Lineare Algebra I Woche 02

24.10.2023 und 26.10.2023

Was ist eine Menge?

Georg Cantor, Begründer der Mengenlehre, hat 1895 folgenden Versuch der Definition einer Menge angegeben:

Definition

"Unter einer Menge verstehen wir jede Zusammenfassung X von bestimmten wohlunterschiedenen Objekten x unserer Anschauung oder unseres Denkens (welche die Elemente von X genannt werden) zu einem Ganzen."

Diese Definition ist aber zu ungenau und lässt zuviel als Menge zu, siehe Russell-Paradoxon später.

Mengen sand aleine durch ilor Elemente bestimmt.

Angabe von Mengen

Aufzählung endlicher Mengen:

$$X := \{2,3,5\} = \{5,2,3,2\}$$

(Die Elimination doppelter Elemente geschieht bei der Konstruktion. Elemente einer Menge haben keine Reihenfolge.)

Angabe einiger Elemente und "offensichtliche" Fortsetzung

$$\begin{split} \mathbb{N} &\coloneqq \{1,2,3,\ldots\} \\ \mathbb{Z} &\coloneqq \{0,1,-1,2,-2,\ldots\} \end{split}$$

 Mengenkomprehension durch Angabe eines Grundbereichs X und einer Aussageform A auf X: $Y := \{x \in X \mid A(x)\}$

$$Y := \{x \in X \mid A(x)\}$$

(Auswahl der Elemente x von X, für die A(x) wahr ist.)

Zahlbereiche

$$\textbf{N} \; \coloneqq \{1,2,3,\ldots\}$$

$$\mathbb{N}_0:=\{0,1,2,3,\ldots\}$$

7
$$\mathbb{Z} := \{0, 1, -1, 2, -2, \ldots\}$$

$$\widetilde{\mathbb{Q}} := \left\{ \frac{m}{n} \middle| m \in \mathbb{Z}, \ n \in \mathbb{Z} \setminus \{0\} \right\}$$

$$\mathbf{C} = \{a + b \, i \mid a, b \in \mathbb{R}\}$$

natürliche Zahlen

natürliche Zahlen mit Null

ganze Zahlen

rationale Zahlen (vorläufig)

reelle Zahlen

komplexe Zahlen

Russell-Paradoxon

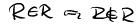
Die sehr freie Definition einer Menge nach Cantor lässt es zu, X als die Menge aller Mengen zu definieren. Wählen wir dann A(x) als die Aussageform "enthält sich nicht selbst", so ist

$$R := \{x \in X \mid x \notin x\}$$

die Menge aller Mengen, die sich nicht selbst enthalten.

Enthält R sich selbst?

- Falls R sich selbst enthält $(R \in R)$, dann liegt das daran, dass R die Komprehensionsbedingung $R \notin R$ erfüllt.
- Falls R sich nicht selbst enthält $(R \notin R)$, dann erfüllt R die Komprehensionsbedingung $R \notin R$ nicht, also gilt $R \in R$.



Willesponde

Ausweg: Axiomatische Mengenlehre nach Zermelo-Fraenkel

- Die Auflösung in der modernen, axiomatischen Mengenlehre nach Zermelo und Fraenkel (ZF-Mengenlehre) besteht darin, den Mengenbegriff geeignet einzuschränken. Konstruktionen wie die "Menge aller Mengen" sind dann nicht mehr möglich.
- Die Mengenkomprehension als Konstruktionsprinzip $Y := \{x \in X \mid A(x)\}$ bleibt in der ZF-Mengenlehre erhalten. Der

In dieser Lehrveranstaltung können wir das aber nicht behandeln.

- Grundbereich X der Aussageform A muss aber bereits eine Menge sein, damit wieder eine Menge herauskommt.
- Es gibt allgemeinere Objekte als Mengen, sogenannte Klassen, wie zum Beispiel die Klasse aller Mengen.

Intervalle in R ER (Endpunk)

Intervalle werden mittels Mengenkomprehension definiert:

abgeschlossen
$$(a,b] := \{x \in \mathbb{R} \mid a < x \le b\} \quad \text{links offen, rechts abgeschlossen}$$

$$(a,b) := \{x \in \mathbb{R} \mid a < x < b\} \quad \text{links abgeschlossen, rechts offen}$$

$$(a,b) := \{x \in \mathbb{R} \mid a < x < b\} \quad \text{offen}$$

$$[a,\infty) := \{x \in \mathbb{R} \mid a < x < b\} \quad \text{offen}$$

$$[a,\infty) := \{x \in \mathbb{R} \mid a < x\} \quad \text{rechts unendlich, abgeschlossen}$$

$$(a,\infty) := \{x \in \mathbb{R} \mid a < x\} \quad \text{rechts unendlich, offen}$$

$$(-\infty,b] := \{x \in \mathbb{R} \mid x < b\} \quad \text{links unendlich, abgeschlossen}$$

$$(-\infty,b) := \{x \in \mathbb{R} \mid x < b\} \quad \text{links unendlich, offen}$$

$$(-\infty,\infty) := \{x \in \mathbb{R} \mid T\} = \mathbb{R} \quad \text{beidseitig unendlich}$$

$$[a,b] := [a,b] \cap \mathbb{Z} \quad \text{ganzzahliges Intervall} \quad \mathcal{Z} \mathbf{Z}$$

Zur Bedeutung der Attribute offen und abgeschlossen siehe Vorlesung Analysis I.

Teilmenge, Obermenge

B≥A

Venu-Diagramme

• A ist eine **Teilmenge** von B, kurz: $A \subseteq B$, wenn jedes Element von A auch ein Element von B ist:

$$\forall a \in A \ (a \in B).$$

A=B Obust

B ist dann eine **Obermenge** von A, kurz: $B \supseteq A$.

B 7A

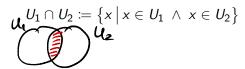
• A ist eine echte Teilmenge von B, kurz: $A \subsetneq B$, wenn $A \subseteq B$ und $A \neq B$ gilt:

$$\forall a \in A \ (a \in B) \quad \land \quad \exists b \in B \ (b \notin A).$$

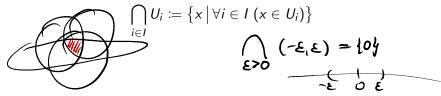
B ist dann eine echte Obermenge von A, kurz: $B \supseteq A$.

Schnitt von Mengen

Schnitt von zwei Mengen U_1, U_2 :



Schnitt einer indizierten Menge von Mengen U_i : I = Indexneuge

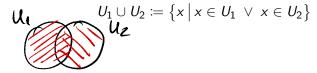


Schnitt einer beliebigen Menge ${\mathcal U}$ von Mengen:

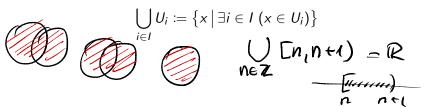
$$\bigcap \mathcal{U} := \{ x \, \big| \, \forall U \in \mathcal{U} \, (x \in U) \}$$

Vereinigung von Mengen

Vereinigung von zwei Mengen U_1, U_2 :



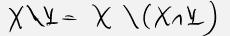
Vereinigung einer indizierten Menge von Mengen U_i :



Vereinigung einer beliebigen Menge $\mathcal U$ von Mengen:

$$\bigcup \mathcal{U} := \{x \mid \exists U \in \mathcal{U} \ (x \in U)\}$$

Differenz von zwei Mengen



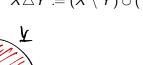
Differenzmenge von Y in X:

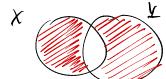


symmetrische Differenz von X und Y:

with untermidet
$$X \triangle Y := (X \setminus Y) \cup (Y \setminus X)$$

 $X \text{ and } Y' \overset{<}{\leq}$



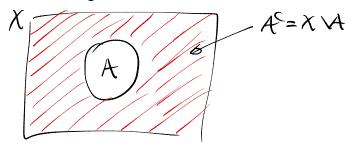


Komplement einer Menge in einer Menge

Komplement von $A \subseteq X$ in X

$$A^c := X \setminus A = \{x \in X \mid x \notin A\}$$

Die Menge X taucht im Symbol A^c nicht auf. Sie muss aus dem Zusammenhang klar sein.



Eigenschaften von Schnitt und Vereinigung

Satz

$$X \cap Y = Y \cap X$$

$$X \cup Y = Y \cup X$$
Kommutativität von \cap

$$(X \cap Y) \cap Z = X \cap (Y \cap Z)$$

$$(X \cup Y) \cup Z = X \cup (Y \cup Z)$$
Assoziativität von \cup

$$X \cap (Y \cup Z) = (X \cap Y) \cup (X \cap Z)$$
Distributivität
$$X \cup (Y \cap Z) = (X \cup Y) \cap (X \cup Z)$$
Distributivität
$$X \setminus Y = X \setminus (X \cap Y)$$

$$X \cap Y = X \Leftrightarrow X \subseteq Y$$

$$X \cup Y = Y \Leftrightarrow X \subseteq Y$$

Eigenschaften von Schnitt und Vereinigung

Satz

Sind A und B Teilmengen einer Menge X, bzgl. der wir das Komplement nehmen, so gilt weiter:

$$(A \cap B)^c = A^c \cup B^c$$
$$(A \cup B)^c = A^c \cap B^c$$

$$(A^c)^c = A$$

Komplementbildung ist involutorisch salst inves

$$A \subseteq B \iff$$

Bindungsregeln

Es bindet ... A S BUD

 \cdot^c stärker als \setminus stärker als \cap stärker als \cup

Diese Regeln erlauben uns, auf Klammern zu verzichten. Klammern können jedoch zur Verdeutlichung nicht schaden.

Beispiel

$$(A^c) \cap B$$
 ist dasselbe wie $A^c \cap B$

$$A \setminus B \cup C$$
 ist dasselbe wie $(A \setminus B) \cup C$

Potenzmenge

Die Menge aller Teilmengen einer Menge A

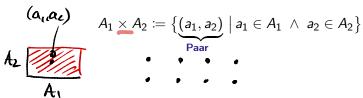
$$\mathcal{P}(A) := \{B \mid B \subseteq A\}$$

heißt die Potenzmenge von A.

Beispiel
$$2^n = \sum_{k=0}^n \binom{n}{k}$$
 Quomialle. $\binom{n}{k}$ Die Potenzmenge von $A = \{a, b, c\}$ ist $\mathcal{P}(A) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$.

Kartesisches Produkt von endlich vielen Mengen

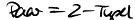
kartesisches Produkt von zwei Mengen A₁, A₂:



ALXAZXAZ

kartesisches Produkt von endlich vielen Mengen A_1, \ldots, A_n für $n \in \mathbb{N}$:

Paare und Tupel sind geordnet!



Relation

Definition

Es seien X und Y Mengen sowie $R \subseteq X \times Y$.

(R, X, Y) heißt eine Relation zwischen X und Y mit Graph R.

Im Fall X = Y heißt die Relation homogen.

Wenn X und Y klar sind, sagt man auch oft, R selbst sei die Relation.

Beispiel

$$R = \{(x, y) \in \mathbb{R}^2 \mid x \leqslant y\}$$
 ist die Kleiner-Gleich-Relation auf \mathbb{R} .

Statt $(x, y) \in R$ schreibt man oft x R y.

$$(1,2) \in \mathbb{R}$$
, $(2,2) \in \mathbb{R}$, $(3,2) \notin \mathbb{R}$

Teilbarkeitsrelation

(xy)el

Definition

Die Zahl $x \in \mathbb{Z}$ teilt die Zahl $y \in \mathbb{Z}$, kurz: $x \mid y$, wenn eine Zahl $n \in \mathbb{Z}$ existiert, sodass y = nx gilt.

Teilbarkeitsrelation $R := \{(x, y) \mid x \mid y\}$ zwischen $X \subseteq \mathbb{Z}$ und $Y \subseteq \mathbb{Z}$

$x \mid y$	0	1	2	3	4	5	6	7	8
0	•								
1	•	•	•	•	•	•	•	•	•
2	•		•				•		•
3	•			•			•		
4	•				•				•
5	•					•			
6	•						•		
7	•							•	
8	•								•

Relationen

Beispiel

• Inklusionsrelation $R = \{(A, B) \in \mathcal{P}(X) \times \mathcal{P}(X) \mid A \subseteq B\}$

• Auf einer Menge X heißt

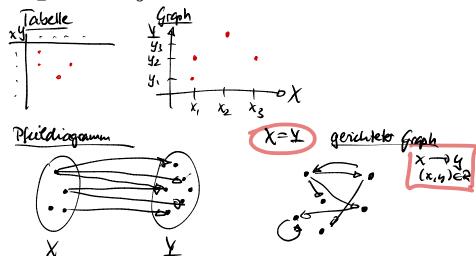
$$\Delta_X := \{(x,y) \in X \times X \mid x = y\}$$

die Diagonale in $X \times X$. Die Relation id $_X := (\Delta_X, X, X)$ heißt die Gleichheitsrelation oder Identitätsrelation auf X.

• Auf einer Menge X heißt die Relation $U_X := (U, X, X)$ mit $U = X \times X$ die universelle Relation.

Darstellungen von Relationen

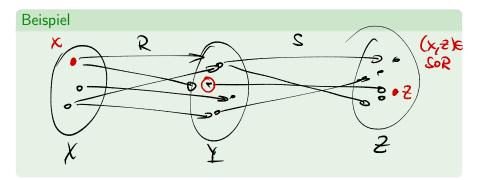
Wenn X und Y endliche Mengen sind, können wir eine Relation $R \subseteq X \times Y$ auf folgende Arten darstellen:



Komposition von zwei Relationen

Es seien X, Y und Z Mengen sowie (R, X, Y) und (S, Y, Z) zwei Relationen. Dann heißt die Relation $(S \circ R, X, Z)$ mit

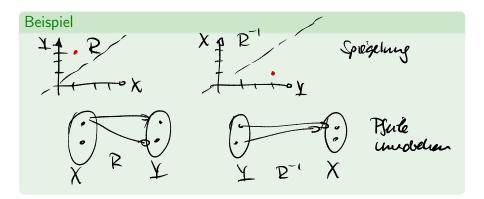
 $S \circ R := \{(x, z) \in X \times Z \mid \exists y \in Y \text{ mit } (x, y) \in R \text{ und } (y, z) \in S\}$ die Komposition von R und S.



Umkehrrelation

Es seien X und Y Mengen und (R, X, Y) eine Relation. Dann heißt (R^{-1}, Y, X) die **Umkehrrelation** oder **inverse Relation** von R mit

$$R^{-1} := \left\{ (b, a) \in Y \times X \,\middle|\, (a, b) \in R \right\} \subseteq Y \times X.$$



Eigenschaften homogener Relationen $\chi = \underline{Y}$

Definition

Es sei X eine Menge und (R, X, X) eine Relation auf X.

R heißt ... wenn gilt:

reflexiv:
$$(x,x) \in R$$
 für alle $x \in X$ $\triangle_X \subseteq \mathbb{R}$

symmetrisch:
$$(x,y) \in R \Rightarrow (y,x) \in R \qquad \mathcal{P}^{-1} \subseteq \mathcal{Q}$$

antisymmetrisch:
$$(x,y) \in R$$
 und $(y,x) \in R$ \Rightarrow $x = y$

transitiv:
$$(x,y) \in R$$
 und $(y,z) \in R$ \Rightarrow $(x,z) \in R$

total:
$$(x,y) \in R$$
 oder $(y,x) \in R$ für alle $x,y \in \mathcal{F} X$

Eigenschaften homogener Relationen

Bei Darstellung der Relation auf einer endlichen Menge als gerichteter Graph:

Alle Schleifen sund daber reflexiv: Jedo Pfirl had cone antisymmetrica: Bis and schlerfin keene Doppel pleise $(x,y) \in \mathbb{R} \text{ und } (y,z) \in \mathbb{R}$ $= (x,z) \in \mathbb{R}$ Heine verteich knoteit Elemente. Zwischen je zwei Elementen besteht mindestens

einer der briden Pfite.

Ordnungsrelation

Definition

Es sei X eine Menge.

- Eine reflexive, antisymmetrische und transitive Relation (R, X, X) auf X heißt eine Ordnungsrelation, Halbordnung oder partielle Ordnung.
 - (X,R) heißt dann eine halbgeordnete Menge. $\mathbb{Z} \preceq X \preceq X$ für alle $X \subseteq X$

 $x \le y$ and $y \le x = x \le y$ $x \le y$ and $y \le x = x \le 2$

- 2 Ist R zusätzlich total, dann heißt sie eine Totalordnung.
 - (X, R) heißt dann eine totalgeordnete Menge.

Ordnungsrelation

Beispiel

- Die Inklusionsrelation ⊆ ist eine Halbordnung auf der Potenzmenge $\mathcal{P}(X)$ jeder beliebigen Menge X. Sie ist eine totale Ordnung dann und nur dann, wenn X entweder kein oder genau ein Element enthält. $A_1 & C \subset R(X)$
 - ASA V ASB und BCA =0 A=B V ASB und BCC =0 ASC V
 - Die Teilbarkeitsrelation | ist eine Halbordnung auf N.

Vergleichbarkeit, obere Schranke, Supremum

Definition

Es sei X mit der Relation \leq eine halbgeordnete Menge.

- $x, y \in X$ heißen vergleichbar, wenn $x \leq y$ oder $y \leq x$ gilt.
- $b \in X$ heißt eine obere Schranke von $A \subseteq X$, wenn gilt:

$$x \leq b$$
 für alle $x \in A$. Gauz A ist $4b$

• $b \in X$ heißt ein Supremum oder kleinste obere Schranke von $A \subseteq X$, wenn gilt:

b ist eine obere Schranke von A, und für jede obere Schranke \widehat{b} von A gilt: $b \leq \widehat{b}$.

maximales Element, Maximum

Definition

Es sei X mit der Relation \leq eine halbgeordnete Menge.

• $b \in X$ heißt ein maximales Element von $A \subseteq X$, wenn gilt:

und für alle
$$x \in A$$
 gilt: $b \preccurlyeq x \Rightarrow x = b$. A cit gifte

• $b \in X$ heißt ein Maximum von $A \subseteq X$, wenn gilt:

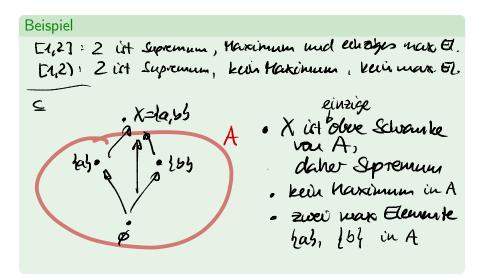
und für alle
$$x \in A$$
 gilt: $x \leq b$.

Ganz A ist

hochster to

grap."

Supremum, maximales Element, Maximum



Äquivalenzrelation

Definition

Es sei X eine Menge.

Eine reflexive, symmetrische und transitive Relation (R, X, X) auf X heißt eine Äquivalenzrelation.

Äquivalenzrelation

Äquivalenzklassen und Repräsentanten

Definition

Es sei X eine Menge mit der Äquivalenzrelation \sim .

• Für $x \in X$ heißt die Menge

$$[x] \sim \text{oder } [x] := \{ y \in X \mid y \sim x \}$$

die Äquivalenzklasse von x bzgl. \sim .

- 2 Jedes Element einer Äquivalenzklasse heißt ein Repräsentant dieser Äquivalenzklasse.
- **3** Eine Menge $S \subseteq X$, die aus jeder Äquivalenzklasse genau einen Repräsentanten enthält, heißt ein Repräsentantensystem von \sim .

Äquivalenzklassen und Repräsentanten

Beispiel

Kongruenzrelation mod
$$m = 2$$
 $[0] = \{ y \in \mathbb{Z} : 0^{\frac{2}{3}} y \} = \{ y \in \mathbb{Z} \mid y \text{ it genall} \}$

$$= 2\mathbb{Z}$$

$$[1] = \{ y \in \mathbb{Z} : 1^{\frac{2}{3}} y \} = \{ y \in \mathbb{Z} \mid y \text{ it ungenall} \}$$

$$= 2\mathbb{Z} + 1$$

$$[-4339]$$

0.17 sind ein Repräsentantensystem von $\stackrel{?}{=}$. Es heißt das naturliche Pepräsentantensystem.

Äquivalenzklassen sind gleich oder disjunkt

Satz

Es sei X eine Menge mit der Äquivalenzrelation \sim und [x] und [y] zwei Äquivalenzklassen. Dann sind diese entweder gleich oder disjunkt.

Beweis.

[x] und [y] scen nicht disjunct. Element von
Es sei
$$\overline{x} \in [x]$$
. Dann gilt $\overline{x} \sim x \sim z$
Transitivität: $\overline{x} \sim z$, d.h. $[x] = [y]$
Analog: $[x] = [x]$.
Es folgt $[x] = [y]$.

Partition

Definition

Es sei X eine nichtleere Menge und \mathcal{U} eine Menge von Teilmengen von X, also $\mathcal{U} \subseteq \mathcal{P}(X)$. \mathcal{U} heißt eine Partition oder disjunkte Zerlegung von X, wenn gilt:

- Für alle $x \in X$ gibt es eine Menge $U \in \mathcal{U}$, die x enthält.
- ② Für alle $U, V \in \mathcal{U}$ sind U und V entweder gleich oder disjunkt.
- $\emptyset \notin \mathcal{U}$.

Diè «Kachelu" mūsku nicht "gleich grøß" sein.

Partionen "sind" Äquivalenzrelationen

Satz

- Es sei X eine nichtleere Menge mit der Äquivalenzrelation \sim . Dann bildet die Menge der Äquivalenzklassen $\{[x] \mid x \in X\}$ eine Partition von X.
- $oldsymbol{\circ}$ Es sei X eine nichtleere Menge und \mathcal{U} eine Partition von X. Dann gibt es eine eindeutig bestimmte Aquivalenzrelation \sim , sodass \mathcal{U} genau aus den Äguivalenzklassen von \sim besteht.

Beweis: 10 Wir starten mit do Aquivalentelation~ and X. wir setten U = {[x] | x \in X \ighta als Henge der Aquiralurzhlassmud zeiglu, dan U eine Portiton ist. Wegu xxx ist xe tx7 fur alk xex, also wird x rou U utvedeckt. Nach Sate 5.17 sind Aquiralurzhlassen paarveir disjunkt. Aufurdem sind sie nieutleer. Damit ist U tatraculiul eine Portition. Diet Hausanffale

Quotientenmenge

Definition

Es sei X eine nichtleere Menge mit der Äquivalenzrelation \sim .

Die Menge der Äquivalenzklassen

$$X/\sim := \{[x] \mid x \in X\}$$

heißt auch die Quotientenmenge oder die Faktormenge von \sim .

Beispiel

- Die Quoteintenmenge Z/= besteht aus den Aquivaleneklamen [0] und [1], akso Z/=={[0], [1]}.
- · Algemeines ist Z/= = {[D], [1], ..., [m-1]4.

Rationale Zahlen

Wir hatten die Menge der rationalen Zahlen vorläufig eingeführt als

$$\widetilde{\mathbb{Q}} := \left\{ \frac{m}{n} \,\middle|\, m \in \mathbb{Z}, \ n \in \mathbb{Z} \setminus \{0\} \right\}.$$

Wir wollen aber beispielsweise $\frac{1}{2}$, $\frac{3}{6}$ und $\frac{-2}{-4}$ miteinander identifizieren. Zu diesen Zweck verwenden wir die Äquivalenzrelation

$$\frac{m_1}{n_1} \sim \frac{m_2}{n_2} \quad \Leftrightarrow \quad m_1 \cdot n_2 = m_2 \cdot n_1.$$

Das führt uns zur Definition

$$\mathbb{Q} := \left\{ \frac{m}{n} \,\middle|\, m \in \mathbb{Z}, \ n \in \mathbb{Z} \setminus \{0\} \right\} \,\big/ \, \sim \,$$

für die rationalen Zahlen als Quotientenmenge.

Duren du Aquivaleu erelation ist 2 2 = 3 usw.