Lineare Algebra I Woche 02

24.10.2023 und 26.10.2023

Was ist eine Menge?

Georg Cantor, Begründer der Mengenlehre, hat 1895 folgenden Versuch der Definition einer Menge angegeben:

Definition

"Unter einer Menge verstehen wir jede Zusammenfassung X von bestimmten wohlunterschiedenen Objekten x unserer Anschauung oder unseres Denkens (welche die Elemente von X genannt werden) zu einem Ganzen."

Diese Definition ist aber zu ungenau und lässt zuviel als Menge zu, siehe Russell-Paradoxon später.

Angabe von Mengen

Aufzählung endlicher Mengen:

$$X := \{2,3,5\} = \{5,2,3,2\}$$

(Die Elimination doppelter Elemente geschieht bei der Konstruktion. Elemente einer Menge haben keine Reihenfolge.)

Angabe einiger Elemente und "offensichtliche" Fortsetzung

$$\mathbb{N} := \{1, 2, 3, \ldots\}$$

 $\mathbb{Z} := \{0, 1, -1, 2, -2, \ldots\}$

 Mengenkomprehension durch Angabe eines Grundbereichs X und einer Aussageform A auf X:

$$Y := \{x \in X \mid A(x)\}$$

(Auswahl der Elemente x von X, für die A(x) wahr ist.)

Zahlbereiche

$$\mathbb{N} := \{1, 2, 3, \ldots\}$$

$$\mathbb{N}_0:=\{0,1,2,3,\ldots\}$$

$$\mathbb{Z} := \{0, 1, -1, 2, -2, \ldots\}$$

$$\widetilde{\mathbb{Q}} := \left\{ \frac{m}{n} \,\middle|\, m \in \mathbb{Z}, \ n \in \mathbb{Z} \setminus \{0\} \right\}$$

 \mathbb{R}

$$\mathbb{C} := \{a + b \, i \mid a, b \in \mathbb{R}\}\$$

natürliche Zahlen

natürliche Zahlen mit Null

ganze Zahlen

rationale Zahlen (vorläufig)

reelle Zahlen

komplexe Zahlen

Russell-Paradoxon

Die sehr freie Definition einer Menge nach Cantor lässt es zu, X als die Menge aller Mengen zu definieren. Wählen wir dann A(x) als die Aussageform "enthält sich nicht selbst", so ist

$$R := \{x \in X \mid x \notin x\}$$

die Menge aller Mengen, die sich nicht selbst enthalten.

Enthält R sich selbst?

- Falls R sich selbst enthält $(R \in R)$, dann liegt das daran, dass R die Komprehensionsbedingung $R \notin R$ erfüllt.
- Falls R sich nicht selbst enthält $(R \notin R)$, dann erfüllt R die Komprehensionsbedingung $R \notin R$ nicht, also gilt $R \in R$.

Ausweg: Axiomatische Mengenlehre nach Zermelo-Fraenkel

- Die Auflösung in der modernen, axiomatischen Mengenlehre nach Zermelo und Fraenkel (ZF-Mengenlehre) besteht darin, den Mengenbegriff geeignet einzuschränken. Konstruktionen wie die "Menge aller Mengen" sind dann nicht mehr möglich.
 - In dieser Lehrveranstaltung können wir das aber nicht behandeln.
- Die Mengenkomprehension als Konstruktionsprinzip $Y := \{x \in X \mid A(x)\}$ bleibt in der ZF-Mengenlehre erhalten. Der Grundbereich X der Aussageform A muss aber bereits eine Menge sein, damit wieder eine Menge herauskommt.
- Es gibt allgemeinere Objekte als Mengen, sogenannte Klassen, wie zum Beispiel die Klasse aller Mengen.

Intervalle in $\mathbb R$

Intervalle werden mittels Mengenkomprehension definiert:

$$[a,b] \coloneqq \{x \in \mathbb{R} \mid a \leqslant x \leqslant b\} \quad \text{abgeschlossen}$$

$$(a,b] \coloneqq \{x \in \mathbb{R} \mid a < x \leqslant b\} \quad \text{links offen, rechts abgeschlossen}$$

$$[a,b) \coloneqq \{x \in \mathbb{R} \mid a \leqslant x < b\} \quad \text{links abgeschlossen, rechts offen}$$

$$(a,b) \coloneqq \{x \in \mathbb{R} \mid a < x < b\} \quad \text{offen}$$

$$[a,\infty) \coloneqq \{x \in \mathbb{R} \mid a \leqslant x\} \quad \text{rechts unendlich, abgeschlossen}$$

$$(a,\infty) \coloneqq \{x \in \mathbb{R} \mid a < x\} \quad \text{rechts unendlich, offen}$$

$$(-\infty,b] \coloneqq \{x \in \mathbb{R} \mid x \leqslant b\} \quad \text{links unendlich, abgeschlossen}$$

$$(-\infty,b) \coloneqq \{x \in \mathbb{R} \mid x < b\} \quad \text{links unendlich, offen}$$

$$(-\infty,\infty) \coloneqq \{x \in \mathbb{R} \mid T\} = \mathbb{R} \quad \text{beidseitig unendlich}$$

$$[a,b] \coloneqq [a,b] \cap \mathbb{Z} \quad \text{ganzzahliges Intervall}$$

Zur Bedeutung der Attribute offen und abgeschlossen siehe Vorlesung Analysis I.

Teilmenge, Obermenge

 A ist eine Teilmenge von B, kurz: A ⊆ B, wenn jedes Element von A auch ein Element von B ist:

$$\forall a \in A \ (a \in B).$$

B ist dann eine **Obermenge** von A, kurz: $B \supseteq A$.

• A ist eine echte Teilmenge von B, kurz: $A \subseteq B$, wenn $A \subseteq B$ und $A \neq B$ gilt:

$$\forall a \in A \ (a \in B) \quad \land \quad \exists b \in B \ (b \notin A).$$

B ist dann eine echte Obermenge von A, kurz: $B \supseteq A$.

Schnitt von Mengen

Schnitt von zwei Mengen U_1, U_2 :

$$U_1 \cap U_2 := \left\{ x \,\middle|\, x \in U_1 \,\land\, x \in U_2 \right\}$$

Schnitt einer indizierten Menge von Mengen U_i :

$$\bigcap_{i\in I}U_i:=\left\{x\,\big|\,\forall i\in I\;(x\in U_i)\right\}$$

Schnitt einer beliebigen Menge \mathcal{U} von Mengen:

$$\bigcap \mathcal{U} := \{ x \, | \, \forall U \in \mathcal{U} \, (x \in U) \}$$

Vereinigung von Mengen

Vereinigung von zwei Mengen U_1, U_2 :

$$U_1 \cup U_2 := \left\{ x \, \middle| \, x \in U_1 \, \lor \, x \in U_2 \right\}$$

Vereinigung einer indizierten Menge von Mengen U_i :

$$\bigcup_{i\in I}U_i:=\left\{x\,\big|\,\exists i\in I\;\big(x\in U_i\big)\right\}$$

Vereinigung einer beliebigen Menge \mathcal{U} von Mengen:

$$\bigcup \mathcal{U} := \{x \mid \exists U \in \mathcal{U} \ (x \in U)\}$$

Differenz von zwei Mengen

Differenzmenge von Y in X:

$$X \setminus Y := \{x \in X \mid x \notin Y\}$$

symmetrische Differenz von X und Y:

$$X\triangle Y:=(X\setminus Y)\cup (Y\setminus X)$$

Komplement einer Menge in einer Menge

Komplement von $A \subseteq X$ in X

$$A^c := X \setminus A = \{x \in X \mid x \notin A\}$$

Die Menge X taucht im Symbol A^c nicht auf. Sie muss aus dem Zusammenhang klar sein.

Eigenschaften von Schnitt und Vereinigung

Satz

$$X \cap Y = Y \cap X$$

$$X \cup Y = Y \cup X$$
Kommutativität von \cap

$$(X \cap Y) \cap Z = X \cap (Y \cap Z)$$

$$(X \cup Y) \cup Z = X \cup (Y \cup Z)$$
Assoziativität von \cup

$$X \cap (Y \cup Z) = (X \cap Y) \cup (X \cap Z)$$
Distributivität
$$X \cup (Y \cap Z) = (X \cup Y) \cap (X \cup Z)$$
Distributivität
$$X \setminus Y = X \setminus (X \cap Y)$$

$$X \cap Y = X \Leftrightarrow X \subseteq Y$$

$$X \cup Y = Y \Leftrightarrow X \subseteq Y$$

Eigenschaften von Schnitt und Vereinigung

Satz

Sind A und B Teilmengen einer Menge X, bzgl. der wir das Komplement nehmen, so gilt weiter:

$$(A \cap B)^c = A^c \cup B^c$$
$$(A \cup B)^c = A^c \cap B^c$$

De Morgansches Gesetz

De Morgansches Gesetz

$$(A^c)^c = A$$

Komplementbildung ist involutorisch

$$A \subseteq B \Leftrightarrow B^c \subseteq A^c$$

Bindungsregeln

Es bindet ...

$$\cdot^c$$
 stärker als $\,\setminus\,$ stärker als $\,\cap\,$ stärker als $\,\cup\,$

Diese Regeln erlauben uns, auf Klammern zu verzichten. Klammern können jedoch zur Verdeutlichung nicht schaden.

Beispiel $(A^c)\cap B\quad \text{ist dasselbe wie}\quad A^c\cap B$ $A\setminus B\cup C\quad \text{ist dasselbe wie}\quad (A\setminus B)\cup C$

Potenzmenge

Die Menge aller Teilmengen einer Menge A

$$\mathcal{P}(A) := \{B \mid B \subseteq A\}$$

heißt die Potenzmenge von A.

Beispiel

Die Potenzmenge von $A = \{a, b, c\}$ ist

$$\mathcal{P}(A) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}.$$

Kartesisches Produkt von endlich vielen Mengen

kartesisches Produkt von zwei Mengen A₁, A₂:

$$A_1 \times A_2 \coloneqq \big\{ \underbrace{(a_1,a_2)}_{\mathsf{Paar}} \; \big| \; a_1 \in A_1 \; \land \; a_2 \in A_2 \big\}$$

kartesisches Produkt von endlich vielen Mengen A_1, \ldots, A_n für $n \in \mathbb{N}$:

$$\underset{i=1}{\overset{n}{\times}} A_i := \underbrace{\left(\underbrace{a_1,\ldots,a_n}\right)}_{n\text{-Tupel}} \mid a_i \in A_i \text{ für } i=1,\ldots,n$$

Paare und Tupel sind geordnet!

Relation

Definition

Es seien X und Y Mengen sowie $R \subseteq X \times Y$.

(R, X, Y) heißt eine Relation zwischen X und Y mit Graph R.

Im Fall X = Y heißt die Relation homogen.

Wenn X und Y klar sind, sagt man auch oft, R selbst sei die Relation.

Beispiel

 $R = \{(x, y) \in \mathbb{R}^2 \mid x \leqslant y\}$ ist die Kleiner-Gleich-Relation auf \mathbb{R} .

Statt $(x, y) \in R$ schreibt man oft x R y.

Teilbarkeitsrelation

Definition

Die Zahl $x \in \mathbb{Z}$ teilt die Zahl $y \in \mathbb{Z}$, kurz: $x \mid y$, wenn eine Zahl $n \in \mathbb{Z}$ existiert, sodass y = nx gilt.

Teilbarkeitsrelation $R := \{(x,y) \mid x \mid y\}$ zwischen $X \subseteq \mathbb{Z}$ und $Y \subseteq \mathbb{Z}$

$x \mid y$	0	1	2	3	4	5	6	7	8
0									
1									
2									
3									
4									
5									
6									
7									
8									

Relationen

Beispiel

• Inklusionsrelation $R = \{(A, B) \in \mathcal{P}(X) \times \mathcal{P}(X) \mid A \subseteq B\}$

• Auf einer Menge X heißt

$$\Delta_X := \{(x,y) \in X \times X \mid x = y\}$$

die Diagonale in $X \times X$. Die Relation id $_X := (\Delta_X, X, X)$ heißt die Gleichheitsrelation oder Identitätsrelation auf X.

• Auf einer Menge X heißt die Relation $U_X := (U, X, X)$ mit $U = X \times X$ die universelle Relation.

Darstellungen von Relationen

Wenn X und Y endliche Mengen sind, können wir eine Relation $R \subseteq X \times Y$ auf folgende Arten darstellen:

Komposition von zwei Relationen

Es seien X, Y und Z Mengen sowie (R, X, Y) und (S, Y, Z) zwei Relationen. Dann heißt die Relation $(S \circ R, X, Z)$ mit

$$S \circ R := \{(x, z) \in X \times Z \mid \exists y \in Y \text{ mit } (x, y) \in R \text{ und } (y, z) \in S\}$$

die Komposition von R und S.

Beispiel

Umkehrrelation

Es seien X und Y Mengen und (R, X, Y) eine Relation. Dann heißt (R^{-1}, Y, X) die **Umkehrrelation** oder **inverse Relation** von R mit

$$R^{-1} := \{(b, a) \in Y \times X \mid (a, b) \in R\} \subseteq Y \times X.$$

Beispiel

Eigenschaften homogener Relationen

Definition

Es sei X eine Menge und (R, X, X) eine Relation auf X.

R heißt ... wenn gilt:

reflexiv:
$$(x,x) \in R$$
 für alle $x \in X$

symmetrisch:
$$(x,y) \in R \Rightarrow (y,x) \in R$$

antisymmetrisch:
$$(x,y) \in R$$
 und $(y,x) \in R$ \Rightarrow $x = y$

transitiv:
$$(x,y) \in R$$
 und $(y,z) \in R$ \Rightarrow $(x,z) \in R$

total: $(x,y) \in R$ oder $(y,x) \in R$ für alle $x,y \in R$

Eigenschaften homogener Relationen

Bei Darstellung der Relation auf einer endlichen Menge als gerichteter Graph:

Ordnungsrelation

Definition

Es sei X eine Menge.

- Eine reflexive, antisymmetrische und transitive Relation (R, X, X) auf X heißt eine Ordnungsrelation, Halbordnung oder partielle Ordnung.
 - (X, R) heißt dann eine halbgeordnete Menge.

- 2 Ist R zusätzlich total, dann heißt sie eine Totalordnung.
 - (X, R) heißt dann eine totalgeordnete Menge.

Ordnungsrelation

Beispiel

① Die Inklusionsrelation \subseteq ist eine Halbordnung auf der Potenzmenge $\mathcal{P}(X)$ jeder beliebigen Menge X. Sie ist eine totale Ordnung dann und nur dann, wenn X entweder kein oder genau ein Element enthält.

② Die Teilbarkeitsrelation | ist eine Halbordnung auf \mathbb{N} .

Vergleichbarkeit, obere Schranke, Supremum

Definition

Es sei X mit der Relation \leq eine halbgeordnete Menge.

- $x, y \in X$ heißen vergleichbar, wenn $x \leq y$ oder $y \leq x$ gilt.
- $b \in X$ heißt eine obere Schranke von $A \subseteq X$, wenn gilt:

$$x \leq b$$
 für alle $x \in A$.

 b ∈ X heißt ein Supremum oder kleinste obere Schranke von A ⊆ X, wenn gilt:

> b ist eine obere Schranke von A, und für jede obere Schranke \hat{b} von A gilt: $b \leq \hat{b}$.

maximales Element, Maximum

Definition

Es sei X mit der Relation \leq eine halbgeordnete Menge.

• $b \in X$ heißt ein maximales Element von $A \subseteq X$, wenn gilt:

$$b \in A$$
, und für alle $x \in A$ gilt: $b \preccurlyeq x \Rightarrow x = b$.

• $b \in X$ heißt ein Maximum von $A \subseteq X$, wenn gilt:

$$b \in A$$
,
und für alle $x \in A$ gilt: $x \leq b$.

Supremum, maximales Element, Maximum

Beispiel

Äquivalenzrelation

Definition

Es sei X eine Menge.

Eine reflexive, symmetrische und transitive Relation (R, X, X) auf X heißt eine Äquivalenzrelation.

Äquivalenzrelation

Beispiel

Äquivalenzklassen und Repräsentanten

Definition

Es sei X eine Menge mit der Äquivalenzrelation \sim .

• Für $x \in X$ heißt die Menge

$$[x] := \{ y \in X \mid y \sim x \}$$

die Äquivalenzklasse von x bzgl. \sim .

- 2 Jedes Element einer Äquivalenzklasse heißt ein Repräsentant dieser Äquivalenzklasse.
- **3** Eine Menge $S \subseteq X$, die aus jeder Äquivalenzklasse genau einen Repräsentanten enthält, heißt ein Repräsentantensystem von \sim .

Äquivalenzklassen und Repräsentanten

Äquivalenzklassen sind gleich oder disjunkt

Satz

Es sei X eine Menge mit der Äquivalenzrelation \sim und [x] und [y] zwei Äquivalenzklassen. Dann sind diese entweder gleich oder disjunkt.

Beweis.

Partition

Definition

Es sei X eine nichtleere Menge und \mathcal{U} eine Menge von Teilmengen von X, also $\mathcal{U} \subseteq \mathcal{P}(X)$. \mathcal{U} heißt eine Partition oder disjunkte Zerlegung von X, wenn gilt:

- **1** Für alle $x \in X$ gibt es eine Menge $U \in \mathcal{U}$, die x enthält.
- ② Für alle $U, V \in \mathcal{U}$ sind U und V entweder gleich oder disjunkt.
- ∅ ∉ U.

Partionen "sind" Äquivalenzrelationen

Satz

- **1** Es sei X eine nichtleere Menge mit der Äquivalenzrelation \sim . Dann bildet die Menge der Äquivalenzklassen $\{[x] \mid x \in X\}$ eine Partition von X.
- **2** Es sei X eine nichtleere Menge und \mathcal{U} eine Partition von X.
 - Dann gibt es eine eindeutig bestimmte Äquivalenzrelation \sim , sodass $\mathcal U$ genau aus den Äquivalenzklassen von \sim besteht.

Quotientenmenge

Definition

Es sei X eine nichtleere Menge mit der Äquivalenzrelation \sim .

Die Menge der Äquivalenzklassen

$$X/\sim := \{[x] \mid x \in X\}$$

heißt auch die Quotientenmenge oder die Faktormenge von \sim .

Beispiel

Rationale Zahlen

Wir hatten die Menge der rationalen Zahlen vorläufig eingeführt als

$$\widetilde{\mathbb{Q}} \coloneqq \left\{ \frac{m}{n} \,\middle|\, m \in \mathbb{Z}, \ n \in \mathbb{Z} \setminus \{0\} \right\}.$$

Wir wollen aber beispielsweise $\frac{1}{2}$, $\frac{3}{6}$ und $\frac{-2}{-4}$ miteinander identifizieren. Zu diesen Zweck verwenden wir die Äguivalenzrelation

$$\frac{m_1}{n_1} \sim \frac{m_2}{n_2} \quad \Leftrightarrow \quad m_1 \cdot n_2 = m_2 \cdot n_1.$$

Das führt uns zur Definition

$$\mathbb{Q} := \left\{ \frac{m}{n} \,\middle|\, m \in \mathbb{Z}, \ n \in \mathbb{Z} \setminus \{0\} \right\} \,\big/ \, \sim \,$$

für die rationalen Zahlen als Quotientenmenge.