Lineare Algebra I Woche 06

21.11.2023 und 23.11.2023

Normalteiler

Die Untergruppe (U,\star) einer Gruppe (G,\star) induziert die Äquivalenzrelationen \sim^U und $^U\!\!\sim$ auf G mit den Äquivalenzklassen

$$[a]_{\sim} u = \underbrace{a \star U}$$
 bzw. $[a]_{\psi_{\sim}} = \underbrace{U \star a}$.

Definition N = G

Eine Untergruppe (N, \star) heißt eine normale Untergruppe oder Normalteiler von (G, \star) , wenn gilt:

a $\star N = N \star a$ für alle $a \in G$. Weige ann=nta

Beispiel

- · Let und g soud imme Normalterter.
- · It & abelie (bommutatio), dann it jede Unterripe em Nomaltater

Kerne von Gruppenhomomorphismen sind Normalteiler

Lemma

Es sei $f:(G_1,\star)\to (G_2,\square)$ ein Gruppenhomomorphismus.

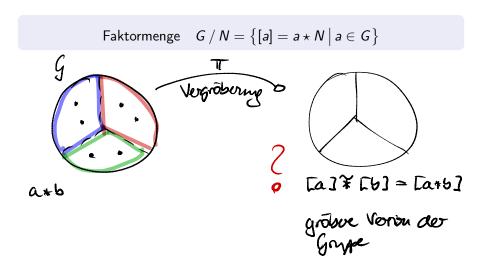
Dann gilt

Elemente in
$$G_1$$
 mit dennsellem Erlel wre 'a

 $f^{-1}(\{f(a)\}) = a \star \text{Kern}(f) = \text{Kern}(f) \star a$, fur alle

also ist Kern(f) ein Normalteiler von G_1 .

Faktormenge der durch Normalteiler induzierten Relation



Faktorgruppe der durch Normalteiler induzierten Relation

Satz

Es sei (G, \star) eine Gruppe und (N, \star) ein Normalteiler. Dann gilt:

1 Die Faktormenge $G/N = \{[a] = a \star N \mid a \in G\}$ mit

$$[a] \stackrel{\sim}{\star} [b] := [a \star b]$$

ist eine Gruppe. Neutrales Element ist [e] = N. Für die Inversen gilt [a]' = [a'].

② Die kanonische Surjektion von G auf G / N Vergröberugsabb.

$$\pi\colon G\ni a\mapsto [a]\in G/N$$

ist ein surjektiver Gruppenhomomorphismus. Es gilt Kern $(\pi) = N$. est veribu dann veröben = est veröben dann veröben wertenipfen

3 Wenn (G, \star) abelsch ist, dann auch $(G/N, \tilde{\star})$.

Faktorgruppe

Beispiel

• Ausfaktorisieren des trivialen Normalteilers $\{e\}$ einer Gruppe (G, \star) : G/4e3 = G Jede Nibinklane voit genan en Element.

2 Ausfaktorisieren des trivialen Normalteilers G einer Gruppe (G, \star) :

Alle Ekemente on coner Nibertelane

Faktorgruppe

Beispiel

3 In $(\mathbb{Z}, +)$ ist $m\mathbb{Z}$ für beliebiges $m \in \mathbb{N}$ ein Normalteiler.

Die Elemente der Faktorgruppe $\mathbb{Z} / m \mathbb{Z}$ sind $[a] = a + m \mathbb{Z}$.

In der Faktorgruppe rechnen wir $[a] \stackrel{\sim}{+} [b] = [a+b]$.

$$(2/52,7)$$
: [-21] 7 [9] = [-12]

Isomorphismus
inationisher Repr.

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$!

 $(2/5,7)$

We white en Empenhonosphismus?

Satz

Es sei $f: (G_1, \star) \to (G_2, \square)$ ein Gruppenhomomorphismus.

Dann ist

$$I: G_1 / \operatorname{\mathsf{Kern}}(f) \longrightarrow \operatorname{\mathsf{Bild}}(f)$$

$$[a] \longmapsto f(a)$$

ein Gruppenisomorphismus.



Grupe
$$G_1/\operatorname{Kern}(f) \longrightarrow \operatorname{Bild}(f)$$

$$[a] \longmapsto f(a) \quad \text{ist Gruppenisomorphismus}$$

Beweis. I út wohldefnist:
$$a \lor b \in G_1$$
 ialo

 $a \star \text{Ken}(f) = b \star \text{Ken}(f)$.

 $f(a \star \text{Ken}(f)) = f(a) \Box f(\text{Ken}(f)) = f(a) \Box \{e_2 f = h\{f(a)\}\}$. Avalog: $f(b + \text{Ken}(f)) = h\{f(b)\}$.

 $a \lor b \Rightarrow f(a) = f(b)$

I út thomomorphismus zw. Grypc:

 $I([a] \star [b]) = I([a \star b]) = f(a \star b)$
 $= f(a) \Box f(b) = I([a]) \Box I([b])$

```
I: G_1 \, / \, \mathsf{Kern}(f) \longrightarrow \mathsf{Bild}(f) [a] \longmapsto f(a) ist Gruppenisomorphismus
```

Beweis. I it surjectios: It y \in Bild (1), also y = f(a) for an a \in G, dann if $y = f(a) = I(\underline{ta})$, also it I surjection.

· I tot vycletis: Wir zeight! Ken(I) = 2 [2:7].

-{ Ken(f)?: Ken(I) = 2 [a] | a \ Ken(f) g

- 2 ar Kenf | a \ Kenf g = 2 Kenf g, also

ist I vycletis, Ken fittly

Beispiel

Of
$$(R+0, \cdot) \neq \times H \times \times^2 \in (R+0, \cdot)$$

Gruppmendomorphis

Ven $(f) = \{\pm 1\}$.

 $T : R+0 / \{\pm 1\} \longrightarrow Bild (f) = R+0$
 $[x] \longrightarrow x^2$
 $= \{x, +x\}$

Das Vorzeicher und aussaktorischt.

Beispiel san, Su - (1 ±13, .) Kou(sgn) = An (ale gesaden Permutationen) I: Sn/Kon(sgn) = Sn/An - Bild (sgn)={±1} son buddet alle geradere Permutationer and 1 alle ungoaden - ab. Transposttion T

typidde Notation

Definition

Ein Ring $(R, +, \cdot)$ ist eine Menge R mit zwei Verknüpfungen + und \cdot , die die folgenden Bedingungen erfüllen:

- \bullet (R, +) ist eine <u>abelsche Gruppe</u>.
 - 1 Kommetation
- (R, \cdot) ist eine Halbgruppe.

$$a \cdot (b+c) = (a \cdot b) + (a \cdot c)$$
 faller zeraume
 $(a+b) \cdot c = (a \cdot c) + (b \cdot c)$ faller zeraume
Pipe

Ein Ring $(R, +, \cdot)$ heißt **kommutativ**, wenn (R, \cdot) kommutativ ist.

Ein Ring $(R, +, \cdot)$ heißt ein Ring mit Eins, wenn (R, \cdot) ein Monoid ist.

Beispiel

(Z,+) ist abelishe Grype (Z,·) ist komm Hallsgrypse mit Einselement 1 Distributingeschie)

Oer Nullring ist der eindeutig bestimmte Ring mit nur einem Element, $R = \{0_R\}$.

 $O_{\mathbb{R}} + O_{\mathbb{R}} = O_{\mathbb{R}}$ komm Gryce $O_{\mathbb{R}} \cdot O_{\mathbb{R}} = O_{\mathbb{R}}$

Das Elischement ist Oz!

Distributions (e)

Beispiel m=2 : goade Zahlen

- **3** Für $m \in \mathbb{N}$ ist $(m\mathbb{Z}, +, \cdot)$ ein kommutativer Ring.
 - (MZ, +) ist abelieve Grype
 - (m Z;) ist komm. Hallogrypse, due neutrales
 - Element , wence m 32
 - Distrigueteles verest run von (2, +,)
- Für $m \in \mathbb{N}$ ist $(\mathbb{Z}_m, +_m, \cdot_m)$ ein kommutativer Ring mit Einselement 1, der Ring von \mathbb{Z} modulo m.
 - m=1: Nulling
 - (Zu, tu) lot abdile gappe
 - (Zm. 'n) ist komm. Honord mit 1
 - Distributio gosette)

Beispiel

Acutung

9 Der Endomorphismenring $(End(G), +, \circ)$ einer abelschen Gruppe (G, +) ist

$$\mathsf{End}(G) \coloneqq \{f \colon G \to G \mid f \text{ ist Endomorphismus}\}\$$

mit den Verknüpfungen

Whethere: $\operatorname{End}(G) \times \operatorname{End}(G) \to \operatorname{End}(G)$ mit $(f,g) \mapsto f + g$, planering that $\operatorname{Bayer}_{G} \circ : \operatorname{End}(G) \times \operatorname{End}(G) \to \operatorname{End}(G)$ mit $(f,g) \mapsto f \circ g$. Various mit Eussel. (a)

 $(\operatorname{End}(G), +, {}^{\bullet}\circ)$ ist ein Ring mit Einselement id $_G$.

 $(End(G), +, \circ)$ ist i. A. nicht kommutativ. (no be \overline{A})

Distr-gusetse

Rechenregeln in Ringen

a, ber believing

- $a \cdot (-b) \stackrel{\longleftarrow}{=} -a \cdot b = (-a) \cdot b$

Beweis. 1)
$$O_{\mathbb{P}} + O_{\mathbb{P}} \cdot a = O_{\mathbb{P}} \cdot a = (O_{\mathbb{P}} + O_{\mathbb{P}}) \cdot a$$

2) $O_{\mathbb{P}} \cdot a + O_{\mathbb{P}} \cdot a$ | kulton: $O_{\mathbb{P}} = O_{\mathbb{P}} \cdot a$.

1) $O_{\mathbb{P}} \cdot a + O_{\mathbb{P}} \cdot a$ | kulton: $O_{\mathbb{P}} = O_{\mathbb{P}} \cdot a$.

1) $O_{\mathbb{P}} \cdot a + O_{\mathbb{P}} \cdot a$ | kulton: $O_{\mathbb{P}} = O_{\mathbb{P}} \cdot a$.

1) $O_{\mathbb{P}} \cdot a + O_{\mathbb{P}} \cdot a$ | kulton: $O_{\mathbb{P}} \cdot a \cdot b$:

1) $O_{\mathbb{P}} \cdot a + O_{\mathbb{P}} \cdot a$ | kulton: $O_{\mathbb{P}} \cdot a \cdot b$:

1) $O_{\mathbb{P}} \cdot a + O_{\mathbb{P}} \cdot a$ | kulton: $O_{\mathbb{P}} \cdot a \cdot b$:

1) $O_{\mathbb{P}} \cdot a + O_{\mathbb{P}} \cdot a$ | kulton: $O_{\mathbb{P}} \cdot a \cdot b$:

1) $O_{\mathbb{P}} \cdot a + O_{\mathbb{P}} \cdot a$ | kulton: $O_{\mathbb{P}} \cdot a \cdot b$:

1) $O_{\mathbb{P}} \cdot a + O_{\mathbb{P}} \cdot a$ | $O_{\mathbb{P}} \cdot a \cdot b$ | $O_{\mathbb{P}}$

Rechenregeln in Ringen

Lemma

 $(-a) \cdot (-b) = a \cdot b$

- mold, 2 Elemente
- Ist $(R, +, \cdot)$ ein Ring mit Einselement 1_R , aber nicht der Nullring, dann gilt $1_R \neq 0_R$.
- Beweis. 3 $(-a) \cdot (-b) \stackrel{?}{=} (a \cdot (-b)) = -(-a \cdot b)$ $= a \cdot b \quad (Invertexing tot involutority)$
- (4) Annahme: $1e=0_2$. Es ai at 2 beliebed. $a=a\cdot 1_2=a\cdot 0_2$ 0_2 , also it 2 des Nullag.

Charakteristik eines Ringes

Definition / CAN "abker sende Schribwide"

Es sei $(R,+,\cdot)$ ein Ring mit Einselement 1_R . Wenn $n \, 1_R = 0_R$ für ein $n \in \mathbb{N}$ gilt, dann heißt

$$\min\{n\in\mathbb{N}\,|\,n\,1_R=0_R\}$$

die Chakteristik von R, kurz char(R). Andernfalls setzen wir char(R) = 0.

Beispiel

und (C.T.)

- \bullet $(\mathbb{Z},+,\cdot)$, $(\mathbb{Q},+,\cdot)$ und $(\mathbb{R},+,\cdot)$ haben Charakteristik \mathcal{O} .
- Der Nullring hat Charakteristik
 4.
- $(\mathbb{Z}_m, +_m, \cdot_m)$ hat Charakteristik $m \in \mathbb{N}$

Restklassenring modulo m (withten Burnel)

Definition

Die Faktormenge $\mathbb{Z} \, / \, m \, \mathbb{Z}$ bildet mit den Verknüpfungen

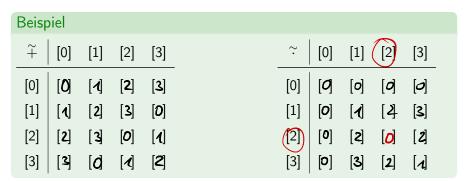
Would Grape
$$[a] \stackrel{\sim}{+} [b] = [a+b]$$
 - Beigni (\$1) komm transid $[a] \stackrel{\sim}{\cdot} [b] = [a \cdot b]$ - Hausungsbe 6.1

den Restklassenring modulo m, kurz: $(\mathbb{Z}/m\mathbb{Z}, \widetilde{+}, \widetilde{\cdot})$. Distrigued

 $(\mathbb{Z} \, / \, m \mathbb{Z}, \overset{\sim}{+}, \overset{\sim}{\cdot})$ ist ein kommutativer Ring mit Einselement [1].

Im Fall m=1 ist $(\mathbb{Z}/m\mathbb{Z},\stackrel{\sim}{+},\stackrel{\sim}{\cdot})$ isomorph zum Nullring.

Restklassenring modulo 4



Product Evries Faktoren it Oz, ale beide Faktore and milet Oz f

Nullteiler, Integritätsring

Definition

Es sei $(R, +, \cdot)$ ein Ring.

- 1 $a \in R$ heißt Linksnullteiler, wenn es $b \neq 0_R$ gibt mit $a \cdot b = 0_R$.

 1 Or it Luksnullteiler (außt vir Nullvir)
- 2 $b \in R$ heißt Rechtsnullteiler, wenn es $a \neq 0_R$ gibt mit $a \cdot b = 0_R$. Or Let Rechtsnulltever (außer Un Neutrie)
- $(R,+,\cdot)$ heißt <u>nullteilerfrei</u>, wenn es außer 0_R keine weiteren Links- oder Rechtsnullteiler gibt, wenn also gilt:

at 02 md b +02 = a.b+02.

- lacktriangled $(R,+,\cdot)$ heißt ntegritätsring oder Integritätsbereich im Fall
 - $(R, +, \cdot)$ ist kommutativer Ring mit Eins
 - $(R, +, \cdot)$ ist nullteilerfrei
 - $(R,+,\cdot)$ ist ungleich dem Nullring (had mind. 2 Elemente)

Integritätsringe

Beispiel

- **1** $(\mathbb{Z},+,\cdot)$, $(\mathbb{Q},+,\cdot)$, $(\mathbb{R},+,\cdot)$ und $(\mathbb{C},+,\cdot)$ sind Integritätsringe.
- Es sei X eine Menge und $(R, +, \cdot)$ ein kommutativer Ring mit Eins.

Dann ist $R^X = \{f \mid f \colon X \to R\}$ mit den punktweisen Verknüpfungen + und \cdot ein kommutativer Ring mit Eins.

Es sei R nicht der Nullring, und X habe mindestens zwei Elemente.

Dann ist $(R^X, +, \cdot)$ nicht mullteilerfrei!

Dann ist
$$(N, +, \frac{1}{2})$$
 $O_{\mathbb{R}} \times = x_1$

While $f(x) = \begin{cases} O_{\mathbb{R}} \times = x_1 \\ I_{\mathbb{R}} & \text{const} \end{cases}$ $g(x) = \begin{cases} O_{\mathbb{R}} \times = x_1 \\ O_{\mathbb{R}} & \text{const} \end{cases}$
 $f \cdot g = O_{\mathbb{R}} \times \text{Mullimetrian}$

Restklassenring modulo m

Satz

Es sei $m \in \mathbb{N}$. Dann sind äquivalent:

- \bullet $(\mathbb{Z}/m\mathbb{Z},\stackrel{\sim}{+},\stackrel{\sim}{\cdot})$ ist ein Integritätsring.
- 2 m ist eine Primzahl.

Beweis. m=1 - (Z/mZ, Z, ?) ist der Nukring, kein Enternitations.

Ab jetet m 32, (2/m2, 7, 4) lit mild der Nullrig, komm Ring mit Elvis [17. Es bommt also new auf du Null tailor freiheit an.

70 =0 -0 0 0 0 0 Es sei m 24 keene Primadul. $m=a\cdot b$ for $a,b\in E_{2,m}-11$.

[a] *[0] *[b]. Es gold $[0]=E_{m}]=[a\cdot b]$ = [a] *[b], also cot 2/m2 with null teclesfree.

Restklassenring modulo m

Satz

Es sei $m \in \mathbb{N}$. Dann sind äquivalent:

- **1** $(\mathbb{Z}/m\mathbb{Z},\stackrel{\sim}{+},\stackrel{\sim}{\cdot})$ ist ein Integritätsring.
- 2 m ist eine Primzahl.

Beweis. (2) = (2) Es (ci m = 2 ene Pruzahl. Ei 100en

[a], [b] \in 2/m2 mit [0] = [a] \cdot [b] = [a \b].

O und a \b hegun also un deselben Pestelancial.

a \b - 0 = a \b = m \bar fur en \bar 2 \bar n ist Prinzahl,

also enthalt de Prinfaktoreelero vou a oder vou b

das m, also git mla over mlb, d.h. [a] = [0]

oder [b] = [0] Das heißt, \bar /m2 ist multerceffer.

Unterring

vgl. Unterpre

Definition

Es sei $(R, +, \cdot)$ ein Ring. Uru su

• Eine bzgl. + und \cdot abgeschlossene Teilmenge $U \subseteq R$ heißt ein Unterring von $(R, +, \cdot)$, wenn $(U, +, \cdot)$ selbst wieder ein Ring ist. Das bedeukt $\cdot (U, +)$ wit (Leonar) UG war (R, +).

(li) ist abgeschloren.

② Ist $(R,+,\cdot)$ ein Ring mit Einselement 1_R , dann fordern wir für einen Unterring $(U,+,\cdot)$ zusätzlich, dass $1_R \in U$ liegt. Es recent wild, 2u forder, $dan(U,\cdot)$ ingender.

neutrales Element hat es muss le sui.

3 Ein Unterring $(U, +, \cdot)$ von $(R, +, \cdot)$ heißt **echt**, wenn $U \subsetneq R$ gilt.

Homomorphismus von Ringen

Definition

Es seien $(R_1, +_1, \cdot_1)$ und $(R_2, +_2, \cdot_2)$ zwei Ringe.

• Eine Abbildung $f: R_1 \to R_2$ heißt strukturverträglich oder ein Homomorphismus von $(R_1, +_1, \cdot_1)$ in $(R_2, +_2, \cdot_2)$, wenn gilt:

$$f(a+_1b) = f(a)+_2f(b)$$
 für alle $a,b \in R_1$, $f(a\cdot_1b) = f(a)\cdot_2f(b)$ für alle $a,b \in R_1$.

Besitzen beide Ringe ein Einselement 1_{R_1} bzw. 1_{R_2} , so wird zusätzlich $f(1_{R_1}) = 1_{R_2}$ gefordert.

② Ist zudem $f: H_1 \to H_2$ bijektiv, so heißt f auch strukturerhaltend oder ein Isomorphismus.

Bild und Kern eines Ringhomomorphismus

Definition

Es sei $f: (R_1, +_1, \cdot_1)$ und $(R_2, +_2, \cdot_2)$ ein Ringhomomorphismus.

Das Bild und der Kern von f sind definiert als

Bild
$$(f) := \{f(x) \in R_2 \mid x \in R_1\} = f(R_1),$$

$$Kern(f) := \{x \in R_1 \mid f(x) = 0_{R_2}\} = f^{-1}(\{0_{R_2}\}).$$

Lemma

Bild(f) ist ein Unterring von $(R_{\star}^{2}, +\frac{1}{\star}, \frac{2}{\star})$.

Kern(f) ist ein Unterring von $(R_2 + 2 \cdot 2)$.

Beweis. Übung

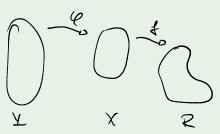
Homomorphismus von Ringen

Beispiel

• Es sei $(R,+,\cdot)$ ein Ring, X,Y Mengen und $\varphi\colon Y\to X.$ φ induziert einen Ringhomomorphismus

$$\varphi^* : (R^X, +, \cdot) \ni f \mapsto f \circ \varphi \in (R^Y, +, \cdot),$$

genannt den Pullback φ^* von φ .



$$\varphi^{*}(\{tg\}) = (\{tg\}) \circ \varphi$$
= $f \circ \varphi + g \circ \varphi = \varphi^{*}(\{t\})$
+ $(\xi^{*}(\{tg\})) = (\{tg\}) \circ \varphi$
= $f \circ \varphi \cdot g \circ \varphi$
= $(\xi^{*}(\{tg\})) \cdot \varphi^{*}(\{tg\})$

Homomorphismus von Ringen

2 Für $m \in \mathbb{N}$ ist die Abbildung

$$f: (\mathbb{Z}_m, +_m, \cdot_m) \ni a \mapsto [a] = a + m \, \mathbb{Z} \in (\mathbb{Z} \, / \, m \, \mathbb{Z}, \overset{\sim}{+}, \overset{\sim}{\cdot})$$
 La

ein Ringsonorphismus zwischen dem Ring von \mathbb{Z} modulo m und dem Restklassenring modulo m, beides kommutative Ringe mit

ugl. Folie 7