Lineare Algebra I Woche 04

07.11.2023 und 09.11.2023

Algebraische Strukturen

Definition

Eine algebraische Struktur ist eine Menge X, ausgestattet mit einer oder mehreren Verknüpfungen.

Zwei Voknizfugen

"Rediengerationer"

- L' cire Volencepfung Halbgruppe
- Gruppe
- Ring
- Körper
- Vektorraum Vaprael 3

Verknüpfung

Definition

apration

Es sei X eine Menge. Eine (innere) Verknüpfung auf X ist eine Abbildung

$$\star$$
: $X \times X \to X$.

Wir schreiben $a \star b$ statt $\star (a, b)$.

Beispiel

$$+: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$$
 Addition

$$\cdot \colon \mathbb{N} \times \mathbb{N} \to \mathbb{N} \qquad \mathsf{Multiplikation}$$

- it keen volenipfung and N

Verknüpfung

Volumiphystatel a

- Auf {0,1} definieren wir die zwei Verknüpfungen
- 2 X edu Kenge, (S,*) Structur 5x - 28/8: X-54

$$*: S^{k} \times S^{k} \rightarrow S^{k}$$
 mit $(g*g)(x) := g(x) * g(x) \in S$

1 punchweix

o
$$X^{\times} \times X^{\times} \rightarrow X^{\times}$$
 mit $(f \circ g)(x) := f(g(x)) \in X$

Halbgruppe

Definition

Eine Halbgruppe (H, \star) ist eine Menge H mit einer assoziativen Verknüpfung \star auf H, also

$$(x * y) * z = x * (y * z)$$

- $(\mathbb{N},+), (\mathbb{N}_0,+), (\mathbb{Z},+), (\mathbb{Q},+), (\mathbb{R},+) \text{ und } (\mathbb{C},+)$ Haltzyman \mathbb{Z} ist wilst anoxistis! $(1-2)^{-1} = -4$
- (\mathbb{N},\cdot) , (\mathbb{N}_0,\cdot) , (\mathbb{Z},\cdot) , (\mathbb{Q},\cdot) , (\mathbb{R},\cdot) und (\mathbb{C},\cdot) that (\mathbb{C},\cdot)
- \bullet $(\{0,1\},+_2)$ und $(\{0,1\},\cdot_2)$ Halbgrysen

Halbgruppe

- O X eve Heye, (S,*) Hallogrape. Association tat voor to rial [(f*g)*h](x) = [f*(g*h)](x) = -
 - X evie Henge, (XX,0) ist Halbgrype Komposistroni von Firmktronen ist assoziatio (Lemma 6.16)
 - $(\mathcal{P}(X), \cap), (\mathcal{P}(X), \cup) \text{ und } (\mathcal{P}(X), \triangle)$ Hallyrppen denu : $(\mathcal{P}(X), \cup) \cup \mathcal{P}(X)$ such a sociation

neutrales Element

Definition

Es sei (H, \star) eine Halbgruppe.

Ein $e \in H$ heißt ein neutrales Element von (H, \star) , wenn gilt:

$$e*x=x$$
 and $x*e=x$ for alle xet

Eine Halbgruppe (H, \star) mit einem neutralen Element heißt ein Monoid.

Lemma

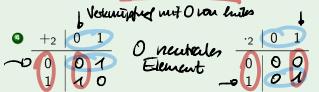
Es sei (H, \star) eine Halbgruppe. Sind e_1 und e_2 beides neutrale Elemente von (H, \star) , dann gilt $e_1 = e_2$.

Beweis.
$$e_1 = e_1 * e_2$$
 da e_2 nautral $e_1 = e_2$ da e_1 neutral

Halbgruppe mit/ohne neutralem/s Element

Beispiel

- \bullet (N, +) besitzt kein neutrales Element.
- ② $(\mathbb{N}_0,+)$, $(\mathbb{Z},+)$, $(\mathbb{Q},+)$, $(\mathbb{R},+)$ und $(\mathbb{C},+)$ haben alle das neutrale Element 0.
- **3** (\mathbb{N},\cdot) , (\mathbb{N}_0,\cdot) , (\mathbb{Z},\cdot) , (\mathbb{Q},\cdot) , (\mathbb{R},\cdot) und (\mathbb{C},\cdot) haben alle das neutrale Element 1.



1 neutrale Elment

Translationen

Definition

Es sei (H,\star) eine Halbgruppe. Für festes $a\in H$ heißt die Abbildung

$$\star_a \colon H \ni x \mapsto x \star a \in H$$
 die Rechtstranslation mit a , $a^* \colon H \ni x \mapsto a \star x \in H$ die Linkstranslation mit a .

QP(0) mit
$$g(x) := 2x$$

Og: $f \mapsto f \circ g$ mit $(f \circ g)(x) = f(g(x)) = f(2x)$
 $g \circ : f \mapsto g \circ f$ mit $(g \circ f)(x) = g(g(x)) = 2g(x)$

invertierbares Element, inverses Element

Definition

Es sei (H, \star) eine Halbgruppe mit neutralem Element e.

Ein Element $a \in H$ heißt invertierbar oder eine Einheit von (H, \star) , wenn ein $b \in H$ existiert mit

In diesem Fall heißt b ein inverses Element oder ein Inverses zu a.

Beachte: b ist Inverses zu $a \Leftrightarrow a$ ist Inverses zu b!

Lemma

Es sei (H, \star) eine Halbgruppe mit neutralem Element e. Ist $a \in H$ invertierbar und sind b_1 und b_2 beides Inverse zu a, dann gilt $b_1 = b_2$.

Beweis.
$$b_1 = b_1 * e = b_1 * (a * b_2)$$

= $(b_1 * a) * b_2 = e * b_2 = b_2$

invertierbares Element, inverses Element

- $(\mathbb{N},+)$ hat kein neutrales Element, also auch keine invertierbaren Elemente.
- ② In $(\mathbb{N}_0, +)$ ist nur das Element 0 invertierbar. Es ist zu sich selbst invers.
- **③** In $(\mathbb{Z}, +)$, $(\mathbb{Q}, +)$, $(\mathbb{R}, +)$ und $(\mathbb{C}, +)$ sind alle Elemente invertierbar. Das Inverse von a wird mit $\underline{-}a$ bezeichnet.

invertierbares Element, inverses Element

- **⑤** In (\mathbb{N}, \cdot) und (\mathbb{N}_0, \cdot) ist nur das Element 1 invertierbar. Es ist zu sich selbst invers.
- o In (\mathbb{Z},\cdot) sind nur 1 und -1 invertierbar. Beide sind zu sich selbst invers.
- **②** In (\mathbb{Q}, \cdot) , (\mathbb{R}, \cdot) und (\mathbb{C}, \cdot) sind alle Elemente bis auf 0 invertierbar. Das Inverse von a wird mit a^{-1} oder 1/a bezeichnet.
- In $(\{0,1\},\cdot_2)$ ist nur das Element 1 invertierbar. Es ist zu sich selbst invers. $\begin{array}{c|c} \cdot_2 & 0 & 1 \\ \hline 0 & 0 & 0 \\ 1 & 0 & 1 \end{array}$

allgemeine Notation

- Wir bezeichnen eine allgemeine Halbgruppe oft mit (H, \star) .
- Das neutrale Element (wenn es existiert) heißt häufig e.
- Das Inverse von a ∈ H wird (wenn es existiert) häufig mit a' bezeichnet.
- Das neutrale Element e (wenn es existiert) ist immer invertierbar und zu sich selbst invers: e' = e.

additive Notation

- Wir sprechen von einer Halbgruppe in additiver Notation (H,+), wenn wir die Verknüpfung als "Addition" bezeichnen und mit + (oder ähnlich) notieren.
- Das neutrale Element (wenn es existiert) heißt dann häufig das Nullelement 0_H .
- Das Inverse von $a \in H$ wird dann (wenn es existiert) häufig mit -a bezeichnet.
- Das neutrale Element 0_H (wenn es existiert) ist immer invertierbar und zu sich selbst invers: $-0_H = 0_H$.

additive Notation

- Für $n \in \mathbb{N}$ und $a \in H$ ist $n \mid a$ eine Abkürzung für $a + \cdots + a \mid n$ -mal).
- Besitzt H das neutrale Element 0_H, so definieren wir auch $0 a := 0_H$.
- Ist weiter $a \in H$ invertierbar, dann ist auch n a invertierbar für $n \in \mathbb{N}_0$, und wir setzen (-n) a := -(n a).
- Es gilt

$$n(\underline{m}a) = (\underline{n \cdot m}) a \text{ und } (\underline{n+m}) a = \underline{n}a + \underline{m}a$$

für alle $n, m \in \mathbb{Z}$, für die beide Ausdrücke in der jeweiligen Gleichung definiert sind.

multiplikative Notation

- Wir sprechen von einer Halbgruppe in multiplikativer Notation (H,·), wenn wir die Verknüpfung als "Multiplikation" bezeichnen und mit · (oder ähnlich) notieren.
- Das neutrale Element (wenn es existiert) heißt dann häufig das Einselement 1_H .
- Das Inverse von $a \in H$ wird dann (wenn es existiert) häufig mit a^{-1} bezeichnet.
- Das neutrale Element 1_H (wenn es existiert) ist immer invertierbar und zu sich selbst invers: $1_H^{-1} = 1_H$.

multiplikative Notation

- Für $n \in \mathbb{N}$ und $a \in H$ ist a^n eine Abkürzung für $a \cdot \cdots \cdot a$ (n-mal).
- Besitzt H das neutrale Element 1_H , so definieren wir auch $a^0 := 1_H$.
- Ist weiter $a \in H$ invertierbar, dann ist auch a^n invertierbar für $n \in \mathbb{N}_0$, und wir setzen $a^{-n} = (a^n)^{-1}$.
- Es gilt

$$(a^n)^m = a^{n \cdot m}$$
 und $a^{n+m} = a^n \cdot a^m$

für alle $n, m \in \mathbb{Z}$, für die beide Ausdrücke in der jeweiligen Gleichung definiert sind.

Kompositionsnotation

- Wir sprechen von einer Halbgruppe in Kompositionsnotation (H, ∘), wenn wir die Verknüpfung als "Komposition" bezeichnen und mit ∘ (oder ähnlich) notieren.
- Das neutrale Element (wenn es existiert) heißt dann häufig die **Identität** id.
- Das Inverse von $a \in H$ wird dann (wenn es existiert) häufig mit a^{-1} bezeichnet. $a \circ a^{-1} = a$
- Das neutrale Element id (wenn es existiert) ist immer invertierbar und zu sich selbst invers: $id^{-1} = id$.

Kompositionsnotation

- Für $n \in \mathbb{N}$ und $a \in H$ ist a^n eine Abkürzung für $a \circ \cdots \circ a$ (n-mal).
- Besitzt H das neutrale Element id, so definieren wir auch $a^0 := id$.
- Ist weiter $a \in H$ invertierbar, dann ist auch a^n invertierbar für $n \in \mathbb{N}_0$, und wir setzen $a^{-n} = (a^n)^{-1}$.
- Es gilt

$$(a^n)^m = a^{n \cdot m}$$
 und $a^{n+m} = a^n \circ a^m$

für alle $n,m\in\mathbb{Z}$, für die beide Ausdrücke in der jeweiligen Gleichung definiert sind.

Gruppe

Definition

Ein Monoid (H, \star) heißt eine **Gruppe**, wenn jedes Element aus H ein Inverses besitzt.

Juvere and evidenting

Beispiel

- lacksquare $(\mathbb{Z},+)$, $(\mathbb{Q},+)$, $(\mathbb{R},+)$ und $(\mathbb{C},+)$ sind Gruppen. \checkmark
- $(\mathbb{Q}_{\neq 0},\cdot)$, $(\mathbb{R}_{\neq 0},\cdot)$ und $(\mathbb{C}_{\neq 0},\cdot)$ sind Gruppen.
- 3 In jedem Monoid (H, \star) ist die Menge der invertierbaren Elemente

$$E(H, \star) := \{a \in H \mid a \text{ ist invertierbar}\}$$

eine Gruppe, genannt die **Einheitengruppe** $E(H, \star)$ von (H, \star) .

Gruppe

Beispiel

○ Für $m \in \mathbb{N}$ bildet die Menge $\mathbb{Z}_m := \{0, 1, \dots, m-1\}$ mit der Verknüpfung $+_m$ (Addition modulo m) eine Gruppe.

Fall n=2 berits beleaunt

18181X-54

- Ist X eine Menge und (G, \star) eine Gruppe, dann ist (G^X, \star) eine Gruppe. Twent to f(x) = f(x) dann ist namblik (f + f')(x) = f(x) + f'(x)
- (X^X, ∘) ist keine Gruppe, sobald X zwei oder mehr Elemente enthält. Die Unichtet tame Elemente sind Gran the opperation time transcript X > X.

Rechenregeln für Inverse

Satz

Es sei (G, \star) eine Gruppe mit neutralem Element e.

Kürzungsregeln

$$a \star b_1 = a \star b_2 \quad \Rightarrow \quad b_1 = b_2$$

 $b_1 \star a = b_2 \star a \quad \Rightarrow \quad b_1 = b_2$

Beweis.
$$a * b_1 = a * b_2$$

=> $(a^1 * a) * b_1 = (a^1 * a) * b_2$
=> $e * b_1 = e * b_2$
=> $b_1 = b_2$

Rest amalog

Rechenregeln für Inverse

Satz

Es sei (G, \star) eine Gruppe mit neutralem Element e.

In einer Gruppe reicht es für den Nachweis, dass a und b Inverse voneinander sind, aus, diese in einer der beiden Reihenfolgen miteinander zu verknüpfen:

$$a \star b = e \quad \Rightarrow \quad b = a'$$

 $a \star b = e \quad \Rightarrow \quad a = b'$

Beweis. Et sien a, be g mit a*b=e. Audesesseit ist a investebler, en gelt a*a!=e. Also: a*b=a*a!=b*ea!.

Zweik Austage genaurs.

Rechenregeln für Inverse

Satz

Es sei (G, \star) eine Gruppe mit neutralem Element e.

3 Die Invertierung ist involutorisch, d. h., es gilt

$$(a')'=a$$

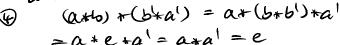
4 Für das inverse Element zu $a \star b$ gilt

$$(a \star b)' = b' \star a'$$

Beweis. 3 Ist a de Inverte var a!?

a*a' = e

a'*a = e



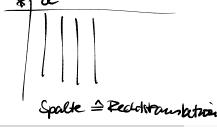
Gruppenkriterium mit Translationen

Lemma notwerdiges Uriterium

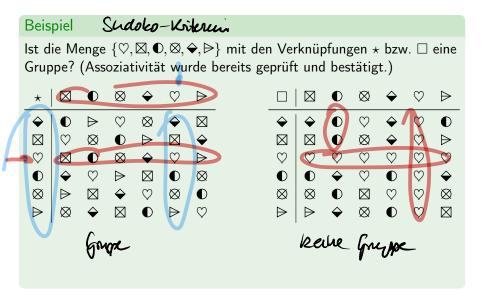
• Ist (G, \star) eine Gruppe, so sind alle Rechtstranslationen \star_a und alle Linkstranslation $_a\star$ bijektive Abbildungen $G\to G$.

bihreitundes Withrein

Ist (H, \star) eine nichtleere Halbgruppe und sind alle
Rechtstranslationen \star_a und alle Linkstranslationen ${}_a\star$ surjektive
Abbildungen, dann ist (H, \star) eine Gruppe.



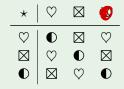
Gruppenkriterium mit Translationen



Gruppenkriterium mit Translationen

Beispiel

Assoziativität der Verknüpfung ist Voraussetzung für die Anwendung des Gruppenkriteriums! Die Menge $\{\heartsuit, \boxtimes, \mathbf{O}\}$ mit der Verknüpfung \star



ist keine Gruppe, da ★ nicht assoziativ ist!

$$(\heartsuit \star \heartsuit) \star \boxtimes = \mathbb{O} \star \boxtimes = \heartsuit$$
$$\heartsuit \star (\heartsuit \star \boxtimes) = \heartsuit \star \boxtimes = \boxtimes$$

Kommutativität

Eigenstaft von +

Definition

Eine Halbgruppe bzw. ein Monoid bzw. eine Gruppe (H, \star) heißt kommutativ oder abelsch, wenn gilt:

$$x \star y = y \star x$$
 für alle $x, y \in H$.

- $(\mathbb{N},+), (\mathbb{N}_0,+), (\mathbb{Z},+), (\mathbb{Q},+), (\mathbb{R},+)$ und $(\mathbb{C},+)$
- (\mathbb{N},\cdot) , (\mathbb{N}_0,\cdot) , (\mathbb{Z},\cdot) , (\mathbb{Q},\cdot) , (\mathbb{R},\cdot) und (\mathbb{C},\cdot) sud ebenfalls v
- $(\{0,1\},+_2)$ und $(\{0,1\},\cdot_2)$ Ubereforts (X^X, \circ) i.A. niet kommutatio

die symmetrische Gruppe

Definition

Es sei $X \neq \emptyset$ eine Menge und $S(X) := \{f : X \rightarrow X \mid f \text{ ist bijektiv}\}.$

- $(S(X), \circ)$ heißt die symmetrische Gruppe auf X. Jedes Element von S(X) heißt eine **Permutation** von X.
- Ist X = [1, n] für $n \in \mathbb{N}$, so schreiben wir auch S_n und sprechen von der symmetrischen Gruppe vom Grad n. Jedes $\sigma \in S_n$ heißt eine **Permutation** von [1, n].

Darstellung einer Permutation $\sigma \in S_n$:

$$\begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ \sigma(1) & \sigma(2) & \sigma(3) & \cdots & \sigma(n) \end{pmatrix}$$

$$S_n$$
 hat $n!$ Elemente. $n = 1.2 \cdot n$ $0! = 1$

die symmetrische Gruppe vom Grad 3

Beispiel

Die symmetrische Gruppe S_3 hat 3! = 6 Elemente:

$$\sigma_0 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \quad \sigma_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \quad \sigma_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \quad \text{Drehungen}$$

$$\sigma_3 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \quad \sigma_4 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \quad \sigma_5 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \quad \text{Spiegelungen}$$

$$\sigma_4 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \quad \sigma_5 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \quad \text{Spiegelungen}$$

$$\sigma_4 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \quad \sigma_5 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \quad \text{Spiegelungen}$$

$$\sigma_4 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \quad \sigma_5 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \quad \text{Spiegelungen}$$

$$\sigma_4 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \quad \sigma_5 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \quad \text{Spiegelungen}$$

$$\sigma_4 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \quad \sigma_5 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \quad \text{Spiegelungen}$$

$$\sigma_5 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \quad \sigma_5 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \quad \text{Spiegelungen}$$

$$\sigma_5 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \quad \sigma_5 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \quad \text{Spiegelungen}$$

$$\sigma_5 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \quad \sigma_5 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \quad \text{Spiegelungen}$$

$$\sigma_5 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \quad \sigma_5 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \quad \text{Spiegelungen}$$

$$\sigma_5 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \quad \sigma_5 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \quad \text{Spiegelungen}$$

$$\sigma_5 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \quad \sigma_5 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \quad \text{Spiegelungen}$$

$$\sigma_5 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \quad \sigma_5 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \quad \text{Spiegelungen}$$

$$\sigma_5 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \quad \sigma_5 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \quad \text{Spiegelungen}$$

$$\sigma_5 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \quad \sigma_5 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \quad \sigma_5 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \quad \sigma_5 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \quad \sigma_5 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \quad \sigma_5 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \quad \sigma_5 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \quad \sigma_5 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \quad \sigma_5 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \quad \sigma_5 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \quad \sigma_5 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \quad \sigma_5 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \quad \sigma_5 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \quad \sigma_5 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \quad \sigma_5 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \quad \sigma_5 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \quad \sigma_5 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \quad \sigma_5 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \quad \sigma_5 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \quad \sigma_5 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \quad \sigma_5 = \begin{pmatrix} 1$$

Transposition

Definition

Eine Permutation $\sigma \in S_n$, $n \in \mathbb{N}$, heißt eine **Transposition**, wenn es Zahlen $i,j \in [\![1,n]\!]$ mit $i \neq j$ gibt, sodass σ i und j vertauscht und den Rest von $[\![1,n]\!]$ unverändert lässt. Wir schreiben dann $\sigma = \tau(i,j)$.

Es gibt (2) = \frac{1}{2}n(n-1) verschiedene Transpositionen
Satz

Es sei $n \in \mathbb{N}$. Jede Permutation $\sigma \in S_n$ lässt sich als Komposition von $0 \le r \le n-1$ Transpositionen schreiben.

Beweis durch vollständige Induktion.

Schranken and school

Zerlegung in Transpositionen

Beispiel
$$N=4$$
, $r=N-1=3$ Transport weder getrandit

$$\frac{\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}}{\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{pmatrix}}$$

$$\xrightarrow{\tau(3,1)\circ} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 3 & 4 \end{pmatrix}}$$

$$\xrightarrow{\tau(2,1)\circ} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}}$$

$$\tau(2,1)\circ \tau(3,1)\circ \tau(4,1)\circ \sigma = id$$

$$\tau(4,1)\circ \tau(3,1)\circ \tau(3$$

Fehlstand und Signum einer Permutation

Definition

Es sei $n \in \mathbb{N}$ und σ eine Permutation in S_n .

- Ein Indexpaar $(i,j) \in [1,n]^2$ heißt ein Fehlstand von σ , wenn i < j und $\sigma(i) > \sigma(j)$ gilt.
- **2** Das **Signum** von σ ist

$$\operatorname{sgn} \sigma := \prod_{1 \le i < j \le n} \frac{\sigma(j) - \sigma(i)}{j - i}$$

Beispiel 3 Felythande
$$sgn\left(\frac{1}{3}, \frac{2}{2}, \frac{3}{1}\right) = \frac{2-3}{2-1} - \frac{1-3}{3-2}$$

$$=(-1)^{3} = -1$$

Eigenschaften von Signum

Definition

Es sei $n \in \mathbb{N}$ und σ eine Permutation in S_n .

- σ heißt eine gerade Permutation im Fall sgn $\sigma = 1$. σ heißt eine ungerade Permutation im Fall sgn $\sigma = -1$.
 - $\operatorname{sgn} \sigma = (-1)^{\operatorname{Anzahl}} \operatorname{der} \operatorname{Fehlstände} \operatorname{von} \sigma =: \operatorname{Parität} \operatorname{von} \sigma$
 - sgn id = 1 und sgn $\tau = -1$ für jede Transposition τ

• $\sigma = \tau_1 \circ \cdots \circ \tau_r$ (Komposition von $r \in \mathbb{N}$ Transpositionen in S_n) impliziert sgn $\sigma = (-1)^r$