> ₃	s_1	d^2	e	d
<i>5</i> 3	<i>5</i> 3	<i>S</i> ₁	<i>5</i> 2	d	d^2	е

Nachprüfen der Normalteilereigenschaft

Lemma

Es sei (G,\star) eine Gruppe und (N,\star) eine Untergruppe. Dann ist (N,\star) genau dann ein Normalteiler, wenn

$$a \star N \star a' \subseteq N \quad \forall a \in G.$$

Beweis.

Kommutatorgruppe und Kommutativität der Faktorgruppe

Lemma

Es sei (G,\star) eine Gruppe, $K(G) = \langle \{a\star b\star a'\star b' \mid a,b\in G\} \rangle$ die Kommutatorgruppe von G sowie (N,\star) ein Normalteiler. Dann gilt:

- (1) G / N ist genau dann abelsch, wenn $K(G) \subseteq N$
- (2) K(G) ist selbst ein Normalteiler

Beweis.

Wiederholung Homomorphismus, Bild und Kern

Definition

(1) Eine strukturverträgliche Abbildung $f:(G_1,\star)\to (G_2,\square)$ heißt Homomorphismus.

(2)
$$Bild(f) := \{f(x) \in G_2 \mid x \in G_1\} = f(G_1) \text{ heißt Bild von } f.$$

(3)
$$\operatorname{Kern}(f) := \{x_1 \in G_1 \mid f(x) = e_2\} = f^{-1}(\{e_2\}) \text{ heißt Kern von } f.$$

Motivation Homomorphiesatz

Wie "macht" man eigentlich eine Funktion bijektiv?

$$f: G_1 \rightarrow G_2$$

Surjektivität:

Injektivität:

Die Bedeutung des Kerns

Lemma

Es sei $f: (G_1, \star) \to (G_2, \square)$ ein Gruppenhomomorphismus.

Dann gilt

$$f^{-1}(\lbrace f(a)\rbrace) = a\star \mathsf{Kern}(f) = \mathsf{Kern}(f)\star a,$$

also ist Kern(f) ein Normalteiler von G_1 .

Homomorphiesatz für Gruppen

Satz

Es sei $f: (G_1, \star) \to (G_2, \square)$ ein Gruppenhomomorphismus.

Dann ist

$$I: G_1 / \operatorname{Kern}(f) \longrightarrow \operatorname{Bild}(f)$$

$$[a] \longmapsto f(a)$$

ein Gruppenisomorphismus.

Implikationen für Kardinalitäten (Hausaufgabe 6.2)

Lemma

Ist $f: (G_1, \star) \to (G_2, \Box)$ ein Gruppenhomomorphismus und sind $\#G_1$ und $\#G_2$ teilerfremd, dann ist f trivial.

Beweis.

Ringe und ihre Homomorphismen

Definition

- (1) $(R, +, \cdot)$ ist ein Ring, wenn:
 - (1) (R, +) ist eine abelsche Gruppe.
 - (2) (R, \cdot) ist eine Halbgruppe.
 - (3) Es gelten die Distributivgesetze

$$a \cdot (b+c) = (a \cdot b) + (a \cdot c)$$
$$(a+b) \cdot c = (a \cdot c) + (b \cdot c)$$

(2) $f: R_1 \rightarrow R_2$ heißt **Homomorphismus**, wenn:

$$f(a+_1b) = f(a)+_2f(b)$$
 für alle $a,b \in R_1$,
 $f(a\cdot_1b) = f(a)\cdot_2f(b)$ für alle $a,b \in R_1$.

Besitzen beide Ringe ein Einselement, dann $f(1_{R_1}) = 1_{R_2}$ gefordert.

Homomorphismus von Ringen

Beispiel

(1) Es sei $(R,+,\cdot)$ ein Ring, X,Y Mengen und $\varphi\colon Y\to X.$ φ induziert einen Ringhomomorphismus

$$\varphi^* : (R^X, +, \cdot) \ni f \mapsto f \circ \varphi \in (R^Y, +, \cdot),$$

genannt den Pullback φ^* von φ .