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Chapter 0 Introduction

§ 1 Elementary Notions

Mathematical optimization is about solving problems of the form

Minimize 𝑓 (𝑥) where 𝑥 ∈ Ω (objective function)
subject to 𝑔𝑖 (𝑥) ≤ 0 for 𝑖 = 1, . . . , 𝑛ineq (inequality constraints)

and ℎ 𝑗 (𝑥) = 0 for 𝑗 = 1, . . . , 𝑛eq. (equality constraints)

 (1.1)

Ω ⊆ R𝑛 is the basic set and 𝑥 is the optimization variable or simply the variable of the problem.

We will assume that

• the functions 𝑓 , 𝑔𝑖 , ℎ 𝑗 : R
𝑛 → R are sufficiently smooth (𝐶2

functions),

• we have a finite number (possibly zero) of inequality and equality constraints, i. e., 𝑛ineq and 𝑛eq
are in N0.

We will assume Ω = R𝑛 , i. e., we consider only continuous optimization problems and without

implicit constraints.

Definition 1.1 (Elementary notions).
(𝑖) The set

𝐹 B
{
𝑥 ∈ R𝑛

��𝑔𝑖 (𝑥) ≤ 0 for all 𝑖 = 1, . . . , 𝑛ineq, ℎ 𝑗 (𝑥) = 0 for all 𝑗 = 1, . . . , 𝑛eq
}

(1.2)

associated with an optimization problem (1.1) is termed the feasible set. Any 𝑥 ∈ 𝐹 is termed a

feasible point.

(𝑖𝑖) The inequality 𝑔𝑖 (𝑥) ≤ 0 is called active at a point 𝑥 if 𝑔𝑖 (𝑥) = 0 holds. It is called inactive in
case 𝑔𝑖 (𝑥) < 0. It is called violated if 𝑔𝑖 (𝑥) > 0 holds.

(𝑖𝑖𝑖) The value

𝑓 ∗ B inf {𝑓 (𝑥) | 𝑥 ∈ 𝐹 }

is termed the infimal value of problem (1.1).

(𝑖𝑣) In case 𝐹 = ∅, the problem (1.1) is said to be infeasible. In that case, we have 𝑓 ∗ = +∞. In case

𝑓 ∗ = −∞, the problem is said to be unbounded.
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(𝑣) A point 𝑥∗ ∈ 𝐹 is a global minimizer or globally optimal solution of (1.1) if

𝑓 (𝑥∗) ≤ 𝑓 (𝑥) for all 𝑥 ∈ 𝐹

holds. Equivalently, 𝑥∗ ∈ 𝐹 is a global minimizer if 𝑓 (𝑥∗) = 𝑓 ∗ holds. In this case, the infimal

value 𝑓 ∗ is also referred to as the global minimum or globally optimal value of (1.1).

(𝑣𝑖) A global minimizer 𝑥∗ is strict in case

𝑓 (𝑥∗) < 𝑓 (𝑥) for all 𝑥 ∈ 𝐹, 𝑥 ≠ 𝑥∗.

(𝑣𝑖𝑖) A point 𝑥∗ ∈ 𝐹 is a local minimizer or locally optimal solution of (1.1) if there exists a

neighborhood𝑈 (𝑥∗) such that

𝑓 (𝑥∗) ≤ 𝑓 (𝑥) for all 𝑥 ∈ 𝐹 ∩𝑈 (𝑥∗)

holds. In this case, 𝑓 (𝑥∗) is also referred to as a local minimum or a locally optimal value of
(1.1).

(𝑣𝑖𝑖𝑖) A local minimizer 𝑥∗ is strict in case

𝑓 (𝑥∗) < 𝑓 (𝑥) for all 𝑥 ∈ 𝐹 ∩𝑈 (𝑥∗), 𝑥 ≠ 𝑥∗.

(𝑖𝑥) An optimization problem (1.1) is solvable if it has at least one global minimizer, i. e., if the optimal

value is attained at some point. Otherwise, the problem is unsolvable.

Definition 1.2 (Classification of optimization problems).
(𝑖) An optimization problem (1.1) is said to be unconstrained in case 𝑛ineq = 𝑛eq = 0. Otherwise, it is

said to be equality constrained and/or inequality constrained.

(𝑖𝑖) Inequality constraints of the simple kind

ℓ𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑖 , 𝑖 = 1, . . . , 𝑛

with bounds ℓ𝑖 ∈ R ∪ {−∞} and 𝑢𝑖 ∈ R ∪ {∞} are called bound constraints.

(𝑖𝑖𝑖) When 𝑓 is a quadratic polynomial and 𝑔 and ℎ are affine linear functions, then (1.1) is called a

quadratic optimization problem or a quadratic program (QP).

(𝑖𝑣) In the general case, i. e., when (1.1) is not a quadratic program, we refer to (1.1) as a nonlinear
optimization problem or nonlinear program (NLP).

The emphasis in this class is on numerical techniques for unconstrained and constrained nonlinear

programs. We will see that fast algorithms take into account the optimality conditions of the respective

problem. Therefore we will also discuss optimality conditions.
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We will begin in Chapter 1 with algorithms for unconstrained optimization. Some of the content was

already part of the class Grundlagen der Optimierung (Herzog, 2022), but we will revisit the material

in more detail here. The theory for constrained problems is relatively involved and merits its own

chapter (Chapter 2). We will subsequently discuss major algorithmic ideas for constrained problems in

Chapter 3. Finally, we will review in Chapter 4 some computer-aided techniques to obtain derivatives

of functions, which the algorithms under consideration generally require.

Throughout the class, we will emphasize the connections between optimization and numerical linear

algebra.

§ 2 Notation and Background Material

In these lecture notes we use color codes for definitions and highlights. The natural numbers are

N = {1, 2, . . .}, and we write N0 for N∪ {0}. We denote open intervals by (𝑎, 𝑏) and closed intervals by
[𝑎, 𝑏]. We usually use Latin capital letters for matrices, Latin lowercase letters for vectors and Greek or

Latin lowercase letters for scalars. We use Id for the identity matrix. We distinguish the vector space

R𝑛 of column vectors from the vector space R𝑛 of row vectors.

§ 2.1 Vector Norms

An inner product (·, ·) onR𝑛 is a symmetric and positive definite bilinear form, i. e., a mapR𝑛×R𝑛 → R
with the following properties:

(𝑥, 𝑦) = (𝑦, 𝑥) (symmetry) (2.1a)

(𝛼1 𝑥1 + 𝛼2 𝑥2, 𝑦) = 𝛼1 (𝑥1, 𝑦) + 𝛼2 (𝑥2, 𝑦) (bilinearity part 1) (2.1b)

(𝑥, 𝛽1 𝑦1 + 𝛽2 𝑦2) = 𝛽1 (𝑥, 𝑦1) + 𝛽2 (𝑥, 𝑦2) (bilinearity part 2) (2.1c)

(𝑥, 𝑥) ≥ 0 and 𝑥 ≠ 0⇒ (𝑥, 𝑥) > 0 (positive definiteness) (2.1d)

for all 𝑥, 𝑥1, 𝑥2, 𝑦, 𝑦1, 𝑦2 ∈ R𝑛 and all 𝛼1, 𝛼2, 𝛽1, 𝛽2 ∈ R.

Inner products on R𝑛 are in one-to-one correspondence with symmetric and positive definite (s. p. d.)

𝑛 × 𝑛 matrices. That is, every s. p. d. matrix𝑀 ∈ R𝑛×𝑛 induces an inner product

(𝑥, 𝑦)𝑀 B 𝑥ᵀ𝑀 𝑦,

and, on the other hand, every inner product (·, ·) on R𝑛 is induced by an s. p. d. matrix𝑀 . For simplicity,

we will refer to𝑀 itself as the inner product it induces, or use the term “𝑀-inner product”.

Every inner product (·, ·)𝑀 induces a norm
1
by way of

∥𝑥 ∥𝑀 B
√
𝑥ᵀ𝑀 𝑥. (2.2)

1
We are only considering norms induced by inner products.
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In particular, the Euclidean inner product 𝑥ᵀ𝑦 corresponds to the identity matrix𝑀 = Id, and we denote

the associated norm by ∥𝑥 ∥. We won’t be writing ⟨𝑥 , 𝑦⟩ or 𝑥 · 𝑦 for the Euclidean inner product.

Notice that for vectors 𝑥, 𝑦 ∈ R𝑛 , we have

𝑎ᵀ𝑏 = 𝑎ᵀ𝑀−1𝑀 𝑏

≤ ∥𝑀−1𝑎∥𝑀 ∥𝑏∥𝑀 by the Cauchy-Schwarz inequality w.r.t. the𝑀-inner product

= ∥𝑎∥𝑀−1 ∥𝑏∥𝑀 . (2.3)

§ 2.2 Matrix Norms

A matrix 𝐴 ∈ R𝑚×𝑛 represents a linear map by way of R𝑛 ∋ 𝑥 ↦→ 𝐴𝑥 ∈ R𝑚 . When R𝑛 is equipped

with the𝑀1-inner product and R
𝑚
is equipped with the𝑀2-inner product, we define thematrix norm

or operator norm of 𝐴 as

∥𝐴∥𝑀2←𝑀1
B max

𝑥≠0

∥𝐴𝑥 ∥𝑀2

∥𝑥 ∥𝑀1

. (2.4)

We thus have

∥𝐴𝑥 ∥𝑀2
≤ ∥𝐴∥𝑀2←𝑀1

∥𝑥 ∥𝑀1
for all 𝑥 ∈ R𝑛 . (2.5)

When𝑀1 and𝑀2 are both the Euclidean inner products, ∥𝐴∥Id←Id or simply ∥𝐴∥ is the largest singular
value of𝐴. In the general case, ∥𝐴∥𝑀2←𝑀1

is the largest singular value of a suitably generalized singular

value decomposition.

There are matrix norm which are not operator norms. The most prominent one is induced by the inner

product

𝐴 : 𝐵 B trace(𝐴ᵀ𝐵) =
𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑎𝑖 𝑗 𝑏𝑖 𝑗 . (2.6)

The associated norm

∥𝐴∥𝐹 B
( 𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑎2𝑖 𝑗

)
1/2

(2.7)

is termed the Frobenius norm of 𝐴.

§ 2.3 Eigenvalues and Eigenvectors

Every symmetric matrix 𝐴 ∈ R𝑛×𝑛 possesses an orthogonal transformation to a diagonal matrix,

known as eigen decomposition or spectral decomposition. That is, there exists an orthogonal

matrix 𝑉 ∈ R𝑛×𝑛 and a diagonal matrix Λ ∈ R𝑛×𝑛 , such that

𝐴𝑉 = 𝑉Λ, i. e., 𝐴 = 𝑉Λ𝑉 ᵀ (2.8)

holds. The diagonal of Λ contains the eigenvalues 𝜆𝑖 , and the columns 𝑣𝑖 of 𝑉 are the corresponding

eigenvectors. This decomposition yields the complete solution to the eigenvalue problem

𝐴𝑣 = 𝜆 𝑣. (2.9)
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We also work with the generalized eigenvalue problem

𝐴𝑣 = 𝜆𝑀 𝑣 (2.10)

for the particular case where 𝐴 is still symmetric and the second matrix 𝑀 ∈ R𝑛×𝑛 is s. p. d. There

exists an analogous generalized spectral decomposition

𝐴𝑉 = 𝑀𝑉Λ, i. e., 𝐴 = 𝑀𝑉Λ𝑉 ᵀ𝑀, (2.11)

where now 𝑉 is orthogonal w.r.t. the 𝑀-inner product, i. e., 𝑉 ᵀ𝑀𝑉 = Id holds. This implies 𝑉𝑉 ᵀ =
𝑀−1. We also refer to the solutions of (2.10) as the eigenvalues/eigenvectors of 𝐴 w.r.t. 𝑀 or

eigenvalues/eigenvectors of the pair (𝐴;𝑀).

In view of the Courant-Fischer theorem for (generalized) eigenvalues of symmetric matrices, the

generalized Rayleigh quotient of 𝐴 w.r.t. 𝑀 satisfies

𝜆min(𝐴;𝑀) ≤
𝑥ᵀ𝐴𝑥

𝑥ᵀ𝑀 𝑥
≤ 𝜆max(𝐴;𝑀) for all 𝑥 ≠ 0. (2.12)

The eigenvectors associated with the smallest and largest generalized eigenvalues 𝜆min(𝐴;𝑀) and
𝜆max(𝐴;𝑀) satisfy the first respectively the second inequality with equality. Using (2.3) and (2.5), we

also have

−∥𝐴∥𝑀−1←𝑀 ≤ −
∥𝑥 ∥𝑀 ∥𝐴𝑥 ∥𝑀−1
∥𝑥 ∥2

𝑀

≤ 𝑥
ᵀ𝐴𝑥

∥𝑥 ∥2
𝑀

≤ ∥𝑥 ∥𝑀 ∥𝐴𝑥 ∥𝑀−1
∥𝑥 ∥2

𝑀

≤ ∥𝐴∥𝑀−1←𝑀

and thus

𝜆max(𝐻 ;𝑀) ≤ ∥𝐻 ∥𝑀−1←𝑀 and − 𝜆min(𝐻 ;𝑀) ≤ ∥𝐻 ∥𝑀−1←𝑀 . (2.13)

Notice that the generalized eigenvalue problems (2.10) and

𝑀 𝑣 = 𝜆𝑀 𝐴−1𝑀 𝑣 (2.14a)

as well as

𝐴𝑀−1𝐴𝑣 = 𝜆𝐴 𝑣 (2.14b)

have the same eigenvalues and eigenvectors (provided in case of (2.14a) that 𝐴 is not only symmetric

but also invertible) since𝑀 𝑣 = 𝜆𝑀 𝐴−1𝑀 𝑣 ⇔ 𝑣 = 𝜆𝐴−1𝑀 𝑣 ⇔ 𝐴𝑣 = 𝜆𝑀 𝑣 and 𝐴𝑀−1𝐴𝑣 = 𝜆𝐴 𝑣 ⇔
𝑀−1𝐴𝑣 = 𝜆 𝑣 ⇔ 𝐴𝑣 = 𝜆𝑀 𝑣 . Consequently, we obtain the following estimate for the generalized

Rayleigh quotients associated with (2.14):

𝜆min(𝐴;𝑀) ≤
𝑥ᵀ𝑀 𝑥

𝑥ᵀ𝑀𝐴−1𝑀 𝑥
≤ 𝜆max(𝐴;𝑀) for all 𝑥 ≠ 0, (2.15a)

𝜆min(𝐴;𝑀) ≤
𝑥ᵀ𝐴𝑀−1𝐴𝑥

𝑥ᵀ𝐴𝑥
≤ 𝜆max(𝐴;𝑀) for all 𝑥 ≠ 0. (2.15b)

Every s. p. d. matrix 𝐴 ∈ R𝑛×𝑛 possesses a unique s. p. d. matrix square root 𝐴1/2
. When 𝐴 = 𝑉Λ𝑉 ᵀ

is a spectral decomposition of 𝐴 with orthogonal 𝑉 , then

𝐴1/2 = 𝑉Λ1/2𝑉 ᵀ (2.16)

holds. Herein, Λ1/2
is the elementwise square root of the diagonal matrix Λ.
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§ 2.4 Kantorovich Inequality

Suppose that 𝐴 is an s. p. d. matrix. Let us denote the extremal eigenvalues by 𝛼 B 𝜆min(𝐴) and
𝛽 B 𝜆max(𝐴). Moreover, since 𝐴 is s. p. d., it follows that its condition number2 is given by

𝜅 B
𝛽

𝛼
. (2.17)

Notice that a condition number always satisfies 𝜅 ≥ 1. From the Rayleigh quotient estimate (2.12) (with

𝑀 = Id), we have

𝑥ᵀ𝐴𝑥

∥𝑥 ∥2 ≤ 𝛽.

Moreover, since the eigenvalues of 𝐴−1 are the reciprocals of those of 𝐴, we have 𝜆max(𝐴−1) =

1/𝜆min(𝐴) = 1/𝛼 and thus

𝑥ᵀ𝐴−1 𝑥

∥𝑥 ∥2 ≤ 1

𝛼
.

These inequalities hold for all 𝑥 ∈ R𝑛 \ {0}, and they imply

(𝑥ᵀ𝐴𝑥) (𝑥ᵀ𝐴−1 𝑥)
∥𝑥 ∥4 ≤ 𝛽

𝛼
.

This estimate, however, is not sharp in general. (Quiz 2.1: Can you explain why not?) The Kantorovich

inequality improves this estimate.

Lemma 2.1 (Kantorovich inequality). Suppose that 𝐴 ∈ R𝑛×𝑛 is s. p. d., 𝛼 B 𝜆min(𝐴) and 𝛽 B 𝜆max(𝐴)
are its extremal eigenvalues, and 𝜅 = 𝛽/𝛼 is its condition number. Then

1 ≤ (𝑥
ᵀ𝐴𝑥) (𝑥ᵀ𝐴−1𝑥)
∥𝑥 ∥4 ≤ (𝛼 + 𝛽)

2

4𝛼 𝛽
≤ 𝛽

𝛼
(2.18a)

holds for all 𝑥 ∈ R𝑛 \ {0}, or equivalently, in terms of the condition number 𝜅 = 𝛽/𝛼 ,

1 ≤ (𝑥
ᵀ𝐴𝑥) (𝑥ᵀ𝐴−1𝑥)
∥𝑥 ∥4 ≤ (𝜅 + 1)

2

4𝜅
≤ 𝜅. (2.18b)

Proof. The Cauchy-Schwarz inequality implies

∥𝑥 ∥2 = 𝑥ᵀ𝑥 = 𝑥ᵀ𝐴−1/2𝐴1/2𝑥 ≤ ∥𝐴−1/2𝑥 ∥ ∥𝐴1/2𝑥 ∥ .

By squaring this, we obtain

∥𝑥 ∥4 ≤ ∥𝐴−1/2𝑥 ∥2 ∥𝐴1/2𝑥 ∥2 = (𝑥ᵀ𝐴𝑥) (𝑥ᵀ𝐴−1𝑥)

and thus the lower bound in (2.18).

2
Generally, the condition of an invertible matrix 𝐴 is 𝜅 = ∥𝐴∥ ∥𝐴−1∥. This is equal to 𝜎max (𝐴)/𝜎min (𝐴) with the extremal

singular values 𝜎max (𝐴) and 𝜎min (𝐴). Since 𝐴 is symmetric, its singular values are just the absolute values of its

eigenvalues, and since 𝐴 is also positive definite, we have 𝜎max (𝐴) = 𝜆max (𝐴) = 𝛽 and 𝜎min (𝐴) = 𝜆min (𝐴) = 𝛼 .
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From here on, the proof follows Anderson, 1971, as reproduced in the Master’s thesis Alpargu, 1996,

Section 1.2.2. Let 𝜆1, . . . , 𝜆𝑛 > 0 be the eigenvalues of 𝐴 (in any order), and let 𝑣1, . . . , 𝑣𝑛 be an

orthonormal set of associated eigenvectors. We represent 𝑥 ∈ R𝑛 \ {0} as 𝑥 =
∑𝑛
𝑖=1 𝛾𝑖 𝑣𝑖 . Suppose,

w.l.o.g., that ∥𝑥 ∥2 = ∑𝑛
𝑖=1 𝛾

2

𝑖 = 1 holds. Inserting the representation of 𝑥 yields

(𝑥ᵀ𝐴𝑥) (𝑥ᵀ𝐴−1𝑥)
∥𝑥 ∥4 =

[ 𝑛∑︁
𝑖=1

𝜆𝑖 𝛾
2

𝑖

]
︸      ︷︷      ︸

=E(𝑇 )

[ 𝑛∑︁
𝑖=1

1

𝜆𝑖
𝛾2𝑖

]
︸       ︷︷       ︸

=E(1/𝑇 )

.

It is helpful to think about the two factors on the right-hand side as expected values of a “random

variable” 𝑇 and 1/𝑇 , respectively. Here 𝑇 takes the values 𝜆𝑖 ∈ [𝛼, 𝛽] with “probability” 𝛾2𝑖 . For any

0 < 𝛼 ≤ 𝑇 ≤ 𝛽 , we can estimate

0 ≤ (𝛽 −𝑇 ) (𝑇 − 𝛼) = (𝛽 + 𝛼 −𝑇 )𝑇 − 𝛼 𝛽,

and thus

1

𝑇
≤ 𝛼 + 𝛽 −𝑇

𝛼 𝛽
.

Taking the expected value, this implies

E(𝑇 ) E(1/𝑇 ) ≤ E(𝑇 ) 𝛼 + 𝛽 − E(𝑇 )
𝛼 𝛽

=
(𝛼 + 𝛽)2
4𝛼 𝛽

− 1

𝛼 𝛽

[
E(𝑇 ) − 1

2

(𝛼 + 𝛽)
]
2

≤ (𝛼 + 𝛽)
2

4𝛼 𝛽
.

This shows that essential upper bound in (2.18). The remaining inequality follows directly from

0 < 𝛼 ≤ 𝛽 . □

Instead of the Euclidean norm, we can also use the norm induced by the𝑀-inner product.

Corollary 2.2 (Generalized Kantorovich inequality). Suppose that 𝐴 ∈ R𝑛×𝑛 and 𝑀 are both s. p. d.,

𝛼 B 𝜆min(𝐴;𝑀) and 𝛽 B 𝜆max(𝐴;𝑀) are the extremal generalized eigenvalues of 𝐴 w.r.t. 𝑀 . Then

1 ≤ (𝑥
ᵀ𝐴𝑥) (𝑥ᵀ𝑀𝐴−1𝑀 𝑥)

∥𝑥 ∥4
𝑀

≤ (𝛼 + 𝛽)
2

4𝛼 𝛽
≤ 𝛽

𝛼
(2.19a)

holds for all 𝑥 ∈ R𝑛 \ {0}, or equivalently, in terms of the generalized condition number 𝜅 = 𝛽/𝛼 ,

1 ≤ (𝑥
ᵀ𝐴𝑥) (𝑥ᵀ𝐴−1𝑥)
∥𝑥 ∥4

𝑀

≤ (𝜅 + 1)
2

4𝜅
≤ 𝜅. (2.19b)

We do not give a proof of Corollary 2.2 here; see for instance Herzog, 2022, Folgerung 4.14.
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§ 2.5 Functions and Derivatives

• Given a function 𝑓 : R𝑛 → R and 𝑥 ∈ R𝑛 , the derivative of the partial function 𝑡 ↦→ 𝑓 (𝑥 + 𝑡 𝑒 (𝑖 ) )
at 𝑡 = 0 is the 𝑖-th partial derivative of 𝑓 at 𝑥 , briefly: 𝜕

𝜕𝑥𝑖
𝑓 (𝑥). Here 𝑒 (𝑖 ) = (0, . . . , 0, 1, 0, . . . , 0)ᵀ

is one of the standard basis vectors of R𝑛 . In other words,

𝜕

𝜕𝑥𝑖
𝑓 (𝑥) = lim

𝑡→0

𝑓 (𝑥 + 𝑡 𝑒 (𝑖 ) ) − 𝑓 (𝑥)
𝑡

.

• More generally, the derivative of the function 𝑡 ↦→ 𝑓 (𝑥 + 𝑡 𝑑) at 𝑡 = 0 is the (two-sided)
directional derivative of 𝑓 at 𝑥 in the direction 𝑑 ∈ R𝑛 , briefly:

𝜕

𝜕𝑑
𝑓 (𝑥) = lim

𝑡→0

𝑓 (𝑥 + 𝑡 𝑑) − 𝑓 (𝑥)
𝑡

.

• The right-sided derivative of the function 𝑡 ↦→ 𝑓 (𝑥 + 𝑡 𝑑) at 𝑡 = 0 is the (one-sided) directional
derivative of 𝑓 at 𝑥 in the direction 𝑑 ∈ R𝑛 , briefly:

𝑓 ′(𝑥 ;𝑑) = lim

𝑡↘0

𝑓 (𝑥 + 𝑡 𝑑) − 𝑓 (𝑥)
𝑡

.

• A function 𝑓 : R𝑛 → R is differentiable at 𝑥 ∈ R𝑛 if there exists a row vector 𝑣 ∈ R𝑛 such that

𝑓 (𝑥 + 𝑑) − 𝑓 (𝑥) − 𝑣 𝑑
∥𝑑 ∥ → 0 for 𝑑 → 0.

In this case, the vector 𝑣 is the (total) derivative of 𝑓 at 𝑥 , and it is denoted by 𝑓 ′(𝑥).

• When 𝑓 : R𝑛 → R is differentiable at 𝑥 ∈ R𝑛 , then

𝑓 ′(𝑥) =
(
𝜕𝑓 (𝑥 )
𝜕𝑥1

, · · · , 𝜕𝑓 (𝑥 )
𝜕𝑥𝑛

)
∈ R𝑛 .

The transposed vector (a column vector)

∇𝑓 (𝑥) =
©«
𝜕𝑓 (𝑥 )
𝜕𝑥1
...

𝜕𝑓 (𝑥 )
𝜕𝑥𝑛

ª®®®¬ = 𝑓 ′(𝑥)ᵀ ∈ R𝑛

is the gradient (w.r.t. the Euclidean inner product) of 𝑓 at 𝑥 .

• When 𝑓 : R𝑛 → R is differentiable at 𝑥 ∈ R𝑛 , then

𝑓 ′(𝑥 ;𝑑) = 𝜕

𝜕𝑑
𝑓 (𝑥) = 𝑓 ′(𝑥) 𝑑

holds for all 𝑑 ∈ R𝑛 . That is, the one-sided and two-sided directional derivatives of 𝑓 at 𝑥 agree,

and they can be evaluated by applying the derivative 𝑓 ′(𝑥) to the direction 𝑑 .

14 https://tinyurl.com/scoop-nlo 2023-07-14
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• A function 𝑓 : R𝑛 → R is continuously partially differentiable or briefly: 𝐶1(R𝑛,R), if all
partial derivatives

𝜕𝑓 (𝑥 )
𝜕𝑥𝑖

, as functions of 𝑥 , are continuous. 𝐶1
-functions are differentiable, and

the derivative 𝑓 ′ is continuous.

• A vector-valued function 𝐹 : R𝑛 → R𝑚 is differentiable at 𝑥 ∈ R𝑛 if all component func-

tion 𝐹1, . . . , 𝐹𝑚 are differentiable at 𝑥 . In this case, the derivative 𝐹 ′(𝑥) is given by the Jacobian
of 𝐹 at 𝑥 , i. e., by ©«

𝜕𝐹1(𝑥)
𝜕𝑥1

· · · 𝜕𝐹1(𝑥)
𝜕𝑥𝑛

...
...

𝜕𝐹𝑚 (𝑥)
𝜕𝑥1

· · · 𝜕𝐹𝑚 (𝑥)
𝜕𝑥𝑛

ª®®®®®¬
∈ R𝑚×𝑛 .

• 𝐹 is continuously partially differentiable if all entries of the Jacobian are continuous as

functions of 𝑥 . 𝐶1
-functions are differentiable, and the derivative 𝐹 ′ is continuous.

• A function 𝑓 : R𝑛 → R is twice differentiable at 𝑥 ∈ R𝑛 if 𝑓 is differentiable in a neighbor-

hood of 𝑥 and the derivative 𝑥 ↦→ 𝑓 ′(𝑥) ∈ R𝑛 is differentiable at 𝑥 . In this case, the second

derivative 𝑓 ′′(𝑥) is given by the Hessian of 𝑓 at 𝑥 , i. e., by the matrix of second-order partial

derivatives

(
𝜕2 𝑓 (𝑥)
𝜕𝑥𝑖 𝜕𝑥 𝑗

)𝑛
𝑖,𝑗=1

=

©«

𝜕2 𝑓 (𝑥 )
𝜕𝑥2

1

𝜕2 𝑓 (𝑥 )
𝜕𝑥1𝜕𝑥2

· · · 𝜕2 𝑓 (𝑥 )
𝜕𝑥1𝜕𝑥𝑛

𝜕2 𝑓 (𝑥 )
𝜕𝑥2𝜕𝑥1

𝜕2 𝑓 (𝑥 )
𝜕𝑥2

2

· · · 𝜕2 𝑓 (𝑥 )
𝜕𝑥2𝜕𝑥𝑛

...
...

...
𝜕2 𝑓 (𝑥 )
𝜕𝑥𝑛𝜕𝑥1

𝜕2 𝑓 (𝑥 )
𝜕𝑥𝑛𝜕𝑥2

· · · 𝜕2 𝑓 (𝑥 )
𝜕𝑥2𝑛

ª®®®®®®®¬
.

When 𝑓 is twice differentiable at 𝑥 , then the Hessian is symmetric by Schwarz’ theorem.
3

• A function 𝑓 : R𝑛 → R is twice continuously partially differentiable or briefly: 𝐶2(R𝑛,R), if
all entries of the Hessian are continuous as functions of 𝑥 . 𝐶2

-functions are twice differentiable.

§ 2.6 Taylor’s Theorem

We are going to state Taylor’s theorem in two variants:

Theorem 2.3 (Taylor, see Cartan, 1971, Theorem 5.6.3). Suppose that 𝐺 ⊆ R𝑛 open, 𝑘 ∈ N0 and

𝑓 : 𝐺 → R 𝑘 times differentiable, and (𝑘 + 1) times differentable at 𝑥 (0) ∈ 𝐺 . Then for all 𝜀 > 0, there

exists 𝛿 > 0 such that

in case 𝑘 = 0 :

��𝑓 (𝑥 (0) + 𝑑) − 𝑓 (𝑥 (0) ) − 𝑓 ′(𝑥 (0) ) 𝑑 �� ≤ 𝜀 ∥𝑑 ∥,
in case 𝑘 = 1 :

��𝑓 (𝑥 (0) + 𝑑) − 𝑓 (𝑥 (0) ) − 𝑓 ′(𝑥 (0) ) 𝑑 − 1

2

𝑑ᵀ 𝑓 ′′(𝑥 (0) )𝑑
�� ≤ 𝜀 ∥𝑑 ∥2.

for all ∥𝑑 ∥ < 𝛿 .
3
See for instance Cartan, 1971, Proposition 5.2.2
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Theorem 2.4 (Taylor, see Geiger, Kanzow, 1999, Satz A.2 or Heuser, 2002, Satz 168.1).
Suppose that 𝐺 ⊆ R𝑛 is open, 𝑘 ∈ N0 and 𝑓 : 𝐺 → R (𝑘 + 1) times continuously partially differentiable,

briefly a𝐶𝑘+1(𝐺,R) function. Suppose that 𝑥 (0) and 𝑥 (0) +𝑑 and the entire line segment between them lie

in 𝐺 . Then there exists 𝜉 ∈ (0, 1) such that

in case 𝑘 = 0 : 𝑓 (𝑥 (0) + 𝑑) = 𝑓 (𝑥 (0) ) + 𝑓 ′(𝑥 (0) + 𝜉 𝑑) 𝑑 (mean value theorem),

in case 𝑘 = 1 : 𝑓 (𝑥 (0) + 𝑑) = 𝑓 (𝑥 (0) ) + 𝑓 ′(𝑥 (0) ) 𝑑 + 1

2

𝑑ᵀ 𝑓 ′′(𝑥 (0) + 𝜉 𝑑) 𝑑.

§ 2.7 Convergence Rates

We denote (vector-valued) sequencesN→ R𝑛 by
(
𝑥 (𝑘 )

)
and not (𝑥𝑘 ) etc., in order to avoid a conflict of

notation with the components of a vector 𝑥 = (𝑥1, . . . , 𝑥𝑛)ᵀ ∈ R𝑛 . The subsequence of
(
𝑥 (𝑘 )

)
obtained

by the strictly increasing sequence N ∋ ℓ ↦→ 𝑘 (ℓ ) ∈ N is denoted by

(
𝑥 (𝑘

(ℓ ) ) )
.

We introduce various convergence rates for sequences in order to characterize the speed of convergence,

e. g., of iterates in an algorithm.

Definition 2.5 (Q-convergence rates4).
Suppose that

(
𝑥 (𝑘 )

)
⊂ R𝑛 is a sequence and 𝑥∗ ∈ R𝑛 . Moreover, let𝑀 be an inner product on R𝑛 .

(𝑖)
(
𝑥 (𝑘 )

)
converges to 𝑥∗ (at least) Q-linearly w.r.t. the𝑀-norm if there exists 𝑐 ∈ (0, 1) such that

∥𝑥 (𝑘+1) − 𝑥∗∥𝑀 ≤ 𝑐 ∥𝑥 (𝑘 ) − 𝑥∗∥𝑀 for all 𝑘 ∈ N sufficiently large.

(𝑖𝑖)
(
𝑥 (𝑘 )

)
converges to 𝑥∗ (at least) Q-superlinearly w.r.t. the𝑀-norm if there exists a null sequence(

𝜀 (𝑘 )
)
such that

∥𝑥 (𝑘+1) − 𝑥∗∥𝑀 ≤ 𝜀 (𝑘 ) ∥𝑥 (𝑘 ) − 𝑥∗∥𝑀 for all 𝑘 ∈ N.

(𝑖𝑖𝑖) Suppose that 𝑥 (𝑘 ) → 𝑥∗.
(
𝑥 (𝑘 )

)
converges to 𝑥∗ (at least) Q-quadratically w.r.t. the𝑀-norm if

there exists 𝐶 > 0 such that

∥𝑥 (𝑘+1) − 𝑥∗∥𝑀 ≤ 𝐶 ∥𝑥 (𝑘 ) − 𝑥∗∥2𝑀 for all 𝑘 ∈ N.

Note: Q-superlinear and Q-quadratic convergence of a sequence are independent of the norm (inner

product)𝑀 . However, the property of Q-linear convergence can be lost when changing the norm.

Definition 2.6 (R-convergence rates
5
).

Suppose that

(
𝑥 (𝑘 )

)
⊂ R𝑛 is a sequence and 𝑥∗ ∈ R𝑛 . Moreover, let𝑀 be an inner product on R𝑛 .

4
“Q” stands for “quotient”.

5
“R” stands for “root”.
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(𝑖)
(
𝑥 (𝑘 )

)
converges to 𝑥∗ (at least) R-linearly w.r.t. the𝑀-norm if there exists a null sequence

(
𝜀 (𝑘 )

)
such that

∥𝑥 (𝑘 ) − 𝑥∗∥𝑀 ≤ 𝜀 (𝑘 ) for all 𝑘 ∈ N,
and

(
𝜀 (𝑘 )

)
converges to zero Q-linearly w.r.t. | · |.

(𝑖𝑖)
(
𝑥 (𝑘 )

)
converges to 𝑥∗ (at least) R-superlinearly w.r.t. the𝑀-norm if there exists a null sequence(

𝜀 (𝑘 )
)
such that

∥𝑥 (𝑘 ) − 𝑥∗∥𝑀 ≤ 𝜀 (𝑘 ) for all 𝑘 ∈ N,
and

(
𝜀 (𝑘 )

)
converges to zero Q-superlinearly w.r.t. | · |.

(𝑖𝑖𝑖)
(
𝑥 (𝑘 )

)
converges to 𝑥∗ (at least) R-quadratically w.r.t. the𝑀-norm if there exists a null sequence(

𝜀 (𝑘 )
)
such that

∥𝑥 (𝑘 ) − 𝑥∗∥𝑀 ≤ 𝜀 (𝑘 ) for all 𝑘 ∈ N,
and

(
𝜀 (𝑘 )

)
converges to zero Q-quadratically w.r.t. | · |.

Note: The R-convergence modes are slightly weaker than the respective Q-convergence rates. Q-

convergence considers the decrease in the distance to the limit ∥𝑥 (𝑘 ) − 𝑥∗∥𝑀 in every step of the

sequence. By contrast, R-convergence considers the decrease overall.

§ 2.8 Convexity

Convexity plays a very important role in optimization in general. In this class, however, we will rely

on it only scarcely. We briefly recall here some elements of convexity. You may study Herzog,

2022, § 13 if you wish to have more background information.

Definition 2.7 (Convex set).
A set 𝐶 ⊆ R𝑛 is termed convex if 𝑥, 𝑦 ∈ 𝐶 and 𝛼 ∈ [0, 1] imply 𝛼 𝑥 + (1 − 𝛼) 𝑦 ∈ 𝐶 .

The condition in Definition 2.7 means that the entire line segment between 𝑥 and 𝑦 belongs to 𝐶 .

Definition 2.8 (Convex function).
A function 𝑓 : R𝑛 → R is termed

(𝑖) convex in case

𝑓 (𝛼 𝑥 + (1 − 𝛼) 𝑦) ≤ 𝛼 𝑓 (𝑥) + (1 − 𝛼) 𝑓 (𝑦) (2.20)

holds for all 𝑥, 𝑦 ∈ R𝑛 and 𝛼 ∈ [0, 1].

(𝑖𝑖) strictly convex in case

𝑓 (𝛼 𝑥 + (1 − 𝛼) 𝑦) < 𝛼 𝑓 (𝑥) + (1 − 𝛼) 𝑓 (𝑦) (2.21)

holds for all 𝑥, 𝑦 ∈ R𝑛 and 𝛼 ∈ (0, 1).
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(𝑖𝑖𝑖) 𝜇-strongly convex or strongly convex with parameter 𝜇 > 0 in case

𝑓 (𝛼 𝑥 + (1 − 𝛼) 𝑦) + 𝜇
2

𝛼 (1 − 𝛼)∥𝑥 − 𝑦 ∥2 ≤ 𝛼 𝑓 (𝑥) + (1 − 𝛼) 𝑓 (𝑦) (2.22)

holds for all 𝑥, 𝑦 ∈ R𝑛 and 𝛼 ∈ [0, 1].

(𝑖𝑣) concave (concave) or strictly concave or constrly concave if −𝑓 is convex or strictly convex or

strongly convex, respectively.

Theorem 2.9 (Characterization of convexity via first-order derivatives).
Suppose that 𝑓 : R𝑛 → R is differentiable.

(a) The following are equivalent:

(𝑖) 𝑓 is convex.

(𝑖𝑖) For all 𝑥, 𝑦 ∈ R𝑛 ,
𝑓 (𝑥) − 𝑓 (𝑦) ≥ 𝑓 ′(𝑦) (𝑥 − 𝑦) (2.23)

holds.

(𝑖𝑖𝑖) For all 𝑥, 𝑦 ∈ R𝑛 , (
𝑓 ′(𝑥) − 𝑓 ′(𝑦)

)
(𝑥 − 𝑦) ≥ 0 (2.24)

holds. Equation (2.24) means that 𝑓 ′ is amonotone operator.

(b) The following are equivalent:

(𝑖) 𝑓 ist strictly convex.

(𝑖𝑖) For all 𝑥, 𝑦 ∈ R𝑛 such that 𝑥 ≠ 𝑦 ,

𝑓 (𝑥) − 𝑓 (𝑦) > 𝑓 ′(𝑦) (𝑥 − 𝑦) (2.25)

holds.

(𝑖𝑖𝑖) For all 𝑥, 𝑦 ∈ R𝑛 such that 𝑥 ≠ 𝑦 ,(
𝑓 ′(𝑥) − 𝑓 ′(𝑦)

)
(𝑥 − 𝑦) > 0. (2.26)

Equation (2.26) means that 𝑓 ′ is a strictly monotone operator.

(c) The following are equivalent:

(𝑖) 𝑓 ist strongly convex.

(𝑖𝑖) There exists 𝜇 > 0 such that for all 𝑥, 𝑦 ∈ R𝑛 ,

𝑓 (𝑥) − 𝑓 (𝑦) ≥ 𝑓 ′(𝑦) (𝑥 − 𝑦) + 𝜇
2

∥𝑥 − 𝑦 ∥2 (2.27)

holds.
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(𝑖𝑖𝑖) There exists 𝜇 > 0 such that for all 𝑥, 𝑦 ∈ R𝑛 ,(
𝑓 ′(𝑥) − 𝑓 ′(𝑦)

)
(𝑥 − 𝑦) ≥ 𝜇 ∥𝑥 − 𝑦 ∥2. (2.28)

Equation (2.28) means that 𝑓 ′ is a strongly monotone operator.

Theorem 2.10 (Characterization of convexity via second-order derivatives).
Suppose that 𝑓 : R𝑛 → R is twice differentiable.

(a) The following are equivalent:

(𝑖) 𝑓 ist convex.

(𝑖𝑖) 𝑓 ′′ is everywhere positive semidefinite (has only non-negative eigenvalues).

(b) When 𝑓 ′′ is everywhere positive definite, then 𝑓 is strictly convex.

(c) The following are equivalent:

(𝑖) 𝑓 is strongly convex with parameter 𝜇 > 0.

(𝑖𝑖) The smallest eigenvalue of 𝑓 ′′(𝑥) satisfies 𝜆min(𝑓 ′′(𝑥)) ≥ 𝜇 > 0 for all 𝑥 ∈ R𝑛 .

§ 2.9 Hyperplanes and Half Spaces

Suppose that 𝑎 ∈ R𝑛 , 𝑎 ≠ 0 and 𝛽 ∈ R. Then the set

𝐻 (𝑎, 𝛽) B {𝑥 ∈ R𝑛 | 𝑎ᵀ𝑥 = 𝛽} (2.29)

is termed a hyperplane in R𝑛 with normal vector 𝑎.

A hyperplane separates R𝑛 into two closed half spaces

𝐻− (𝑎, 𝛽) B {𝑥 ∈ R𝑛 | 𝑎ᵀ𝑥 ≤ 𝛽} negative half space,
𝐻+(𝑎, 𝛽) B {𝑥 ∈ R𝑛 | 𝑎ᵀ𝑥 ≥ 𝛽} positive half space.

(2.30)

§ 2.10 Miscellanea

We denote the interior of a set 𝑆 ⊆ R𝑛 by int 𝑆 and its closure by cl 𝑆 .

Given 𝜀 > 0 and 𝑥 ∈ R𝑛 ,
𝐵𝑀𝜀 (𝑥) B

{
𝑥 ∈ R𝑛

�� ∥𝑥 − 𝑥 ∥𝑀 < 𝜀
}
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denotes the open 𝜀-ball w.r.t. the𝑀-norm about 𝑥 (centered at 𝑥 ). Similarly, the closed 𝜀-ball is

cl𝐵𝑀𝜀 (𝑥) B
{
𝑥 ∈ R𝑛

�� ∥𝑥 − 𝑥 ∥𝑀 ≤ 𝜀} .
A neighborhood of a point 𝑥 ∈ R is a set containing some open ball centered at 𝑥 . We often write

𝑈 (𝑥) for such a neighborhood.

The ceiling function ⌈𝑥⌉ returns the smallest integer ≥ 𝑥 .
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Chapter 1 Numerical Techniques for Unconstrained
Optimization Problems

We discuss in this chapter numerical methods for the unconstrained version of (1.1), i. e.,

Minimize 𝑓 (𝑥) where 𝑥 ∈ R𝑛 . (UP)

The reason for discussing the unconstrained problem first is that we can introduce the essential

algorithmic techniques without the difficulties of any constraints present.

Up front, we mention that we can only hope to find local minimizers. Determining global minimizers is

generally much harder and only possible under additional assumptions on the objective, and generally

only in relatively small dimensions 𝑛 ∈ N. A notable case of an additional assumption is that of a

convex objective 𝑓 . In this case, every local minimizer is already a global minimizer. Morever, the first-

order optimality condition is already sufficient for optimality, and we do not require a second-order

condition.

§ 3 Optimality Conditions

We suppose you have seen the following first- and second-order optimality conditions, so we only

briefly recall them; see Herzog, 2022, § 3 for more details.

Theorem 3.1 (First-order necessary optimality condition).
Suppose that 𝑥∗ is a local minimizer of (UP) and that 𝑓 is differentiable at 𝑥∗. Then 𝑓 ′(𝑥∗) = 0.

Proof. Suppose that 𝑑 ∈ R𝑛 is arbitrary. We consider the curve 𝛾 : (−𝛿, 𝛿) → R𝑛 , 𝛾 (𝑡) B 𝑥∗ + 𝑡 𝑑 . For
sufficiently small 𝛿 > 0, this curve runs within the neighborhood of local optimality of 𝑥∗. This implies

that 𝑓 ◦ 𝛾 has a local minimizer at 𝑡 = 0.

From this local optimality, we infer that the difference quotient satisfies

𝑓 (𝛾 (𝑡)) − 𝑓 (𝛾 (0))
𝑡

=
𝑓 (𝑥∗ + 𝑡 𝑑) − 𝑓 (𝑥∗)

𝑡

{
≥ 0 for 𝑡 > 0,

≤ 0 for 𝑡 < 0.

On the other hand, this difference quotient converges to 𝑓 ′(𝑥∗) 𝑑 as 𝑡 → 0. Consequently, we must

have 𝑓 ′(𝑥∗) 𝑑 = 0. Since 𝑑 ∈ R𝑛 was arbitrary, this means 𝑓 ′(𝑥∗) = 0. □
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A point 𝑥 ∈ R𝑛 with the property 𝑓 ′(𝑥) = 0 is termed a stationary point of 𝑓 .

Theorem 3.2 (Second-order necessary optimality condition).
Suppose that 𝑥∗ is a local minimizer of (UP) and that 𝑓 is twice differentiable at 𝑥∗. Then the Hessian

𝑓 ′′(𝑥∗) is positive semidefinite.
1

Proof. Suppose that 𝑑 ∈ R𝑛 is arbitrary. Wie in Theorem 3.1 we define 𝛾 (𝑡) B 𝑥∗ + 𝑡 𝑑 and again

consider the objective along the curve, i. e., 𝜑 B 𝑓 ◦ 𝛾 , which has a local minimizer at 𝑡 = 0. Since 𝜑 is

twice differentiable at 𝑡 = 0, Theorem 2.3 implies the following: for all 𝜀 > 0 there exists 𝛿 > 0 such

that ��𝜑 (𝑡) − 𝜑 (0) − 𝜑 ′(0) 𝑡 − 1

2

𝜑 ′′(0) 𝑡2
�� ≤ 𝜀 𝑡2

holds for all |𝑡 | < 𝛿 . In view of Theorem 3.1, 𝜑 ′(0) = 0, and the local optimality implies 𝜑 (0) ≤ 𝜑 (𝑡)
for all |𝑡 | sufficiently small. We thus obtain

− 1
2

𝜑 ′′(0) 𝑡2 ≤ 𝜑 (𝑡) − 𝜑 (0) − 1

2

𝜑 ′′(0) 𝑡2 ≤ 𝜀 𝑡2

for all |𝑡 | sufficiently small, whence

1

2

𝜑 ′′(0) ≥ −𝜀.

Since 𝜀 > 0 was arbitrary, we conclude 𝜑 ′′(0) = 𝑑ᵀ 𝑓 ′′(𝑥∗) 𝑑 ≥ 0. And since 𝑑 ∈ R𝑛 was arbitrary, we
have shown 𝑓 ′′(𝑥∗) to be positive semidefinite. □

Theorem 3.3 (Second-order sufficient optimality condition).
Suppose that 𝑓 is twice differentiable at 𝑥∗ and

(𝑖) 𝑓 ′(𝑥∗) = 0 and

(𝑖𝑖) 𝑓 ′′(𝑥∗) is positive definite2, with minimal eigenvalue 𝜇 > 0.

Then for every 𝛽 ∈ (0, 𝜇), there exists a neighborhood𝑈 (𝑥∗) of 𝑥∗ such that

𝑓 (𝑥) ≥ 𝑓 (𝑥∗) + 𝛽
2

∥𝑥 − 𝑥∗∥2 for all 𝑥 ∈ 𝑈 (𝑥∗) . (3.1)

In particular, 𝑥∗ is a strict local minimizer of 𝑓 .

Proof. Here we use Theorem 2.3 directly for 𝑓 (not along a curve). For every 𝜀 > 0, there exists 𝛿 > 0

such that ��𝑓 (𝑥∗ + 𝑑) − 𝑓 (𝑥∗) − 𝑓 ′(𝑥∗) 𝑑 − 1

2

𝑑ᵀ 𝑓 ′′(𝑥∗)𝑑
�� ≤ 𝜀 ∥𝑑 ∥2

holds for all ∥𝑑 ∥ < 𝛿 . According to the assumptions, 𝑓 ′(𝑥∗) = 0 holds. Therefore,

−𝜀 ∥𝑑 ∥2 ≤ 𝑓 (𝑥∗ + 𝑑) − 𝑓 (𝑥∗) − 1

2

𝑑ᵀ 𝑓 ′′(𝑥∗)𝑑

1
Due to the symmetry of 𝑓 ′′ (𝑥∗) this is equivalent to all eigenvalues of 𝑓 ′′ (𝑥∗) being non-negative.

2
Due to the symmetry of 𝑓 ′′ (𝑥∗) this is equivalent to all eigenvalues of 𝑓 ′′ (𝑥∗) being positive.

22 https://tinyurl.com/scoop-nlo 2023-07-14

https://tinyurl.com/scoop-nlo


cbn Nonlinear Optimization

holds for all ∥𝑑 ∥ < 𝛿 . This implies

𝑓 (𝑥∗ + 𝑑) ≥ 𝑓 (𝑥∗) + 1

2

𝑑ᵀ 𝑓 ′′(𝑥∗) 𝑑 − 𝜀 ∥𝑑 ∥2

for all ∥𝑑 ∥ < 𝛿 .

From (2.12) (with𝑀 = Id), the values of the Rayleigh quotient associated with the symmetric matrix

𝑓 ′′(𝑥∗) are bounded above and below by the extremal eigenvalues of 𝑓 ′′(𝑥∗). In particular, we have

𝑑ᵀ 𝑓 ′′(𝑥∗) 𝑑 ≥ 𝜇 ∥𝑑 ∥2 for all 𝑑 ∈ R𝑛 .

We can now finalize the proof: for 𝛽 ∈ (0, 𝜇), choose 𝜀 B (𝜇 − 𝛽)/2 > 0 and an appropriate value of

𝛿 > 0. Then we have

𝑓 (𝑥∗ + 𝑑) ≥ 𝑓 (𝑥∗) + 1

2

𝑑ᵀ 𝑓 ′′(𝑥∗) 𝑑 − 𝜀 ∥𝑑 ∥2

≥ 𝑓 (𝑥∗) + 𝜇
2

∥𝑑 ∥2 − 𝜀 ∥𝑑 ∥2

= 𝑓 (𝑥∗) + 𝛽
2

∥𝑑 ∥2

for all ∥𝑑 ∥ < 𝛿 . □

Property (3.1) means that 𝑓 has at least quadratic growth near 𝑥∗. Equivalently, 𝑓 is locally strongly

convex with parameter 𝛽 ∈ (0, 𝜇).
End of Week 1

§ 4 Minimization of Quadratic Functions

In this section we consider the simplest reasonable class of unconstrained optimization problems,

namely the minimization of quadratic polynomials:

Minimize 𝜙 (𝑥) B 1

2

𝑥ᵀ𝐴𝑥 − 𝑏ᵀ𝑥 + 𝑐 where 𝑥 ∈ R𝑛 . (4.1)

The data of the problem is 𝐴 ∈ R𝑛×𝑛 , 𝑏 ∈ R𝑛 and 𝑐 ∈ R. We can assume w.l.o.g. that 𝐴 is symmetric.

Quiz 4.1: Why?

If we knew a spectral decomposition of 𝐴 = 𝑉Λ𝑉 ᵀ (which of course we usually don’t), we could

represent the objective as 𝜙 (𝑥) = 1

2
𝑥ᵀ𝑉 Λ𝑉 ᵀ𝑥 − 𝑏ᵀ𝑉 𝑉 ᵀ𝑥 + 𝑐 . After a substitution of variables 𝑥 = 𝑉 ᵀ𝑦 ,

this becomes 𝜙 (𝑦) = 1

2
𝑦ᵀ Λ 𝑦 −𝑏ᵀ𝑉 𝑦 + 𝑐 . Consequently, in these coordinates, the problem decomposes

into a sum of 𝑛 independent quadratic minimization problems in the components 𝑦𝑖 .

Being able to solve (4.1) is an essential building block for subsequent tasks.
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Lemma 4.1 (Solvability and global solutions of (4.1)
3
). Suppose that 𝐴 ∈ R𝑛×𝑛 is symmetric, 𝑏 ∈ R𝑛

and 𝑐 ∈ R. Then the following holds:

(𝑖) If 𝐴 is positive semidefinite, then the objective in (4.1) is convex. In this case, the following are

equivalent:

(a) The problem (4.1) possess at least one (global) minimizer.

(b) The objective 𝜙 is bounded below.

(c) 𝐴𝑥 = 𝑏 is solvable.

The global minimizers of (4.1) are precisely the solutions of the linear system 𝐴𝑥 = 𝑏.

(𝑖𝑖) In case 𝐴 is not positive semidefinite
4
, the objective 𝜙 is not bounded below, thus problem (4.1) is

unbounded.

Proof. □

Corollary 4.2 (Unique solvability of (4.1)). Problem (4.1) possesses a unique (global) solution 𝑥∗ if and
only if 𝐴 is s. p. d. In this case, 𝑥∗ = 𝐴−1𝑏, and the optimal value is

𝜙 (𝑥∗) = 𝑐 − 1

2

∥𝑥∗∥2𝐴 = 𝑐 − 1

2

∥𝐴−1𝑏∥2𝐴 = 𝑐 − 1

2

∥𝑏∥2
𝐴−1 .

We will assume for the remainder of § 4 that 𝐴 is symmetric and positive definite (s. p. d.). Hence, the

solution of (4.1) is equivalent to the solution of the linear system 𝐴𝑥 = 𝑏. We denote that solution

by 𝑥∗ = 𝐴−1𝑏. Of course, we could be using a direct solver, such as Gaussian elimination, which

computes an LU decomposition of 𝐴, or rather its s. p. d. variant without pivoting, which computes the

Cholesky decomposition 𝐴 = 𝐿𝐿ᵀ with the lower triangular matrix 𝐿.5 However, when the problem

is high-dimensional (such as 𝑛 ≥ 10 000), then the generic ∼ 𝑛3 effort for solving the linear system

becomes prohibitive. Even when 𝐴 is sparse, as is often the case for high-dimensional problems, and a

direct solver which exploits this is used
6
, this is no longer feasible for very high dimension 𝑛.

This is where iterative solvers for linear systems come into play. They do not solve the problem at

once, but rather generate a sequence

(
𝑥 (𝑘 )

)
which converges to the solution. Beyond the ability to

deal with very high-dimensional problems, iterative solvers have another advantage: Any iterate 𝑥 (𝑘 )

of the method can be viewed as an approximate solution of 𝐴𝑥 = 𝑏 (or an approximate solution of

(4.1)), and we can stop the iteration as soon as the desired tolerance is reached, when the time budget

is used up, or when something unexpected happens, e. g., 𝐴 turns out not to be positive definite after

all. Recall that direct solvers do not yield any usable approximate solutions of the system while they

3
compare Nocedal, Wright, 2006, Lemma 4.7

4
The matrix 𝐴 possesses at least one negative eigenvalue.

5
We assume you have seen these methods, e. g., in the class Einführung in die Numerik.

6
such as a sparse Cholesky decomposition
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are running; they have to carry through to the end, and only then return a solution, which is exact up

to the influence of floating-point error. Iterative solvers have the additional advantage that they do

not require access to the matrix 𝐴 entry by entry. Rather they only require matrix-vector products,

i. e., a function which evaluates 𝑥 ↦→ 𝐴𝑥 . Quiz 4.2: Can you think of an example where matrix-vector

products are available, but you typically don’t have access to the entries of the underlying matrix?

Our objective 𝜙 from (4.1) satisfies

𝜙 (𝑥) = 1

2

𝑥ᵀ𝐴𝑥 − 𝑏ᵀ𝑥 + 𝑐

∇𝜙 (𝑥) = 𝐴𝑥 − 𝑏 C 𝑟 .

We call 𝑟 = ∇𝜙 (𝑥) the residual of the linear system 𝐴𝑥 = 𝑏 at 𝑥 .7 Independently of any method we

might be using to solve 𝐴𝑥 = 𝑏 (or minimize 𝜙), we have the following relation between the values of

the objective, the error 𝑥 − 𝑥∗ at a point 𝑥 , and the residual at 𝑥 :

Lemma 4.3. We have

𝜙 (𝑥) − 𝜙 (𝑥∗) = 1

2

∥𝑥 − 𝑥∗∥2𝐴 =
1

2

∥𝑟 ∥2
𝐴−1 =

1

2

∥∇𝜙 (𝑥)∥2
𝐴−1 . (4.2)

Proof. Direct calculation shows

𝜙 (𝑥) − 𝜙 (𝑥∗) = 1

2

𝑥ᵀ𝐴𝑥 − 𝑏ᵀ𝑥 + 𝑐 − 1

2

(𝑥∗)ᵀ𝐴𝑥∗ + 𝑏ᵀ𝑥∗ − 𝑐

=
1

2

𝑥ᵀ𝐴𝑥 − (𝑥∗)ᵀ𝐴𝑥 − 1

2

(𝑥∗)ᵀ𝐴𝑥∗ + (𝑥∗)ᵀ𝐴𝑥∗ since 𝑏 = 𝐴𝑥∗

=
1

2

𝑥ᵀ𝐴𝑥 − (𝑥∗)ᵀ𝐴𝑥 + 1

2

(𝑥∗)ᵀ𝐴𝑥∗

=
1

2

∥𝑥 − 𝑥∗∥2𝐴

=
1

2

(𝑥 − 𝑥∗)ᵀ𝑟 = 1

2

𝑟 ᵀ𝐴−1𝑟 since 𝑟 = 𝐴 (𝑥 − 𝑥∗)

=
1

2

∥𝑟 ∥2
𝐴−1

=
1

2

∥∇𝜙 (𝑥)∥2
𝐴−1 .

□

We will discuss in the remainder of this section two different iterative methods for the solution of (4.1),

and equivalently the solution of the linear system 𝐴𝑥 = 𝑏, where 𝐴 is s. p. d.
8
These methods are the

gradient descent method (also known as steepest descent method), and the conjugate gradient
method.
7
Sometimes the residual is defined in the literature with opposite sign. We do not write 𝑟 (𝑥) to keep the notation concise.

It will be clear from the context which vector 𝑥 the residual is associated with.

8
You can learn more about iterative solvers for more general linear systems (not related to optimization) in the class

Numerische lineare Algebra.
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We begin with the gradient descent method, which is based on the following simple

Idea: from the current iterate 𝑥 (𝑘 ) , move a bit along the direction of steepest descent of the objective,

and take the point reached as the next iterate 𝑥 (𝑘+1) .

§ 4.1 Direction of Steepest Descent

We first need to clarify what descent directions and the directions of steepest descent of a function
𝑓 : R𝑛 → R at a point 𝑥 are.

Definition 4.4 (Descent direction).
Suppose that 𝑓 : R𝑛 → R is differentiable at 𝑥 ∈ R𝑛 . A vector 𝑑 ∈ R𝑛 is termed a descent direction for 𝑓

at 𝑥 if

𝑓 ′(𝑥) 𝑑 < 0. (4.3)

holds.

By definition, the direction of steepest descent minimizes the directional derivative 𝑓 ′(𝑥) 𝑑 over all

vectors 𝑑 ∈ R𝑛 of constant length. What we mean by “length” is defined through the inner product𝑀

in use:

Minimize 𝑓 ′(𝑥) 𝑑 where 𝑑 ∈ R𝑛

subject to ∥𝑑 ∥𝑀 = 1.
(4.4)

We note that we could be considering the equivalent problem

Minimize 𝑓 ′(𝑥) 𝑑 where 𝑑 ∈ R𝑛

subject to ∥𝑑 ∥𝑀 ≤ 1.
(4.5)

The normalization to unit length is, by the way, arbitrary.

Problems (4.4), (4.5) are constrained problems, but we can solve them without an elaborated theory.

We rewrite the objective so that the directional derivative is expressed using the𝑀-inner product
9

𝑓 ′(𝑥) 𝑑 = ∇𝑓 (𝑥)ᵀ𝑑 = ∇𝑓 (𝑥)ᵀ𝑀−1𝑀 𝑑 =
(
𝑀−1∇𝑓 (𝑥)

)ᵀ
𝑀 𝑑,

where we used the symmetry of𝑀 (actually of𝑀−1) in the last step. The Cauchy-Schwarz inequality

w.r.t. the𝑀-inner product shows that this expression is minimal precisely when 𝑑 is antiparallel to

𝑀−1∇𝑓 (𝑥).

We summarize these findings:

Definition 4.5 (𝑀-gradient, direction of steepest descent w.r.t. the𝑀-inner product).
Suppose that 𝑓 : R𝑛 → R is differentiable at 𝑥 ∈ R𝑛 and that 𝑓 ′(𝑥) ≠ 0 holds.

9
In case this means something to you, we determine the Riesz representer of 𝑓 ′ (𝑥) w.r.t. the𝑀-inner product.
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(𝑖) The vector

∇𝑀 𝑓 (𝑥) B 𝑀−1∇𝑓 (𝑥) (4.6)

is termed the gradient of 𝑓 at 𝑥 w.r.t. the𝑀-inner product or briefly: the𝑀-gradient.

(𝑖𝑖) The vector −∇𝑀 𝑓 (𝑥) and all of its positive multiples are termed the directions of steepest descent
of 𝑓 at 𝑥 w.r.t. the𝑀-inner product.

We evaluate the negative𝑀-gradient (direction of steepest descent) by solving the linear system

𝑀 𝑑∗ = −∇𝑓 (𝑥) . (4.7)

When using the Euclidean inner product (𝑀 = Id), we continue to write ∇𝑓 (𝑥) instead of ∇Id 𝑓 (𝑥).
Sometimes, the use of ∇𝑀 𝑓 (𝑥) instead of the Euclidean gradient direction ∇𝑓 (𝑥) is referred to as

preconditioning.

§ 4.2 Gradient Descent Method with Cauchy Step Sizes

The direction of steepest descent at 𝑥 used by the gradient method is thus
10

𝑑 = −∇𝑀𝜙 (𝑥) = −𝑀−1𝑟 .

Now that the choice of direction is clear, let us analyze the choice of the step size. We have the

following expression for the difference of function values before and after a step:

𝜙 (𝑥 + 𝛼 𝑑) − 𝜙 (𝑥) = 1

2

(𝑥 + 𝛼 𝑑)ᵀ𝐴 (𝑥 + 𝛼 𝑑) − 𝑏ᵀ(𝑥 + 𝛼 𝑑) + 𝑐 − 1

2

𝑥ᵀ𝐴𝑥 + 𝑏ᵀ𝑥 − 𝑐

=
1

2

(𝑑ᵀ𝐴𝑑) 𝛼2 + (𝐴𝑥 − 𝑏)ᵀ𝑑 𝛼

=
1

2

(𝑑ᵀ𝐴𝑑) 𝛼2 + (𝑟 ᵀ𝑑) 𝛼. (4.8)

Note: This formula holds for arbitrary directions 𝑑 and step sizes 𝛼 .

When 𝑑 ≠ 0, then the one-dimensional quadratic polynomial 𝛼 ↦→ 𝜙 (𝑥 + 𝛼 𝑑) is strongly convex. It is

therefore an obvious idea to choose 𝛼 such that 𝜙 (𝑥 +𝛼 𝑑) is minimized. According to (4.8), we have

d

d𝛼
𝜙 (𝑥 + 𝛼 𝑑) = (𝑑ᵀ𝐴𝑑) 𝛼 + 𝑟 ᵀ𝑑,

d
2

d𝛼2
𝜙 (𝑥 + 𝛼 𝑑) = 𝑑ᵀ𝐴𝑑 > 0.

Due to the positivity of the second derivative, the second-order sufficient condition (Theorem 3.3) is

satisfied when
d

d𝛼
𝜙 (𝑥 + 𝛼 𝑑) = 0, which amounts to

𝛼∗ = − 𝑟 ᵀ𝑑

𝑑ᵀ𝐴𝑑
. (4.9)

10
We avoid iteration indices for now in order to avoid cluttered notation.
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This “optimal” step size is also known as the Cauchy step size. For this choice, the difference of
function values (4.8) before and after a step becomes

𝜙 (𝑥 + 𝛼∗ 𝑑) − 𝜙 (𝑥) = 1

2

(𝑑ᵀ𝐴𝑑) (𝛼∗)2 + (𝑟 ᵀ𝑑) 𝛼∗

=
1

2

(𝑑ᵀ𝐴𝑑)
( 𝑟 ᵀ𝑑

𝑑ᵀ𝐴𝑑

)
2

− (𝑟 ᵀ𝑑) 𝑟 ᵀ𝑑

𝑑ᵀ𝐴𝑑

= − 1
2

(𝑟 ᵀ𝑑)2
𝑑ᵀ𝐴𝑑

. (4.10)

Note: This formula holds for arbitrary directions 𝑑 ≠ 0 but it uses the Cauchy step size 𝛼∗.

We can now state the steepest descent method w.r.t. the 𝑀-inner product and the Cauchy step size

(4.9) for the iterative solution of the unconstrained quadratic minimization problem (4.1) with s. p. d. 𝐴.

This method, with𝑀 = Id, was already published by Cauchy, 1847.

Algorithm 4.6 (Gradient descent method for (4.1) w.r.t. the𝑀-inner product with Cauchy step size).
Input: initial guess 𝑥 (0) ∈ R𝑛
Input: right-hand side 𝑏 ∈ R𝑛
Input: s. p. d. matrix 𝐴 (or matrix-vector products with 𝐴)

Input: s. p. d. matrix𝑀 (or matrix-vector products with𝑀−1)
Output: approximate solution of (4.1), i. e., of 𝐴𝑥 = 𝑏

1: Set 𝑘 B 0

2: Set 𝑟 (0) B 𝐴𝑥 (0) − 𝑏 // evaluate the initial residual

3: Set 𝑑 (0) B −𝑀−1𝑟 (0) // evaluate the initial negative𝑀-gradient

4: Set 𝛿 (0) B −(𝑟 (0) )ᵀ𝑑 (0) // 𝛿 (0) = ∥∇𝑀𝜙 (𝑥 (0) )∥2𝑀 = ∥𝑟 (0) ∥2
𝑀−1

5: while stopping criterion not met do
6: Set 𝑞 (𝑘 ) B 𝐴𝑑 (𝑘 )

7: Set 𝜃 (𝑘 ) B (𝑞 (𝑘 ) )ᵀ𝑑 (𝑘 )
8: Set 𝛼 (𝑘 ) B 𝛿 (𝑘 )/𝜃 (𝑘 ) // evaluate the Cauchy step size

9: Set 𝑥 (𝑘+1) B 𝑥 (𝑘 ) + 𝛼 (𝑘 )𝑑 (𝑘 ) // update the iterate

10: Set 𝑟 (𝑘+1) B 𝑟 (𝑘 ) + 𝛼 (𝑘 )𝑞 (𝑘 ) // update the residual

11: Set 𝑑 (𝑘+1) B −𝑀−1𝑟 (𝑘+1) // evaluate the negative𝑀-gradient

12: Set 𝛿 (𝑘+1) B −(𝑟 (𝑘+1) )ᵀ𝑑 (𝑘+1) // 𝛿 (𝑘+1) = ∥∇𝑀𝜙 (𝑥 (𝑘+1) )∥2𝑀 = ∥𝑟 (𝑘+1) ∥2
𝑀−1

13: Set 𝑘 B 𝑘 + 1
14: end while
15: return 𝑥 (𝑘 )

The following can be said about Algorithm 4.6.

Remark 4.7 (on Algorithm 4.6).

(𝑖) Algorithm 4.6 is an iterative solver for the unconstrained quadratic minimization problem (4.1) with

s. p. d. 𝐴, and simultaneously an iterative solver for the linear system 𝐴𝑥 = 𝑏.

(𝑖𝑖) We do not require access to the matrix 𝐴 entry by entry, matrix-vector products with 𝐴 are enough.
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(𝑖𝑖𝑖) The user gets to choose the inner product 𝑀 . This is known as preconditioning, and therefore

Algorithm 4.6 is often termed a preconditioned gradient descent method. The case 𝑀 = Id

corresponds to the classical gradient descent method (without preconditioning).

(𝑖𝑣) We also do not require access to the inner product matrix𝑀 entry by entry, matrix-vector products

with𝑀−1 (i. e., solutions of linear systems with𝑀) are enough.

(𝑣) Algorithm 4.6 requires the storage of four vectors, which are iteratively overwritten: iterates 𝑥 (𝑘 ) ,
residuals 𝑟 (𝑘 ) , negative gradient directions 𝑑 (𝑘 ) , and vectors 𝑞 (𝑘 ) = 𝐴𝑑 (𝑘 ) .

(𝑣𝑖) Every iteration requires one matrix-vector product with 𝐴 and one application of the preconditioner,

i. e., one matrix-vector product with𝑀−1.

(𝑣𝑖𝑖) In order to mitigate the accumulation of round-off error, it is advisable to evaluate the residual

every, say, 50 iterations according to 𝑟 (𝑘 ) B 𝐴𝑥 (𝑘 ) − 𝑏, rather than update it.

(𝑣𝑖𝑖𝑖) The Cauchy step sizes satisfy

0 < 𝜆min(𝐴;𝑀) ≤
1

𝛼 (𝑘 )
=
(𝑑 (𝑘 ) )ᵀ𝐴𝑑 (𝑘 )

(𝑑 (𝑘 ) )ᵀ𝑀 𝑑 (𝑘 )
≤ 𝜆max(𝐴;𝑀), (4.11)

as long as 𝑑 (𝑘 ) ≠ 0 holds, i. e., as long as 𝑥 (𝑘 ) ≠ 𝑥∗. Consequently, the Cauchy step sizes generated

can be used to obtain estimates on the eigenvalues of 𝐴 w.r.t. 𝑀 .

(𝑖𝑥) When Algorithm 4.6 is provided with the value of 𝑐 , the following recursion can be added to the

algorithm to keep track of the value of the objective:

𝜙 (𝑥 (0) ) = 𝑐 + 1

2

(𝑟 (0) − 𝑏)ᵀ(𝑥 (0) ) initialization (4.12a)

𝜙 (𝑥 (𝑘+1) ) = 𝜙 (𝑥 (𝑘 ) ) − 1

2

𝛼 (𝑘 )𝛿 (𝑘 ) update. (4.12b)

This does not incur noticeable computational overhead and does not require the storage of extra

vectors. Alternatively, the value of 𝜙 (𝑥 (0) ) can be provided.

We now seek to estimate the speed of convergence of Algorithm 4.6. The function values at the iterates

satisfy

𝜙 (𝑥 (𝑘+1) ) − 𝜙 (𝑥∗)

=
1

2

∥𝑟 (𝑘+1) ∥2
𝐴−1 by (4.2)

=
1

2

∥𝑟 (𝑘 ) + 𝛼 (𝑘 )𝐴𝑑 (𝑘 ) ∥2
𝐴−1

=
1

2

∥𝑟 (𝑘 ) ∥2
𝐴−1 + 𝛼

(𝑘 ) (𝑟 (𝑘 ) )ᵀ𝑑 (𝑘 ) + 1

2

[
𝛼 (𝑘 )

]
2 (𝑑 (𝑘 ) )ᵀ𝐴𝑑 (𝑘 ) .
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This formula so far holds for any choice of step size 𝛼 (𝑘 ) and any choice of direction 𝑑 (𝑘 ) . We now

insert the Cauchy step size 𝛼 (𝑘 ) = − (𝑟
(𝑘 ) )ᵀ𝑑 (𝑘 )

(𝑑 (𝑘 ) )ᵀ𝐴𝑑 (𝑘 ) and obtain

=
1

2

∥𝑟 (𝑘 ) ∥2
𝐴−1 −

[
(𝑟 (𝑘 ) )ᵀ𝑑 (𝑘 )

]
2

(𝑑 (𝑘 ) )ᵀ𝐴𝑑 (𝑘 )
+ 1

2

[
(𝑟 (𝑘 ) )ᵀ𝑑 (𝑘 )

]
2

(𝑑 (𝑘 ) )ᵀ𝐴𝑑 (𝑘 )

=

(
1 −

[
(𝑟 (𝑘 ) )ᵀ𝑑 (𝑘 )

]
2[

(𝑑 (𝑘 ) )ᵀ𝐴𝑑 (𝑘 )
] [
(𝑟 (𝑘 ) )ᵀ𝐴−1𝑟 (𝑘 )

] ) (𝜙 (𝑥 (𝑘 ) ) − 𝜙 (𝑥∗)) by (4.2).

The directions 𝑑 (𝑘 ) are still arbitrary. Inserting the relationship 𝑑 (𝑘 ) = −𝑀−1 𝑟 (𝑘 ) = −∇𝑀𝜙 (𝑥 (𝑘 ) )
characteristic for gradient descent, in the form 𝑟 (𝑘 ) = −𝑀 𝑑 (𝑘 ) , we obtain

=

(
1 −

[
(𝑑 (𝑘 ) )ᵀ𝑀 𝑑 (𝑘 )

]
2[

(𝑑 (𝑘 ) )ᵀ𝐴𝑑 (𝑘 )
] [
(𝑑 (𝑘 ) )ᵀ𝑀𝐴−1𝑀 𝑑 (𝑘 )

] ) (𝜙 (𝑥 (𝑘 ) ) − 𝜙 (𝑥∗)) .
The fraction is precisely the type of expression estimated by the generalized Kantorovich inequality

(2.19). This yields

𝜙 (𝑥 (𝑘+1) ) − 𝜙 (𝑥∗)

≤
(
1 − 4𝛼 𝛽

(𝛼 + 𝛽)2

) (
𝜙 (𝑥 (𝑘 ) ) − 𝜙 (𝑥∗)

)
=

(
𝛽 − 𝛼
𝛽 + 𝛼

)
2 (
𝜙 (𝑥 (𝑘 ) ) − 𝜙 (𝑥∗)

)
=

(
𝜅 − 1
𝜅 + 1

)
2 (
𝜙 (𝑥 (𝑘 ) ) − 𝜙 (𝑥∗)

)
since 𝜅 = 𝛽/𝛼.

We have thus shown the following classical convergence result for Algorithm 4.6:

Theorem 4.8 (Convergence of Algorithm 4.6). Suppose that 𝐴 ∈ R𝑛×𝑛 and 𝑀 are both s. p. d., 𝛼 B

𝜆min(𝐴;𝑀) and 𝛽 B 𝜆max(𝐴;𝑀) are the extremal generalized eigenvalues of 𝐴 w.r.t. 𝑀 . Then for any

choice of the initial guess 𝑥 (0) , the gradient descent method with Cauchy step sizes converges to the unique

solution 𝑥∗ = 𝐴−1𝑏 of (4.1). In terms of the generalized condition number 𝜅 = 𝛽/𝛼 , we have the estimates

𝜙 (𝑥 (𝑘+1) ) − 𝜙 (𝑥∗) ≤
(
𝜅 − 1
𝜅 + 1

)
2 (
𝜙 (𝑥 (𝑘 ) ) − 𝜙 (𝑥∗)

)
(4.13a)

∥𝑥 (𝑘+1) − 𝑥∗∥𝐴 ≤
(
𝜅 − 1
𝜅 + 1

)
∥𝑥 (𝑘 ) − 𝑥∗∥𝐴 (4.13b)

and consequently

𝜙 (𝑥 (𝑘 ) ) − 𝜙 (𝑥∗) ≤
(
𝜅 − 1
𝜅 + 1

)
2𝑘 (

𝜙 (𝑥 (0) ) − 𝜙 (𝑥∗)
)

(4.13c)

∥𝑥 (𝑘 ) − 𝑥∗∥𝐴 ≤
(
𝜅 − 1
𝜅 + 1

)𝑘
∥𝑥 (0) − 𝑥∗∥𝐴 . (4.13d)

Moreover, the objective values 𝜙 (𝑥 (𝑘 ) ) and thus the norm of the error ∥𝑥 (𝑘 ) − 𝑥∗∥𝐴 are monotonically

decreasing.
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As an immediate consequence of this theorem, we can estimate the maximal number of iterations

required until the left-hand terms in (4.13c) and (4.13d) have been decreased relative to their initial

values.

Corollary 4.9 (Maximal number of iterations required in Algorithm 4.6). Given positive numbers 𝜀1
and 𝜀2, it takes

𝑘 ≤
⌈
𝜅

4

ln

(
1

𝜀1

)⌉
iterations until

(
𝜅 − 1
𝜅 + 1

)
2𝑘

≤ 𝜀1,

𝑘 ≤
⌈
𝜅

2

ln

(
1

𝜀2

)⌉
iterations until

(
𝜅 − 1
𝜅 + 1

)𝑘
≤ 𝜀2.

Proof. (1) We first show that

− ln
(
𝜅 − 1
𝜅 + 1

)
≥ 2

𝜅
> 0

holds for all 𝜅 ≥ 1. At 𝜅 = 𝑒+1
𝑒−1 , we have

− ln
(
𝜅 − 1
𝜅 + 1

)
= − ln

(
1

𝑒

)
= 1 >

2

𝜅
= 2

𝑒 − 1
𝑒 + 1 ≈ 0.92.

We now show that

d

d𝜅

[
− ln

(
𝜅 − 1
𝜅 + 1

)]
≥ d

d𝜅

2

𝜅

holds for all 𝜅 > 1, which proves the claim. The derivative on the left is
−2

(𝜅−1) (𝜅+1) , while the

derivative on the right is
−2
𝜅2
. In view of 0 < 𝜅2 − 1 < 𝜅2 for all 𝜅 > 1, we conclude

−2
(𝜅 − 1) (𝜅 + 1) <

−2
𝜅2

< 0 for all 𝜅 > 1.

(2) Taking the reciprocal of the inequality shown above, we obtain

0 <
−1

ln

(
𝜅−1
𝜅+1

) ≤ 𝜅
2

(∗)

for all 𝜅 > 1.

(3) Given 𝜅 > 1, we easily infer that

(
𝜅−1
𝜅+1

)
2𝑘 ≤ 𝜀1 holds if and only if

𝑘 ≥ 1

2

− ln 𝜀1
− ln

(
𝜅−1
𝜅+1

) =
1

2

−1
ln

(
𝜅−1
𝜅+1

) ln (
1

𝜀1

)
. (∗∗)

In view of the inequality (∗) shown above, we obtain that

𝑘 ≥
⌈
𝜅

4

ln

(
1

𝜀1

)⌉
≥ 𝜅

4

ln

(
1

𝜀1

)
implies (∗∗), which proves the first claim.

The second claim follows similarly. □
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Remark 4.10 (on Theorem 4.8).

(𝑖) (4.13b) shows the Q-linear convergence of

(
𝑥 (𝑘 )

)
to the solution 𝑥∗ in the 𝐴-norm.

(𝑖𝑖) The contraction factor is 0 ≤ 𝜅−1
𝜅+1 < 1, i. e., the convergence estimate depends on the ratio 𝜅

between the largest and the smallest generalized eigenvalue of 𝐴 w.r.t. 𝑀 . It is the purpose of the

preconditioner/inner product𝑀 to keep this ratio small.

(𝑖𝑖𝑖) In the extreme case 𝜅 = 1 we obtain convergence in one step. This happens precisely when𝑀 is a

multiple of 𝐴. However, we need a solve a linear system with𝑀 in every iteration. If we were able

to do that, we might as well solve 𝐴𝑥 = 𝑏 directly.

(𝑖𝑣) A good preconditioner is a compromise between a moderate generalized condition number 𝜅 and

the effort in applying𝑀−1. Finding a good preconditioner generally requires knowledge about the

problem at hand.

(𝑣) It is natural to measure convergence of the method in the 𝐴-norm of the error because, due to (4.2),

that is the quantity being minimized.

(𝑣𝑖) The estimates of Theorem 4.8 are worst-case estimates since they do not depend on the initial guess

𝑥 (0) . In fact, as can be seen in Figure 4.1c, the actual contraction factor for the objective values can

be significantly smaller for some initial guesses than the estimate (4.13c) suggests.

Figure 4.1 illustrates the convergence behavior of Algorithm 4.6 for a 2-dimensional example problem

from a number of different initial guesses 𝑥 (0) . We observe the typical “zig-zagging” behavior of the

iterates as they converge to the solution. This happens for any initial guess, except when 𝑥 (0) − 𝑥∗
happens to be a generalized eigenvector of 𝐴 w.r.t. 𝑀 , in which case convergence occurs in one step

due to 𝑥 (1) = 𝑥∗. (Such a case is not shown in Figure 4.1). Quiz 4.3: Suppose 𝐴, 𝑏 and𝑀 are given and

you consider a random distribution of initial values 𝑥 (0) in R𝑛 , which has a probability density. What

is the probability of hitting an initial value such that convergence happens in one step?

The zig-zagging behavior of the iterates 𝑥 (𝑘 ) , as well as the non-monotone behavior of ∥𝑟 (𝑘 ) ∥𝑀−1
have been analyzed in detail in the literature; see for instance Akaike, 1959; Forsythe, 1968; Nocedal,

Sartenaer, Zhu, 2002. Essentially what happens is that, asymptotically, the error 𝑥 (𝑘 ) − 𝑥∗ alternates
between elements of the eigenspaces belonging to the smallest and the largest eigenvalues of 𝐴 w.r.t.

𝑀 . This is ultimately a consequence of the fact that gradient descent is a memoryless method.

It has also been shown that a necessary condition in order for the norm of the gradient ∥𝑟 (𝑘 ) ∥𝑀−1 to
converge non-monotonically is that the condition number satisfy 𝜅 > 3 + 2

√
2 ≈ 5.83.

It remains to discuss stopping criteria. Several quantities may be of interest in this respect:

(𝑖) Are we happy with a point 𝑥 (𝑘 ) which is almost stationary, i. e., where ∥𝑟 (𝑘 ) ∥𝑀−1 is small?

(𝑖𝑖) Are we happy with a point 𝑥 (𝑘 ) whose objective value is near the optimal value, i. e., where

𝜙 (𝑥 (𝑘 ) ) − 𝜙 (𝑥∗) is small, or equivalently, where ∥𝑥 (𝑘 ) − 𝑥∗∥𝐴 is small?
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(a) Iterates

(
𝑥 (𝑘 )

)
of the method. Each color corresponds to a different initial guess 𝑥 (0) .
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(b) The norm of the gradient

√
𝛿 (𝑘 ) =

∥∇𝑀𝜙 (𝑥 (𝑘 ) )∥𝑀 = ∥𝑟 (𝑘 ) ∥𝑀−1 does not

necessarily converge monotonically.
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10-15

10-10

10-5

100

(c) The objective values 𝜙 (𝑥 (𝑘 ) ) − 𝜙 (𝑥∗) converge
monotonically. The black line illustrates the

bound (4.13c).

Figure 4.1: Illustration of the convergence behavior of Algorithm 4.6 from a number of initial guesses

𝑥 (0) . No preconditioning (𝑀 = Id) is used. The two eigenvalues of the matrix are 𝛼 = 1 and

𝛽 = 10 so the condition number is 𝜅 = 10.
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(𝑖𝑖𝑖) Are we happy with a point 𝑥 (𝑘 ) whose distance from the minimizer is small in the preconditioner-

induced norm𝑀 , i. e., where ∥𝑥 (𝑘 ) − 𝑥∗∥𝑀 is small?

The only of these three quantities which we can evaluate without knowing 𝑥∗ or 𝜙 (𝑥∗) is 𝛿 (𝑘 ) =
∥𝑟 (𝑘 ) ∥2

𝑀−1
. Therefore, many implementations use one of the following combinations of a relative and

an absolute criterion based on ∥𝑟 (𝑘 ) ∥𝑀−1 :

∥𝑟 (𝑘 ) ∥𝑀−1 ≤ 𝜀rel ∥𝑟 (0) ∥𝑀−1, i. e., 𝛿 (𝑘 ) ≤ 𝜀2
rel
𝛿 (0) , (4.14a)

∥𝑟 (𝑘 ) ∥𝑀−1 ≤ 𝜀abs, i. e., 𝛿 (𝑘 ) ≤ 𝜀2
abs
, (4.14b)

∥𝑟 (𝑘 ) ∥𝑀−1 ≤ 𝜀rel ∥𝑟 (0) ∥𝑀−1 + 𝜀abs, i. e., (𝛿 (𝑘 ) )1/2 ≤ 𝜀rel (𝛿 (0) )1/2 + 𝜀abs, (4.14c)

∥𝑟 (𝑘 ) ∥𝑀−1 ≤ max

{
𝜀rel ∥𝑟 (0) ∥𝑀−1, 𝜀abs

}
, i. e., 𝛿 (𝑘 ) ≤ max

{
𝜀2
rel
𝛿 (0) , 𝜀2

abs

}
. (4.14d)

Let us see which consequences either of the implementable stopping criteria (4.14) has on the other

two quantities of interest:

Lemma 4.11 (Implications). The criteria from (4.14) imply, respectively,

∥𝑥 (𝑘 ) − 𝑥∗∥𝐴 ≤
√
𝜅 𝜀rel ∥𝑥 (0) − 𝑥∗∥𝐴

∥𝑥 (𝑘 ) − 𝑥∗∥𝑀 ≤ 𝜅 𝜀rel ∥𝑥 (0) − 𝑥∗∥𝑀

}
(4.15a)

∥𝑥 (𝑘 ) − 𝑥∗∥𝐴 ≤ (1/
√
𝛼) 𝜀abs

∥𝑥 (𝑘 ) − 𝑥∗∥𝑀 ≤ (1/𝛼) 𝜀abs

}
(4.15b)

∥𝑥 (𝑘 ) − 𝑥∗∥𝐴 ≤
√
𝜅 𝜀rel ∥𝑥 (0) − 𝑥∗∥𝐴 + (1/

√
𝛼) 𝜀abs

∥𝑥 (𝑘 ) − 𝑥∗∥𝑀 ≤ 𝜅 𝜀rel ∥𝑥 (0) − 𝑥∗∥𝑀 + (1/𝛼) 𝜀abs

}
(4.15c)

∥𝑥 (𝑘 ) − 𝑥∗∥𝐴 ≤ max

{√
𝜅 𝜀rel ∥𝑥 (0) − 𝑥∗∥𝐴, (1/

√
𝛼) 𝜀abs

}
∥𝑥 (𝑘 ) − 𝑥∗∥𝑀 ≤ max

{
𝜅 𝜀rel ∥𝑥 (0) − 𝑥∗∥𝑀 , (1/𝛼) 𝜀abs

} }
(4.15d)

Proof. homework problem 2.3 □

§ 4.3 Gradient Descent Method with Constant Step Sizes

We can show that the gradient descent method continues to converge Q-linearly when, in place of

the Cauchy step sizes, we choose constant step sizes 𝛼 (𝑘 ) ≡ 𝛼 within a certain range. We obtain as

above

𝜙 (𝑥 (𝑘+1) ) − 𝜙 (𝑥∗)

=
1

2

∥𝑟 (𝑘 ) ∥2
𝐴−1 + 𝛼 (𝑟

(𝑘 ) )ᵀ𝑑 (𝑘 ) + 1

2

𝛼2(𝑑 (𝑘 ) )ᵀ𝐴𝑑 (𝑘 ) .
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We leave 𝛼 open for now and insert the gradient descent relation 𝑟 (𝑘 ) = −𝑀 𝑑 (𝑘 ) to obtain

=
1

2

∥𝑟 (𝑘 ) ∥2
𝐴−1 − 𝛼 (𝑑

(𝑘 ) )ᵀ𝑀 𝑑 (𝑘 ) + 1

2

𝛼2(𝑑 (𝑘 ) )ᵀ𝐴𝑑 (𝑘 )

≤ 1

2

∥𝑟 (𝑘 ) ∥2
𝐴−1 − 𝛼 (𝑑

(𝑘 ) )ᵀ𝑀 𝑑 (𝑘 ) + 1

2

𝛼2𝛽 (𝑑 (𝑘 ) )ᵀ𝑀 𝑑 (𝑘 ) since 𝑑ᵀ𝐴𝑑 ≤ 𝛽 𝑑ᵀ𝑀 𝑑

=
1

2

∥𝑟 (𝑘 ) ∥2
𝐴−1 + 𝛼

(
1

2

𝛼 𝛽 − 1
)
(𝑑 (𝑘 ) )ᵀ𝑀 𝑑 (𝑘 ) .

Here we need to convert the last term into 𝑑ᵀ𝑀𝐴−1𝑀 𝑑 , which is equal to 𝑟 ᵀ𝐴−1𝑟 , so that it can

be combined with the first term. We require that the coefficient 𝛼

(
1

2
𝛼 𝛽 − 1

)
is negative to obtain

convergence. Consequently, we use the first estimate in (2.15a):

≤ 1

2

∥𝑟 (𝑘 ) ∥2
𝐴−1 + 𝛼

(
1

2

𝛼 𝛽 − 1
)
𝛼 (𝑑 (𝑘 ) )ᵀ𝑀𝐴−1𝑀 𝑑 (𝑘 ) provided that 𝛼

(
1

2

𝛼 𝛽 − 1
)
< 0

=

[
1 + 2𝛼

(
1

2

𝛼 𝛽 − 1
)
𝛼

]
1

2

∥𝑟 (𝑘 ) ∥2
𝐴−1

=

[
1 + 2𝛼

(
1

2

𝛼 𝛽 − 1
)
𝛼

] (
𝜙 (𝑥 (𝑘 ) ) − 𝜙 (𝑥∗)

)
.

The condition that 𝛼

(
1

2
𝛼 𝛽 − 1

)
is negative amounts to 𝛼 ∈ (0, 2

𝛽
). It is precisely the midpoint 𝛼 = 1/𝛽

of this interval which minimizes this term and yields the optimal estimate, and the expression in [· · ·]
becomes

𝜅−1
𝜅

in this case.

Remark 4.12 (on the convergence of Algorithm 4.6 with constant step sizes).
(𝑖) We have shown that Algorithm 4.6, where Line 8 is replaced by 𝛼 (𝑘 ) B 𝛼 , still converges, provided

that 𝛼 ∈ (0, 2
𝛽
).

(𝑖𝑖) From a practical perspective, we therefore need to know at least an upper bound for the largest

eigenvalue 𝛽 of the generalized eigenvalue problem 𝐴𝑥 = 𝜆𝑀 𝑥 . When we have 𝛽 ≤ 𝛽estimate and

choose 𝛼 ∈ (0, 2

𝛽estimate

), we also have 𝛼 ∈ (0, 2
𝛽
).

(𝑖𝑖𝑖) The choice 𝛼 = 1

𝛽
yields the optimal estimate. In this case, we obtain

𝜙 (𝑥 (𝑘+1) ) − 𝜙 (𝑥∗) ≤
(
𝜅 − 1
𝜅

) (
𝜙 (𝑥 (𝑘 ) ) − 𝜙 (𝑥∗)

)
.

Since for all 𝜅 ≥ 1, we have

(
𝜅−1
𝜅+1

)
2 ≤ 𝜅−1

𝜅
, the contraction factor in the bound we obtained with

constant step sizes is worse than the one for the Cauchy step sizes; see (4.13a). Consequently, there

is no reason to prefer the gradient descent method with constant step sizes over the version with

Cauchy step sizes.

(𝑖𝑣) The Kantorovich inequality was not needed in the proof.

Figure 4.2 illustrates the convergence behavior of Algorithm 4.6 with constant step sizes for a 2-

dimensional example problem from a number of different initial guesses 𝑥 (0) .
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(a) Iterates
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(b) Gradient norm ∥𝑟 (𝑘 ) ∥𝑀−1 .
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(c) Objective 𝜙 (𝑥 (𝑘 ) ) − 𝜙 (𝑥∗).
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)
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(e) Gradient norm ∥𝑟 (𝑘 ) ∥𝑀−1 .
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(f) Objective 𝜙 (𝑥 (𝑘 ) ) − 𝜙 (𝑥∗).
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)
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(h) Gradient norm ∥𝑟 (𝑘 ) ∥𝑀−1 .
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(i) Objective 𝜙 (𝑥 (𝑘 ) ) − 𝜙 (𝑥∗).

Figure 4.2: Illustration of the convergence behavior of Algorithm 4.6 with various constant step sizes

instead of the Cauchy step size. The step sizes, from top to bottom, are 𝛼 ∈ {0.03, 0.10, 0.17}.
No preconditioning (𝑀 = Id) is used. The two eigenvalues of the matrix are 𝛼 = 1 and

𝛽 = 10 so the admissible range of constant step sizes is 𝛼 ∈ (0, 2
𝛽
) = (0, 0.2).
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§ 4.4 Gradient Descent Method with Other Step Size Rules

Step size rules other than the Cauchy step sizes and constant step sizes have been proposed and

analyzed in the literature with the goal of breaking the non-efficient zig-zaggging pattern; among

them Barzilai, Borwein, 1988; De Asmundis, di Serafino, Riccio, et al., 2013; De Asmundis, di Serafino,

Hager, et al., 2014; Gonzaga, Schneider, 2015. We do not go into the details here but mention one

remarkable result from Gonzaga, 2016, Theorem 1. Suppose that 𝛼 B 𝜆min(𝐴;𝑀) and 𝛽 B 𝜆max(𝐴;𝑀)
are the extremal generalized eigenvalues of 𝐴 w.r.t. 𝑀 , and 𝜅 B

𝛽

𝛼
is the generalized condition number.

Suppose that 𝜅 ≥ 1.06 and that

𝑘 B

⌈√
𝜅 ln

(
2

𝜀1

)⌉
.

holds. Consider the set of mutually distinct, precomputed step sizes{
𝛼 ( 𝑗 ) B

1

𝜔 ( 𝑗 )

����𝜔 ( 𝑗 ) B 𝛽 − 𝛼
2

cos

(
1 + 2 𝑗
2𝑘

𝜋

)
+ 𝛽 + 𝛼

2

, 𝑗 = 0, 1, . . . , 𝑘 − 1
}
.

Then the gradient descent method Algorithm 4.6 with step sizes 𝛼 (𝑘 ) , applied in any order, requires at

most

𝑘 iterations until

(
𝜅 − 1
𝜅 + 1

)
2𝑘

≤ 𝜀1.

The interesting fact is that, compared to the estimate of Corollary 4.9 for the Cauchy step size, the

bound on the iteration numbers is proportional only to

√
𝜅 , not to 𝜅 . The result can be modified so that

it is not required to know the extremal eigenvalues exactly, but knowledge of an interval containing

them is sufficient.

We are going to obtain a similar complexity result for the conjgate gradient method in § 4.6.

§ 4.5 Gradient Descent Method as Discretized Gradient Flow

We conclude the discussion of the gradient descent method by interpreting it in another way. Consider

the differential equation

¤𝑥 (𝑡) = −∇𝑀 𝑓 (𝑥 (𝑡)), 𝑡 ≥ 0

𝑥 (0) = 𝑥 (0) .
(4.16)

This is known as the gradient flow associated with 𝑓 . Its stationary points are precisely the stationary

points of 𝑓 . Due to

d

d𝑡
𝑓 (𝑥 (𝑡)) = 𝑓 ′(𝑥 (𝑡)) ¤𝑥 (𝑡) = −𝑓 ′(𝑥 (𝑡))𝑀−1∇𝑓 (𝑥 (𝑡)) = −∥∇𝑓 (𝑥 (𝑡))∥2

𝑀−1 = −∥∇𝑀 𝑓 (𝑥 (𝑡))∥
2

𝑀 , (4.17)

the value of 𝑓 is decreasing along the path 𝑥 (𝑡).

When we discretize (4.16) by the explicit (forward) Euler method with time step size Δ𝑡 (𝑘 ) , we obtain

𝑥 (𝑘+1) − 𝑥 (𝑘 )

Δ𝑡 (𝑘 )
= −𝑀−1∇𝑓 (𝑥 (𝑘 ) ),
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or equivalently,

𝑥 (𝑘+1) = 𝑥 (𝑘 ) − Δ𝑡 (𝑘 ) 𝑀−1∇𝑓 (𝑥 (𝑘 ) ). (4.18)

This is precisely a step of the gradient descent method with step size Δ𝑡 (𝑘 ) . Therefore, we can interpret

the gradient descent method as a discretization of the continuous gradient flow equation.

End of Week 2

§ 4.6 Conjugate Gradient Method

The typical inefficient zig-zaggging pattern of the directions 𝑑 (𝑘 ) is a consequence of the fact that
gradient descent is a memoryless method. That is, we could restart the method at any iterate and it

would produce the same iterates, whether restarted or not. This is where the conjugate gradient
method (CG method, introduced in Hestenes, Stiefel, 1952) takes a different turn. It works with

search directions 𝑑 (𝑘 ) which are pairwise 𝐴-orthogonal (also known as 𝐴-conjugate), and builds a

memory of previously visited directions.

Definition 4.13 (Conjugate directions). Suppose that 𝐴 ∈ R𝑛×𝑛 is s. p. d. A set of non-zero vectors

{𝑑 (0) , . . . , 𝑑 (𝑘 ) } ⊂ R𝑛 is termed 𝐴-conjugate if

(𝑑 (𝑖 ) )ᵀ𝐴𝑑 ( 𝑗 ) = 0 for 0 ≤ 𝑖, 𝑗 ≤ 𝑘, 𝑖 ≠ 𝑗 .

In other words, 𝐴-conjugate vectors are pairwise orthogonal w.r.t. the 𝐴-inner product. In particular,

{𝑑 (0) , . . . , 𝑑 (𝑘 ) } is a linearly independent set. (Quiz 4.4: Can you prove that?)

The CG method is a member of the class of conjugate direction methods. We begin by describing

the properties of a generic conjugate direction method first before we particularize to the CG method.

A conjugate direction method chooses its search directions 𝑑 (0) , 𝑑 (1) , . . . so that they are 𝐴-conjugate,

and the iterates satisfy

𝑥 (𝑘+1) = 𝑥 (𝑘 ) + 𝛼 (𝑘 )𝑑 (𝑘 ) . (4.19)

The step size𝛼 (𝑘 ) is the Cauchy step size, whichminimizes the one-dimensional quadratic polynomial

𝛼 ↦→ 𝜙 (𝑥 (𝑘 ) + 𝛼 𝑑 (𝑘 ) ) .

That is, we have

𝛼 (𝑘 ) B − (𝑟
(𝑘 ) )ᵀ𝑑 (𝑘 )

(𝑑 (𝑘 ) )ᵀ𝐴𝑑 (𝑘 )
, (4.20)

compare (4.9). As in the gradient descent method, the residuals satisfy the recursion

𝑟 (𝑘+1) = 𝑟 (𝑘 ) + 𝛼 (𝑘 )𝐴𝑑 (𝑘 ) . (4.21)

Conjugate direction methods have the remarkable property that the sequence of one-dimensional

minimizations in the 𝐴-conjugate directions 𝑑 (0) , 𝑑 (1) , . . . is equivalent to the minimization over the

entire affine subspace 𝑥 (0) + span{𝑑 (0) , 𝑑 (1) , . . .}. This is shown in the following result.
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Lemma 4.14 (Properties of conjugate direction methods). Suppose that 𝐴 ∈ R𝑛×𝑛 is s. p. d. Given an

initial guess 𝑥 (0) and a set {𝑑 (0) , 𝑑 (1) , . . . , 𝑑 (𝑘−1) }, 𝑘 ≥ 1 of𝐴-conjugate search directions, suppose that the

iterates 𝑥 (0) , . . . , 𝑥 (𝑘 ) are generated according to (4.19) with Cauchy step size (4.20). Then the following

holds.

(𝑖)
(𝑟 (𝑘 ) )ᵀ𝑑 (𝑖 ) = 0 for all 𝑖 = 0, 1, . . . , 𝑘 − 1. (4.22)

(𝑖𝑖) 𝑥 (𝑘 ) minimizes 𝜙 over the affine subspace 𝑥 (0) + span{𝑑 (0) , 𝑑 (1) , . . . , 𝑑 (𝑘−1) }.

Proof. We can show Statement (𝑖) via induction over 𝑘 . For 𝑘 = 1,

(𝑟 (1) )ᵀ𝑑 (0) = (𝐴𝑥 (1) − 𝑏)ᵀ𝑑 (0) by definition of the residual

= (𝐴𝑥 (0) + 𝛼 (0)𝐴𝑑 (0) − 𝑏)ᵀ𝑑 (0) by (4.19)

= (𝑟 (0) )ᵀ𝑑 (0) + 𝛼 (0) (𝑑 (0) )ᵀ𝐴𝑑 (0) by definition of the residual

= 0 since 𝛼 (0) is the Cauchy step size (4.20).

The induction step assumes (𝑟 (𝑘−1) )ᵀ𝑑 (𝑖 ) = 0 for all 𝑖 = 0, 1, . . . , 𝑘 − 2 and proceeds as follows.

(𝑟 (𝑘 ) )ᵀ𝑑 (𝑘−1) = (𝑟 (𝑘−1) + 𝛼 (𝑘−1)𝐴𝑑 (𝑘−1) )ᵀ𝑑 (𝑘−1) by the residual recursion (4.21)

= 0 since 𝛼 (𝑘−1) is the Cauchy step size (4.20).

For the remaining search directions 𝑑 (𝑖 ) , 𝑖 = 0, 1, . . . , 𝑘 − 2 we have

(𝑟 (𝑘 ) )ᵀ𝑑 (𝑖 ) =
(
𝑟 (𝑘−1) + 𝛼 (𝑘−1)𝐴𝑑 (𝑘−1)

)ᵀ
𝑑 (𝑖 ) by the residual recursion (4.21)

= (𝑟 (𝑘−1) )ᵀ𝑑 (𝑖 )︸         ︷︷         ︸
=0 by assumption

+𝛼 (𝑘−1) (𝑑 (𝑘−1) )ᵀ𝐴𝑑 (𝑖 )︸            ︷︷            ︸
=0 due to 𝐴-conjugacy

= 0.

For Statement (𝑖𝑖) we consider the function ℎ : R𝑘 → R

ℎ(𝜎) B 𝜙

(
𝑥 (0) +

𝑘−1∑︁
𝑗=0

𝜎 𝑗 𝑑
( 𝑗 )

)
.

ℎ is strongly convex (Quiz 4.5: Why? ), and the unique minimizer 𝜎∗ is characterized by

𝜕ℎ(𝜎∗)
𝜕𝜎𝑖

= ∇𝜙
(
𝑥 (0) +

𝑘−1∑︁
𝑗=0

𝜎∗𝑗 𝑑
( 𝑗 )

)ᵀ
𝑑 (𝑖 ) = 0, 𝑖 = 0, . . . , 𝑘 − 1. (∗)

However, we already know that it is the iterate

𝑥 (𝑘 ) = 𝑥 (0) +
𝑘−1∑︁
𝑗=0

𝛼 ( 𝑗 ) 𝑑 ( 𝑗 ) ∈ 𝑥 (0) + span{𝑑 (0) , 𝑑 (1) , . . . , 𝑑 (𝑘−1) }
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which satisfies (∗), since

∇𝜙
(
𝑥 (0) +

𝑘−1∑︁
𝑗=0

𝛼 ( 𝑗 ) 𝑑 ( 𝑗 )
)ᵀ
𝑑 (𝑖 ) = ∇𝜙 (𝑥 (𝑘 ) )ᵀ𝑑 (𝑖 ) = (𝑟 (𝑘 ) )ᵀ𝑑 (𝑖 ) = 0

holds for all 𝑖 = 0, . . . , 𝑘 − 1, as shown in Statement (𝑖). □

Corollary 4.15 (Properties of conjugate direction methods). Any iterative method (4.19) using 𝐴-

conjugate directions 𝑑 (𝑘 ) and Cauchy step sizes (4.20) converges to the unique solution of (4.1) in at most

𝑛 steps.

Proof. The search directions 𝑑 (𝑘 ) are 𝐴-conjugate and thus linearly independent. Therefore,

span{𝑑 (0) , 𝑑 (1) , . . . , 𝑑 (𝑛−1) }

is all of R𝑛 , so that 𝑥 (𝑛) minimizes 𝜙 over all of R𝑛 by Lemma 4.14. □

In practice, the statement of Corollary 4.15 is weakened by floating point error. Moreover, the result of

Corollary 4.15 is not really relevant for high-dimensional problems since performing 𝑛 iterations is

prohibitively expensive. We will later see more practical converge estimates.

There are many possibilities to generate pairwise 𝐴-conjugate directions 𝑑 (𝑘 ) , each of which leads to a

different conjugate direction method. The conjugate gradient method (CGmethod) determines the

current direction 𝑑 (𝑘 ) as a linear combination of the previous direction 𝑑 (𝑘−1) and the current steepest

descent direction −𝑀−1𝑟 (𝑘 ) :11

𝑑 (0) B −𝑀−1𝑟 (0) for 𝑘 = 0,

𝑑 (𝑘 ) B −𝑀−1𝑟 (𝑘 ) + 𝛽 (𝑘 ) 𝑑 (𝑘−1) for 𝑘 ≥ 1.
(4.23)

The coefficient 𝛽 (𝑘 ) is determined in such a way that at least 𝑑 (𝑘 ) and 𝑑 (𝑘−1) are 𝐴-conjugate:

𝛽 (𝑘 ) B
(𝑟 (𝑘 ) )ᵀ𝑀−1𝐴𝑑 (𝑘−1)

(𝑑 (𝑘−1) )ᵀ𝐴𝑑 (𝑘−1)
. (4.24)

Interestingly, the algorithm obtained in this way generates search directions which are fully 𝐴-

conjugate, as shown in the following result.

Lemma 4.16 (Properties of the iterates in the CG algorithm, see Nocedal, Wright, 2006, Theorem 5.3).
Suppose that 𝑥 (0) ∈ R𝑛 is given and that the search directions {𝑑 (0) , 𝑑 (1) , . . . , 𝑑 (𝑘 ) } and the subsequent
iterates 𝑥 (1) , . . . , 𝑥 (𝑘 ) , 𝑘 ≥ 1, are generated according to (4.19)–(4.20), (4.23)–(4.24), where 𝛼 (𝑘 ) ≠ 0.

12

span{𝑟 (0) , 𝑟 (1) , . . . , 𝑟 (𝑘 ) } = span{𝑟 (0) , (𝐴𝑀−1) 𝑟 (0) , . . . , (𝐴𝑀−1)𝑘 𝑟 (0) }, (4.25)

span{𝑑 (0) , 𝑑 (1) , . . . , 𝑑 (𝑘 ) } = 𝑀−1 span{𝑟 (0) , (𝐴𝑀−1) 𝑟 (0) , . . . , (𝐴𝑀−1)𝑘 𝑟 (0) }, (4.26)

(𝑑 (𝑘 ) )ᵀ𝐴𝑑 (𝑖 ) = 0 for all 𝑖 = 0, 1, . . . , 𝑘 − 1, (4.27)

(𝑟 (𝑘 ) )ᵀ𝑀−1𝑟 (𝑖 ) = 0 for all 𝑖 = 0, 1, . . . , 𝑘 − 1. (4.28)

11
With 𝛽 (𝑘 ) = 0, we obtain again the steepest descent method (Algorithm 4.6).

12𝛼 (𝑘 ) = 0 would mean that 𝑥 (𝑘 ) is the unique solution 𝑥∗. Due to the form of the Cauchy step (4.20), this is clear for 𝑘 = 0,

as the nominator is ∥𝑟 (𝑘 ) ∥𝑀−1 . (4.22) shows that this is also true for 𝑘 > 0.
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The subspace

K (𝑘+1) (𝐴𝑀−1; 𝑟 (0) ) B span{𝑟 (0) , (𝐴𝑀−1) 𝑟 (0) , . . . , (𝐴𝑀−1)𝑘 𝑟 (0) } (4.29)

is termed the Krylov subspace (of order 𝑘 + 1) of the matrix 𝐴𝑀−1 with initial vector 𝑟 (0) . Therefore,
the CG method is a representative of the class of Krylov subspace methods. The properties (4.25)
and (4.26) imply that the method creates, simultaneously, an expanding sequence of𝑀−1-orthogonal
basis vectors of the spaces K (𝑘 ) (𝐴𝑀−1; 𝑟 (0) ), as well as an expanding sequence of 𝐴-orthogonal basis

vectors of the spaces𝑀−1K (𝑘 ) (𝐴𝑀−1; 𝑟 (0) ).

Proof. We first prove (4.25)–(4.27), by induction. For 𝑘 = 0, statement (4.25) holds trivially. Statement

(4.26) holds since the CG method starts with 𝑑 (0) = −𝑀−1𝑟 (0) . Statement (4.27) is void for 𝑘 = 0.

Suppose now that (4.25) and (4.26) have been shown up to some 𝑘 ≥ 0. We need to show that they

also hold for 𝑘 + 1. By hypothesis,

𝑟 (𝑘 ) ∈ span{𝑟 (0) , (𝐴𝑀−1) 𝑟 (0) , . . . , (𝐴𝑀−1)𝑘 𝑟 (0) },
𝑑 (𝑘 ) ∈ 𝑀−1 span{𝑟 (0) , (𝐴𝑀−1) 𝑟 (0) , . . . , (𝐴𝑀−1)𝑘 𝑟 (0) },

hence 𝐴𝑑 (𝑘 ) ∈ 𝐴𝑀−1 span{𝑟 (0) , (𝐴𝑀−1) 𝑟 (0) , . . . , (𝐴𝑀−1)𝑘 𝑟 (0) }
= span{(𝐴𝑀−1) 𝑟 (0) , . . . , (𝐴𝑀−1)𝑘+1 𝑟 (0) }.

Due to the residual recursion (4.21), we therefore have

𝑟 (𝑘+1) = 𝑟 (𝑘 ) + 𝛼 (𝑘 )𝐴𝑑 (𝑘 )

∈ span{𝑟 (0) , (𝐴𝑀−1) 𝑟 (0) , . . . , (𝐴𝑀−1)𝑘 𝑟 (0) } + span{(𝐴𝑀−1) 𝑟 (0) , . . . , (𝐴𝑀−1)𝑘+1 𝑟 (0) }
= span{𝑟 (0) , (𝐴𝑀−1) 𝑟 (0) , . . . , (𝐴𝑀−1)𝑘+1 𝑟 (0) }. (∗)

Due to the induction hypothesis for (4.25), the same statement (∗) holds when 𝑘 + 1 is replaced by a

smaller index. Therefore, we have shown that

span{𝑟 (0) , 𝑟 (1) , . . . , 𝑟 (𝑘+1) } ⊆ span{𝑟 (0) , (𝐴𝑀−1) 𝑟 (0) , . . . , (𝐴𝑀−1)𝑘+1 𝑟 (0) }

holds. Now for the reverse inequality. By the induction hypothesis for (4.26), we find

𝐴𝑀−1(𝐴𝑀−1)𝑘𝑟 (0) ∈ 𝐴 span{𝑑 (0) , 𝑑 (1) , . . . , 𝑑 (𝑘 ) } = span{𝐴𝑑 (0) , 𝐴𝑑 (1) , . . . , 𝐴𝑑 (𝑘 ) }.

By the residual recursion (4.21), specifically

𝐴𝑑 (𝑖 ) =
1

𝛼 (𝑖 )
(
𝑟 (𝑖+1) − 𝑟 (𝑖 )

)
∈ span{𝑟 (𝑖 ) , 𝑟 (𝑖+1) }

for 𝑖 = 0, 1, . . . , 𝑘 , it follows that

𝐴𝑀−1(𝐴𝑀−1)𝑘𝑟 (0) ∈ span{𝑟 (0) , 𝑟 (1) , . . . , 𝑟 (𝑘+1) }.

When combined with the induction hypothesis for (4.25), i. e.,

span{𝑟 (0) , (𝐴𝑀−1) 𝑟 (0) , . . . , (𝐴𝑀−1)𝑘 𝑟 (0) } = span{𝑟 (0) , 𝑟 (1) , . . . , 𝑟 (𝑘 ) },
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we find the desired reverse inequality

span{𝑟 (0) , (𝐴𝑀−1) 𝑟 (0) , . . . , (𝐴𝑀−1)𝑘+1 𝑟 (0) } ⊆ span{𝑟 (0) , 𝑟 (1) , . . . , 𝑟 (𝑘+1) }.

Thus the induction step for (4.25) is complete.

To see (4.26),

span{𝑑 (0) , . . . , 𝑑 (𝑘 ) , 𝑑 (𝑘+1) }
= span{𝑑 (0) , . . . , 𝑑 (𝑘 ) , 𝑀−1𝑟 (𝑘+1) } by (4.23)

= 𝑀−1 span{𝑟 (0) , (𝐴𝑀−1) 𝑟 (0) , . . . , (𝐴𝑀−1)𝑘 𝑟 (0) , 𝑟 (𝑘+1) } by (4.26)

= 𝑀−1 span{𝑟 (0) , 𝑟 (1) , . . . , 𝑟 (𝑘 ) , 𝑟 (𝑘+1) } by (4.25)

= 𝑀−1 span{𝑟 (0) , (𝐴𝑀−1) 𝑟 (0) , . . . , (𝐴𝑀−1)𝑘 𝑟 (0) , (𝐴𝑀−1)𝑘+1 𝑟 (0) } by (4.25) for 𝑘 + 1.

This concludes the induction step for (4.26).

Next we address the𝐴-conjugacy of search directions, (4.27). By the induction hypothesis, the directions

𝑑 (0) , . . . , 𝑑 (𝑘 ) are pairwise 𝐴-conjugate. Consider

(𝑑 (𝑘+1) )ᵀ𝐴𝑑 (𝑖 ) = (−𝑀−1𝑟 (𝑘+1) + 𝛽 (𝑘+1) 𝑑 (𝑘 ) )ᵀ𝐴𝑑 (𝑖 ) (∗∗)

for 𝑖 = 0, . . . , 𝑘 . In case 𝑖 = 𝑘 , we have

(𝑑 (𝑘+1) )ᵀ𝐴𝑑 (𝑘 ) = 0

by construction of the search direction 𝑑 (𝑘+1) , see (4.23) and (4.24). When 𝑖 ≤ 𝑘 − 1, we argue as follows.
From (4.26), we obtain

𝑀−1𝐴𝑑 (0) ∈ 𝑀−1𝐴𝑀−1 span{𝑟 (0) } ⊆ span{𝑑 (0) , 𝑑 (1) },
𝑀−1𝐴𝑑 (1) ∈ 𝑀−1𝐴𝑀−1 span{𝑟 (0) , (𝐴𝑀−1) 𝑟 (0) } ⊆ span{𝑑 (0) , 𝑑 (1) , 𝑑 (2) },

...
...

...

𝑀−1𝐴𝑑 (𝑘−1) ∈ 𝑀−1𝐴𝑀−1 span{𝑟 (0) , . . . , (𝐴𝑀−1)𝑘−1 𝑟 (0) } ⊆ span{𝑑 (0) , . . . , 𝑑 (𝑘 ) }.

We thus find that, for any 𝑖 ≤ 𝑘 − 1, the term (𝑟 (𝑘+1) )ᵀ𝑀−1𝐴𝑑 (𝑖 ) in (∗∗) belongs to

(𝑟 (𝑘+1) )ᵀ span{𝑑 (0) , . . . , 𝑑 (𝑖+1) } = span{(𝑟 (𝑘+1) )ᵀ𝑑 (0) , . . . , (𝑟 (𝑘+1) )ᵀ𝑑 (𝑖+1) }.

By (4.22), however, (𝑟 (𝑘+1) )ᵀ𝑑 ( 𝑗 ) = 0 for 𝑗 = 0, . . . , 𝑘 . Therefore, (∗∗) reduces to

(𝑑 (𝑘+1) )ᵀ𝐴𝑑 (𝑖 ) = 𝛽 (𝑘+1) (𝑑 (𝑘 ) )ᵀ𝐴𝑑 (𝑖 ) . (∗∗∗)

By the induction hypothesis, this is equal to zero, which concludes the induction step for (4.27).

Finally, we consider the 𝑀−1-conjugacy of residuals, (4.28), for 𝑘 ≥ 1. We do not need an induction

argument for this. We consider two cases for (𝑟 (𝑘 ) )ᵀ𝑀−1𝑟 (𝑖 ) :
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(1) In case 𝑖 = 𝑘 − 1, we have

(𝑟 (𝑘 ) )ᵀ𝑀−1𝑟 (𝑘−1) =
{ (□)︷                                        ︸︸                                        ︷
(𝑟 (𝑘−1) + 𝛼 (𝑘−1) 𝐴𝑑 (𝑘−1) )ᵀ(−𝑑 (𝑘−1) + 𝛽 (𝑘−1) 𝑑 (𝑘−2) ) for 𝑘 ≥ 2

(𝑟 (𝑘−1) + 𝛼 (𝑘−1) 𝐴𝑑 (𝑘−1) )ᵀ(−𝑑 (𝑘−1) )︸                                         ︷︷                                         ︸
(□)

for 𝑘 = 1

by the residual recursion (4.21) and the construction of search directions (4.23). Since the Cauchy

step size satisfies 𝛼 (𝑘−1) = − (𝑑
(𝑘−1) )ᵀ𝑟 (𝑘−1)

(𝑑 (𝑘−1) )ᵀ𝐴𝑑 (𝑘−1) , the term (□) is equal to zero for all 𝑘 ≥ 1. Let us

consider the remaining terms when 𝑘 ≥ 2. We obtain

(𝑟 (𝑘−1) )ᵀ𝑑 (𝑘−2) = 0 due to (4.22),

(𝐴𝑑 (𝑘−1) )ᵀ(𝑑 (𝑘−2) ) = 0 owing to the 𝐴-conjugacy of search directions.

Therefore we conclude that (𝑟 (𝑘 ) )ᵀ𝑀−1𝑟 (𝑘−1) = 0 holds for all 𝑘 ≥ 1.

(2) in case 𝑖 < 𝑘 − 1, we have

(𝑟 (𝑘 ) )ᵀ𝑀−1𝑟 (𝑖 ) =
{
(𝑟 (𝑘−1) + 𝛼 (𝑘−1) 𝐴𝑑 (𝑘−1) )ᵀ(−𝑑 (𝑖 ) + 𝛽 (𝑖 ) 𝑑 (𝑖−1) ) for 𝑖 ≥ 1

(𝑟 (𝑘−1) + 𝛼 (𝑘−1) 𝐴𝑑 (𝑘−1) )ᵀ(−𝑑 (𝑖 ) ) for 𝑖 = 0

When expanding, we obtain terms of the types (note 𝑖 < 𝑘 − 1)
(𝑟 (𝑘−1) )ᵀ𝑑 (𝑖 ) = 0 due to (4.22),

(𝐴𝑑 (𝑘−1) )ᵀ𝑑 (𝑖 ) = 0 owing to the 𝐴-conjugacy of search directions,

(𝑟 (𝑘−1) )ᵀ𝑑 (𝑖−1) = 0 due to (4.22),

(𝐴𝑑 (𝑘−1) )ᵀ𝑑 (𝑖−1) = 0 owing to the 𝐴-conjugacy of search directions.

Therefore we conclude that (𝑟 (𝑘 ) )ᵀ𝑀−1𝑟 (𝑖 ) = 0 holds for all 𝑘 ≥ 1 and 0 ≤ 𝑖 < 𝑘 − 1. □

Using the properties of the iterates shown above, the equations (4.20) for 𝛼 (𝑘 ) as well as (4.24) for 𝛽 (𝑘 )

in the CG method can be equivalently formulated as follows:

𝛼 (𝑘 ) = − (𝑟
(𝑘 ) )ᵀ𝑑 (𝑘 )

(𝑑 (𝑘 ) )ᵀ𝐴𝑑 (𝑘 )
by the Cauchy step size formula (4.20)

=
(𝑟 (𝑘 ) )ᵀ𝑀−1𝑟 (𝑘 )

(𝑑 (𝑘 ) )ᵀ𝐴𝑑 (𝑘 )
− 𝛽 (𝑘 ) (𝑟

(𝑘 ) )ᵀ𝑑 (𝑘−1)

(𝑑 (𝑘 ) )ᵀ𝐴𝑑 (𝑘 )
by the search direction recursion (4.23)

=
(𝑟 (𝑘 ) )ᵀ𝑀−1𝑟 (𝑘 )

(𝑑 (𝑘 ) )ᵀ𝐴𝑑 (𝑘 )
by (4.22) (4.20’)

and

𝛽 (𝑘+1) =
(𝑟 (𝑘+1) )ᵀ𝑀−1𝐴𝑑 (𝑘 )

(𝑑 (𝑘 ) )ᵀ𝐴𝑑 (𝑘 )
by the orthogonalization coefficient (4.24)

=
(𝑟 (𝑘+1) )ᵀ𝑀−1(𝑟 (𝑘+1) − 𝑟 (𝑘 ) )
(𝑑 (𝑘 ) )ᵀ(𝑟 (𝑘+1) − 𝑟 (𝑘 ) )

by the residual recursion (4.21)

=
(𝑟 (𝑘+1) )ᵀ𝑀−1(𝑟 (𝑘+1) − 𝑟 (𝑘 ) )

(−𝑀−1𝑟 (𝑘 ) + 𝛽 (𝑘 ) 𝑑 (𝑘−1) )ᵀ(𝑟 (𝑘+1) − 𝑟 (𝑘 ) )
by the construction of search directions (4.23)

=
(𝑟 (𝑘+1) )ᵀ𝑀−1𝑟 (𝑘+1)

(𝑟 (𝑘 ) )ᵀ𝑀−1𝑟 (𝑘 )
by (4.22) and (4.25). (4.24’)

https://tinyurl.com/scoop-nlo 43

https://tinyurl.com/scoop-nlo


R. Herzog cbn

The relations (4.20’) and (4.24’) are also true for 𝑘 = 0.

We have now obtained the common form of the CG method w.r.t. the 𝑀-inner product, commonly

referred to as the preconditioned conjugate gradient method.

Algorithm 4.17 (Conjugate gradient method for (4.1) w.r.t. the𝑀-inner product).
Input: initial guess 𝑥 (0) ∈ R𝑛
Input: right-hand side 𝑏 ∈ R𝑛
Input: s. p. d. matrix 𝐴 (or matrix-vector products with 𝐴)

Input: s. p. d. matrix𝑀 (or matrix-vector products with𝑀−1)
Output: approximate solution of (4.1), i. e., of 𝐴𝑥 = 𝑏

1: Set 𝑘 B 0

2: Set 𝑟 (0) B 𝐴𝑥 (0) − 𝑏 // evaluate the initial residual

3: Set 𝑑 (0) B −𝑀−1𝑟 (0) // evaluate the initial negative𝑀-gradient

4: Set 𝛿 (0) B −(𝑟 (0) )ᵀ𝑑 (0) // 𝛿 (0) = ∥∇𝑀𝜙 (𝑥 (0) )∥2𝑀 = ∥𝑟 (0) ∥2
𝑀−1

5: while stopping criterion not met do
6: Set 𝑞 (𝑘 ) B 𝐴𝑑 (𝑘 )

7: Set 𝜃 (𝑘 ) B (𝑞 (𝑘 ) )ᵀ𝑑 (𝑘 )
8: Set 𝛼 (𝑘 ) B 𝛿 (𝑘 )/𝜃 (𝑘 ) // evaluate the Cauchy step size

9: Set 𝑥 (𝑘+1) B 𝑥 (𝑘 ) + 𝛼 (𝑘 )𝑑 (𝑘 ) // update the iterate

10: Set 𝑟 (𝑘+1) B 𝑟 (𝑘 ) + 𝛼 (𝑘 )𝑞 (𝑘 ) // update the residual

11: Set 𝑑 (𝑘+1) B −𝑀−1𝑟 (𝑘+1) // evaluate the negative𝑀-gradient

12: Set 𝛿 (𝑘+1) B −(𝑟 (𝑘+1) )ᵀ𝑑 (𝑘+1) // 𝛿 (𝑘+1) = ∥∇𝑀𝜙 (𝑥 (𝑘+1) )∥2𝑀 = ∥𝑟 (𝑘+1) ∥2
𝑀−1

13: Set 𝛽 (𝑘+1) B 𝛿 (𝑘+1)/𝛿 (𝑘 ) // evaluate the 𝐴-orthogonalization coefficient

14: Set 𝑑 (𝑘+1) B 𝑑 (𝑘+1) + 𝛽 (𝑘+1) 𝑑 (𝑘 ) // make 𝑑 (𝑘+1) 𝐴-orthogonal w.r.t. 𝑑 (𝑘 )

15: Set 𝑘 B 𝑘 + 1
16: end while
17: return 𝑥 (𝑘 )

Remark 4.18 (on Algorithm 4.17).

(𝑖) From Lemma 4.16 we know that the CGmethod generates pairwise𝐴-orthogonal directions, although

it only needs to orthogonalize any new direction 𝑑 (𝑘+1) against the most recent one, 𝑑 (𝑘 ) . This
phenomenon, known as short-term recurrence, is possible due to the symmetry of 𝐴.

(𝑖𝑖) The conjugate thus keeps a memory of previously visited directions, although this memory is mainly

implicit. As shown in Algorithm 4.17, we can implement the method with a constant amount of

storage.

(𝑖𝑖𝑖) The implementation of the CG method is very similar to the steepest descent method (Algorithm 4.6).

The only (but significant!) difference lies in the fact that we 𝐴-orthogonalize the steepest descent

direction against 𝑑 (𝑘 ) before we use it as the new search direction 𝑑 (𝑘+1) . The initial search di-

rection 𝑑 (0) is the steepest descent direction for 𝜙 at 𝑥 (0) . Consequently, the iterate 𝑥 (1) is the
same for the conjugate gradient method and the steepest descent method with Cauchy step size

(Algorithm 4.6).
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(𝑖𝑣) The name conjugate gradient method is a bit of a misnomer, since it is not the gradients which

are 𝐴-conjugate, but rather the search directions 𝑑 (𝑘 ) .

(𝑣) Remark 4.7 remains valid for the conjugate gradient method as well, with minor modifications. We

need to store one additional vector since 𝑑 (𝑘 ) and 𝑑 (𝑘+1) are needed simultaneously.

(𝑣𝑖) The stopping criteria (4.14) and their consequences (4.15) continue to hold since they depend on the

same computable quantity ∥𝑟 (𝑘 ) ∥𝑀−1 as in the steepest descent method.

Our next goal is to establish a convergence result for the conjugate gradient method, and to compare

it to Theorem 4.8 for the steepest descent method with Cauchy step size. A major difference is that we

will not obtain a result about the reduction of the error from iteration to iteration, but rather a result

about the reduction of the error compared with its initial value.

Theorem 4.19 (Convergence of Algorithm 4.17, compare Theorem 4.8). Suppose that 𝐴 ∈ R𝑛×𝑛 and
𝑀 are both s. p. d., 𝛼 B 𝜆min(𝐴;𝑀) and 𝛽 B 𝜆max(𝐴;𝑀) are the extremal generalized eigenvalues of 𝐴

w.r.t. 𝑀 . Then for any choice of the initial guess 𝑥 (0) , the conjugate gradient method converges to the

unique solution 𝑥∗ = 𝐴−1𝑏 of (4.1). In terms of the generalized condition number 𝜅 = 𝛽/𝛼 , we have the
estimates

13

𝜙 (𝑥 (𝑘 ) ) − 𝜙 (𝑥∗) ≤ 2

(√
𝜅 − 1
√
𝜅 + 1

)
2𝑘 (

𝜙 (𝑥 (0) ) − 𝜙 (𝑥∗)
)

(4.30a)

∥𝑥 (𝑘 ) − 𝑥∗∥𝐴 ≤ 2

(√
𝜅 − 1
√
𝜅 + 1

)𝑘
∥𝑥 (0) − 𝑥∗∥𝐴, (4.30b)

Moreover, the objective values 𝜙 (𝑥 (𝑘 ) ) and thus the norm of the error ∥𝑥 (𝑘 ) − 𝑥∗∥𝐴 are monotonically

decreasing.

Proof. Since the search directions, by (4.26), span𝑀−1K (𝑘 ) (𝐴𝑀−1; 𝑟 (0) ), we have

𝑥 (𝑘 ) − 𝑥 (0) ∈ 𝑀−1K (𝑘 ) (𝐴𝑀−1; 𝑟 (0) ).

In other words, we have

𝑥 (𝑘 ) − 𝑥 (0) = 𝑞 (𝑘−1) (𝑀−1𝐴)𝑀−1𝑟 (0)

for some polynomial 𝑞 (𝑘−1) in the matrix𝑀−1𝐴 of degree at most 𝑘 − 1. Abbreviating 𝑒 (𝑘 ) B 𝑥 (𝑘 ) − 𝑥∗
and using 𝐴𝑒 (0) = 𝐴𝑥 (0) −𝐴𝑥∗ = 𝑟 (0) , we can manipulate this equation into

𝑒 (𝑘 ) = 𝑒 (0) + 𝑞 (𝑘−1) (𝑀−1𝐴)𝑀−1𝑟 (0)

= 𝑒 (0) + 𝑞 (𝑘−1) (𝑀−1𝐴)𝑀−1𝐴𝑒 (0)

=
[
Id + 𝑞 (𝑘−1) (𝑀−1𝐴)𝑀−1𝐴

]
𝑒 (0)

= 𝑝 (𝑘 ) (𝑀−1𝐴) 𝑒 (0) ,

where now 𝑝 (𝑘 ) is a polynomial of degree at most 𝑘 satisfying 𝑝 (𝑘 ) (0) = 1.

13
compare (4.13c), (4.13d)
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By construction, the conjugate gradient method minimizes ∥𝑒 (𝑘 ) ∥𝐴 in every iteration. We can now

express this in terms of a minimization over the vector space Π𝑘 of polynomials of degree ≤ 𝑘 :

∥𝑒 (𝑘 ) ∥𝐴 = min

{
∥𝑝 (𝑀−1𝐴) 𝑒 (0) ∥𝐴

���𝑝 ∈ Π𝑘 , 𝑝 (0) = 1

}
. (4.31)

We expand the initial error 𝑒 (0) in terms of the basis of eigenvectors of 𝐴 w.r.t. 𝑀 ; see (2.10), (2.11).

Suppose we denote the generalized eigenpairs by (𝜆 ( 𝑗 ) , 𝑣 ( 𝑗 ) ), we can write

𝑒 (0) =
𝑛∑︁
𝑗=1

𝛾 ( 𝑗 )𝑣 ( 𝑗 )

with some coefficients 𝛾 ( 𝑗 ) determined by 𝑒 (0) . We can thus manipulate the objective in the minimiza-

tion problem above as follows:

∥𝑝 (𝑀−1𝐴) 𝑒 (0) ∥𝐴 =

𝑝 (𝑀−1𝐴) ( 𝑛∑︁
𝑗=1

𝛾 ( 𝑗 )𝑣 ( 𝑗 )
)
𝐴

=

 𝑛∑︁
𝑗=1

𝛾 ( 𝑗 )𝑝 (𝑀−1𝐴) 𝑣 ( 𝑗 )

𝐴

In view of 𝐴𝑣 ( 𝑗 ) = 𝜆 ( 𝑗 )𝑀 𝑣 ( 𝑗 ) and thus𝑀−1𝐴𝑣 ( 𝑗 ) = 𝜆 ( 𝑗 )𝑣 ( 𝑗 ) , this is

=

 𝑛∑︁
𝑗=1

𝛾 ( 𝑗 )𝑝 (𝜆 ( 𝑗 ) ) 𝑣 ( 𝑗 )

𝐴
.

By pulling the maximal value of |𝑝 (𝜆 ( 𝑗 ) ) | out of the sum (Quiz 4.6: Can you fill in the details why this

is possible?), we can estimate this quantity further:

≤ max

𝑗=1,...,𝑛
|𝑝 (𝜆 ( 𝑗 ) ) |

 𝑛∑︁
𝑗=1

𝛾 ( 𝑗 )𝑣 ( 𝑗 )

𝐴

= max

𝑗=1,...,𝑛
|𝑝 (𝜆 ( 𝑗 ) ) |

𝑒 (0)
𝐴
.

Combining this with (4.31), we see

∥𝑒 (𝑘 ) ∥𝐴 ≤ min

{
max

𝑗=1,...,𝑛
|𝑝 (𝜆 ( 𝑗 ) ) | ∥𝑒 (0) ∥𝐴

���𝑝 ∈ Π𝑘 , 𝑝 (0) = 1

}
= min

{
max

𝑗=1,...,𝑛
|𝑝 (𝜆 ( 𝑗 ) ) |

���𝑝 ∈ Π𝑘 , 𝑝 (0) = 1

}
∥𝑒 (0) ∥𝐴

and since the eigenvalues lie in the interval [𝛼, 𝛽],

∥𝑒 (𝑘 ) ∥𝐴 ≤ min

{
max

𝑧∈[𝛼,𝛽 ]
|𝑝 (𝑧) |

���𝑝 ∈ Π𝑘 , 𝑝 (0) = 1

}
∥𝑒 (0) ∥𝐴 . (4.32)

We have thus estimated
∥𝑒 (𝑘 ) ∥𝐴
∥𝑒 (0) ∥𝐴

by the smallest maximal absolute value any polynomial 𝑝 ∈ Π𝑘 with
𝑝 (0) = 1 can attain on the interval [𝛼, 𝛽] spanning all generalized eigenvalues of 𝐴 w.r.t. 𝑀 .
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The question about the optimal polynomial in (4.32) can be answered by Chebyshev polynomials; we

refer you to Elman, Silvester, Wathen, 2014, Theorem 2.4 if you want to know more details. It turns

out that the optimal value

min

{
max

𝑧∈[𝛼,𝛽 ]
|𝑝 (𝑧) |

���𝑝 ∈ Π𝑘 , 𝑝 (0) = 1

}
depends only on 𝜅 = 𝛽/𝛼 and it is given by

= 2

[(√
𝜅 + 1
√
𝜅 − 1

)𝑘
+

(√
𝜅 − 1
√
𝜅 + 1

)𝑘 ]−1
≤ 2

(√
𝜅 − 1
√
𝜅 + 1

)𝑘
.

From there, we finally obtain

∥𝑒 (𝑘 ) ∥𝐴 ≤ 2

(√
𝜅 − 1
√
𝜅 + 1

)𝑘
∥𝑒 (0) ∥𝐴,

which is precisely (4.30b). Squaring both sides and dividing by 2, we also obtain (4.30a). □

Corollary 4.20 (Maximal number of iterations required in Algorithm 4.17, compare Corollary 4.9).
Given positive numbers 𝜀1 and 𝜀2, it takes

𝑘 ≤
⌈√
𝜅

4

ln

(
2

𝜀1

)⌉
iterations until 2

(√
𝜅 − 1
√
𝜅 + 1

)
2𝑘

≤ 𝜀1,

𝑘 ≤
⌈√
𝜅

2

ln

(
2

𝜀2

)⌉
iterations until 2

(√
𝜅 − 1
√
𝜅 + 1

)𝑘
≤ 𝜀2.

Proof. The proof is similar to Corollary 4.9 and it uses that

− ln
(√
𝜅 − 1
√
𝜅 + 1

)
≥ 2

√
𝜅
> 0

holds for all 𝜅 ≥ 1. □

Remark 4.21 (on Theorem 4.19).
(𝑖) The estimates (4.30a) and (4.30b) establish the R-linear convergence of the respective quantities to

zero.

(𝑖𝑖) Compared to the estimates (4.13c) and (4.13d) for the gradient descent method, we obtain the

reduction factor

(√
𝜅−1√
𝜅+1

)𝑘
in place of

(
𝜅−1
𝜅+1

)𝑘
, which is generally much better.

(𝑖𝑖𝑖) The superiority of the CG method compared to the gradient descent method is also reflected in

the estimates for the maximal iteration numbers to achieve a certain reduction in the quantities

𝜙 (𝑥 (𝑘 ) ) −𝜙 (𝑥∗) and ∥𝑥 (𝑘 ) − 𝑥∗∥𝐴, respectively. The bounds for the maximal iteration numbers are

proportional to

√
𝜅 for the CG method, not proportional to 𝜅.
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(a) Iterates

(
𝑥 (𝑘 )

)
of the method. Each color corresponds to a different initial guess 𝑥 (0) .
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(b) The norm of the gradient

√
𝛿 (𝑘 ) =

∥∇𝑀𝜙 (𝑥 (𝑘 ) )∥𝑀 = ∥𝑟 (𝑘 ) ∥𝑀−1 does not

necessarily converge monotonically.

0 5 10 15 20 25 30
10-15

10-10

10-5

100

(c) The objective values 𝜙 (𝑥 (𝑘 ) ) − 𝜙 (𝑥∗) converge
monotonically. The black line illustrates the

bound (4.30a).

Figure 4.3: Illustration of the convergence behavior of Algorithm 4.17 from a number of initial guesses

𝑥 (0) . No preconditioning (𝑀 = Id) is used. The two eigenvalues of the matrix are 𝛼 = 1 and

𝛽 = 10 so the condition number is 𝜅 = 10.
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(a) The norm of the gradient

√
𝛿 (𝑘 ) =

∥∇𝑀𝜙 (𝑥 (𝑘 ) )∥𝑀 = ∥𝑟 (𝑘 ) ∥𝑀−1 does not

necessarily converge monotonically.
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10-15

10-10

10-5

100

(b) The objective values 𝜙 (𝑥 (𝑘 ) ) − 𝜙 (𝑥∗) converge
monotonically. The black line illustrates the

bound (4.30a).

Figure 4.4: Illustration of the convergence behavior of Algorithm 4.17 from a number of initial guesses

𝑥 (0) . No preconditioning (𝑀 = Id) is used. Here𝐴 is a randommatrix of dimension 100×100
with eigenvalues in the interval [𝛼, 𝛽] = [1, 100] so that the condition number is 𝜅 = 100.

(𝑖𝑣) As was the case for Theorem 4.8, the estimates of Theorem 4.19 are worst-case estimates since they

do not depend on the initial guess 𝑥 (0) . In fact, as can be seen in Figure 4.3c and Figure 4.4b, the

actual contraction factor for the objective values can be significantly smaller for some initial guesses

than the estimate (4.30a) suggests.

(𝑣) Other informative error bounds than (4.30) and (4.30b) and convergence results can be obtained by

proceeding as in the proof of Theorem 4.19 and choosing other polynomials to bound the error with.

The iterates of the conjugate gradient method have a further remarkable property, which we will

exploit later on:

Lemma 4.22 (Growth of the distance from the initial guess
14
). Consider the iterates 𝑥 (𝑘 ) of the conjugate

gradient method (Algorithm 4.17). As long as 𝑥 (𝑘 ) ≠ 𝑥∗ holds, the sequence ∥𝑥 (𝑘 ) − 𝑥 (0) ∥𝑀 is strictly

increasing.

Note: The steepest descent method does not have this property.

Proof. Statement (𝑖) in Lemma 4.14 implies that

(𝑟 (𝑘 ) )ᵀ(𝑥 (𝑘 ) − 𝑥 (0) ) =
𝑘−1∑︁
𝑖=0

𝛼𝑖 (𝑟 (𝑘 ) )ᵀ𝑑 (𝑖 )︸      ︷︷      ︸
=0

= 0 for all 𝑘 ≥ 0. (∗)

14
In the literature, we find this result often only for the case 𝑥 (0) = 0, see for instance Nocedal, Wright, 2006, Theorem 7.3.
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We now show by induction that (𝑥 (𝑘 ) − 𝑥 (0) )ᵀ𝑀 𝑑 (𝑘 ) > 0 holds for 𝑘 ≥ 1. Initially, for 𝑘 = 1,

Statement (𝑖) in Lemma 4.14 once again yields

(𝑥 (1) − 𝑥 (0) )ᵀ𝑀 𝑑 (1) = 𝛼 (0)

=0︷                   ︸︸                   ︷
(𝑑 (0) )ᵀ𝑀 (−𝑀−1𝑟 (1) + 𝛽 (1)𝑑 (0) )

= 𝛼 (0)︸ ︷︷ ︸
>0

𝛽 (1)︸ ︷︷ ︸
>0

(𝑑 (0) )ᵀ𝑀 𝑑 (0)︸          ︷︷          ︸
>0

> 0.

We now proceed with the step from index 𝑘 to 𝑘 + 1:

(𝑥 (𝑘+1) − 𝑥 (0) )ᵀ𝑀 𝑑 (𝑘+1) = (𝑥 (𝑘+1) − 𝑥 (0) )ᵀ𝑀 (−𝑀−1𝑟 (𝑘+1) + 𝛽 (𝑘+1) 𝑑 (𝑘 ) )
= 𝛽 (𝑘+1) (𝑥 (𝑘+1) − 𝑥 (0) )ᵀ𝑀 𝑑 (𝑘 ) by (∗)
= 𝛽 (𝑘+1) (𝑥 (𝑘 ) + 𝛼 (𝑘 )𝑑 (𝑘 ) − 𝑥 (0) )ᵀ𝑀 𝑑 (𝑘 )

= 𝛽 (𝑘+1) (𝑥 (𝑘 ) − 𝑥 (0) )ᵀ𝑀 𝑑 (𝑘 ) + 𝛼 (𝑘 )𝛽 (𝑘+1) (𝑑 (𝑘 ) )ᵀ𝑀 𝑑 (𝑘 )

> 0. (∗∗)

Due to the induction hypothesis as well as 𝛼 (𝑘 ) > 0, 𝛽 (𝑘+1) > 0 and (𝑑 (𝑘 ) )ᵀ𝑀 𝑑 (𝑘 ) > 0, the entire

expression is positive.

The desired result now easily follows from

∥𝑥 (𝑘+1) − 𝑥 (0) ∥2𝑀 = ∥𝑥 (𝑘 ) + 𝛼 (𝑘 )𝑑 (𝑘 ) − 𝑥 (0) ∥2𝑀
= ∥𝑥 (𝑘 ) − 𝑥 (0) ∥2𝑀 + 2 𝛼 (𝑘 )︸ ︷︷ ︸

>0

(𝑥 (𝑘 ) − 𝑥 (0) )ᵀ𝑀 𝑑 (𝑘 )︸                                       ︷︷                                       ︸
>0

+ (𝛼 (𝑘 ) )2 ∥𝑑 (𝑘 ) ∥2𝑀︸              ︷︷              ︸
>0

. (∗∗∗)

□

The relations (∗∗) and (∗∗∗) allow us to compute the informative quantities

𝜔 (𝑘 ) B ∥𝑥 (𝑘 ) − 𝑥 (0) ∥2𝑀 (4.33a)

𝜉 (𝑘 ) B (𝑥 (𝑘 ) − 𝑥 (0) )ᵀ𝑀 𝑑 (𝑘 ) (4.33b)

𝛾 (𝑘 ) B ∥𝑑 (𝑘 ) ∥2𝑀 (4.33c)

on the side without any noticeable effort. This can be achieved by inserting, at the appropriate positions

in Algorithm 4.17 (Quiz 4.7: Where?), the relations

𝜔 (0) B 0, 𝜔 (𝑘+1) B 𝜔 (𝑘 ) + 2𝛼 (𝑘 )𝜉 (𝑘 ) + (𝛼 (𝑘 ) )2 𝛾 (𝑘 ) see (∗∗∗) (4.34a)

𝜉 (0) B 0, 𝜉 (𝑘+1) B 𝛽 (𝑘+1) (𝜉 (𝑘 ) + 𝛼 (𝑘 )𝛾 (𝑘 ) ) see (∗∗) (4.34b)

𝛾 (0) B 𝛿 (0) , 𝛾 (𝑘+1) B 𝛿 (𝑘+1) + (𝛽 (𝑘+1) )2 𝛾 (𝑘 ) (confirm for yourself). (4.34c)

The remarkable fact about this is the possibility to keep track of (4.33) without requiring access to the

matrix𝑀 , or even matrix-vector products with𝑀 . Notice that we usually do not have the latter since

we only need matrix-vector products with𝑀−1 in Algorithm 4.17.

End of Week 3
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§ 5 Line Search Methods for Nonlinear Unconstrained Problems

We consider in this section a large class of methods to solve general, nonlinear unconstrained prob-

lems

Minimize 𝑓 (𝑥) where 𝑥 ∈ R𝑛 . (UP)

The methods we consider are so-called line search methods. In every iteration, a line search method

first determines a search direction and subsequently finds a step size (or step length) 𝛼 (𝑘 ) , that
leads to the next iterate via

𝑥 (𝑘+1) B 𝑥 (𝑘 ) + 𝛼 (𝑘 )𝑑 (𝑘 ) .

Assumption 5.1. Throughout § 5 we are assuming that 𝑓 : R𝑛 → R is a 𝐶1
function.

Most line search methods, in particular the ones we consider, require that 𝑑 (𝑘 ) is a descent direction
for the objective 𝑓 at the current iterate 𝑥 (𝑘 ) , i. e., that

𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 ) < 0 (5.1)

holds, see Definition 4.4. This implies that we have descent at least for sufficiently small positive step

sizes 𝛼 (𝑘 ) ,
𝑓 (𝑥 (𝑘+1) ) = 𝑓 (𝑥 (𝑘 ) + 𝛼 (𝑘 )𝑑 (𝑘 ) ) < 𝑓 (𝑥 (𝑘 ) )

and it motivates the term descent method.

Most methods
15
we are discussing in § 5 determine the search direction 𝑑 (𝑘 ) by considering a local

quadratic model of the objective:

𝑞 (𝑘 ) (𝑑) = 𝑓 (𝑥 (𝑘 ) ) + 𝑓 ′(𝑥 (𝑘 ) ) 𝑑 + 1

2

𝑑ᵀ𝐻 (𝑘 )𝑑. (5.2)

This model uses the data 𝑓 (𝑥 (𝑘 ) ) and 𝑓 ′(𝑥 (𝑘 ) ) at the iterate 𝑥 (𝑘 ) and it agrees with 𝑓 regarding that

data at 𝑑 = 0:

𝑞 (𝑘 ) (0) = 𝑓 (𝑥 (𝑘 ) )
and (𝑞 (𝑘 ) )′(0) = 𝑓 ′(𝑥 (𝑘 ) )

The matrix 𝐻 (𝑘 ) is the Hessian of the model, briefly: the model Hessian. In case 𝐻 (𝑘 ) = 𝑓 ′′(𝑥 (𝑘 ) ),
the model 𝑞 (𝑘 ) is the second-order Taylor polynomial of 𝑓 at 𝑥 (𝑘 ) . However, in general, the model

Hessian is chosen to be any symmetric and possibly positive definite matrix. In fact, different line

search methods differ w.r.t. their choice of the model Hessians 𝐻 (𝑘 ) , and thus with respect to the

search directions they use.

The search direction 𝑑 (𝑘 ) is obtained by minimizing (possibly only to a certain accuracy) the quadratic

polynomial 𝑞 (𝑘 ) :
Minimize 𝑞 (𝑘 ) (𝑑), 𝑑 ∈ R𝑛 . (5.3)

As we know from Lemma 4.1, the following cases can occur:

15
with the exception of nonlinear conjugate gradient methods in § 5.8
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(𝑖) When 𝐻 (𝑘 ) is s. p. d., then the unique solution of (5.3) is given by the unique solution of the

linear system

𝐻 (𝑘 )𝑑 (𝑘 ) = −∇𝑓 (𝑥 (𝑘 ) ). (5.4)

(𝑖𝑖) When 𝐻 (𝑘 ) is symmetric and only positive semidefinite, then (5.3) is either unbounded, or else

has infinitely many minimizers. In any case, the minimizers of (5.3) are precisely the solutions

of the linear system (5.4).
16

(𝑖𝑖𝑖) When 𝐻 (𝑘 ) is symmetric but not positive semidefinite (i. e., at least one eigenvalue of 𝐻 (𝑘 ) is
negative), then (5.3) is an unbounded problem. However, the linear system (5.4) may still be

uniquely solvable, or solvable with multiple solutions, or not solvable. The solutions of the linear

systems (if any) are either all saddle points
17
of 𝑞 (𝑘 ) , or they are all global maximizers. (Quiz 5.1:

Is this statement clear?)

To solve (5.3) and (5.4), respectively, we can employ the conjugate gradient (CG) method from § 4.6.

However, it would be useful to enhance it so that it checks and reacts to the potential occurrence of

non-positive eigenvalues in the model Hessian 𝐻 (𝑘 ) . We will see more details on that later.

§ 5.1 A Generic Descent Method

We begin by considering the following model algorithm of a generic line-search descent method:

Algorithm 5.2 (Generic line-search descent method).
Input: initial guess 𝑥 (0) ∈ R𝑛
Input: routine to evaluate 𝑓 and 𝑓 ′ (or ∇𝑓 )
Output: approximately stationary point of (UP)
1: Set 𝑘 B 0

2: while stopping criterion not met do
3: Determine a search direction 𝑑 (𝑘 ) such that 𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 ) < 0 // descent direction

4: Choose a step size 𝛼 (𝑘 ) > 0 such that 𝑓 (𝑥 (𝑘 ) + 𝛼 (𝑘 )𝑑 (𝑘 ) ) < 𝑓 (𝑥 (𝑘 ) ) // obtain descent

5: Set 𝑥 (𝑘+1) B 𝑥 (𝑘 ) + 𝛼 (𝑘 )𝑑 (𝑘 ) // take the step

6: Set 𝑘 B 𝑘 + 1
7: end while
8: return 𝑥 (𝑘 )

In order to analyze the convergence properties of this generic algorithm and to determine further

requirements for the descent directions and step sizes, we ignore the stopping criterion for now, so that

Algorithm 5.2 produces infinite sequences of iterates 𝑥 (𝑘 ) , search directions 𝑑 (𝑘 ) and step sizes 𝛼 (𝑘 ) .
In practice, of course, we will use a stopping criterion to be discussed later.

16
The solution set of the linear system (5.4) is either the empty set or an affine subspace of R𝑛 whose dimension agrees with

the dimension of ker𝐻 (𝑘 ) .
17
A stationary point 𝑥 of 𝑓 is called a saddle point of 𝑓 if the Hessian 𝑓 ′′ (𝑥) is indefinite, i. e., has at least one positive and
at least one negative eigenvalue.
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We will see that, in general, we cannot expect the iterates 𝑥 (𝑘 ) to converge overall, but there may be

convergent subsequences with different limit points (although this rarely occurs in practice). We recall

that the limit points of convergent subsequences

(
𝑥 (𝑘

(ℓ ) ) )
are precisely the accumulation points of(

𝑥 (𝑘 )
)
.

We would like the accumulation points of the sequence of iterates{𝑥 (𝑘 ) } to be “special” points. There-

fore, it would be desirable to have the following property:

When 𝑥∗ is an accumulation of

(
𝑥 (𝑘 )

)
, then 𝑓 ′(𝑥∗) = 0, i. e., 𝑥∗ is stationary. (5.5)

The relatively weak property (5.5) is often referred to as the global convergence of an algorithm.

In particular, global convergence does not mean that one obtains a global minimizer. By contrast, it

means that one obtains a convergence result (5.5) that is valid for arbitrary initial guesses 𝑥 (0) . Notice
that (5.5) does not assert that an accumulation point even exists.

18
It turns out that, in general, we

cannot expect more. Under additional assumptions on 𝑓 , one may be able to show stronger results,

for instance

∥∇𝑓 (𝑥 (𝑘 ) )∥ has an accumulation point at 0. (5.6a)

The entire sequence ∥∇𝑓 (𝑥 (𝑘 ) )∥ converges to 0. (5.6b)

Accumulation points of

(
𝑥 (𝑘 )

)
are stationary. (5.6c)

The entire sequence

(
𝑥 (𝑘 )

)
converges to a stationary point. (5.6d)

The entire sequence

(
𝑥 (𝑘 )

)
converges to a local miminizer. (5.6e)

We will now investigate the minimal requirements on the search directions 𝑑 (𝑘 ) and step sizes 𝛼 (𝑘 )

in Algorithm 5.2 that ensure global convergence in the sense of (5.5). To this end, two properties are

essential:

(1) The search directions 𝑑 (𝑘 ) are “good descent directions”.

(2) The step sizes 𝛼 (𝑘 ) are chosen so that the achievable descent along the search direction 𝑑 (𝑘 ) is
“sufficiently exploited”.

We use the user-defined𝑀-inner product in the space of optimization variables and search directionsR𝑛 .

Since all norms in R𝑛 are equivalent, all concepts and properties of algorithms in the remainder of § 5

are qualitatively independent of the choice of𝑀 . However, the choice of𝑀 is still important through

its impact on the convergence properties and stopping criteria.

Requirements on the Descent Directions

Definition 5.3 (Admissible search directions). Suppose that 𝑥 (𝑘 ) and 𝑑 (𝑘 ) the sequences of iterates and
search (descent) directions generated by an algorithm of type Algorithm 5.2. The sequence 𝑑 (𝑘 ) of search

18
Indeed, an example such as 𝑓 (𝑥) = 𝑥 for 𝑥 ∈ R shows that any algorithm with the global convergence property (5.5)

couldn’t produce an accumulation point, since 𝑓 has no stationary point.
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directions is termed admissible in case

𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 )

∥𝑑 (𝑘 ) ∥𝑀
→ 0 ⇒ 𝑓 ′(𝑥 (𝑘 ) ) → 0. (5.7)

Note: The admissibility is a property that the sequence of search directions generated by a particular

algorithm, applied to a particular problem (objective), started from a particular initial guess may or

may not possess. One is, of course, interested in designing algorithms which generate admissible

search directions for arbitrary objectives 𝑓 and initial guesses 𝑥 (0) .

The expression
𝑓 ′ (𝑥 (𝑘 ) ) 𝑑 (𝑘 )
∥𝑑 (𝑘 ) ∥𝑀

is the directional derivative of 𝑓 at 𝑥 (𝑘 ) in the direction 𝑑 (𝑘 ) normalized.

Therefore, we can interpret the condition (5.7) as follows: when the directional derivatives in the

normalized search directions converge to zero, then it is due to the derivatives converging to zero

and not due to the search directions becoming inefficient (which would be the case if they become

essentially𝑀-orthogonal to the steepest descent direction −∇𝑀 𝑓 ). This reflects our first goal (item (1)

above) that the search directions are “good descent directions”. (Quiz 5.2: Which search directions are

admissible for functions 𝑓 : R→ R?)

Condition (5.7) is purely qualitative. By contrast, the angle condition

cos ∡
(
−∇𝑀 𝑓 (𝑥 (𝑘 ) )︸         ︷︷         ︸

steepest descent direction

,

chosen search direction︷ ︸︸ ︷
𝑑 (𝑘 )

)
=
(−∇𝑀 𝑓 (𝑥 (𝑘 ) ), 𝑑 (𝑘 ) )𝑀
∥∇𝑀 𝑓 (𝑥 (𝑘 ) )∥𝑀 ∥𝑑 (𝑘 ) ∥𝑀

=
−𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 )

∥ 𝑓 ′(𝑥 (𝑘 ) )∥𝑀−1 ∥𝑑 (𝑘 ) ∥𝑀
≥ 𝜂 (5.8)

with some 𝜂 ∈ (0, 1) is a stronger, quantitative condition, which is moreover easy to verify. It means

that the angles (as measured in the𝑀-inner product) between the chosen search directions 𝑑 (𝑘 ) and
the directions of steepest descent −∇𝑀 𝑓 (𝑥 (𝑘 ) ) are uniformly bounded away from 90

◦
.

Lemma 5.4 (Angle condition implies admissibility). Suppose that 𝑥 (𝑘 ) and 𝑑 (𝑘 ) are the sequences of
iterates and search (descent) directions generated by an algorithm of type Algorithm 5.2. If the angle

condition (5.8) holds with some 𝜂 ∈ (0, 1), then the sequence 𝑑 (𝑘 ) of search directions is admissible.

Proof. We have

𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 ) =
(
∇𝑓 (𝑥 (𝑘 ) ), 𝑑 (𝑘 )

)
=

(
∇𝑀 𝑓 (𝑥 (𝑘 ) ), 𝑑 (𝑘 )

)
𝑀
.

The angle condition (5.8) implies

− 𝑓
′(𝑥 (𝑘 ) ) 𝑑 (𝑘 )

∥𝑑 (𝑘 ) ∥𝑀
≥ 𝜂 ∥∇𝑀 𝑓 (𝑥 (𝑘 ) )∥𝑀 = 𝜂 ∥ 𝑓 ′(𝑥 (𝑘 ) )ᵀ∥𝑀−1 ≥ 0.

When the left-hand term goes to zero, then 𝑓 ′(𝑥 (𝑘 ) ) must go to zero as well. □

As we already mentioned, almost all of the algorithms we will discuss in detail determine their search

directions from the solutions of linear systems

𝐻 (𝑘 )𝑑 (𝑘 ) = −∇𝑓 (𝑥 (𝑘 ) ) (5.4)
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with a symmetric and possibly positive definite matrix 𝐻 (𝑘 ) , the model Hessian. In the s. p. d. case, in

view of

𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 ) = −𝑓 ′(𝑥 (𝑘 ) )
[
(𝐻 (𝑘 ) )−1 ∇𝑓 (𝑥 (𝑘 ) )

]
= −∇𝑓 (𝑥 (𝑘 ) )ᵀ (𝐻 (𝑘 ) )−1 ∇𝑓 (𝑥 (𝑘 ) ) < 0, (5.9)

𝑑 (𝑘 ) is a descent direction as long as 𝑓 ′(𝑥 (𝑘 ) ) ≠ 0 holds. However, when 𝐻 (𝑘 ) is not positive definite,
then 𝑑 (𝑘 ) may fail to be a descent direction.

In the s. p. d. case, we can show that as long as the sequence of model Hessians remains “well behaved”,

the sequence of search directions satisfies the angle condition (5.8) and thus is admissible as well.

Lemma 5.5 (Bounded condition numbers imply the angle condition
19
). Suppose that 𝑥 (𝑘 ) and 𝑑 (𝑘 ) are

the sequences of iterates and search (descent) directions generated by an algorithm of type Algorithm 5.2.

Suppose that the search directions are obtained from (5.4), where 𝐻 (𝑘 ) ∈ R𝑛×𝑛 is a sequence of s. p. d.

model Hessians. Suppose, moreover, that the generalized condition numbers of 𝐻 (𝑘 ) w.r.t. 𝑀 satisfy

𝜅 (𝐻 (𝑘 ) ;𝑀) B 𝜆max(𝐻 (𝑘 ) ;𝑀)
𝜆min(𝐻 (𝑘 ) ;𝑀)

≤ 𝜅.

Then the sequence of search directions 𝑑 (𝑘 ) satisfies the angle condition (5.8) with

𝜂 =
2

√
𝜅

𝜅 + 1 ≥
1

√
𝜅
.

Proof. We perform a couple of equivalent reformulations of the claim to obtain

− ∇𝑓 (𝑥 (𝑘 ) )ᵀ𝑑 (𝑘 ) ≥ 2

√
𝜅

𝜅 + 1 ∥∇𝑀 𝑓 (𝑥
(𝑘 ) )∥𝑀 ∥𝑑 (𝑘 ) ∥𝑀

⇔ (𝑑 (𝑘 ) )ᵀ𝐻 (𝑘 )𝑑 (𝑘 ) ≥ 2

√
𝜅

𝜅 + 1 ∥𝑀
−1𝐻 (𝑘 )𝑑 (𝑘 ) ∥𝑀 ∥𝑑 (𝑘 ) ∥𝑀 since 𝐻 (𝑘 )𝑑 (𝑘 ) = −∇𝑓 (𝑥 (𝑘 ) )

⇔ ((𝑑 (𝑘 ) )ᵀ𝐻 (𝑘 )𝑑 (𝑘 ) )2 ≥ 4𝜅

(𝜅 + 1)2 ∥𝑀
−1𝐻 (𝑘 )𝑑 (𝑘 ) ∥2𝑀 ∥𝑑 (𝑘 ) ∥2𝑀

⇔ ((𝑑 (𝑘 ) )ᵀ𝐻 (𝑘 )𝑀−1𝐻 (𝑘 )𝑑 (𝑘 ) ) ((𝑑 (𝑘 ) )ᵀ𝑀 𝑑 (𝑘 ) )
((𝑑 (𝑘 ) )ᵀ𝐻 (𝑘 )𝑑 (𝑘 ) )2

≤ (𝜅 + 1)
2

4𝜅
.

The statement in the previous line, however, is true due to the generalized Kantorovich inequality

(Corollary 2.2). □

We summarize our findings on search directions:

the model Hessians 𝐻 (𝑘 ) have bounded condition numbers

⇒ the angle condition (5.8) holds

⇒ the search directions are admissible (5.7).

19
In the literature, one often finds this result only in the case 𝑀 = Id, and with the non-optimal bound 𝜂 = 1

𝜅 ; see for

instance Ulbrich, Ulbrich, 2012, p.32 or Nocedal, Wright, 2006, eq.(3.19).
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Requirements on the Step Sizes

We now address the step sizes 𝛼 (𝑘 ) . The following example shows that the mere requirement

𝑓 (𝑥 (𝑘 ) + 𝛼 (𝑘 )𝑑 (𝑘 ) ) < 𝑓 (𝑥 (𝑘 ) )

is not sufficient to obtain a reasonable convergence behavior.

Example 5.6 (Too small step sizes
20
). Consider the objective 𝑓 : R→ R, 𝑓 (𝑥) = 𝑥2, initial guess 𝑥 (0) = 1,

search directions 𝑑 (𝑘 ) = −1 and the Euclidean inner product 𝑀 = 1. With step sizes 𝛼 (𝑘 ) =
(
1

2

)𝑘+2
, we

obtain the sequences of iterates according to

𝑥 (𝑘+1) = 𝑥 (𝑘 ) + 𝛼 (𝑘 ) (−1) = 𝑥 (0) −
𝑘∑︁
𝑖=0

(
1

2

)𝑖+2
= 1

2
+

(
1

2

)𝑘+2
.

This implies 𝑥 (𝑘+1) < 𝑥 (𝑘 ) and 𝑓 (𝑥 (𝑘+1) ) < 𝑓 (𝑥 (𝑘 ) ). However, 𝑥 (𝑘 ) → 𝑥∗ = 1/2, which is not a stationary

point of 𝑓 .

The step sizes in the previous example are too small and thus they violate our second goal (item (2)

above) since they do not exploit the achievable descent sufficiently well. We therefore introduce the

following qualitative condition on the step sizes.

Definition 5.7 (Admissible step sizes). Suppose that 𝑥 (𝑘 ) and 𝑑 (𝑘 ) are the sequences of iterates and
search (descent) directions generated by an algorithm of type Algorithm 5.2. The sequence 𝛼 (𝑘 ) of step
sizes is termed admissible in case

𝑓 (𝑥 (𝑘 ) + 𝛼 (𝑘 )𝑑 (𝑘 ) ) ≤ 𝑓 (𝑥 (𝑘 ) ) for all 𝑘 ∈ N0, (5.10a)

𝑓 (𝑥 (𝑘 ) + 𝛼 (𝑘 )𝑑 (𝑘 ) ) − 𝑓 (𝑥 (𝑘 ) ) → 0 ⇒ 𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 )

∥𝑑 (𝑘 ) ∥𝑀
→ 0. (5.10b)

We can interpret (5.10b) as follows: when the progress in the objective values converges to zero, then

it is due to the normalized directional derivatives converging to zero and not due to the step sizes

becoming too small. In other words, admissible step sizes do make sufficient use of the descent available

in the direction 𝑑 (𝑘 ) .

Condition (5.10) is purely qualitative. By contrast, the condition that the step sizes be efficient, i. e.,
there exists 𝜃 > 0 such that

𝑓 (𝑥 (𝑘 ) + 𝛼 (𝑘 )𝑑 (𝑘 ) ) ≤ 𝑓 (𝑥 (𝑘 ) ) − 𝜃
(
𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 )

∥𝑑 (𝑘 ) ∥𝑀

)
2

(5.11)

for all 𝑘 ∈ N0 is a stronger, quantitative condition, which is moreover easy to verify.

20
from Alt, 2002, Beispiel 4.4.1

56 https://tinyurl.com/scoop-nlo 2023-07-14

https://tinyurl.com/scoop-nlo


cbn Nonlinear Optimization

Lemma 5.8 (Efficiency implies admissibility). Suppose that 𝑥 (𝑘 ) and 𝑑 (𝑘 ) are the sequences of iterates
and search (descent) directions generated by an algorithm of type Algorithm 5.2. If the sequence of step

sizes 𝛼 (𝑘 ) is efficient, then it is also admissible.

Proof. Suppose that 𝛼 (𝑘 ) is efficient, i. e.,

0 ≤ 𝜃
(
𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 )

∥𝑑 (𝑘 ) ∥𝑀

)
2

≤ 𝑓 (𝑥 (𝑘 ) ) − 𝑓 (𝑥 (𝑘 ) + 𝛼 (𝑘 )𝑑 (𝑘 ) )

Therefore (5.10a) is clear. To show (5.10b), suppose

𝑓 (𝑥 (𝑘 ) + 𝛼 (𝑘 )𝑑 (𝑘 ) ) − 𝑓 (𝑥 (𝑘 ) ) → 0.

Since 𝜃 is strictly positive, this implies

𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 )

∥𝑑 (𝑘 ) ∥𝑀
→ 0,

which confirms (5.10b). □

Using the assumptions of admissible search directions and admissible step sizes, we will obtain a

theorem (see Theorem 5.9 below) on the global convergence of Algorithm 5.2. However, in view of

the expected convergence result (5.5), we will have to work with accumulation points (limits of subse-

quences) of the iterates. This means that we should refine the notion of admissible search directions

(5.7), the notions of admissible step sizes (5.10) as well as efficient step sizes (5.11) to subsequences.

We denote such subsequences here with

(
𝑥 (𝑘 )

)
𝑘∈𝐾 , where 𝐾 ⊆ N0 is an infinite subset of the index

set N0. (Quiz 5.3: How does this notation relate to the notation for subsequences

(
𝑥 (𝑘

(ℓ ) ) )
introduced

in § 2.7?)

In detail, the refined conditions on subsequences read as follows:

admissible search directions:

𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 )

∥𝑑 (𝑘 ) ∥𝑀
𝑘∈𝐾−−−→ 0 ⇒ 𝑓 ′(𝑥 (𝑘 ) ) 𝑘∈𝐾−−−→ 0, (5.7’)

angle condition:

−𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 )

∥∇𝑀 𝑓 (𝑥 (𝑘 ) )∥𝑀 ∥𝑑 (𝑘 ) ∥𝑀
≥ 𝜂 for all 𝑘 ∈ 𝐾 (5.8’)

admissible step sizes:

𝑓 (𝑥 (𝑘 ) + 𝛼 (𝑘 )𝑑 (𝑘 ) ) ≤ 𝑓 (𝑥 (𝑘 ) ) for all 𝑘 ∈ N0, (5.10a’)

𝑓 (𝑥 (𝑘 ) + 𝛼 (𝑘 )𝑑 (𝑘 ) ) − 𝑓 (𝑥 (𝑘 ) ) 𝑘∈N0−−−−→ 0 ⇒ 𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 )

∥𝑑 (𝑘 ) ∥𝑀
𝑘∈𝐾−−−→ 0, (5.10b’)
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efficient step sizes:

𝑓 (𝑥 (𝑘 ) + 𝛼 (𝑘 )𝑑 (𝑘 ) ) ≤ 𝑓 (𝑥 (𝑘 ) ) − 𝜃
(
𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 )

∥𝑑 (𝑘 ) ∥𝑀

)
2

for all 𝑘 ∈ 𝐾. (5.11’)

The statements of Lemma 5.4 and Lemma 5.5 continue to hold when restricted to subsequences. For

the analog of Lemma 5.8, we have to make (5.10a’) an assumption rather than a conclusion.

We now show a global convergence theorem for the model Algorithm 5.2.

Theorem 5.9 (Global convergence of model Algorithm 5.2). Suppose that Algorithm 5.2 generates an

infinite sequence of iterates 𝑥 (𝑘 ) , search directions 𝑑 (𝑘 ) ≠ 0 and step sizes 𝛼 (𝑘 ) . Suppose that 𝑥∗ is an
accumulation point of 𝑥 (𝑘 ) and that

(
𝑥 (𝑘 )

)
𝑘∈𝐾 is a subsequence converging to 𝑥∗. Finally, suppose that

the subsequences

(
𝑑 (𝑘 )

)
𝑘∈𝐾 and

(
𝛼 (𝑘 )

)
𝑘∈𝐾 of search directions and step sizes are both admissible. Then

𝑓 ′(𝑥∗) = 0.

Note: In other words, when a generic descent algorithm (Algorithm 5.2) produces admissible search

directions and admissible step sizes, then any accumulation point of the iterates is stationary.

Quiz 5.4: What goes wrong in Example 5.6?

Proof. Due to the continuity of 𝑓 , we have 𝑓 (𝑥 (𝑘 ) ) 𝑘∈𝐾−−−→ 𝑓 (𝑥∗). Moreover, by admissibility of the step

sizes (5.10a’), the entire sequence 𝑓 (𝑥 (𝑘 ) ) is monotone decreasing. Therefore, the entire sequence in

fact converges: 𝑓 (𝑥 (𝑘 ) ) → 𝑓 (𝑥∗). Consequently, we also have

𝑓 (𝑥 (𝑘+1) ) − 𝑓 (𝑥 (𝑘 ) ) = 𝑓 (𝑥 (𝑘 ) + 𝛼 (𝑘 )𝑑 (𝑘 ) ) − 𝑓 (𝑥 (𝑘 ) ) → 0.

The admissibility of step sizes along the subsequence, (5.10b’), implies

𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 )

∥𝑑 (𝑘 ) ∥
𝑘∈𝐾−−−→ 0.

Since the search directions along the subsequence are in turn admissible, (5.7’), we can conclude

𝑓 ′(𝑥 (𝑘 ) ) 𝑘∈𝐾−−−→ 0.

On the other hand, since 𝑓 is of class 𝐶1
, we also have

𝑓 ′(𝑥 (𝑘 ) ) 𝑘∈𝐾−−−→ 𝑓 ′(𝑥∗) .

This shows 𝑓 ′(𝑥∗) = 0. □

§ 5.2 Step Size Strategies

In this section we will see how efficient step sizes (5.11) or at least admissible step sizes (5.10) can be

found in general.
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Armijo Backtracking Line Search

The Armijo backtracking line search is the simplest step size strategy and it is sufficient in many

situations. Suppose that 𝑑 (𝑘 ) is a descent direction for 𝑓 at 𝑥 (𝑘 ) . In order to obtain sufficient decrease,

the Armijo condition requires that the step size 𝛼 satisfy

𝑓 (𝑥 (𝑘 ) + 𝛼 𝑑 (𝑘 ) ) ≤ 𝑓 (𝑥 (𝑘 ) ) + 𝜎 𝛼 𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 ) (5.12)

holds. Here 𝜎 ∈ (0, 1) is the given Armijo parameter. Using the auxiliary function (line search
function)

𝜑 (𝛼) ≔ 𝑓 (𝑥 (𝑘 ) + 𝛼 𝑑 (𝑘 ) )
to simplify notation, we can write the Armijo condition (5.12) equivalently in the form

𝜑 (𝛼) ≤ 𝜑 (0) + 𝜎 𝛼 𝜑 ′(0) . (5.12)

Step sizes 𝛼 ≥ 0 which satify (5.12) are termed Armijo step sizes. Condition (5.12) requires that the

step size 𝛼 realizes at least the 𝜎-fraction of the first-order descent suggested by the tangent of 𝜑 at

𝛼 = 0.

Notice that due to the chain rule, 𝜑 inherits the 𝐶1
property of 𝑓 , and we have

𝜑 ′(𝛼) = 𝑓 ′(𝑥 (𝑘 ) + 𝛼 𝑑 (𝑘 ) ) 𝑑 (𝑘 ) (5.13a)

and, in particular, 𝜑 ′(0) = 𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 ) . (5.13b)

𝜑 (𝛼)
𝜑 (

0) +
𝛼
𝜑 ′(

0)

𝜑 (0) + 𝜎 𝛼 𝜑 ′(0)

𝛼

Figure 5.1: Illustration of step sizes 𝛼 ≥ 0 satisfying the Armijo condition (5.12) (blue). As an example,

the Armijo parameter is chosen as 𝜎 = 0.07.

We will now answer the question whether Armijo step sizes exist, and how to find them.

Lemma 5.10 (Existence of Armijo step sizes). Suppose that 𝑑 is a descent direction for 𝑓 at 𝑥 , and that

the Armijo parameter satisfies 𝜎 ∈ (0, 1). Then there exists 𝛼 > 0 such that (5.12) holds for all 𝛼 ∈ [0, 𝛼].
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Proof. 𝜑 ′ is continuous at 0, which implies that there exists 𝛼 > 0 such that

𝜑 ′(𝛼) < 𝜎 𝜑 ′(0) holds for all 𝛼 ∈ [0, 𝛼] .

From Taylor’s theorem 2.4 we obtain that there exists 𝜉 ∈ [0, 𝛼] such that

𝜑 (𝛼) = 𝜑 (0) + 𝛼 𝜑 ′(𝜉)
≤ 𝜑 (0) + 𝜎 𝛼 𝜑 ′(0).

Therefore, the Armijo condition (5.12) holds for all 𝛼 ∈ [0, 𝛼]. □

We have seen that the Armijo condition is always satisfied in an interval starting at 𝛼 = 0. However,

we need to select a step size which is not too small, as demonstrated by Example 5.6. This can be

achieved by a backtracking strategy: run through a sequence of trial step sizes from large to small

until the Armijo conditon (5.12) is satisfied for the first time.

Algorithm 5.11 (Armijo backtracking line search).
Input: initial trial step size 𝛼

Input: routine to evaluate 𝜑

Input: pre-computed function values 𝜑 (0) and 𝜑 ′(0)
Input: Armijo parameter 𝜎 ∈ (0, 1)
Input: backtracking parameter 𝛽 ∈ (0, 1)
Output: step size 𝛼 satisfying the Armijo condition (5.12)

1: Set ℓ B 0

2: while Armijo condition (5.12) does not hold for 𝛼 do
3: Set 𝛼 B 𝛽 𝛼 // new trial step size

4: Set ℓ B ℓ + 1
5: end while
6: return 𝛼

Remark 5.12 (on Algorithm 5.11).

(𝑖) In Algorithm 5.11, we did not number the trial step sizes 𝛼 (0) , 𝛼 (1) , . . . by an index in order to avoid

confusion with the step size 𝛼 (𝑘 ) which eventually gets used in the 𝑘-th iteration of the outer

algorithm (Algorithm 5.2).

(𝑖𝑖) Every trial step size that fails to satisfy the Armijo condition “costs” one additional evaluation of 𝜑 ,

i. e., one additional evaluation of 𝑓 .

(𝑖𝑖𝑖) The Armijo parameter is often chosen to be small, e. g., 𝜎 = 10
−2

or even 𝜎 = 10
−4
. A typical value

for the backtracking parameter is 𝛽 = 1/2.

(𝑖𝑣) It follows from Lemma 5.10 that Algorithm 5.11 terminates successfully after finitely many iterations

with a step size 𝛼 that satisfies 𝛼 ≥ 𝛼 𝛽 . Here 𝛼 > 0 is the upper bound of any interval [0, 𝛼]
containing only Armijo step sizes.
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(𝑣) In a practical implementation, one often adds further checks and stopping criteria to Algorithm 5.11.

For instance, we need to safeguard against 𝜑 ′(0) ≥ 0 (𝑑 is not a descent direction) and against too

many unsuccessful trial steps.

Suitable values for the initial trial step size 𝛼 in Algorithm 5.11 depend on how the search directions

𝑑 (𝑘 ) are generated in the outer method. We will see more on that when we discuss concrete instances

of Algorithm 5.2. Since the backtracking strategy only shortens the initial trial step size, we need to

ensure that the initial trial step size is sufficiently large in order to obtain admissible step sizes that

exploit the achievable descent sufficiently well. This is what the following result is about.

Lemma 5.13 (Armijo backtracking line search produces admissible step sizes). Suppose that Algo-
rithm 5.2 generates an infinite sequence of iterates 𝑥 (𝑘 ) and search (descent) directions 𝑑 (𝑘 ) ≠ 0. Suppose

moreover that the step sizes 𝛼 (𝑘 ) are obtained by the Armijo backtracking line search (Algorithm 5.11)

with initial trial step size 𝛼 (𝑘,0) . Assume that 𝐾 ⊆ N0 is an infinite index set such that the subsequence(
𝑥 (𝑘 )

)
𝑘∈𝐾 is bounded. Finally, suppose that𝜓 : [0,∞→ [0,∞) is any monotone increasing function and

that the initial trial step sizes satisfy

𝛼 (𝑘,0) ∥𝑑 (𝑘 ) ∥𝑀 ≥ 𝜓
(−𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 )
∥𝑑 (𝑘 ) ∥𝑀

)
for all 𝑘 ∈ 𝐾. (5.14)

Then the step sizes

(
𝛼 (𝑘 )

)
𝑘∈𝐾 are admissible.

Proof. We need to show (5.10a’) and (5.10b’). The first condition is a direct consequence of the Armijo

condition holding at 𝛼 (𝑘 ) > 0

𝑓 (𝑥 (𝑘 ) + 𝛼 (𝑘 ) 𝑑 (𝑘 ) ) ≤ 𝑓 (𝑥 (𝑘 ) ) + 𝜎 𝛼 (𝑘 ) 𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 )︸          ︷︷          ︸
<0

,

the fact that 𝑑 (𝑘 ) is a descent direction and that 𝜎 is positive. It remains to verify (5.10b’).

By assumption, the sequence

(
𝑥 (𝑘 )

)
𝑘∈𝐾 is bounded. Therefore, it has a convergent subsequence with

index set 𝐾 ′. By continuity of 𝑓 ,
(
𝑓 (𝑥 (𝑘 ) )

)
𝑘∈𝐾 ′ converges. Due to the Armijo condition (5.12), the

sequence 𝑓 (𝑥 (𝑘 ) ) is monotone decreasing, so that in fact the entire sequence 𝑓 (𝑥 (𝑘 ) ) converges. From
there and the Armijo condition (5.12) we conclude

𝑓 (𝑥 (𝑘+1) ) − 𝑓 (𝑥 (𝑘 ) ) = 𝑓 (𝑥 (𝑘 ) + 𝛼 (𝑘 )𝑑 (𝑘 ) ) − 𝑓 (𝑥 (𝑘 ) ) ≤ 𝜎 𝛼 (𝑘 ) 𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 ) < 0.

The left-hand side converges to 0, therefore we must have

𝛼 (𝑘 ) 𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 ) → 0. (∗)

In order to verify (5.10b’), we need to show

𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 )

∥𝑑 (𝑘 ) ∥𝑀
𝑘∈𝐾−−−→ 0.
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In the remainder of the proof, we distinguish indices 𝑘 ∈ 𝐾 according to the following cases:

When 𝛼 (𝑘 ) ∥𝑑 (𝑘 ) ∥𝑀 is “large”, then

𝛼 (𝑘 ) 𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 )

𝛼 (𝑘 ) ∥𝑑 (𝑘 ) ∥𝑀
is small.

When 𝛼 (𝑘 ) ∥𝑑 (𝑘 ) ∥𝑀 is “small”, then

{
we use the assumption (5.14) in case 𝛼 (𝑘 ) = 𝛼 (𝑘,0) .

we use the Armijo condition (5.12) in case 𝛼 (𝑘 ) < 𝛼 (𝑘,0) .

By assumption, the sequence

(
𝑥 (𝑘 )

)
𝑘∈𝐾 is bounded, hence the continuous function 𝑓 ′ is uniformly

continuous “near the

(
𝑥 (𝑘 )

)
𝑘∈𝐾 ”. More precisely, suppose that 𝑅 > 0 is any fixed number, then 𝑓 ′ is

uniformly continuous on the compact set

𝐴𝑅 B cl

⋃
𝑘∈𝐾

𝐵𝑀𝑅 (𝑥
(𝑘 ) ).

(Quiz 5.5: Why is this set compact?) Now suppose that 𝜀 > 0 is given. Then there exists 𝛿 > 0 such

that

∥ 𝑓 ′(𝑦) − 𝑓 ′(𝑧)∥𝑀−1 ≤ (1 − 𝜎) 𝜀
holds for all 𝑦, 𝑧 ∈ 𝐴𝑅 such that ∥𝑦 − 𝑧∥𝑀 ≤ 𝛿 . Possibly by making 𝛿 smaller, we can assume 𝛿 ≤ 𝑅.
Thus, in particular, we obtain𝑓 ′(𝑥 (𝑘 ) + 𝑒︸          ︷︷          ︸

∈𝐴𝑅

) − 𝑓 ′(𝑥 (𝑘 )︸ ︷︷ ︸
∈𝐴𝑅

)

𝑀−1 ≤ (1 − 𝜎) 𝜀 for all 𝑘 ∈ 𝐾, ∥𝑒 ∥𝑀 ≤ 𝛿. (∗∗)

We now set

𝛿 B min

{
𝛿 𝛽, 𝜓 (𝜀)

}
∈ (0, 𝛿) .

Due to the convergence in (∗), there exists an index 𝑘0 ∈ N0 such that

𝛼 (𝑘 )
��𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 ) �� ≤ 𝜀 𝛿 holds for all 𝑘 ≥ 𝑘0. (∗∗∗)

From now on, let 𝑘 ∈ 𝐾 , 𝑘 ≥ 𝑘0, be arbitrary. We are going to show that

0 ≤ 𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 )

∥𝑑 (𝑘 ) ∥𝑀
≤ 𝜀

holds, which proves (5.10b’). We distinguish the following cases, as anticipated above:

Case 1: 𝛼 (𝑘 ) ∥𝑑 (𝑘 ) ∥𝑀 ≥ 𝛿
In this case we immediately conclude

0 ≤ −𝑓
′(𝑥 (𝑘 ) ) 𝑑 (𝑘 )

∥𝑑 (𝑘 ) ∥𝑀
since 𝑑 (𝑘 ) is a descent direction

=
−𝛼 (𝑘 ) 𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 )

𝛼 (𝑘 ) ∥𝑑 (𝑘 ) ∥𝑀

≤ 𝜀 𝛿
𝛿

by (∗∗∗) and the assumption in case 1

= 𝜀.
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Case 2: 𝛼 (𝑘 ) ∥𝑑 (𝑘 ) ∥𝑀 < 𝛿 and 𝛼 (𝑘 ) = 𝛼 (𝑘,0)

We obtain

𝜓

(−𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 )
∥𝑑 (𝑘 ) ∥𝑀

)
≤ 𝛼𝑘,0 ∥𝑑 (𝑘 ) ∥𝑀 by assumption (5.14)

< 𝛿 by the assumption in case 2

≤ 𝜓 (𝜀) by the choice of 𝛿.

Since𝜓 is monotone increasing, we conclude

0 ≤ −𝑓
′(𝑥 (𝑘 ) ) 𝑑 (𝑘 )

∥𝑑 (𝑘 ) ∥𝑀
≤ 𝜀.

Case 3: 𝛼 (𝑘 ) ∥𝑑 (𝑘 ) ∥𝑀 < 𝛿 and 𝛼 (𝑘 ) < 𝛼 (𝑘,0)

The assumption 𝛼 (𝑘 ) < 𝛼 (𝑘,0) means that the initial trial step size (and possibly some of the subsequent

trial step sizes) did not satisfy the Armijo condition. Since 𝛼 (𝑘 ) was the first trial step size to satisfy

the Armijo condition (5.12), the previous trial step size, 𝛽−1𝛼 (𝑘 ) , violated it:

𝜎 𝛽−1𝛼 (𝑘 ) 𝑓 ′(𝑥 (𝑘 ) )𝑑 (𝑘 ) < 𝑓
(
𝑥 (𝑘 ) + 𝛽−1𝛼 (𝑘 )𝑑 (𝑘 )

)
− 𝑓 (𝑥 (𝑘 ) ).

By Taylor’s theorem 2.4, there exists 𝜉 (𝑘 ) ∈ (0, 1) such that

𝜎 𝛽−1𝛼 (𝑘 ) 𝑓 ′(𝑥 (𝑘 ) )𝑑 (𝑘 ) < 𝛽−1𝛼 (𝑘 ) 𝑓 ′
(
𝑥 (𝑘 ) + 𝛽−1𝛼 (𝑘 ) 𝜉 (𝑘 )𝑑 (𝑘 )

)
𝑑 (𝑘 )

and thus

𝜎 𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 )

< 𝑓 ′
(
𝑥 (𝑘 ) + 𝛽−1𝛼 (𝑘 ) 𝜉 (𝑘 )𝑑 (𝑘 )

)
𝑑 (𝑘 )

= 𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 ) +
[
𝑓 ′

(
𝑥 (𝑘 ) + 𝛽−1𝛼 (𝑘 ) 𝜉 (𝑘 )𝑑 (𝑘 )

)
− 𝑓 ′(𝑥 (𝑘 ) )

]
𝑑 (𝑘 )

≤ 𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 ) + ∥ 𝑓 ′
(
𝑥 (𝑘 ) + 𝛽−1𝛼 (𝑘 ) 𝜉 (𝑘 )𝑑 (𝑘 )︸              ︷︷              ︸

C𝑒 (𝑘 )

)
− 𝑓 ′(𝑥 (𝑘 ) )∥𝑀−1 ∥𝑑 (𝑘 ) ∥𝑀 by (2.3).

The vector 𝑒 (𝑘 ) satisfies

∥𝑒 (𝑘 ) ∥𝑀 = 𝛽−1𝛼 (𝑘 )𝜉 (𝑘 ) ∥𝑑 (𝑘 ) ∥𝑀
< 𝛽−1𝛿 by the assumption in case 3 and since 𝜉 (𝑘 ) ∈ (0, 1)
≤ 𝛿 by the choice of 𝛿.

We may thus apply estimate (∗∗) to the inequality above to obtain

𝜎 𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 ) ≤ 𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 ) + (1 − 𝜎) 𝜀 ∥𝑑 (𝑘 ) ∥𝑀 .

Sorting terms and dividing by ∥𝑑 (𝑘 ) ∥𝑀 finally yields

0 ≤ −𝑓
′(𝑥 (𝑘 ) ) 𝑑 (𝑘 )

∥𝑑 (𝑘 ) ∥𝑀
≤ 𝜀.

□
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Remark 5.14 (Armijo backtracking line search produces efficient step sizes). Whenwe choose𝜓 (𝑧) = 𝑐 𝑧
with some 𝑐 > 0, i. e., when we use initial trial step sizes satisfying

𝛼𝑘,0 ∥𝑑 (𝑘 ) ∥𝑀 ≥ 𝑐
−𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 )

∥𝑑 (𝑘 ) ∥𝑀
, (5.15)

and if 𝑓 ′ is Lipschitz continuous on the sublevel setM𝑓 (𝑥 (0) ) B {𝑥 ∈ R𝑛 | 𝑓 (𝑥) ≤ 𝑓 (𝑥 (0) )}, then one

can show that Algorithm 5.11 produces not only admissible, but efficient step sizes.

To conclude the presentation of Armijo backtracking strategies, we consider a modification of Algo-

rithm 5.11 which often produces trial step sizes more effectively than simple backtracking 𝛼 { 𝛽 𝛼 in

case the Armijo condition fails on the initial trial step size.

The modification is based on the fact that we have available the data of the line search function 𝜑

𝜑 (0), 𝜑 ′(0) < 0 and 𝜑 (𝛼)

for the current trial step size 𝛼 . Using this data, we can fit a quadratic polynomial

𝑝 (𝛼) = 𝑎 + 𝑏 𝛼 + 𝑐 𝛼2.

The conditions
21 𝑝 (0) = 𝜑 (0), 𝑝′(0) = 𝜑 ′(0) and 𝑝 (𝛼) = 𝜑 (𝛼) uniquely define the coefficients

𝑎 = 𝜑 (0), 𝑏 = 𝜑 ′(0), 𝑐 =
1

𝛼2

(
𝜑 (𝛼) − 𝜑 (0) − 𝜑 ′(0) 𝛼

)
. (5.16)

Naturally, this quadratic model of 𝜑 will be used only when the Armijo condition (5.12) failed at the

trial step size 𝛼 , i. e., in case

𝜑 (𝛼) − 𝜑 (0) − 𝜑 ′(0) 𝛼 > 𝜑 (𝛼) − 𝜑 (0) − 𝜎 𝜑 ′(0) 𝛼 > 0

holds, which implies 𝑐 > 0. This in turn means that the unique global minimizer 𝛼∗ = − 𝑏
2𝑐

of 𝑝

satisfies

𝛼∗ =
−𝜑 ′(0) 𝛼2

2

(
𝜑 (𝛼) − 𝜑 (0) − 𝜑 ′(0) 𝛼

) > 0.

We then choose 𝛼∗ as the next trial step size 𝛼+, but in order to avoid drastic changes or even an

increase from 𝛼 to 𝛼+, we clip 𝛼∗ to the interval [𝛽 𝛼, 𝛽 𝛼] according to

𝛼+ B min

{
max{𝛼∗, 𝛽 𝛼}, 𝛽 𝛼

}
=


𝛽 𝛼, if 𝛼∗ < 𝛽 𝛼,

𝛼∗, if 𝛽 𝛼 ≤ 𝛼∗ ≤ 𝛽 𝛼,
𝛽 𝛼, if 𝛼∗ > 𝛽 𝛼,

where 0 < 𝛽 < 𝛽 < 1 are the clipping parameters.
22

This modified Armijo backtracking line search

maintains the essential properties of the simple Armijo backtracking line search. In particular, the

admissibility (and potentially efficiency) of the accepted step sizes (see Lemma 5.13 and Remark 5.14)

continue to hold.

For completeness, we present the modified Armijo backtracking line search procedure in Algo-

rithm 5.15.

21
Fitting a polynomial using function values and derivatives is known as Hermite interpolation. Using function values

only is known as Lagrange interpolation.
22
Using 𝛽 = 𝛽 = 𝛽 we get back our previous simple backtracking strategy where 𝛼+ = 𝛽 𝛼 .
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Algorithm 5.15 (Modified Armijo backtracking line search with interpolation).
Input: initial trial step size 𝛼

Input: routine to evaluate 𝜑

Input: pre-computed function values 𝜑 (0) and 𝜑 ′(0)
Input: Armijo parameter 𝜎 ∈ (0, 1)
Input: backtracking parameters 0 < 𝛽 < 𝛽 < 1

Output: step size 𝛼 satisfying the Armijo condition (5.12)

1: Set ℓ B 0

2: while Armijo condition (5.12) does not hold for 𝛼 do

3: Set 𝛼∗ B
−𝜑 ′(0) 𝛼2

2

(
𝜑 (𝛼) − 𝜑 (0) − 𝜑 ′(0) 𝛼

) // minimizer of quadratic polynomial

4: Set 𝛼 B min

{
max{𝛼∗, 𝛽 𝛼}, 𝛽 𝛼

}
// clip it and use as new trial step size

5: Setze ℓ B ℓ + 1
6: end while
7: return 𝛼

Wolfe-Powell Line Search

Recall from Lemma 5.10 that the Armijo condition

𝑓 (𝑥 (𝑘 ) + 𝛼 𝑑 (𝑘 ) ) ≤ 𝑓 (𝑥 (𝑘 ) ) + 𝜎 𝛼 𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 ) or 𝜑 (𝛼) ≤ 𝜑 (0) + 𝜎 𝛼 𝜑 ′(0) (5.12)

always holds in some interval [0, 𝛼]. Therefore, we combined the Armijo condition with backtracking,

where we generate trial step sizes from large to small, in order to avoid overly small step sizes.

Alternatively, we could require, in addition to (5.12), the curvature condition

𝑓 ′(𝑥 (𝑘 ) + 𝛼 𝑑 (𝑘 ) ) 𝑑 (𝑘 ) ≥ 𝜏 𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 ) or 𝜑 ′(𝛼) ≥ 𝜏 𝜑 ′(0) (5.17)

or even the strong curvature condition

|𝑓 ′(𝑥 (𝑘 ) + 𝛼 𝑑 (𝑘 ) ) 𝑑 (𝑘 ) | ≤ −𝜏 𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 ) or |𝜑 ′(𝛼) | ≤ −𝜏 𝜑 ′(0) (5.18)

to hold, where 𝜏 ∈ (𝜎, 1) is the curvature parameter. The curvature condition (5.17) demands that

the derivative of 𝜑 at 𝛼 is not too negative, namely that it is larger (has less descent) than at 𝛼 = 0.

However, it would be fine for 𝜑 to increase near 𝛼 ; see Figure 5.2. This curvature condition already

avoids too small step sizes 𝛼 near 0.

The strong curvature condition (5.18) demands that, in addition, the derivative of 𝜑 at 𝛼 it not too

positive either. The condition can be interpreted as the requirement that 𝛼 be an approximately

stationary point of 𝜑 . Note: When 𝛼 is a local minimizer of 𝜑 , then (5.18) holds even for 𝜏 = 0.

The Armijo condition (5.12) and the curvature condition (5.17) together are referred to as theWolfe-
Powell conditions. The Armijo condition (5.12) and the strong curvature condition (5.18) together are

referred to as the strong Wolfe-Powell conditions. Consequently, step sizes 𝛼 ≥ 0 which satisfy the

above conditions are referred to asWolfe-Powell step sizes and strong Wolfe-Powell step sizes,
respectively.
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𝜑 (𝛼)

𝜑 (0) + 𝜎 𝛼 𝜑 ′(0)

𝛼

Figure 5.2: Illustration of step sizes 𝛼 ≥ 0 satisfying the curvature condition (5.17) (red) and the strong

curvature condition (5.18) (teal). As an example, the curvature parameter is chosen as

𝜏 = 0.2.

A simple example such as 𝜑 (𝛼) = −𝛼 shows that the curvature condition may not be satisfiable without

further assumptions on 𝑓 . The following result gives a sufficient condition for strong Wolfe-Powell

step sizes to exist.

Lemma 5.16 (Existence of (strong) Wolfe-Powell step sizes). Suppose that 𝑑 is a descent direction for

𝑓 at 𝑥 and that the Armijo and curvature parameters satisfy 0 < 𝜎 < 𝜏 < 1. Suppose, moreover, that 𝑓

is bounded below on the ray {𝑥 + 𝛼 𝑑 | 𝛼 ≥ 0}. Then there exists a step size 𝛼2 > 0 such that the strong

Wolfe-Powell conditions (5.12) and (5.18) (and thus also the regular Wolfe-Powell conditions (5.12) and

(5.17)) hold in a neighborhood of 𝛼2.

Proof. We abbreviate as usual 𝜑 (𝛼) B 𝑓 (𝑥 + 𝛼 𝑑). Since by assumption, 𝜑 is bounded below on R≥0, 𝜑
intersects the Armijo line

𝛼 ↦→ 𝜑 (0) + 𝜎 𝜑 ′(0)︸    ︷︷    ︸
<0

𝛼,

which is unbounded below, in at least one positive point. Suppose that 𝛼1 is the smallest positive point

of intersection (Quiz 5.6: Why does 𝛼1 exist?). Then we have

𝜑 (𝛼1) = 𝜑 (0) + 𝜎 𝜑 ′(0) 𝛼1.

In view of 𝜑 ′(0) < 0, the Armijo condition (5.12) holds for all 𝛼 ∈ [0, 𝛼1], i. e., the Armijo line lies below

𝜑 on this interval. From the mean value theorem 2.4, we infer the existence of 𝛼2 ∈ (0, 𝛼1) such that

𝜑 ′(𝛼2) =
𝜑 (𝛼1) − 𝜑 (0)

𝛼1
= 𝜎 𝜑 ′(0) .

And thus we obtain the strong curvature condition (5.18) at 𝛼2:

|𝜑 ′(𝛼2) | = −𝜎 𝜑 ′(0) < −𝜏 𝜑 ′(0).
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𝜑 (𝛼)

𝜑 (
0) +

𝛼
𝜑 ′(

0)

𝜑 (0) + 𝜎 𝛼 𝜑 ′(0)

𝛼

Figure 5.3: Illustration of step sizes 𝛼 ≥ 0 satisfying both the Armijo condition (5.12) (blue), the

curvature condition (5.17) (red) and the strong curvature condition (5.18) (teal). As an

example, the Armijo parameter is chosen as 𝜎 = 0.07 and the curvature parameter is chosen

as 𝜏 = 0.2.

Due to the continuity of 𝜑 ′, the strong curvature condition (5.18) and thus also the regular curvature

condition (5.17) continue to hold for all 𝛼 in a neighborhood of 𝛼2. □

We now address an algorithm to find a Wolfe-Powell step size. To simplify notation, we introduce the

auxiliary function

𝜓 (𝛼) B 𝜑 (𝛼) − 𝜑 (0) − 𝜎 𝜑 ′(0) 𝛼,

which measures the signed gap between the function values of the one dimensional line search function

𝜑 and its 𝜎-relaxed linearization at the origin, so that we can write

the Armijo condition (5.12) ⇐⇒ 𝜓 (𝛼) ≤ 0, (5.12’)

the curvature condition (5.17) ⇐⇒ −(𝜏 − 𝜎) |𝜑 ′(0) | ≤ 𝜓 ′(𝛼), (5.17’)

the strong curvature condition (5.18) ⇐⇒ −(𝜏 − 𝜎︸    ︷︷    ︸
>0

) |𝜑 ′(0) | ≤ 𝜓 ′(𝛼) ≤ (𝜏 + 𝜎) |𝜑 ′(0) |. (5.18’)

We restrict the discussion to the regular Wolfe-Powell condition, i. e., (5.12) and (5.17). See for instance

Geiger, Kanzow, 1999, Kapitel 6.3 for the strong Wolfe-Powell condition.

Lemma 5.17 (Inclusion of Wolfe-Powell step sizes, see Geiger, Kanzow, 1999, Lemma 6.1). Suppose
that 0 ≤ 𝑎 < 𝑏 are chosen such the conditions

𝜓 (𝑎) ≤ 0 and 𝜓 ′(𝑎) < 0 (5.19a)

as well as 𝜓 (𝑏) ≥ 0 (5.19b)
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hold; see Figure 5.4. Then there exists 𝛼∗ ∈ (𝑎, 𝑏) such that

𝜓 (𝛼∗) < 0 and 𝜓 ′(𝛼∗) = 0

holds. In particular, the Wolfe-Powell conditions (5.12’) and (5.17’) hold in a neighborhood of 𝛼∗.

Proof. Let us denote by 𝛼∗ a global minimizer of

Minimize𝜓 (𝛼) on the compact interval [𝑎, 𝑏] .

The assumptions on 𝑎 and 𝑏 imply that 𝛼∗ belongs to the open interval (𝑎, 𝑏). Consequently, 𝛼∗ is
also a local minimizer of the unconstrained problem “Minimize𝜓 (𝛼) where 𝛼 ∈ R”, and thus we have

𝜓 ′(𝛼∗) = 0. From𝜓 (𝑎) ≤ 0 and𝜓 ′(𝑎) < 0 we infer𝜓 (𝛼∗) < 0. Since both (5.12’) and (5.17’) hold with

strict inequalities at 𝛼∗, continuity implies that they hold in a neighborhood of 𝛼∗. □

𝜓 (𝛼)

𝛼

𝛼∗

𝑎

𝑏

Figure 5.4: Illustration of the condition (5.19) and the statement of Lemma 5.17.

Note: The condition (5.19a) is readily seen to hold at 𝑎 = 0. This motivates the strategy to first find a

right boundary 𝑏 so that (5.19b) holds as well, and then to approximate 𝛼∗ by nesting intervals.

Algorithm 5.18 (Wolfe-Powell line search).
Input: initial trial step size 𝛼

Input: routine to evaluate 𝜑 and 𝜑 ′

Input: pre-computed function values 𝜑 (0) and 𝜑 ′(0)
Input: Armijo and curvature parameters 0 < 𝜎 < 𝜏 < 1

Input: expansion parameter 𝛾 > 1

Input: nesting parameters 𝛾,𝛾 ∈ (0, 1/2]
Output: step size 𝛼 satisfying the Wolfe-Powell conditions (5.12) and (5.17)

1: Set 𝑎 B 0 and 𝑏 B 𝛼

2: Set ℓ B 0

3: while 𝜑 (𝑏) < 𝜑 (0) + 𝜎 𝜑 ′(0) 𝑏 and 𝜑 ′(𝑏) < 𝜏 𝜑 ′(0) do // phase 1 repeatedly expands [0, 𝑏] until
(5.19) holds
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4: Set 𝑏 B 𝛾 𝑏 // expand the right boundary 𝑏

5: Set ℓ B ℓ + 1
6: end while // now we have (5.19)

7: Set 𝛼 B 𝑏

8: while Armijo condition (5.12) or curvature condition (5.17) is violated at 𝛼 do // phase 2 repeatedly

shrinks [𝑎, 𝑏] until (5.12) and (5.17) hold

9: Choose 𝛼 ∈ [𝑎 + 𝛾 (𝑏 − 𝑎), 𝑏 − 𝛾 (𝑏 − 𝑎)] // for instance, choose the midpoint

10: if 𝜑 (𝛼) ≥ 𝜑 (0) + 𝜎 𝜑 ′(0) 𝛼 then // Armijo condition is violated at 𝛼

11: Set 𝑏 B 𝛼 // reduce the right boundary 𝑏

12: else
13: Set 𝑎 B 𝛼 // increase the left boundary 𝑎

14: end if
15: Set ℓ B ℓ + 1
16: end while
17: return 𝛼

Remark 5.19 (on Algorithm 5.18, compare Remark 5.12).

(𝑖) The Armijo parameter is often chosen to be small, e. g., 𝜎 = 10
−2

or even 𝜎 = 10
−4
. Depending

on the characteristics of the outer method (which determines the search directions), the curvature

parameter 𝜏 > 𝜎 should be chosen “small” as well, e. g., 𝜏 = 0.1, or otherwise “large”, e. g., 𝜏 = 0.9.

(𝑖𝑖) Each iteration of phase 1 “costs” one additional evaluation of 𝜑 and 𝜑 ′, i. e., one additional evaluation
of 𝑓 and 𝑓 ′, or rather the directional derivative of 𝑓 in the direction of the current search direction;

compare (5.13). Each iteration of phase 2 “costs” one additional evaluation of 𝜑 .

(𝑖𝑖𝑖) Using Lemma 5.17, it is not difficult to see that Algorithm 5.18 terminates after finitely many steps

under the conditions of Lemma 5.16:

• The while loop beginning at Line 3 terminates, since for 𝑏 sufficiently large, the Armijo

condition (5.12) is violated. For such 𝑏, we have𝜓 (𝑏) > 0, i. e., (5.19b) holds.

• At the first iteration of the while loop beginning at Line 8, the conditions (5.19) of Lemma 5.17

are satisfied. Consequently, they continue to hold also in all subsequent iterations.

• The length of the intervals [𝑎, 𝑏] in phase 2 goes to zero if infinitely many iterations of the

while loop beginning at Line 8 were performed. However, as shown in Lemma 5.17, there

is an open set of points which satisfy both the Armijo condition (5.12) and the curvature

condition (5.17) inside any of the intervals [𝑎, 𝑏] considered in phase 2. Therefore, phase 2

must terminate.

(𝑖𝑣) The step size accepted by Algorithm 5.18 may be larger or smaller than the initial trial step size

provided by the user.

(𝑣) As was already noted for the Armijo backtracking line search (Algorithm 5.11) in Remark 5.12, in

a practical implementation, one often adds further checks and stopping criteria to Algorithm 5.11.
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For instance, we need to safeguard against 𝜑 ′(0) ≥ 0 (𝑑 is not a descent direction) and against too

many unsuccessful trial steps.

(𝑣𝑖) An algorithm for the strong Wolfe-Powell line search can be found in Geiger, Kanzow, 1999, Kapi-

tel 6.3.

The admissibility of step sizes generated by the Wolfe-Powell line search algorithm is shown in the

following result. Clearly, this result also applies to step sizes satisfying the strong Wolfe-Powell

conditions.

Lemma 5.20 (Wolfe-Powell line search produces admissible step sizes). Suppose that Algorithm 5.2

generates an infinite sequence of iterates 𝑥 (𝑘 ) and search (descent) directions 𝑑 (𝑘 ) ≠ 0. Suppose moreover

that the step sizes 𝛼 (𝑘 ) are chosen so that they satisfy the Wolfe-Powell conditions (5.12) and (5.17) (for

instance by Algorithm 5.18).
23

Assume that 𝐾 ⊆ N0 is an infinite index set such that the subsequence(
𝑥 (𝑘 )

)
𝑘∈𝐾 is bounded. Then the step sizes

(
𝛼 (𝑘 )

)
𝑘∈𝐾 are admissible.

Proof. As in the proof of Lemma 5.13 we obtain the result

−𝛼 (𝑘 ) 𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 ) → 0. (∗)

It remains to show

𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 )

∥𝑑 (𝑘 ) ∥
𝑘∈𝐾−−−→ 0.

To this end, let 𝜀 > 0.

Just like in the proof of Lemma 5.13, we can argue that the boundedness of

(
𝑥 (𝑘 )

)
𝑘∈𝐾 entails that the

continuous function 𝑓 ′ is uniformly continuous “near the

(
𝑥 (𝑘 )

)
𝑘∈𝐾 ”. More precisely, there exists

𝛿 > 0 such that 𝑓 ′(𝑥 (𝑘 ) + 𝑒) − 𝑓 ′(𝑥 (𝑘 ) )
𝑀−1 ≤ (1 − 𝜏) 𝜀 for all 𝑘 ∈ 𝐾, ∥𝑒 ∥𝑀 ≤ 𝛿.

Because of (∗), there exists an index 𝑘0 ∈ N such that

𝛼 (𝑘 ) |𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 ) | ≤ 𝜀 𝛿 for all 𝑘 ≥ 𝑘0. (∗∗)

From now on, let 𝑘 ∈ 𝐾 , 𝑘 ≥ 𝑘0, be arbitrary. Similarly as in the proof of Lemma 5.13, we consider the

following cases:

Case 1: 𝛼 (𝑘 ) ∥𝑑 (𝑘 ) ∥𝑀 ≥ 𝛿

23
Notice that, in contrast to condition (5.14) in Lemma 5.13, there is no lower bound on the initial trial step size necessary to

be observed.
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Precisely as in the proof of Lemma 5.13, we obtain

0 ≤ −𝑓
′(𝑥 (𝑘 ) ) 𝑑 (𝑘 )

∥𝑑 (𝑘 ) ∥𝑀
since 𝑑 (𝑘 ) is a descent direction

=
−𝛼 (𝑘 ) 𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 )

𝛼 (𝑘 ) ∥𝑑 (𝑘 ) ∥𝑀

≤ 𝜀 𝛿
𝛿

by (∗∗) and the assumption in case 1

= 𝜀.

Case 2: 𝛼 (𝑘 ) ∥𝑑 (𝑘 ) ∥𝑀 < 𝛿

In this we argue with the satisfaction of the curvature conditon (5.17) for 𝛼 (𝑘 ) :

𝜏 𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 ) ≤ 𝑓 ′(𝑥 (𝑘 ) + 𝛼 (𝑘 )𝑑 (𝑘 ) ) 𝑑 (𝑘 ) .

The addition of |𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 ) | = −𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 ) on both sides yields

(1 − 𝜏) |𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 ) | ≤ 𝑓 ′(𝑥 (𝑘 ) + 𝛼 (𝑘 )𝑑 (𝑘 ) ) 𝑑 (𝑘 ) − 𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 )

≤
��𝑓 ′ (𝑥 (𝑘 ) + 𝛼 (𝑘 )𝑑 (𝑘 ) ) 𝑑 (𝑘 ) − 𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 ) ��
≤

𝑓 ′ (𝑥 (𝑘 ) + 𝛼 (𝑘 )𝑑 (𝑘 ) ) − 𝑓 ′(𝑥 (𝑘 ) )
𝑀−1 ∥𝑑

(𝑘 ) ∥𝑀 .

Invoking now the uniform continuity, we obtain

(1 − 𝜏) |𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 ) | ≤ (1 − 𝜏) 𝜀 ∥𝑑 (𝑘 ) ∥𝑀 ,

and hence

0 ≤ −𝑓
′(𝑥 (𝑘 ) ) 𝑑 (𝑘 )

∥𝑑 (𝑘 ) ∥𝑀
≤ 𝜀.

□

Analogously as with the Armijo backtracking line search (Remark 5.14), one can also show the efficiency

of step sizes when 𝑓 ′ is Lipschitz continuous on the sublevel setM𝑓 (𝑥 (0) ) B {𝑥 ∈ R𝑛 | 𝑓 (𝑥) ≤ 𝑓 (𝑥 (0) )}.
The proof is part of homework problem 4.2.

In concluding, we also remark that Line 9 in phase 2 of Algorithm 5.18 leaves some freedom in the

choice of the next trial step size 𝛼 . The available data 𝜑 (𝑎), 𝜑 ′(𝑎), 𝜑 (𝑏) and 𝜑 ′(𝑏) lends itself to a cubic
Hermite interpolation, using the model

𝑝 (𝛼) = 𝑎 + 𝑏 𝛼 + 𝑐 𝛼2 + 𝑑 𝛼3.

Provided that a unique local minimizuer 𝛼∗ of 𝑝 exists, we can calculate it explicitly and subsequently

clip it to the interval [𝑎, 𝑏]:
𝛼 B max{𝑎,min{𝑏, 𝛼∗}}.

One needs to pay attention to the fact that not all of the data 𝜑 ′(𝑎) and 𝜑 ′(𝑏) is necessarily available

in the current iteration of Algorithm 5.18. In this case one may proceed with a quadratic polynomial as

in the modified Armijo backtracking line search method.
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Remark 5.21 (Scaling invariance of the Armijo and curvature conditions). The Armijo and curvature

conditions (5.12), (5.17) and (5.18) are invariant w.r.t. affine scaling in the domain and codomain spaces.

Suppose that we consider, besides the objective 𝑓 , another objective 𝑔 related via

𝑓 (𝑥) { 𝑔(𝑥) B 𝛾 𝑓 (𝐴𝑥 + 𝑏) + 𝛿,

where 𝐴 ∈ R𝑛×𝑛 is non-singular, 𝑏 ∈ R𝑛 , 𝛾 > 0 and 𝛿 ∈ R.

Then the following holds: a step size 𝛼 that satisfies any of the conditions (5.12), (5.17) or (5.18) for 𝑔 at 𝑥

with search direction 𝑑 , satisfies the same conditions for 𝑓 at 𝐴𝑥 + 𝑏 with the search direction 𝐴𝑑 . Since

the scaling of an optimization problem is often arbitrary, this is a desirable property.

The proof is part of homework problem 4.3.

§ 5.3 Gradient Descent Method

In the remainder of § 5 we consider different concrete realizations of the generic descent method

Algorithm 5.2. The methods differ w.r.t. the way the search directions 𝑑 (𝑘 ) are generated and w.r.t.

the choice of the line search method (Armijo or Wolfe-Powell) to determine the step sizes 𝛼 (𝑘 ) . As
was already mentioned, the methods discussed here obtain the search drection at an iterate 𝑥 (𝑘 ) by
minimizing a quadratic model of the objective

𝑞 (𝑘 ) (𝑑) = 𝑓 (𝑥 (𝑘 ) ) + 𝑓 ′(𝑥 (𝑘 ) ) 𝑑 + 1

2

𝑑ᵀ𝐻 (𝑘 )𝑑. (5.2)

When the model Hessian 𝐻 (𝑘 ) is s. p. d., this is equivalent to the solution of the linear system

𝐻 (𝑘 )𝑑 (𝑘 ) = −∇𝑓 (𝑥 (𝑘 ) ) . (5.4)

The gradient descent method (also known as steepest descent method) for our generic uncon-
strained linear problem

Minimize 𝑓 (𝑥) where 𝑥 ∈ R𝑛 (UP)

generates its search directions in the same way we already know from § 4.2, when 𝑓 was a quadratic

polynomial. That is, we use

𝑀 𝑑 (𝑘 ) = −∇𝑓 (𝑥 (𝑘 ) ) or 𝑑 (𝑘 ) = −𝑀−1∇𝑓 (𝑥 (𝑘 ) ) = −∇𝑀 𝑓 (𝑥 (𝑘 ) ) . (5.20)

This corresponds to using a constant model Hessian 𝐻 (𝑘 ) ≡ 𝑀 in the model (5.2):

𝑞 (𝑘 ) (𝑑) = 𝑓 (𝑥 (𝑘 ) ) + 𝑓 ′(𝑥 (𝑘 ) ) 𝑑 + 1

2

𝑑ᵀ𝑀 𝑑.

The choice of the inner product 𝑀 is due to the user. As was already mentioned in Remark 4.7,

one refers to the case 𝑀 = Id as the classical gradient descent method without preconditioning.

Otherwise one speaks of a preconditioned gradient descent method with preconditioner𝑀 .
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The particular choice of 𝑑 (𝑘 ) in the gradient descent method clearly implies the angle condition (5.8)

with the maximal possible value, 𝜂 = 1. In particular, the search direction 𝑑 (𝑘 ) is a descent direction
for 𝑓 at 𝑥 (𝑘 ) , as long as 𝑓 ′(𝑥 (𝑘 ) ) ≠ 0 holds.

A simple strategy is sufficient to determine admissible step sizes (5.10). One typically employs the

Armijo backtracking line search (Algorithm 5.11) or the version with interpolation (Algorithm 5.15).

The efficiency condition (5.15) requires that the initial trial step size satisfy

𝛼 (𝑘,0) ≥ 𝑐 −𝑓
′(𝑥 (𝑘 ) ) 𝑑 (𝑘 )

∥𝑑 (𝑘 ) ∥2
𝑀

= 𝑐
−
(
∇𝑀 𝑓 (𝑥 (𝑘 ) ), 𝑑 (𝑘 )

)
𝑀

∥𝑑 (𝑘 ) ∥2
𝑀

= 𝑐
∥𝑑 (𝑘 ) ∥2

𝑀

∥𝑑 (𝑘 ) ∥2
𝑀

since 𝑑 (𝑘 ) = −∇𝑀 𝑓 (𝑥 (𝑘 ) )

= 𝑐

with some constant 𝑐 > 0. This simply suggests to impose a lower bound on the initial trial step sizes

in gradient descent methods. We will re-label 𝑐 as 𝛼 in Algorithm 5.22 below.

In addition to observing this bound, it is useful to construct initial trial step sizes using information

from past iterations. Assuming that the descent achievable in the current step is equal (to first order)

to the descent in the previous step (when the accepted step size was 𝛼 (𝑘−1) ), we obtain the following

proposal for an initial trial step size 𝛼 (𝑘,0) at iteration 𝑘 ≥ 1:

𝛼 (𝑘,0) 𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 ) = 𝛼 (𝑘−1) 𝑓 ′(𝑥 (𝑘−1) ) 𝑑 (𝑘−1)

⇒ 𝛼 (𝑘,0) = 𝛼 (𝑘−1)
𝑓 ′(𝑥 (𝑘−1) ) 𝑑 (𝑘−1)

𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 )
.

Plugging in the descent directions used in the gradient descent method, this becomes

𝛼 (𝑘,0) = 𝛼 (𝑘−1)
∥∇𝑀 𝑓 (𝑥 (𝑘−1) )∥2𝑀
∥∇𝑀 𝑓 (𝑥 (𝑘 ) )∥2𝑀

= 𝛼 (𝑘−1)
∥𝑑 (𝑘−1) ∥2

𝑀

∥𝑑 (𝑘 ) ∥2
𝑀

.

Alternatively, we could use the actual descent achieved in the previous step instead of its linearization,

which would result in

𝛼 (𝑘,0) =
𝑓 (𝑥 (𝑘−1) ) − 𝑓 (𝑥 (𝑘 ) )
∥∇𝑀 𝑓 (𝑥 (𝑘 ) )∥2𝑀

=
𝑓 (𝑥 (𝑘−1) ) − 𝑓 (𝑥 (𝑘 ) )

∥𝑑 (𝑘 ) ∥2
𝑀

.

We state the full gradient descent method in Algorithm 5.22, using the above considerations for the

initial trial step size. As was the case for our methods in § 4 addressing the minimization of quadratic

polynomials, we refer to the value of the derivative of 𝑓 at an iterate 𝑥 (𝑘 ) as the residual 𝑟 (𝑘 ) .

The global convergence of Algorithm 5.22, in the sense that every accumulation point of the sequence

of iterates 𝑥 (𝑘 ) is a stationary point, follows directly from the global convergence theorem 5.9.
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Algorithm 5.22 (Gradient descent method for (UP) w.r.t. the𝑀-inner product and Armijo backtracking

line search).
Input: initial guess 𝑥 (0) ∈ R𝑛
Input: routine to evaluate 𝑓 and 𝑓 ′ (or ∇𝑓 )
Input: s. p. d. matrix𝑀 (or matrix-vector products with𝑀−1)
Input: Armijo parameter 𝜎 ∈ (0, 1) // to be passed through to the Armijo backtracking line search

Input: backtracking parameter 𝛽 ∈ (0, 1) // to be passed through to the Armijo backtracking line search

Input: lower bound 𝛼 > 0 for the initial trial step sizes

Output: approximately stationary point of (UP)
1: Set 𝑘 B 0

2: Set 𝑓 (0) B 𝑓 (𝑥 (0) ) // evaluate the initial objective value

3: Set 𝑟 (0) B 𝑓 ′(𝑥 (0) )ᵀ = ∇𝑓 (𝑥 (0) ) // evaluate the initial residual

4: Set 𝑑 (0) B −𝑀−1𝑟 (0)
5: Set 𝛿 (0) B −(𝑟 (0) )ᵀ𝑑 (0) // 𝛿 (0) = ∥∇𝑀 𝑓 (𝑥 (0) )∥2𝑀 = ∥𝑑 (0) ∥2

𝑀

6: while stopping criterion not met do
7: if 𝑘 = 0 then
8: Set 𝛼 (𝑘,0) B 𝛼 // no information from previous iteration available

9: else
10: Set 𝛼 (𝑘,0) B max

{
𝛼,

𝑓 (𝑘−1)−𝑓 (𝑘 )
𝛿 (𝑘 )

}
11: end if
12: Determine a step size 𝛼 (𝑘 ) > 0 from an Armijo backtracking line search procedure (Algorithm 5.11),

applied to 𝜑 (𝛼) B 𝑓 (𝑥 (𝑘 ) + 𝛼 𝑑 (𝑘 ) ), with initial trial step size 𝛼 (𝑘,0) , Armijo parameter 𝜎 and

backtracking parameter 𝛽 // 𝜑 (0) = 𝑓 (𝑘 ) and 𝜑 ′(0) = (𝑟 (𝑘 ) )ᵀ𝑑 (𝑘 ) = −𝛿 (𝑘 ) are already known

13: Set 𝑥 (𝑘+1) B 𝑥 (𝑘 ) + 𝛼 (𝑘 )𝑑 (𝑘 )
14: Set 𝑓 (𝑘+1) B 𝑓 (𝑥 (𝑘+1) ) // can be returned by the Armijo backtracking line search routine

15: Set 𝑟 (𝑘+1) B 𝑓 ′(𝑥 (𝑘+1) )ᵀ = ∇𝑓 (𝑥 (𝑘+1) )
16: Set 𝑑 (𝑘+1) B −𝑀−1𝑟 (𝑘+1)
17: Set 𝛿 (𝑘+1) B −(𝑟 (𝑘+1) )ᵀ𝑑 (𝑘+1) // 𝛿 (𝑘+1) = ∥∇𝑀 𝑓 (𝑥 (𝑘+1) )∥2𝑀 = ∥𝑑 (𝑘+1) ∥2

𝑀

18: Set 𝑘 B 𝑘 + 1
19: end while
20: return 𝑥 (𝑘 )

In Line 12, we could also invoke the modified Armijo backtracking method (Algorithm 5.15), with the

backtracking parameter 𝛽 replaced by the pair of parameters 0 < 𝛽 < 𝛽 < 1.

As a stopping criterion, we can choose again any of the conditions from (4.14), i. e., stop on the relative

or absolute magnitude of the derivative or gradient

∥𝑟 (𝑘 ) ∥𝑀−1 = ∥ 𝑓 ′(𝑥 (𝑘 ) )∥𝑀−1 = ∥∇𝑀 𝑓 (𝑥 (𝑘 ) )∥𝑀 = ∥𝑑 (𝑘 ) ∥𝑀 = (𝛿 (𝑘 ) )1/2.

These quantities are already available in the algorithm. A limited interpretation in the sense of

Lemma 4.11 is also possible. In case the sequence 𝑥 (𝑘 ) converges to a local minimizer that satisfies the

second-order sufficient optimality condition (Theorem 3.3), then we have: for all 𝜀 > 0, there exists

𝛿 > 0 such that

∥𝑥 (𝑘 ) − 𝑥∗∥𝑀 ≤ 𝛿 and ∥ 𝑓 ′(𝑥 (𝑘 ) )∥𝑀−1 ≤ 𝜀abs ⇒ ∥𝑥 (𝑘 ) − 𝑥∗∥𝑀 ≤
(
1

𝛼
+ 𝜀︸︷︷︸
≈1/𝛼

)
𝜀abs,
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where 𝛼 = 𝜆min(𝑓 ′′(𝑥∗);𝑀) is the smallest eigenvalue of the Hessian at the solution w.r.t. 𝑀 . In

other words, when we are sufficiently close to a local minimizer satisfying the second-order sufficient

optimality condition, then the norm of the derivative (or the gradient) is — up to the factor 1/𝛼 — a

useful measure of the distance to the solution.

Other often used stopping criteria are

∥𝑥 (𝑘 ) − 𝑥 (𝑘−1) ∥𝑀 ≤ 𝜀𝑥
abs
+ 𝜀𝑥

rel
∥𝑥 (𝑘 ) − 𝑥 (0) ∥𝑀 ,

|𝑓 (𝑥 (𝑘 ) ) − 𝑓 (𝑥 (𝑘−1) ) | ≤ 𝜀 𝑓
abs
+ 𝜀 𝑓

rel
|𝑓 (𝑥 (𝑘 ) ) − 𝑓 (𝑥 (0) ) |.

These are triggered by slow progress in the iterates or the objective values, respectively. One typically

sets 𝜀
𝑓

rel
= (𝜀𝑥

rel
)2.

It is remarkable that it is possible to monitor the quantities ∥𝑥 (𝑘 ) − 𝑥 (𝑘−1) ∥𝑀 and ∥𝑥 (𝑘 ) − 𝑥 (0) ∥𝑀 ,
although the matrix 𝑀 (or matrix-vector products with 𝑀) may not be available. Matrix-vector

products with 𝑀−1 are sufficient. The following quantities are useful for this purpose and can be

recursively updated, compare (4.33):

𝜔 (𝑘 ) B ∥𝑥 (𝑘 ) − 𝑥 (0) ∥2𝑀 (5.21a)

𝜉 (𝑘 ) B (𝑥 (𝑘 ) − 𝑥 (0) )ᵀ𝑀 𝑑 (𝑘 ) = −(𝑥 (𝑘 ) − 𝑥 (0) )ᵀ𝑟 (𝑘 ) (5.21b)

𝛿 (𝑘 ) B ∥𝑑 (𝑘 ) ∥2𝑀 (5.21c)

The details are left as an exercise.

End of Week 4

§ 5.4 Newton’s Method

Newton’s method is known as a method to solve a (nonlinear) equation 𝐹 (𝑥) = 0, where 𝐹 : R𝑛 → R𝑛 is
a 𝐶1

function. For optimization purposes, we apply it to the first-order necessary optimality condition,

i. e., we have 𝐹 (𝑥) = ∇𝑓 (𝑥) = 0, and thus 𝑓 is assumed to be of class 𝐶2
.

The idea of Newton’s method to find a zero (root) of 𝐹 is as follows. Suppose 𝑥 (0) is an initial guess.

We replace 𝐹 by its linear Taylor model at 𝑥 (0) and determine the zero of this model instead. This

results in

𝐹 (𝑥 (0) ) + 𝐹 ′(𝑥 (0) ) (𝑥 − 𝑥 (0) ) = 0 ⇔ 𝑥 = 𝑥 (0) − 𝐹 ′(𝑥 (0) )−1𝐹 (𝑥 (0) ),

provided that the Jacobian 𝐹 ′(𝑥 (0) ) is non-singular. This zero of the linear model is used as the next

iterate 𝑥 (1) , etc. This procedure is known as the (local) Newton’s method.

Algorithm 5.23 (Local Newton’s method for 𝐹 (𝑥) = 0).
Input: initial guess 𝑥 (0) ∈ R𝑛
Input: routine to evaluate 𝐹 and 𝐹 ′

Output: approximate zero of 𝐹

1: Set 𝑘 B 0
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2: while stopping criterion not met do
3: Determine the Newton direction by solving

𝐹 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 ) = −𝐹 (𝑥 (𝑘 ) )

4: Set 𝑥 (𝑘+1) B 𝑥 (𝑘 ) + 𝑑 (𝑘 )
5: Set 𝑘 B 𝑘 + 1
6: end while
7: return 𝑥 (𝑘 )

Auxiliary Results

We recall some auxiliary results, which you may know from Grundlagen der Optimierung (Herzog,

2022) or other classes. As usual, we equip R𝑛 with the 𝑀-inner product. Recall from § 2.2 that the

operator norm of a matrix 𝐾 ∈ R𝑛×𝑛 that represents a map 𝐾 : R𝑛 → R𝑛 is defined by

∥𝐾 ∥𝑀←𝑀 B max

𝑥≠0

∥𝐾 𝑥 ∥𝑀
∥𝑥 ∥𝑀

.

Although in finite dimensions all norms are equivalent, the above norm is not always the most

appropriate choice: some matrices 𝐴 ∈ R𝑛×𝑛 actually represent maps 𝐴 : R𝑛 → (R𝑛)∗, where (R𝑛)∗
is the dual space of R𝑛 . The appropriate inner product in the dual space is the 𝑀−1-inner product,
leading to

∥𝐴∥𝑀−1←𝑀 B max

𝑥≠0

∥𝐴𝑥 ∥𝑀−1
∥𝑥 ∥𝑀

.

Consequently, we would use

∥𝐴−1∥𝑀←𝑀−1 B max

𝑟≠0

∥𝐴−1 𝑟 ∥𝑀
∥𝑟 ∥𝑀−1

for the inverse of 𝐴. We also need the case 𝐵 : (R𝑛)∗ → R𝑛 .

Lemma 5.24 (Banach’ lemma).
(𝑖) Suppose that 𝐾 ∈ R𝑛×𝑛 is a matrix ∥𝐾 ∥𝑀←𝑀 < 1. Then Id − 𝐾 is non-singular, and we have the

following estimate on the norm of its inverse:

∥(Id − 𝐾)−1∥𝑀←𝑀 ≤
1

1 − ∥𝐾 ∥𝑀←𝑀
.

(𝑖𝑖) Suppose that 𝐴, 𝐵 ∈ R𝑛×𝑛 are such that ∥Id − 𝐵𝐴∥𝑀←𝑀 < 1. Then 𝐴 and 𝐵 are both non-singular,

and we have

∥𝐵−1∥𝑀−1←𝑀 ≤
∥𝐴∥𝑀−1←𝑀

1 − ∥Id − 𝐵𝐴∥𝑀←𝑀
und ∥𝐴−1∥𝑀←𝑀−1 ≤

∥𝐵∥𝑀←𝑀−1
1 − ∥Id − 𝐵𝐴∥𝑀←𝑀

.

Note: Statement (𝑖) states that “small” perturbations of the identity matrix are still invertible. State-

ment (𝑖𝑖) states that Id−𝐵𝐴 “small”, i. e., 𝐵 ≈ 𝐴−1, entails that𝐴 and 𝐵 are both necessarily invertible.
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Proof. Statement (𝑖): For 𝑥 ∈ R𝑛 , we have

∥(Id − 𝐾) 𝑥 ∥𝑀 = ∥𝑥 − 𝐾𝑥 ∥𝑀
≥ ∥𝑥 ∥𝑀 − ∥𝐾𝑥 ∥𝑀 by the triangle inequality

≥
(
1 − ∥𝐾 ∥𝑀←𝑀︸          ︷︷          ︸

>0

)
∥𝑥 ∥𝑀 since ∥𝐾𝑥 ∥𝑀 ≤ ∥𝐾 ∥𝑀←𝑀 ∥𝑥 ∥𝑀 .

This implies (Id − 𝐾) 𝑥 ≠ 0 for 𝑥 ≠ 0, ie, Id − 𝐾 is injective and thus non-singular.

Now let 𝑦 ∈ R𝑛 be arbitrary and 𝑥 B (Id − 𝐾)−1𝑦 . Then the above estimate shows

∥𝑦 ∥𝑀 ≥ (1 − ∥𝐾 ∥𝑀←𝑀 )∥(Id − 𝐾)−1𝑦 ∥𝑀

⇒ ∥(Id − 𝐾)−1∥𝑀←𝑀 = max

𝑦≠0

∥(Id − 𝐾)−1𝑦 ∥𝑀
∥𝑦 ∥𝑀

≤ 1

1 − ∥𝐾 ∥𝑀←𝑀
.

Statement (𝑖𝑖): We set 𝐾 B Id − 𝐵𝐴, whence ∥𝐾 ∥𝑀←𝑀 < 1 holds. Due to Statement (𝑖), we find that

Id − 𝐾 = Id − (Id − 𝐵𝐴) = 𝐵𝐴 is non-singular, i. e., 𝐴 and 𝐵 are both non-singular. Moreover,

(Id − 𝐾)−1 = (𝐵𝐴)−1 = 𝐴−1𝐵−1

⇒ 𝐵−1 = 𝐴 (Id − 𝐾)−1

⇒ ∥𝐵−1∥𝑀−1←𝑀 ≤ ∥𝐴∥𝑀−1←𝑀 ∥(Id − 𝐾)−1∥𝑀←𝑀

≤ ∥𝐴∥𝑀−1←𝑀
1 − ∥𝐾 ∥𝑀←𝑀

by Statement (𝑖)

=
∥𝐴∥𝑀−1←𝑀

1 − ∥Id − 𝐵𝐴∥𝑀←𝑀
.

The remaining inequality follows similarly. □

Lemma 5.25 (Implications of the invertibility of the Jacobian). Suppose that 𝐹 : R𝑛 → R𝑛 is a 𝐶1

function and that 𝑥∗ ∈ R𝑛 is arbitrary with non-singular Jacobian 𝐹 ′(𝑥∗).

(𝑖) Then there exists a neighborhood 𝐵𝑀
𝛿
(𝑥∗) and a constant 𝑐 > 0 such that 𝐹 ′(𝑥) is invertible for all

𝑥 ∈ 𝐵𝑀
𝛿
(𝑥∗). Moreover,

∥𝐹 ′(𝑥)−1∥𝑀←𝑀−1 ≤ 𝑐 holds for all 𝑥 ∈ 𝐵𝑀
𝛿
(𝑥∗) . (5.22)

(𝑖𝑖) Suppose now in addition that 𝐹 (𝑥∗) = 0 holds. Then there exist a neighborhood 𝐵𝑀
𝛿
(𝑥∗) and a

constant 𝛽 > 0 such that

∥𝑥 − 𝑥∗∥𝑀 ≤ 𝛽 ∥𝐹 (𝑥)∥𝑀−1 for all 𝑥 ∈ 𝐵𝑀
𝛿
(𝑥∗) . (5.23)

𝛽 can be chosen as 2 ∥𝐹 ′(𝑥∗)−1∥𝑀←𝑀 1 .

Note: Statement (𝑖) is an instance of the fact from functional analysis that the set of boundedly

invertible linear operators between two Banach spaces is open. Statement (𝑖𝑖) allows us to estimate

the norm of the error ∥𝑥 − 𝑥∗∥𝑀 from the norm of the residual ∥𝐹 (𝑥)∥𝑀−1 .
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Proof. Statement (𝑖): Since 𝐹 ′ is continuous at 𝑥∗, there exists 𝛿 > 0 such that

∥𝐹 ′(𝑥∗) − 𝐹 ′(𝑥)∥𝑀−1←𝑀 ≤ 𝜀 B
1

2 ∥𝐹 ′(𝑥∗)−1∥𝑀←𝑀−1

holds for all 𝑥 ∈ 𝐵𝑀
𝛿
(𝑥∗). Consequently,

∥Id − 𝐹 ′(𝑥∗)−1 𝐹 ′(𝑥)∥𝑀←𝑀 = ∥𝐹 ′(𝑥∗)−1
(
𝐹 ′(𝑥∗) − 𝐹 ′(𝑥)

)
∥𝑀←𝑀

≤ ∥𝐹 ′(𝑥∗)−1∥𝑀←𝑀−1 ∥𝐹 ′(𝑥∗) − 𝐹 ′(𝑥)∥𝑀−1←𝑀

≤ 1

2

< 1.

By Statement (𝑖𝑖) of Lemma 5.24 [with 𝐴 = 𝐹 ′(𝑥) and 𝐵 = 𝐹 ′(𝑥∗)−1], we can conclude that 𝐹 ′(𝑥) is
non-singular for all 𝑥 ∈ 𝐵𝑀

𝛿
(𝑥∗) with

∥𝐹 ′(𝑥)−1∥𝑀←𝑀−1 ≤
∥𝐹 ′(𝑥∗)−1∥𝑀←𝑀−1

1 − ∥Id − 𝐹 ′(𝑥∗)−1𝐹 ′(𝑥)∥𝑀←𝑀
≤ 2 ∥𝐹 ′(𝑥∗)−1∥𝑀←𝑀−1 C 𝑐.

Statement (𝑖𝑖): Since 𝐹 is differentiable in 𝑥∗, there exists — for the same 𝜀 > 0 as above — a 𝛿 > 0

such that

∥𝐹 (𝑥) − 𝐹 (𝑥∗) − 𝐹 ′(𝑥∗) (𝑥 − 𝑥∗)∥𝑀−1 ≤ 𝜀 ∥𝑥 − 𝑥∗∥𝑀 for all 𝑥 ∈ 𝐵𝑀
𝛿
(𝑥∗).

Therefore, for all 𝑥 ∈ 𝐵𝑀
𝛿
(𝑥∗),

∥𝐹 (𝑥)∥𝑀−1
≥ ∥𝐹 ′(𝑥∗) (𝑥 − 𝑥∗)∥𝑀−1 − ∥𝐹 (𝑥) −

=0︷     ︸︸     ︷
𝐹 (𝑥∗) − 𝐹 ′(𝑥∗) (𝑥 − 𝑥∗)∥𝑀−1 by the triangle inequality.

In view of ∥𝑥 − 𝑥∗∥𝑀 = ∥𝐹 ′(𝑥∗)−1𝐹 ′(𝑥∗) (𝑥 − 𝑥∗)∥𝑀 ≤ ∥𝐹 ′(𝑥∗)−1∥𝑀←𝑀−1 ∥𝐹 ′(𝑥∗) (𝑥 − 𝑥∗)∥𝑀−1 , we can
estimate this by

∥𝐹 (𝑥)∥𝑀−1

≥ 1

∥𝐹 ′(𝑥∗)−1∥𝑀←𝑀−1
∥𝑥 − 𝑥∗∥𝑀 − 𝜀 ∥𝑥 − 𝑥∗∥𝑀

= 𝜀 ∥𝑥 − 𝑥∗∥𝑀 by the definition of 𝜀,

and the claim follows with 𝛽 = 𝜀−1. □

Lemma 5.26 (Auxiliary estimate). Suppose that 𝐹 : R𝑛 → R𝑛 is a 𝐶1
function and 𝑥∗ ∈ R𝑛 . For all

𝜀 > 0, there exists 𝛿 > 0 such that

∥𝐹 (𝑥) − 𝐹 (𝑥∗) − 𝐹 ′(𝑥) (𝑥 − 𝑥∗)∥𝑀−1 < 𝜀 ∥𝑥 − 𝑥∗∥𝑀

holds for all 𝑥 ∈ 𝐵𝑀
𝛿
(𝑥∗).24

24
Briefly, we can also denote this result as ∥𝐹 (𝑥) − 𝐹 (𝑥∗) − 𝐹 ′ (𝑥) (𝑥 − 𝑥∗)∥𝑀 ∈ 𝑜

(
∥𝑥 − 𝑥∗∥𝑀

)
.
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Proof. Take 𝜀 > 0. The triangle inequality implies

∥𝐹 (𝑥) − 𝐹 (𝑥∗) − 𝐹 ′(𝑥) (𝑥 − 𝑥∗)∥𝑀−1
≤ ∥𝐹 (𝑥) − 𝐹 (𝑥∗) − 𝐹 ′(𝑥∗) (𝑥 − 𝑥∗)∥𝑀−1 + ∥𝐹 ′(𝑥∗) − 𝐹 ′(𝑥)∥𝑀−1←𝑀 ∥𝑥 − 𝑥∗∥𝑀 .

Since by assumption, 𝐹 is differentiable in 𝑥∗, there exists 𝛿1 > 0 uch that

∥𝐹 (𝑥) − 𝐹 (𝑥∗) − 𝐹 ′(𝑥∗) (𝑥 − 𝑥∗)∥𝑀−1 <
𝜀

2

∥𝑥 − 𝑥∗∥𝑀

holds for all 𝑥 ∈ 𝐵𝑀
𝛿1
(𝑥∗). On the other hand, 𝐹 ′ is continuous in 𝑥∗, which implies the existence of

𝛿2 > 0 such that

∥𝐹 ′(𝑥∗) − 𝐹 ′(𝑥)∥𝑀−1 <
𝜀

2

holds for all 𝑥 ∈ 𝐵𝑀
𝛿2
(𝑥∗). The conclusion follows with 𝛿 B min{𝛿1, 𝛿2}. □

Local Newton’s Method for 𝐹 (𝑥) = 0

We are now in a position to prove a convergence theorem for local Newton’s method.

Theorem 5.27 (Convergence of local Newton’s method). Suppose that 𝐹 : R𝑛 → R𝑛 is a 𝐶1
function

and that 𝑥∗ ∈ R𝑛 is a point where 𝐹 (𝑥∗) = 0 and 𝐹 ′(𝑥∗) is non-singular. Then there exists a neighborhood

𝐵𝑀
𝛿
(𝑥∗) such that

(𝑖) 𝑥∗ is the unique zero of 𝐹 in 𝐵𝑀
𝛿
(𝑥∗).

(𝑖𝑖) For any initial guess 𝑥 (0) ∈ 𝐵𝑀
𝛿
(𝑥∗), the local Newton’s method is well-defined, and it generates a

sequence 𝑥 (𝑘 ) which converges to 𝑥∗.

(𝑖𝑖𝑖)
(
𝑥 (𝑘 )

)
converges to 𝑥∗ Q-superlinearly w.r.t. the𝑀-norm.

(𝑖𝑣) If 𝐹 ′ is Lipschitz continuous in 𝐵𝑀
𝛿
(𝑥∗), then this convergence is even Q-quadratic.

Proof. Statement (𝑖): By Statement (𝑖𝑖) of Lemma 5.25, there exists 𝛿0 > 0 such that 𝑥∗ is the only zero

of 𝐹 in 𝐵𝑀
𝛿
(𝑥∗).

Statement (𝑖𝑖): By Statement (𝑖) of Lemma 5.25, there exist 𝛿1 > 0 and 𝑐 > 0 such that 𝐹 ′(𝑥) is
non-singular for all 𝑥 ∈ 𝐵𝑀

𝛿1
(𝑥∗) and

∥𝐹 ′(𝑥)−1∥𝑀←𝑀−1 ≤ 𝑐 B 2 ∥𝐹 (𝑥∗)−1∥𝑀←𝑀−1 . (∗)

By Lemma 5.26, given 𝜀 = 1/(2𝑐), there exists 𝛿2 > 0 such that

∥𝐹 (𝑥) − 𝐹 (𝑥∗) − 𝐹 ′(𝑥) (𝑥 − 𝑥∗)∥𝑀−1 ≤
1

2𝑐
∥𝑥 − 𝑥∗∥𝑀
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holds for all 𝑥 ∈ 𝐵𝑀
𝛿2
(𝑥∗). Now set 𝛿 B min{𝛿0, 𝛿1, 𝛿2} and choose 𝑥 (0) ∈ 𝐵𝑀

𝛿
(𝑥∗) arbitrarily. Then the

next iterate 𝑥 (1) B 𝑥 (0) − 𝐹 ′(𝑥 (0) )−1𝐹 (𝑥 (0) ) is well-defined, and we have

∥𝑥 (1) − 𝑥∗∥𝑀 = ∥𝑥 (0) − 𝑥∗ − 𝐹 ′(𝑥 (0) )−1𝐹 (𝑥 (0) )∥𝑀
= ∥𝐹 ′(𝑥 (0) )−1

[
𝐹 ′(𝑥 (0) ) (𝑥 (0) − 𝑥∗) − 𝐹 (𝑥 (0) ) +

=0︷     ︸︸     ︷
𝐹 (𝑥∗)

]
∥𝑀

≤ ∥𝐹 ′(𝑥 (0) )−1∥𝑀←𝑀−1 ∥𝐹 (𝑥 (0) ) − 𝐹 (𝑥∗) − 𝐹 ′(𝑥 (0) ) (𝑥 (0) − 𝑥∗)∥𝑀−1

≤ 𝑐 1

2𝑐
∥𝑥 (0) − 𝑥∗∥𝑀

=
1

2

∥𝑥 (0) − 𝑥∗∥𝑀 ,

and thus 𝑥 (1) again belongs to 𝐵𝑀
𝛿
(𝑥∗). By induction, 𝑥 (𝑘 ) is well-defined, it belongs to 𝐵𝑀

𝛿
(𝑥∗), and

𝑥 (𝑘 ) → 𝑥∗ Q-linearly w.r.t. the𝑀-norm.

Statement (𝑖𝑖𝑖): We begin by setting up an equation for the error:

𝑥 (𝑘+1) − 𝑥∗ = 𝑥 (𝑘 ) − 𝑥∗ − 𝐹 ′(𝑥 (𝑘 ) )−1
(
𝐹 (𝑥 (𝑘 ) ) − 𝐹 (𝑥∗)

)
= 𝐹 ′(𝑥 (𝑘 ) )−1

[
𝐹 ′(𝑥 (𝑘 ) ) (𝑥 (𝑘 ) − 𝑥∗) −

(
𝐹 (𝑥 (𝑘 ) ) − 𝐹 (𝑥∗)

) ]
= 𝐹 ′(𝑥 (𝑘 ) )−1

[
𝐹 ′(𝑥 (𝑘 ) ) (𝑥 (𝑘 ) − 𝑥∗) −

∫
1

0

𝐹 ′(𝑥 (𝑘 ) + 𝑡 (𝑥∗ − 𝑥 (𝑘 ) )) (𝑥 (𝑘 ) − 𝑥∗) d𝑡
]

= 𝐹 ′(𝑥 (𝑘 ) )−1
[∫ 1

0

𝐹 ′(𝑥 (𝑘 ) ) − 𝐹 ′(𝑥 (𝑘 ) + 𝑡 (𝑥∗ − 𝑥 (𝑘 ) )) d𝑡
]
(𝑥 (𝑘 ) − 𝑥∗).

This gives us the following fundamental estimate:

∥𝑥 (𝑘+1) − 𝑥∗∥𝑀

≤
𝐹 ′(𝑥 (𝑘 ) )−1

𝑀←𝑀−1

∫
1

0

 C𝐷 (𝑘 ) (𝑡 )︷                                       ︸︸                                       ︷
𝐹 ′(𝑥 (𝑘 ) ) − 𝐹 ′(𝑥 (𝑘 ) + 𝑡 (𝑥∗ − 𝑥 (𝑘 ) ))


𝑀−1←𝑀 d𝑡︸                                                             ︷︷                                                             ︸

C𝐼 (𝑘 )

∥𝑥 (𝑘 ) − 𝑥∗∥𝑀 . (∗∗)

Due to 𝑥 (𝑘 ) → 𝑥∗, we infer that 𝑥 (𝑘 ) + 𝑡 (𝑥∗ − 𝑥 (𝑘 ) ) → 𝑥∗ uniformly for 𝑡 ∈ [0, 1]. Moreover, 𝐹 ′ is
continuous, and thus for any 𝜀 > 0, there exists an index 𝑘0 ∈ N such that

∥𝐷 (𝑘 ) (𝑡)∥𝑀−1←𝑀 ≤ 𝜀 for all 𝑘 ≥ 𝑘0 and all 𝑡 ∈ [0, 1] .

This implies

0 ≤ 𝐼 (𝑘 ) =
∫

1

0

∥𝐷 (𝑘 ) (𝑡)∥𝑀−1←𝑀 d𝑡 ≤ 𝜀 for all 𝑘 ≥ 𝑘0.

This in turn gives 𝐼 (𝑘 ) → 0. But now (∗) and (∗∗) give us

∥𝑥 (𝑘+1) − 𝑥∗∥𝑀 ≤ 𝑐 𝐼 (𝑘 ) ∥𝑥 (𝑘 ) − 𝑥∗∥𝑀 ≤ 𝑐 𝜀 ∥𝑥 (𝑘 ) − 𝑥∗∥𝑀

for all 𝑘 ≥ 𝑘0, which is the Q-superlinear convergence.

Statement (𝑖𝑣): Since 𝑥 (𝑘 ) and 𝑥 (𝑘 ) + 𝑡 (𝑥∗ − 𝑥 (𝑘 ) ) belong to 𝐵𝑀
𝛿
(𝑥∗) for all 𝑡 ∈ [0, 1], we can estimate

the integral in a better way, using the stronger assumptions:

𝐼 (𝑘 ) =

∫
1

0

𝐹 ′(𝑥 (𝑘 ) ) − 𝐹 ′(𝑥 (𝑘 ) + 𝑡 (𝑥∗ − 𝑥 (𝑘 ) ))
𝑀−1←𝑀 d𝑡 ≤

∫
1

0

𝐿 𝑡 ∥𝑥∗ − 𝑥 (𝑘 ) ∥𝑀 d𝑡 =
𝐿

2

∥𝑥 (𝑘 ) − 𝑥∗∥𝑀 .
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From (∗∗) we now obtain

∥𝑥 (𝑘+1) − 𝑥∗∥𝑀 ≤ 𝑐
𝐿

2

∥𝑥 (𝑘 ) − 𝑥∗∥2𝑀 .

□

Remark 5.28 (on local Newton’s method (Algorithm 5.23)).

(𝑖) Local Newton’s method (Algorithm 5.23) may break down since 𝐹 ′(𝑥 (𝑘 ) ) is not guaranteed to be
invertible, in case the initial guess 𝑥 (0) lies outside the unknown neighborhood of local convergence

𝐵𝑀
𝛿
(𝑥∗).

(𝑖𝑖) The simplified Newton’s method, which uses the fixed matrix 𝐹 ′(𝑥 (0) ) (assumed to be invertible)

instead of 𝐹 ′(𝑥 (𝑘 ) ), still converges Q-linearly w.r.t. the𝑀-norm.

Local Newton’s Method in Optimization

Newton’s method in optimization can be motivated in one of two ways:

(𝑖) The first-order necessary optimality condition for (UP) reads

∇𝑓 (𝑥) = 0,

see Theorem 3.1. When we employ Newton’s method to solve this (generally nonlinear) equation

𝐹 (𝑥) = ∇𝑓 (𝑥) with Jacobian 𝐹 ′(𝑥) = 𝑓 ′′(𝑥), we obtain the iteration

𝑥 (𝑘+1) = 𝑥 (𝑘 ) − 𝑓 ′′(𝑥 (𝑘 ) )−1∇𝑓 (𝑥 (𝑘 ) ) . (5.24)

(𝑖𝑖) At the current iterate 𝑥 (𝑘 ) , we replace (UP) by the minimization of the quadratic model

𝑞 (𝑘 ) (𝑑) = 𝑓 (𝑥 (𝑘 ) ) + 𝑓 ′(𝑥 (𝑘 ) ) 𝑑 + 1

2

𝑑ᵀ𝐻 (𝑘 )𝑑 (5.2)

where the model Hessian is the symmetric matrix 𝐻 (𝑘 ) = 𝑓 ′′(𝑥 (𝑘 ) ). That is, (5.2) becomes the

second-order Taylor polynomial. If 𝐻 (𝑘 ) is positive definite, then the unique solution of (5.2) is

characterized by the linear system

𝑓 ′′(𝑥 (𝑘 ) ) 𝑑 (𝑘 ) = −∇𝑓 (𝑥 (𝑘 ) ) .

When one uses the fixed step size 𝛼 (𝑘 ) = 1 and sets

𝑥 (𝑘+1) B 𝑥 (𝑘 ) + 𝛼 (𝑘 )𝑑 (𝑘 ) = 𝑥 (𝑘 ) + 𝑑 (𝑘 ) ,

we obtain again the iteration (5.24).

Remark 5.29 (on local Newton’s method for (UP)).
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(𝑖) Theorem 5.27 proves the local Q-superlinear (or local Q-quadratic) of local Newton’s method towards

a stationary point 𝑥∗ of 𝑓 , provided that 𝑓 ′′(𝑥∗) is non-singular. The point 𝑥∗ may be a local

minimizer, a local maximizer, or a saddle point of 𝑓 , unless we make an assumption or have

knowledge about the definiteness of 𝑓 ′′(𝑥∗).

(𝑖𝑖) If 𝑓 ′′(𝑥 (𝑘 ) ) is s. p. d., then the Newton direction 𝑑 (𝑘 ) obtained from the Newton system

𝑓 ′′(𝑥 (𝑘 ) ) 𝑑 (𝑘 ) = −∇𝑓 (𝑥 (𝑘 ) ) (5.25)

is a descent direction for 𝑓 at 𝑥 (𝑘 ) , as long as 𝑓 ′(𝑥 (𝑘 ) ) ≠ 0; compare (5.9):

𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 ) = −∇𝑓 (𝑥 (𝑘 ) )ᵀ 𝑓 ′′(𝑥 (𝑘 ) )−1 ∇𝑓 (𝑥 (𝑘 ) ) < 0.

Due to the fixed step size 𝛼 (𝑘 ) = 1 (instead of line search), descent from iterate to iterate, i. e.,

𝑓 (𝑥 (𝑘+1) ) < 𝑓 (𝑥 (𝑘 ) ), is not guaranteed when 𝑥 (𝑘 ) is still “far” from the local minimizer 𝑥∗.

(𝑖𝑖𝑖) Local Newton’s method is invariant w.r.t. affine scaling (see homework problem 5.1). This is in

contrast to the steepest descent method.

(𝑖𝑣) 𝑓 ′′(𝑥) is a bilinear form accepting two directions and returning a number. Consequently, when we

specify only a single direction, the resulting object becomes a linear form. It is thus appropriate to

view the Hessian 𝑓 ′′(𝑥) as a map R𝑛 → (R𝑛)∗ and to use the associated operator norm.

A Globalized Newton’s Method in Optimization

We now seek to globalize the local Newton’s method. In order to be able to apply the global convergence

theorem 5.9, we require the search directions and the step sizes to be admissible. We will realize these

requirements via a (generalized) angle condition and an Armijo backtracking line search. In addition,

we pay attention not to disturb the local Q-superlinear convergence.

Algorithm 5.30 (Globalized Newton method for (UP)).
Input: initial guess 𝑥 (0) ∈ R𝑛
Input: routine to evaluate 𝑓 and 𝑓 ′ (or ∇𝑓 )
Input: routine to evaluate 𝑓 ′′ (or matrix-vector products with 𝑓 ′′)
Input: s. p. d. matrix𝑀 (or matrix-vector products with𝑀−1)
Input: globalization parameters 𝜂 ∈ (0, 1), 𝜌 > 0 and exponent 𝑝 > 0

Input: Armijo parameter 𝜎 ∈ (0, 1/2) // to be passed through to the Armijo backtracking line search

Input: backtracking parameter 𝛽 ∈ (0, 1) // to be passed through to the Armijo backtracking line search

Output: approximately stationary point of (UP)
1: Set 𝑘 B 0

2: Set 𝑓 (0) B 𝑓 (𝑥 (0) ) // evaluate the initial objective value

3: Set 𝑟 (0) B 𝑓 ′(𝑥 (0) )ᵀ = ∇𝑓 (𝑥 (0) ) // evaluate the initial residual

4: Set 𝑑
(0)
𝐺
B −𝑀−1𝑟 (0) // evaluate the negative𝑀-gradient

5: Set 𝛿 (0) B −(𝑟 (0) )ᵀ𝑑 (0)
𝐺

// 𝛿 (0) = ∥∇𝑀 𝑓 (𝑥 (0) )∥2𝑀 = ∥𝑑 (0)
𝐺
∥2
𝑀

6: while stopping criterion not met do
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7: Attempt to solve the Newton system

𝑓 ′′(𝑥 (𝑘 ) ) 𝑑 (𝑘 )
𝑁

= −𝑟 (𝑘 ) (5.26)

8: if the Newton system is not solvable or not uniquely solvable then
9: Set 𝑑 (𝑘 ) B 𝑑

(𝑘 )
𝐺

// use the steepest descent direction as fallback

10: else // Newton direction 𝑑
(𝑘 )
𝑁

available

11: Evaluate the generalized angle condition for the Newton direction

𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 )
𝑁
≤ −min

{
𝜂, 𝜌 ∥𝑑 (𝑘 )

𝐺
∥𝑝
𝑀

}
∥𝑑 (𝑘 )
𝐺
∥𝑀 ∥𝑑 (𝑘 )𝑁

∥𝑀 (5.27)

12: if true then
13: Set 𝑑 (𝑘 ) B 𝑑

(𝑘 )
𝑁

// use the Newton direction

14: else
15: Set 𝑑 (𝑘 ) B 𝑑

(𝑘 )
𝐺

// use the steepest descent direction as fallback

16: end if
17: end if
18: Determine a step size 𝛼 (𝑘 ) > 0 from an Armijo backtracking line search procedure (Algorithm 5.11),

applied to 𝜑 (𝛼) B 𝑓 (𝑥 (𝑘 ) + 𝛼 𝑑 (𝑘 ) ), with initial trial step size 𝛼 (𝑘,0) = 1, Armijo parameter 𝜎 and

backtracking parameter 𝛽 // 𝜑 (0) = 𝑓 (𝑘 ) and 𝜑 ′(0) = (𝑟 (𝑘 ) )ᵀ𝑑 (𝑘 ) = −𝛿 (𝑘 ) in case of 𝑑 (𝑘 ) = 𝑑 (𝑘 )
𝐺

, or

𝜑 ′(0) = 𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 )
𝑁

in case of 𝑑 (𝑘 ) = 𝑑 (𝑘 )
𝑁

, are already known

19: Set 𝑥 (𝑘+1) B 𝑥 (𝑘 ) + 𝛼 (𝑘 )𝑑 (𝑘 )
20: Set 𝑓 (𝑘+1) B 𝑓 (𝑥 (𝑘+1) ) // can be returned by the Armijo backtracking line search routine

21: Set 𝑟 (𝑘+1) B 𝑓 ′(𝑥 (𝑘+1) )ᵀ = ∇𝑓 (𝑥 (𝑘+1) )
22: Set 𝑑

(𝑘+1)
𝐺

B −𝑀−1𝑟 (𝑘+1) // evaluate the negative𝑀-gradient

23: Set 𝛿 (𝑘+1) B −(𝑟 (𝑘+1) )ᵀ𝑑 (𝑘+1)
𝐺

// 𝛿 (𝑘+1) = ∥∇𝑀 𝑓 (𝑥 (𝑘+1) )∥2𝑀 = ∥𝑑 (𝑘+1)
𝐺
∥2
𝑀

24: Set 𝑘 B 𝑘 + 1
25: end while
26: return 𝑥 (𝑘 )

So the basic idea of Algorithm 5.30 is to use the negative𝑀-gradient 𝑑
(𝑘 )
𝐺

in case the Newton direc-

tion𝑑
(𝑘 )
𝑁

is either not available, or in case it is not a good descent direction. To decide the latter, we verify

its angle with the direction of steepest descent. We know that the steepest descent direction 𝑑 = 𝑑
(𝑘 )
𝐺

satisfies the angle condition (5.8), i. e.,

𝑓 ′(𝑥 (𝑘 ) ) 𝑑 ≤ −𝜂 ∥∇𝑀 𝑓 (𝑥 (𝑘 ) )∥𝑀 ∥𝑑 ∥𝑀 = −𝜂 ∥𝑑 (𝑘 )
𝐺
∥𝑀 ∥𝑑 ∥𝑀

with the maximal possible value, 𝜂 = 1. In (5.27), we require qualitatively the same condition for the

Newton direction, but with some smaller value 𝜂 ∈ (0, 1). Moreover, as the norm of the gradient

∥𝑑 (𝑘 )
𝐺
∥𝑀 becomes smaller, i. e., as we get closer to being stationary, we wish to encourage the Newton

direction to be used in order to enable fast local convergence. In that phase, it is no longer necessary

and, in fact, disadvantageous, to limit the angle between the Newton direction and the steepest descent

direction. To be concrete, we use the term 𝜌 ∥𝑑 (𝑘 )
𝐺
∥𝑝
𝑀
to determine whether we are in that phase. This

explains the condition

𝑓 ′(𝑥 (𝑘 ) ) 𝑑 ≤ −min

{
𝜂, 𝜌 ∥𝑑 (𝑘 )

𝐺
∥𝑝
𝑀

}
∥𝑑 (𝑘 )
𝐺
∥𝑀 ∥𝑑 ∥𝑀
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that we employ the check the descent quality of the Newton direction 𝑑
(𝑘 )
𝑁

in (5.27). A range of

similar conditions achieving the same goal is also conceivable; see for instance Geiger, Kanzow, 1999,

Kapitel 9.2 or Ulbrich, Ulbrich, 2012, p.49.

Remark 5.31 (on globalized Newton’s method (Algorithm 5.30)).
(𝑖) The parameters 𝜌 and 𝑝 are often chosen relatively small, e. g.,

𝜌 = 10
−6

and 𝑝 = 10
−1.

(𝑖𝑖) As in our previous algorithms, we may have available the preconditioner only in the form of

matrix-vector products with𝑀−1. In order to evaluate (5.27), however, we need to be able to compute

∥𝑑 (𝑘 )
𝑁
∥𝑀 as well, which appears to be unavailable.

There is, however, an elegant way out. If we solve the Newton system (5.24) using the CG method

(Algorithm 4.17) with preconditioner𝑀 and initial guess 0, we have available by (4.33)–(4.34) the

𝑀-norm of the iterates and thus also the𝑀-norm of the solution 𝑑
(𝑘 )
𝑁

.

Moreover, the CG method can be easily modified to accommodate the situation that the Newton

system is not solvable, or not uniquely solvable. This is the case when a direction of non-positive

curvature is encountered during the CG iterations, i. e., when the quantity 𝜃 in Algorithm 4.17

becomes ≤ 0. We describe these modifications below (Algorithm 5.41) in the context of inexact

Newton methods, where we also take advantage of the fact that it may not be necessary to solve

(5.24) exactly.

(𝑖𝑖𝑖) The approach to globalization taken in Algorithm 5.30 is to reject the Newton direction if it does not

exist or does not offer a sufficiently negative directional derivative, and to replace it by the steepest

descent direction. There are other approaches that modify the Newton direction so that it always

exists and offers sufficient descent. One can, for instance, add a multiple of the identity matrix (or

rather a multiple of the preconditioner) to 𝑓 ′′(𝑥 (𝑘 ) ) when the latter is found not to be “sufficiently

positive definite”. The modified Newton system then reads[
𝑓 ′′(𝑥 (𝑘 ) ) + 𝜏 𝑀

]
𝑑 (𝑘 ) = −∇𝑓 (𝑥 (𝑘 ) )

with some 𝜏 > 0; see for instance Geiger, Kanzow, 1999, p.93 and Nocedal, Wright, 2006, p.51.

We now proceed to show the global convergence of Algorithm 5.30.

Theorem 5.32 (Convergence of globalized Newton’s method). Suppose that 𝑓 is of class 𝐶2
. Suppose

that 𝑥∗ is an accumulation point of 𝑥 (𝑘 ) and that
(
𝑥 (𝑘 )

)
𝑘∈𝐾 is a subsequence converging to 𝑥∗. Then the

search directions

(
𝑑 (𝑘 )

)
𝑘∈𝐾 and step sizes

(
𝛼 (𝑘 )

)
𝑘∈𝐾 are admissible. Consequently, we have 𝑓 ′(𝑥∗) = 0.

Proof. We verify the prerequisites of the global convergence theorem 5.9, which then implies 𝑓 ′(𝑥∗) = 0.

To this end, we set

𝐾𝑁 B {𝑘 ∈ 𝐾 : 𝑑 (𝑘 ) = 𝑑 (𝑘 )
𝑁
} (index set of Newton steps)

𝐾𝐺 B 𝐾 \ 𝐾𝑁 (index set of gradient steps).
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Step (1) Wir first show the admissibility of the search directions. That is, we have to show that

𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 )

∥𝑑 (𝑘 ) ∥𝑀
𝑘∈𝐾−−−→ 0 implies 𝑓 ′(𝑥 (𝑘 ) ) 𝑘∈𝐾−−−→ 0. (5.7’)

For indices 𝑘 ∈ 𝐾𝐺 we have 𝑑 (𝑘 ) = −𝑀−1∇𝑓 (𝑥 (𝑘 ) ) and thus

− 𝑓
′(𝑥 (𝑘 ) ) 𝑑 (𝑘 )

∥𝑑 (𝑘 ) ∥𝑀
=
∥∇𝑀 𝑓 (𝑥 (𝑘 ) )∥2𝑀
∥∇𝑀 𝑓 (𝑥 (𝑘 ) )∥𝑀

= ∥∇𝑀 𝑓 (𝑥 (𝑘 ) )∥𝑀 .

The left-hand side of (5.7’) thus implies ∥∇𝑀 𝑓 (𝑥 (𝑘 ) )∥𝑀
𝑘∈𝐾𝐺−−−−→ 0, which is equivalent to 𝑓 ′(𝑥 (𝑘 ) ) 𝑘∈𝐾𝐺−−−−→

0.

For the complementary indices 𝑘 ∈ 𝐾𝑁 , the generalized angle condition (5.27) reads

− 𝑓
′(𝑥 (𝑘 ) ) 𝑑 (𝑘 )

∥𝑑 (𝑘 ) ∥𝑀
≥ min

{
𝜂, 𝜌 ∥𝑑 (𝑘 )

𝐺
∥𝑝
𝑀

}
∥𝑑 (𝑘 )
𝐺
∥𝑀 ≥ 0.

The left-hand side of (5.7’) thus implies ∥𝑑 (𝑘 )
𝐺
∥𝑀 = ∥∇𝑀 𝑓 (𝑥 (𝑘 ) )∥𝑀

𝐾𝑁−−→ 0, which is the same as

𝑓 ′(𝑥 (𝑘 ) ) 𝑘∈𝐾𝑁−−−−→ 0.

Step (2) The convergence of

(
𝑥 (𝑘 )

)
𝑘∈𝐾 and the𝐶2

-property of the objective imply that the subsequence of

Hessians 𝑓 ′′(𝑥 (𝑘 ) ) converges as well, and consequently the subsequence 𝑓 ′′(𝑥 (𝑘 ) ) is bounded (in
any normwemight impose on the space of𝑛-by-𝑛matrices), so that we have ∥ 𝑓 ′′(𝑥 (𝑘 ) )∥𝑀−1←𝑀 ≤
𝐶 for 𝑘 ∈ 𝐾 . For the Newton steps, we recall 𝑓 ′′(𝑥) 𝑑 = −∇𝑓 (𝑥), which we can also write as

−𝑀−1 𝑓 ′′(𝑥) 𝑑 = ∇𝑀 𝑓 (𝑥). By the definition of matrix norms, see (2.5), we find

∥𝑑 (𝑘 ) ∥𝑀 ≥
1

∥ 𝑓 ′′(𝑥 (𝑘 ) )∥𝑀−1←𝑀
∥∇𝑀 𝑓 (𝑥 (𝑘 ) )∥𝑀 ≥

1

𝐶
∥∇𝑀 𝑓 (𝑥 (𝑘 ) )∥𝑀 for 𝑘 ∈ 𝐾𝑁 ,

and clearly

∥𝑑 (𝑘 ) ∥𝑀 = 1 ∥∇𝑀 𝑓 (𝑥 (𝑘 ) )∥𝑀 for 𝑘 ∈ 𝐾𝐺 ,

so overall we have

∥𝑑 (𝑘 ) ∥𝑀 ≥ min

{
1

𝐶
, 1

}
∥∇𝑀 𝑓 (𝑥 (𝑘 ) )∥𝑀 ≥ min

{
1

𝐶
, 1

} −𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 )
∥𝑑 (𝑘 ) ∥𝑀

(5.28)

for all 𝑘 ∈ 𝐾 . In view of the initial Armijo trial step size being 𝛼 (𝑘,0) = 1, we satisfy condition

(5.14) of Lemma 5.13 with𝜓 (𝑡) = min{𝑡, 𝑡/𝐶}, which in turn implies the admissibility of the step

sizes along the subsequence.

□

Next we show that, under appropriate assumptions, Algorithm 5.30 eventually becomes identical to

the local Newton’s method, which means that

𝑑 (𝑘 ) = 𝑑 (𝑘 )
𝑁

and 𝛼 (𝑘 ) = 1 (5.29)

holds for all 𝑘 sufficiently large. Consequently, the local convergence theorem 5.27 applies, which

yields the fast (at least Q-superlinear) convergence of the entire sequence of iterates, as soon as it is

sufficiently close to a local minimizer satisfying second-order sufficient optimality condition.
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Theorem 5.33 (Transition to fast local convergence in Algorithm 5.30, see Ulbrich, Ulbrich, 2012,

Satz 10.14). Suppose that 𝑓 is of class 𝐶2
. Suppose that 𝑥∗ is an accumulation point of 𝑥 (𝑘 ) and that(

𝑥 (𝑘 )
)
𝑘∈𝐾 is a subsequence converging to 𝑥∗. Assume, moreover, that the Hessian 𝑓 ′′(𝑥∗) is s. p. d. Then

the following holds:

(𝑖) 𝑓 ′(𝑥∗) = 0 holds, i. e., 𝑥∗ satisfies the second-order sufficient optimality condition.

(𝑖𝑖) The entire sequence 𝑥 (𝑘 ) converges to 𝑥∗.

(𝑖𝑖𝑖) There exists an index 𝑘0 ∈ N0 such that (5.29) holds for all 𝑘 ≥ 𝑘0. Consequently, 𝑥 (𝑘 ) converges to
𝑥∗ Q-superlinearly w.r.t. the𝑀-norm.

(𝑖𝑣) If 𝑓 ′′ is Lipschitz continuous in a neighorbood of 𝑥∗, then the convergence is Q-quadratic.

Proof. We do not provide the proof but refer the interested reader to Ulbrich, Ulbrich, 2012, Satz 10.14

for the time being. □

§ 5.5 Newton-Like Methods

From the point of convergence analysis, the globalized Newton’s method (Algorithm 5.30) is superior

to the steepest descent method (Algorithm 5.22) since it offers a Q-superlinear convergence phase.

However, Newton’s method has a number of drawbacks as well:

(1) The Hessian 𝑓 ′′(𝑥) may be expensive to evaluate, and it is needed in addition to the first-order

derivative 𝑓 ′(𝑥) of the objective.

(2) The solution of the Newton systems

𝑓 ′′(𝑥 (𝑘 ) ) 𝑑 (𝑘 ) = −∇𝑓 (𝑥 (𝑘 ) ) (5.25)

is often more expensive compared to the evaluation of the gradient direction

𝑀 𝑑 (𝑘 ) = −∇𝑓 (𝑑 (𝑘 ) ) .

After all, 𝑀 is constant and can be factorized using the Cholesky decomposition when the

number of optimization variables is moderate.

We will address both issues simultaneously. To this end, we consider methods which allow us to

(1) replace the Hessian 𝑓 ′′(𝑥 (𝑘 ) ) by a (s. p. d.) model Hessian 𝐻 (𝑘 ) and

(2) solve the linear system

𝐻 (𝑘 )𝑑 (𝑘 ) = −∇𝑓 (𝑥 (𝑘 ) ) (5.30)

iteratively, and possibly only inexactly.
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The latter means that effectively we are solving a linear system

𝐻 (𝑘 )𝑑 (𝑘 ) = −∇𝑓 (𝑥 (𝑘 ) ) + 𝜁 (𝑘 ) (5.31)

with an implicitly defined residual 𝜁 (𝑘 ) . To this end, we will typically specify a tolerance of the form

∥𝜁 (𝑘 ) ∥𝑀−1 ≤ 𝜀 (𝑘 ) .

As a starting point, we consider a generic local Newton-like method with no line search.

Algorithm 5.34 (Generic Newton-like method for (UP)).
Input: initial guess 𝑥 (0) ∈ R𝑛
Input: routine to evaluate 𝑓 and 𝑓 ′ (or ∇𝑓 )
Input: initial symmetric model Hessian 𝐻 (0) ∈ R𝑛×𝑛 (possibly s. p. d.)

Input: routine to determine the symmetric model Hessians 𝐻 (𝑘 ) (possibly s. p. d.)

Input: s. p. d. matrix𝑀 (or matrix-vector products with𝑀−1)
Output: approximately stationary point of (UP)
1: Set 𝑘 B 0

2: while stopping criterion not met do
3: Determine a search direction 𝑑 (𝑘 ) by (inexactly) solving 𝐻 (𝑘 )𝑑 (𝑘 ) = −∇𝑓 (𝑥 (𝑘 ) )
4: // 𝐻 (𝑘 )𝑑 (𝑘 ) = −∇𝑓 (𝑥 (𝑘 ) ) + 𝜁 (𝑘 ) with some residual 𝜁 (𝑘 )

5: Set 𝑥 (𝑘+1) B 𝑥 (𝑘 ) + 𝑑 (𝑘 )
6: Determine the next model Hessian 𝐻 (𝑘+1)

7: Set 𝑘 B 𝑘 + 1
8: end while
9: return 𝑥 (𝑘 )

The following questions arise:

(1) What are the requirements for 𝐻 (𝑘 ) and 𝜁 (𝑘 ) in order to obtain fast (“Newton-like”, i. e., Q-

superlinear) convergence?

(2) What practical approaches exist to choose the matrices 𝐻 (𝑘 ) and to impose a bound for residual

norm 𝜁 (𝑘 ) , with an eye to reducing the numerical effort?

As we did for Newton’s method (§ 5.4), we begin by considering an analog of Algorithm 5.34 to

find a zero of a 𝐶1
function 𝐹 : R𝑛 → R𝑛 . In place of the exact Jacobians 𝐹 ′(𝑥 (𝑘 ) ), we use model

Jacobians 𝐻 (𝑘 ) , which are supposed to be non-singular but not necessarily symmetric or positive

definite.

Algorithm 5.35 (Generic Newton-like method for 𝐹 (𝑥) = 0).
Input: initial guess 𝑥 (0) ∈ R𝑛
Input: routine to evaluate 𝐹

Input: routine to determine the non-singular model Jacobians 𝐻 (𝑘 )

Input: s. p. d. matrix𝑀 (or matrix-vector products with𝑀−1)
Output: approximate zero of 𝐹
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1: Set 𝑘 B 0

2: while stopping criterion not met do
3: Determine a search direction 𝑑 (𝑘 ) by (inexactly) solving 𝐻 (𝑘 )𝑑 (𝑘 ) = −𝐹 (𝑥 (𝑘 ) )
4: // 𝐻 (𝑘 )𝑑 (𝑘 ) = −𝐹 (𝑥 (𝑘 ) ) + 𝜁 (𝑘 ) with some residual 𝜁 (𝑘 )

5: Set 𝑥 (𝑘+1) B 𝑥 (𝑘 ) + 𝑑 (𝑘 )
6: Set 𝑘 B 𝑘 + 1
7: end while
8: return 𝑥 (𝑘 )

In a nutshell, the sequence generated by Algorithm 5.35 is governed by

𝐻 (𝑘 )𝑑 (𝑘 ) = −𝐹 (𝑥 (𝑘 ) ) + 𝜁 (𝑘 )

𝑥 (𝑘+1) = 𝑥 (𝑘 ) + 𝑑 (𝑘 ) .
(5.32)

The following lemma shows that the fast local convergence of any sequence 𝑥 (𝑘 ) converging to a zero

of 𝐹 is related to the question how well the elements of that sequence satisfy the true Newton systems

𝐹 (𝑥 (𝑘 ) ) + 𝐹 ′(𝑥 (𝑘 ) ) (𝑥 (𝑘+1) − 𝑥 (𝑘 ) ) = 0.

Lemma 5.36 (Characterization of fast local convergence). Suppose that 𝐹 : R𝑛 → R𝑛 is a 𝐶1
function

and that 𝑥 (𝑘 ) is any sequence in R𝑛 converging to 𝑥∗ with non-singular Jacobian 𝐹 ′(𝑥∗). Then the

following are equivalent:

(𝑖) 𝑥 (𝑘 ) converges Q-superlinearly w.r.t. the𝑀-norm, and we have 𝐹 (𝑥∗) = 0.

(𝑖𝑖) For any 𝜀 > 0 there exists an index 𝑘0 ∈ N0 such that
25

∥𝐹 (𝑥 (𝑘 ) ) + 𝐹 ′(𝑥 (𝑘 ) ) (𝑥 (𝑘+1) − 𝑥 (𝑘 ) )∥𝑀−1 ≤ 𝜀 ∥𝑥 (𝑘+1) − 𝑥 (𝑘 ) ∥𝑀 for all 𝑘 ≥ 𝑘0. (5.33a)

(𝑖𝑖𝑖) For any 𝜀 > 0 there exists an index 𝑘0 ∈ N0 such that
26

∥𝐹 (𝑥 (𝑘 ) ) + 𝐹 ′(𝑥 (𝑘 ) ) (𝑥 (𝑘+1) − 𝑥 (𝑘 ) )∥𝑀−1 ≤ 𝜀 ∥𝑥 (𝑘 ) − 𝑥∗∥𝑀 for all 𝑘 ≥ 𝑘0. (5.33b)

(𝑖𝑣) For any 𝜀 > 0 there exists an index 𝑘0 ∈ N0 such that
27

∥𝐹 (𝑥 (𝑘 ) ) + 𝐹 ′(𝑥∗) (𝑥 (𝑘+1) − 𝑥 (𝑘 ) )∥𝑀−1 ≤ 𝜀 ∥𝑥 (𝑘+1) − 𝑥 (𝑘 ) ∥𝑀 for all 𝑘 ≥ 𝑘0. (5.33c)

Proof. We begin with some preliminary estimates. Since 𝐹 is of class𝐶1
and 𝐹 ′(𝑥∗) is non-singular, there

exists a neighborhood 𝐵𝑀
𝛿
(𝑥∗) and constants 𝑐,𝐶 > 0 such that ∥𝐹 ′(𝑥)∥𝑀−1←𝑀 and ∥𝐹 ′(𝑥)−1∥𝑀←𝑀−1

hold for all 𝑥 ∈ 𝐵𝑀
𝛿
(𝑥∗); compare Lemma 5.25. The mean value theorem 2.4 gives us

𝐹 (𝑥 (𝑘+1) ) − 𝐹 (𝑥∗) = 𝐹 ′
(
𝑥∗ + 𝜉 (𝑘 ) (𝑥 (𝑘+1) − 𝑥∗)

)
(𝑥 (𝑘+1) − 𝑥∗)

25
briefly: ∥𝐹 (𝑥 (𝑘 ) ) + 𝐹 ′ (𝑥 (𝑘 ) ) (𝑥 (𝑘+1) − 𝑥 (𝑘 ) )∥𝑀−1 ∈ 𝑜 (∥𝑥 (𝑘+1) − 𝑥 (𝑘 ) ∥𝑀 )

26
briefly: ∥𝐹 (𝑥 (𝑘 ) ) + 𝐹 ′ (𝑥 (𝑘 ) ) (𝑥 (𝑘+1) − 𝑥 (𝑘 ) )∥𝑀−1 ∈ 𝑜 (∥𝑥 (𝑘 ) − 𝑥∗∥𝑀 )

27
briefly: ∥𝐹 (𝑥 (𝑘 ) ) + 𝐹 ′ (𝑥∗) (𝑥 (𝑘+1) − 𝑥 (𝑘 ) )∥𝑀−1 ∈ 𝑜 (∥𝑥 (𝑘+1) − 𝑥 (𝑘 ) ∥𝑀 )
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with some 𝜉 (𝑘 ) ∈ (0, 1). We thus conclude

𝑐 ∥𝑥 (𝑘+1) − 𝑥∗∥𝑀 ≤ ∥𝐹 (𝑥 (𝑘+1) ) − 𝐹 (𝑥∗)∥𝑀−1 ≤ 𝐶 ∥𝑥 (𝑘+1) − 𝑥∗∥𝑀 . (∗)

for sufficiently large 𝑘 ∈ N0.

Another application of the mean value theorem 2.4 yields

𝐹 (𝑥 (𝑘+1) ) − 𝐹 (𝑥 (𝑘 ) )
= 𝐹 ′

(
𝑥 (𝑘 ) + 𝜉 (𝑘 ) (𝑥 (𝑘+1) − 𝑥 (𝑘 ) )

)
(𝑥 (𝑘+1) − 𝑥 (𝑘 ) ) where 𝜉 (𝑘 ) ∈ (0, 1)

= 𝐹 ′(𝑥 (𝑘 ) ) (𝑥 (𝑘+1) − 𝑥 (𝑘 ) ) +
[
𝐹 ′

(
𝑥 (𝑘 ) + 𝜉 (𝑘 ) (𝑥 (𝑘+1) − 𝑥 (𝑘 ) )

)
− 𝐹 ′(𝑥 (𝑘 ) )

]
(𝑥 (𝑘+1) − 𝑥 (𝑘 ) )

and thus

∥𝐹 (𝑥 (𝑘+1) ) − 𝐹 (𝑥 (𝑘 ) ) − 𝐹 ′(𝑥 (𝑘 ) ) (𝑥 (𝑘+1) − 𝑥 (𝑘 ) )∥𝑀−1
≤ ∥𝐹 ′

(
𝑥 (𝑘 ) + 𝜉𝑘 (𝑥 (𝑘+1) − 𝑥 (𝑘 ) )

)
− 𝐹 ′(𝑥 (𝑘 ) )∥𝑀−1←𝑀 ∥𝑥 (𝑘+1) − 𝑥 (𝑘 ) ∥𝑀 .

As in the proof of Lemma 5.20 we can now exploit the uniform continuity of 𝐹 ′ “near the
(
𝑥 (𝑘 )

)
”. This

entails that, for any 𝜀 > 0, there exists an index 𝑘0 ∈ N0 such that

∥𝐹 (𝑥 (𝑘+1) ) − 𝐹 (𝑥 (𝑘 ) ) − 𝐹 ′(𝑥 (𝑘 ) ) (𝑥 (𝑘+1) − 𝑥 (𝑘 ) )∥𝑀−1 ≤ 𝜀 ∥𝑥 (𝑘+1) − 𝑥 (𝑘 ) ∥𝑀 (∗∗)

holds for all 𝑘 ≥ 𝑘0.

Statement (𝑖) ⇒ Statement (𝑖𝑖) and Statement (𝑖𝑖𝑖): The triangle inequality and the Q-superlinear

convergence imply that, for sufficiently large 𝑘 , we have

∥𝑥 (𝑘 ) − 𝑥∗∥𝑀 ≤ ∥𝑥 (𝑘 ) − 𝑥 (𝑘+1) ∥𝑀 + ∥𝑥 (𝑘+1) − 𝑥∗∥𝑀 ≤ ∥𝑥 (𝑘 ) − 𝑥 (𝑘+1) ∥𝑀 +
1

2

∥𝑥 (𝑘 ) − 𝑥∗∥𝑀 ,

and thus

∥𝑥 (𝑘 ) − 𝑥∗∥𝑀 ≤ 2 ∥𝑥 (𝑘+1) − 𝑥 (𝑘 ) ∥𝑀 . (∗∗∗)

On the other hand, the triangle inequality and the Q-superlinear convergence also imply that

∥𝑥 (𝑘+1) − 𝑥 (𝑘 ) ∥𝑀 ≤ ∥𝑥 (𝑘+1) − 𝑥∗∥𝑀 + ∥𝑥∗ − 𝑥 (𝑘 ) ∥𝑀 ≤ 1 ∥𝑥 (𝑘 ) − 𝑥∗∥𝑀 + ∥𝑥∗ − 𝑥 (𝑘 ) ∥𝑀 ,

holds for sufficiently large 𝑘 , whence

∥𝑥 (𝑘+1) − 𝑥 (𝑘 ) ∥𝑀 ≤ 2 ∥𝑥 (𝑘 ) − 𝑥∗∥𝑀 . (∗∗∗∗)

In other words, the quantities ∥𝑥 (𝑘+1) −𝑥 (𝑘 ) ∥𝑀 and ∥𝑥 (𝑘 ) −𝑥∗∥𝑀 “control each other” for 𝑘 sufficiently

large.

Let 𝜀 > 0 be arbitrary. We can estimate

∥𝐹 (𝑥 (𝑘 ) ) + 𝐹 ′(𝑥 (𝑘 ) ) (𝑥 (𝑘+1) − 𝑥 (𝑘 ) )∥𝑀−1
≤ ∥𝐹 (𝑥 (𝑘+1) ) − 𝐹 (𝑥 (𝑘 ) ) − 𝐹 ′(𝑥 (𝑘 ) ) (𝑥 (𝑘+1) − 𝑥 (𝑘 ) )∥𝑀−1 + ∥𝐹 (𝑥 (𝑘+1) ) − 𝐹 (𝑥∗)︸︷︷︸

=0

∥𝑀−1
≤ 𝜀 ∥𝑥 (𝑘+1) − 𝑥 (𝑘 ) ∥𝑀 + ∥𝐹 (𝑥 (𝑘+1) ) − 𝐹 (𝑥∗)∥𝑀−1 by (∗∗)
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for 𝑘 sufficiently large. We need to address the second term in the previous inequality:

∥𝐹 (𝑥 (𝑘+1) ) − 𝐹 (𝑥∗)∥𝑀−1 ≤ 𝐶 ∥𝑥 (𝑘+1) − 𝑥∗∥𝑀 by (∗)
≤ 𝐶 ∥𝑥 (𝑘 ) − 𝑥∗∥𝑀 by the Q-superlinear convergence.

for 𝑘 sufficiently large. Plugging tihs estimate into the previous inequality is Statement (𝑖𝑖).

Moreover, as we demonstrated in (∗∗∗∗), ∥𝑥 (𝑘 ) − 𝑥∗∥𝑀 and ∥𝑥 (𝑘+1) − 𝑥 (𝑘 ) ∥𝑀 are different by at most a

constant factor, we also have proved Statement (𝑖𝑖𝑖).

Statement (𝑖𝑖) or Statement (𝑖𝑖𝑖) ⇒ Statement (𝑖): We estimate

∥𝐹 (𝑥 (𝑘+1) )∥𝑀−1
≤ ∥𝐹 (𝑥 (𝑘+1) ) − 𝐹 (𝑥 (𝑘 ) ) − 𝐹 ′(𝑥 (𝑘 ) ) (𝑥 (𝑘+1) − 𝑥 (𝑘 ) )∥𝑀−1 + ∥𝐹 (𝑥 (𝑘 ) ) + 𝐹 ′(𝑥 (𝑘 ) ) (𝑥 (𝑘+1) − 𝑥 (𝑘 ) )∥𝑀−1
≤ 𝜀 ∥𝑥 (𝑘+1) − 𝑥 (𝑘 ) ∥𝑀 + ∥𝐹 (𝑥 (𝑘 ) ) + 𝐹 ′(𝑥 (𝑘 ) ) (𝑥 (𝑘+1) − 𝑥 (𝑘 ) )∥𝑀−1 by (∗∗).

By Statement (𝑖𝑖) or Statement (𝑖𝑖𝑖), the second term can be bounded by 𝜀 ∥𝑥 (𝑘+1) −𝑥 (𝑘 ) ∥𝑀 or 𝜀 ∥𝑥 (𝑘 ) −
𝑥∗∥𝑀 , respectively. In any case, we have

∥𝐹 (𝑥 (𝑘+1) )∥𝑀−1 ≤ 𝜀 ∥𝑥 (𝑘+1) − 𝑥 (𝑘 ) ∥𝑀 + 2 𝜀 ∥𝑥 (𝑘+1) − 𝑥 (𝑘 ) ∥𝑀 = 3 𝜀 ∥𝑥 (𝑘+1) − 𝑥 (𝑘 ) ∥𝑀

for sufficiently large 𝑘 . In view of 𝑥 (𝑘 ) → 𝑥∗, we find 𝐹 (𝑥 (𝑘+1) ) → 0 and thus 𝐹 (𝑥∗) = 0.

It remains to show the Q-superlinear convergence of 𝑥 (𝑘 ) . For any 𝜀 ∈ (0, 𝑐), we have

𝑐 ∥𝑥 (𝑘+1) − 𝑥∗∥𝑀 ≤ ∥𝐹 (𝑥 (𝑘+1) )∥𝑀−1 by (∗)
≤ 3 𝜀 ∥𝑥 (𝑘+1) − 𝑥 (𝑘 ) ∥𝑀
≤ 6 𝜀 ∥𝑥 (𝑘+1) − 𝑥∗∥𝑀 by (∗∗∗∗),

and thus

∥𝑥 (𝑘+1) − 𝑥∗∥𝑀 ≤
6 𝜀

𝑐
∥𝑥 (𝑘 ) − 𝑥∗∥𝑀

for sufficiently large 𝑘 . This shows the Q-superlinear convergence of 𝑥 (𝑘 ) to 𝑥∗ w.r.t. the𝑀-norm.

Statement (𝑖𝑖) ⇔ Statement (𝑖𝑣): The difference of the terms inside the norms on the left hand sides

in (5.33a) and (5.33c) is [𝐹 ′(𝑥 (𝑘 ) ) − 𝐹 ′(𝑥∗)] (𝑥 (𝑘+1) − 𝑥 (𝑘 ) ). Its norm can be estimated as follows:

∥ [𝐹 ′(𝑥 (𝑘 ) ) − 𝐹 ′(𝑥∗)] (𝑥 (𝑘+1) − 𝑥 (𝑘 ) )∥𝑀−1
≤ ∥𝐹 ′(𝑥 (𝑘 ) ) − 𝐹 ′(𝑥∗)∥𝑀−1←𝑀 ∥𝑥 (𝑘+1) − 𝑥 (𝑘 ) ∥𝑀
≤ 𝜀 ∥𝑥 (𝑘+1) − 𝑥 (𝑘 ) ∥𝑀 by the continuity of 𝐹 ′

for sufficiently large 𝑘 . The triangle inequality, either in the form

∥𝐹 (𝑥 (𝑘 ) ) + 𝐹 ′(𝑥 (𝑘 ) ) (𝑥 (𝑘+1) − 𝑥 (𝑘 ) )∥𝑀−1
≤ ∥𝐹 (𝑥 (𝑘 ) ) + 𝐹 ′(𝑥∗) (𝑥 (𝑘+1) − 𝑥 (𝑘 ) )∥𝑀−1 + ∥[𝐹 ′(𝑥 (𝑘 ) ) − 𝐹 ′(𝑥∗)] (𝑥 (𝑘+1) − 𝑥 (𝑘 ) )∥𝑀−1
≤ ∥𝐹 (𝑥 (𝑘 ) ) + 𝐹 ′(𝑥∗) (𝑥 (𝑘+1) − 𝑥 (𝑘 ) )∥𝑀−1 + 𝜀 ∥𝑥 (𝑘+1) − 𝑥 (𝑘 ) ∥𝑀
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or in the form

∥𝐹 (𝑥 (𝑘 ) ) + 𝐹 ′(𝑥∗) (𝑥 (𝑘+1) − 𝑥 (𝑘 ) )∥𝑀−1
≤ ∥𝐹 (𝑥 (𝑘 ) ) + 𝐹 ′(𝑥 (𝑘 ) ) (𝑥 (𝑘+1) − 𝑥 (𝑘 ) )∥𝑀−1 + ∥[𝐹 ′(𝑥 (𝑘 ) ) − 𝐹 ′(𝑥∗)] (𝑥 (𝑘+1) − 𝑥 (𝑘 ) )∥𝑀−1
≤ ∥𝐹 (𝑥 (𝑘 ) ) + 𝐹 ′(𝑥 (𝑘 ) ) (𝑥 (𝑘+1) − 𝑥 (𝑘 ) )∥𝑀−1 + 𝜀 ∥𝑥 (𝑘+1) − 𝑥 (𝑘 ) ∥𝑀 ,

each for sufficiently large 𝑘 , now shows the equivalence of Statement (𝑖𝑖) and Statement (𝑖𝑣). □

We now apply this lemma to Algorithm 5.34, where the sequence of iterates 𝑥 (𝑘 ) is generated via (5.32).
The residual these iterates leave in the true Newton systems can be expressed as

𝐹 (𝑥 (𝑘 ) ) + 𝐹 ′(𝑥 (𝑘 ) ) (𝑥 (𝑘+1) − 𝑥 (𝑘 ) )
= 𝐹 (𝑥 (𝑘 ) ) + 𝐹 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 )

= 𝐹 (𝑥 (𝑘 ) ) + 𝐹 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 )
=0︷                               ︸︸                               ︷

− 𝐹 (𝑥 (𝑘 ) ) − 𝐻 (𝑘 )𝑑 (𝑘 ) + 𝜁 (𝑘 )

=
[
𝐹 ′(𝑥 (𝑘 ) ) − 𝐻 (𝑘 )

]
𝑑 (𝑘 ) + 𝜁 (𝑘 ) .

We thus obtain from Lemma 5.36 the following corollary.

Corollary 5.37 (Characterization of fast local convergence). Suppose that 𝐹 : R𝑛 → R𝑛 is a𝐶1
function

and that 𝑥 (𝑘 ) is a sequence generated by (5.32) that converges to 𝑥∗ with non-singular Jacobian 𝐹 ′(𝑥∗).
Then the following are equivalent:

(𝑖) 𝑥 (𝑘 ) converges Q-superlinearly w.r.t. the𝑀-norm, and we have 𝐹 (𝑥∗) = 0.

(𝑖𝑖) For any 𝜀 > 0 there exists an index 𝑘0 ∈ N0 such that[𝐹 ′(𝑥 (𝑘 ) ) − 𝐻 (𝑘 ) ] 𝑑 (𝑘 ) + 𝜁 (𝑘 )
𝑀−1 ≤ 𝜀 ∥𝑥

(𝑘+1) − 𝑥 (𝑘 ) ∥𝑀 for all 𝑘 ≥ 𝑘0. (5.34a)

(𝑖𝑖𝑖) For any 𝜀 > 0 there exists an index 𝑘0 ∈ N0 such that[𝐹 ′(𝑥 (𝑘 ) ) − 𝐻 (𝑘 ) ] 𝑑 (𝑘 ) + 𝜁 (𝑘 )
𝑀−1 ≤ 𝜀 ∥𝑥

(𝑘 ) − 𝑥∗∥𝑀 for all 𝑘 ≥ 𝑘0. (5.34b)

(𝑖𝑣) For any 𝜀 > 0 there exists an index 𝑘0 ∈ N0 such that[𝐹 ′(𝑥∗) − 𝐻 (𝑘 ) ] 𝑑 (𝑘 ) + 𝜁 (𝑘 )
𝑀−1 ≤ 𝜀 ∥𝑥

(𝑘+1) − 𝑥 (𝑘 ) ∥𝑀 for all 𝑘 ≥ 𝑘0. (5.34c)

This set of equivalent of conditions that are necessary and sufficient for the local Q-superlinear

convergence are known as Dennis-Moré conditions, introduced in Dennis, Moré, 1974. They exhibit

that two requisites are sufficient to ensure fast convergence:

(1) The residual in the linear system, ∥𝜁 (𝑘 ) ∥𝑀−1 , goes to zero faster than ∥𝑥 (𝑘+1) − 𝑥 (𝑘 ) ∥𝑀 .

(2) The difference between the Jacobian 𝐹 ′(𝑥 (𝑘 ) ) and the model Jacobian 𝐻 (𝑘 ) , evaluated in the

direction of 𝑑 (𝑘 ) , goes to zero faster than ∥𝑥 (𝑘+1) − 𝑥 (𝑘 ) ∥𝑀 . Note: It is not necessary for 𝐻 (𝑘 ) to
approximate the Jacobian 𝐹 ′(𝑥 (𝑘 ) ) in its entirety!
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We will discuss in the following two classes of methods that are specializations of Algorithm 5.34. The

first class of methods are inexact Newton methods (§ 5.6), which use 𝐻 (𝑘 ) = 𝐹 ′(𝑥 (𝑘 ) ). The second
class of methods are quasi-Newton algorithms (§ 5.7), which feature 𝜁 (𝑘 ) = 0.

§ 5.6 Inexact Newton Methods

Inexact Newton methods use the true Jacobian 𝐻 (𝑘 ) = 𝐹 ′(𝑥 (𝑘 ) ) in the linear systems (5.31), but they

solve them only inexactly, leaving a residual 𝜁 (𝑘 ) :

𝐹 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 ) = −𝐹 (𝑥 (𝑘 ) ) + 𝜁 (𝑘 ) (5.35)

We measure the norm of the residual in the linear system (5.35) relative to the norm of the outer

residual 𝐹 (𝑥 (𝑘 ) ) associated with the current iterate 𝑥 (𝑘 ) . We require

∥𝜁 (𝑘 ) ∥𝑀−1 = ∥𝐹 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 ) + 𝐹 (𝑥 (𝑘 ) )∥𝑀−1 ≤ 𝜂 (𝑘 ) ∥𝐹 (𝑥 (𝑘 ) )∥𝑀−1 (5.36)

with some 𝜂 (𝑘 ) ∈ (0, 1). The sequence
(
𝜂 (𝑘 )

)
is known as a forcing sequence.

Note that 𝐹 (𝑥 (𝑘 ) ) is the residual associated with the zero vector, and hence

∥residual associated with 𝑑 (𝑘 ) ∥𝑀−1
∥residual associated with 0∥𝑀−1

=
∥𝜁 (𝑘 ) ∥𝑀−1
∥𝐹 (𝑥 (𝑘 ) )∥𝑀−1

≤ 𝜂 (𝑘 ) . (5.37)

Thus we can interpret the forcing sequence as the relative reduction of the residual required in the

linear system 𝐹 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 ) = −𝐹 (𝑥 (𝑘 ) ), compared to a zero initial guess. It is evident that we should

demand 𝜂 (𝑘 ) < 1. Otherwise, 𝑑 (𝑘 ) = 0 would constitute a sufficiently accurate solution.

We refer to Algorithm 5.34 as an inexact local Newton’s method in case 𝐻 (𝑘 ) = 𝐹 ′(𝑥 (𝑘 ) ). For
completeness, we state the algorithm as

Algorithm 5.38 (local inexact Newton’s method for 𝐹 (𝑥) = 0).
Input: initial guess 𝑥 (0) ∈ R𝑛
Input: routine to evaluate 𝐹 and 𝐹 ′

Input: spd Matrix𝑀 (oder Matrix-Vektor-Produkte mit𝑀−1)
Input: routine to determine the forcing sequence 𝜂 (𝑘 )

Output: approximate zero of 𝐹

1: Set 𝑘 B 0

2: while stopping criterion not met do
3: Determine a search direction 𝑑 (𝑘 ) by (inexactly) solving 𝐹 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 ) = −𝐹 (𝑥 (𝑘 ) ) so that the

residual 𝜁 (𝑘 ) B 𝐹 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 ) + 𝐹 (𝑥 (𝑘 ) ) satisfies the condition

∥𝜁 (𝑘 ) ∥𝑀−1 ≤ 𝜂 (𝑘 ) ∥𝐹 (𝑥 (𝑘 ) )∥𝑀−1 (5.36)

4: Set 𝑥 (𝑘+1) B 𝑥 (𝑘 ) + 𝑑 (𝑘 )
5: Set 𝑘 B 𝑘 + 1
6: end while
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7: return 𝑥 (𝑘 )

Note: With 𝜂 (𝑘 ) ≡ 0, we obtain again the exact local Newton’s method.

We can now specify a local convergence theorem for Algorithm 5.38.

Theorem 5.39 (Convergence of Algorithm 5.38; compare Theorem 5.27). Suppose that 𝐹 : R𝑛 → R𝑛 is
a 𝐶1

function and that 𝑥∗ ∈ R𝑛 is a point where 𝐹 (𝑥∗) = 0 and 𝐹 ′(𝑥∗) is non-singular. Suppose that 𝑥 (𝑘 )
is a sequence generated by Algorithm 5.38, where the elements of the forcing sequence satisfy 𝜂 (𝑘 ) ≤ 𝜂 < 1

for all 𝑘 ∈ N0. Then there exists a neighborhood 𝐵𝑀
𝛿
(𝑥∗) such that

(𝑖) 𝑥∗ is the unique zero of 𝐹 in 𝐵𝑀
𝛿
(𝑥∗).

(𝑖𝑖) For any initial guess 𝑥 (0) ∈ 𝐵𝑀
𝛿
(𝑥∗), the local inexact Newton’s method is well-defined, and it

generates a sequence 𝑥 (𝑘 ) which converges to 𝑥∗.

(𝑖𝑖𝑖)
(
𝑥 (𝑘 )

)
converges to 𝑥∗ Q-linearly w.r.t. the𝑀-norm.

(𝑖𝑣) If, in addition, 𝜂 (𝑘 ) ↘ 0 holds, then the convergence is Q-superlinear.

(𝑣) If 𝐹 ′ is Lipschitz continuous in𝐵𝑀
𝛿
(𝑥∗), and if, in addition to𝜂 (𝑘 ) ↘ 0, we require𝜂 (𝑘 ) ≤ 𝐶 ∥𝐹 (𝑥 (𝑘 ) )∥𝑀−1

with some constant 𝐶 > 0, then this convergence is even Q-quadratic.

Proof. We only give a sketch of the proof. Statement (𝑖) can be shown as Theorem 5.27. A guide

to proving Statement (𝑖𝑖) and Statement (𝑖𝑖𝑖) can be found in Geiger, Kanzow, 1999, Satz 10.3. For

Statement (𝑖𝑣), we use the characterization of Q-superlinear convergence by Corollary 5.37. We have

∥(𝐹 ′(𝑥 (𝑘 ) ) − 𝐻 (𝑘 )︸              ︷︷              ︸
=0

) 𝑑 (𝑘 ) + 𝜁 (𝑘 ) ∥𝑀−1 = ∥𝜁 (𝑘 ) ∥𝑀−1
≤ 𝜂 (𝑘 ) ∥𝐹 (𝑥 (𝑘 ) )∥𝑀−1 by (5.36).

As in the proof of Lemma 5.36, see (∗), we have ∥𝐹 (𝑥 (𝑘 ) )∥𝑀−1 ≤ 𝐶 ∥𝑥 (𝑘 ) − 𝑥∗∥𝑀 for sufficiently large

indices 𝑘 and thus

∥(𝐹 ′(𝑥 (𝑘 ) ) − 𝐻 (𝑘 ) ) 𝑑 (𝑘 ) + 𝜁 (𝑘 ) ∥𝑀−1 ≤ 𝜂 (𝑘 ) 𝐶 ∥𝑥 (𝑘 ) − 𝑥∗∥𝑀 .

Since 𝜂 (𝑘 ) ↘ 0, we satisfy (5.34b).

Statement (𝑣) follows similarly as in Theorem 5.27. □

A possible rule for the choice of the forcing sequence 𝜂 (𝑘 ) that guarantees the local Q-superlinear
convergence is

𝜂 (𝑘 ) B min

{
𝜂, ∥𝐹 (𝑥 (𝑘 ) )∥𝜃

𝑀−1
}

(5.38)

with some 𝜂 < 1 and 𝜃 ∈ (0, 1], for instance 𝜂 = 1/2 and 𝜃 = 0.5.28

28
More precisely, we even obtain the Q-superlinear convergence with rate 1 + 𝜃 with this choice.
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In the remainder of § 5.6 we consider a practical approach to the inexact solution of the Newton systems,

while simultaneously globalizing the inexact local Newton’s method (Algorithm 5.38). Since in this

class we are discussing globalization for Newton-like methods only in the context of optimization

(and not for general root-finding), we switch back to the optimization context now. That is, we have

𝐹 (𝑥) = ∇𝑓 (𝑥) and 𝐹 ′(𝑥) = 𝑓 ′′(𝑥).

We need to take into account the following:

(1) The Newton system 𝑓 ′′(𝑥 (𝑘 ) ) 𝑑 = −∇𝑓 (𝑥 (𝑘 ) ) is to be solved iteratively
29
. In this way, we can

take advantage of the fact that an inexact solution is sufficient and we can stop once the residual

norm for the linear system falls below the threshold dictated by the forcing sequence; see (5.36).

We refer to the inexact Newton direction as 𝑑
(𝑘 )
𝑁

.

(2) The inexact Newton direction 𝑑
(𝑘 )
𝑁

is required to be, at the very least, a descent direction for the

objective 𝑓 at the current outer iterate 𝑥 (𝑘 ) .

(3) As we did in the globalized exact Newton’s method (Algorithm 5.30), we need to verify whether

the inexact Newton direction 𝑑
(𝑘 )
𝑁

offers sufficient descent. If not, then we fall back to taking a

step in the steepest descent direction.

It turns out that we can reach the first and the second goal simultaneously by a clever use of the

conjugate gradient method (Algorithm 4.17), applied to the symmetric linear system 𝐴𝑑 = 𝑏, where

𝐴 = 𝑓 ′′(𝑥 (𝑘 ) ) and 𝑏 = −∇𝑓 (𝑥 (𝑘 ) ) .

As a stopping criterion, we employ the relative criterion (4.14a) with 𝜀rel = 𝜂
(𝑘 )

, and the zero vector

serves as initial guess. In case the CG algorithm finishes “without an incidence”, then — due to (5.37)

— the solution returned is an inexact solution of the Newton system with sufficiently small residual

norm in the sense of (5.36).

Remark 5.40 (inner and outer iterations). In what follows we will sometimes use the terms inner

iterations and outer iterations. The outer iterations of those of the outer optimization method, which

is the inexact Newton’s method in this subsection. The quantities used in the outer iterations are the

iterates 𝑥 (𝑘 ) , search directions 𝑑 (𝑘 ) , step sizes 𝛼 (𝑘 ) , etc.

On the other hand, every search direction 𝑑 (𝑘 ) will now be found in an iterative way, which refer to as

inner iterations. In order to help avoid confusion, we will denote the inner iteration index by ℓ . Also, the

iterates of the inner solver for the linear system 𝐴𝑑 = 𝑏 will be termed 𝑑 (ℓ ) instead of 𝑥 (ℓ ) . The search
directions in the inner solver will be 𝑝 (ℓ ) instead of 𝑑 (ℓ ) . The residuals in the inner solver will be 𝜁 (ℓ )

instead of 𝑟 (ℓ ) .

What could be the incidences that might occur in the CG algorithm in the present context? On the one

hand, we might reach the maximum number of iterations before reaching the relative tolerance. On

29
rather than using a direct solver such as Gaussian elimination
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the other hand, the symmetric matrix 𝐴 might not be positive definite. This means that the function

𝜙 (𝑧) B 1

2

𝑧ᵀ𝐴𝑧 − 𝑏ᵀ𝑧

has a least one direction 𝑝 ∈ R𝑛 , 𝑝 ≠ 0, of non-positive curvature; i. e., 𝑝ᵀ𝐴𝑝 ≤ 0 holds. A lack of

positive definiteness does not mean that a search direction of non-positive curvature will actually

be encountered during the inner iterations. On the one hand, the required tolerance may be reached

beforehand. But even for exact solutions (𝜀rel = 0), not all right hand sides 𝑏 actually invoke directions

of non-positive curvature.

In any case, if a direction 𝑝 (ℓ ) with 𝜃 (ℓ ) B (𝑝 (ℓ ) )ᵀ𝐴𝑝 (ℓ ) ≤ 0 is encountered, a reaction is required

since otherwise,

• in case 𝜃 (ℓ ) = 0, a division by zero would occur in Line 8 of the CG algorithm (Algorithm 4.17),

• in case 𝜃 (ℓ ) < 0, the CG algorithm could be continued; however, we might lose the property

that the iterates 𝑑 (ℓ ) are descent directions for 𝑓 at 𝑥 (𝑘 ) . This can be confirmed by examples.

As long as all search directions 𝑝 (ℓ ) are directions of positive curvature (𝜃 (ℓ ) > 0), the descent

property remains intact; see Lemma 5.42.

For the reasons above, it is customary to employ a variant of the CG method known as truncated
conjugate gradient method (truncated CGmethod) as inner solver in a globalized inexact Newton

method. Starting from a zero initial guess, iterate until either the relative stopping criterion (4.14a) is

verified, or a search direction of non-positive curvature is encountered. In that case, the most recent

iterate 𝑑 (ℓ ) is returned as inexact solution.

For completeness, we state below the truncated CG algorithm. Notice that we chose the specific

stopping criterion (5.37) instead of a general criterion.

Algorithm 5.41 (Truncated conjugate gradient method for symmetric systems 𝐴𝑑 = 𝑏 w.r.t. the

𝑀-inner product; compare Algorithm 4.17).
Input: right-hand side 𝑏 ∈ R𝑛
Input: symmetric matrix 𝐴 (or matrix-vector products with 𝐴)

Input: s. p. d. matrix𝑀 (or matrix-vector products with𝑀−1)
Input: relative residual 𝜀rel
Output: approximate solution of 𝐴𝑑 = 𝑏

1: Set ℓ B 0

2: Set 𝑑 (0) B 0 // zero initial guess

3: Set 𝜁 (0) B −𝑏 // evaluate the initial residual

4: Set 𝑝 (0) B −𝑀−1𝜁 (0)
5: Set 𝛿 (0) B −(𝜁 (0) )ᵀ𝑝 (0) // 𝛿 (0) = ∥𝜁 (0) ∥2

𝑀−1

6: while 𝛿 (ℓ ) ≥ 𝜀2
rel
𝛿 (0) do // check stopping criterion (5.37)

7: Set 𝑞 (ℓ ) B 𝐴𝑝 (ℓ )

8: Set 𝜃 (ℓ ) B (𝑞 (ℓ ) )ᵀ𝑝 (ℓ )
9: if 𝜃 (ℓ ) > 0 then
10: Set 𝛼 (ℓ ) B 𝛿 (ℓ )/𝜃 (ℓ )
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11: Set 𝑑 (ℓ+1) B 𝑑 (ℓ ) + 𝛼 (ℓ )𝑝 (ℓ )
12: Set 𝜁 (ℓ+1) B 𝜁 (ℓ ) + 𝛼 (ℓ )𝑞 (ℓ )
13: Set 𝑝 (ℓ+1) B −𝑀−1𝜁 (ℓ+1)
14: Set 𝛿 (ℓ+1) B −(𝜁 (ℓ+1) )ᵀ𝑝 (ℓ+1) // 𝛿 (ℓ+1) = ∥𝜁 (ℓ+1) ∥2

𝑀−1

15: Set 𝛽 (ℓ+1) B 𝛿 (ℓ+1)/𝛿 (ℓ )
16: Set 𝑝 (ℓ+1) B 𝑝 (ℓ+1) + 𝛽 (ℓ+1) 𝑝 (ℓ )
17: Set ℓ B ℓ + 1
18: else
19: Abort the while loop
20: end if
21: end while
22: return 𝑑 (ℓ )

It still remains to be proved that the approximate solution 𝑑 (ℓ ) that the truncated CG method generates

and that is to be used as inexact Newton direction 𝑑
(𝑘 )
𝑁

, is indeed a descent direction for the objective 𝑓

at the current outer iterate 𝑥 (𝑘 ) . This means that we need to show 𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (ℓ ) < 0 or equivalently,

𝑏ᵀ𝑑 (ℓ ) > 0.

Lemma 5.42 (The truncated CG method generates descent directions). Suppose that 𝑏 ≠ 0 and that

𝑑 (0) , . . . , 𝑑 (ℓ ) have been generated by Algorithm 5.41 for some ℓ ≥ 1. Then the following holds.

(𝑖) 𝑏ᵀ𝑀−1𝜁 ( 𝑗 ) = 0 for 𝑗 = 1, . . . , ℓ .

(𝑖𝑖) 𝑏ᵀ𝑝 ( 𝑗 ) = ∥𝜁 ( 𝑗 ) ∥2
𝑀−1

for 𝑗 = 0, . . . , ℓ .

(𝑖𝑖𝑖) 𝑏ᵀ𝑑 (ℓ ) =
ℓ−1∑︁
𝑗=0

𝛼 ( 𝑗 ) ∥𝜁 ( 𝑗 ) ∥2
𝑀−1 is positive and strictly monotonically increasing in ℓ .

Proof. Statement (𝑖): Since we use the zero vector as initial guess, we have 𝜁 (0) = 𝐴 0 − 𝑏 = −𝑏 for the

initial residual. Therefore,

𝑏ᵀ𝑀−1𝜁 ( 𝑗 ) = −(𝜁 (0) )ᵀ𝑀−1𝜁 ( 𝑗 ) = 0 for 𝑗 ≥ 1

according to (4.28).

Statement (𝑖𝑖): The initial search direction is 𝑝 (0) = −𝑀−1𝜁 (0) , and hence we have

𝑏ᵀ𝑝 (0) = (𝜁 (0) )ᵀ𝑀−1𝜁 (0) = ∥𝜁 (0) ∥2
𝑀−1 .

By induction, we find for 𝑗 ≥ 0:

𝑏ᵀ𝑝 ( 𝑗+1) = 𝑏ᵀ
(
−𝑀−1𝜁 ( 𝑗+1) + 𝛽 ( 𝑗+1) 𝑝 ( 𝑗 )

)
= 0 + 𝛽 ( 𝑗+1) 𝑏ᵀ𝑝 ( 𝑗 ) by Statement (𝑖)

=
∥𝜁 ( 𝑗+1) ∥2

𝑀−1

∥𝜁 ( 𝑗 ) ∥2
𝑀−1

𝑏ᵀ𝑝 ( 𝑗 ) by (4.24’)

= ∥𝜁 ( 𝑗+1) ∥2
𝑀−1 by the induction hypothesis.

96 https://tinyurl.com/scoop-nlo 2023-07-14

https://tinyurl.com/scoop-nlo


cbn Nonlinear Optimization

Statement (𝑖𝑖𝑖): Since Algorithm 5.41 generated the iterates 𝑑 (0) , . . . , 𝑑 (ℓ ) , the numbers 𝜃 (0) , . . . , 𝜃 (ℓ−1)

are all strictly positive. Consequently, 𝛼 ( 𝑗 ) = 𝛿 ( 𝑗 )/𝜃 ( 𝑗 ) > 0 is also positive for 𝑗 = 0, . . . , ℓ − 1. We

consider the expression

𝑏ᵀ𝑑 (ℓ ) = 𝑏ᵀ
ℓ−1∑︁
𝑗=0

𝛼 ( 𝑗 ) 𝑝 ( 𝑗 ) =
ℓ−1∑︁
𝑗=0

𝛼 ( 𝑗 ) ∥𝜁 ( 𝑗 ) ∥2
𝑀−1

with the last equality due to Statement (𝑖𝑖). The residuals 𝜁 (0) , . . . , 𝜁 (ℓ−1) are all ≠ 0, otherwise the

stopping criterion in Algorithm 5.41 would have been triggered. Therefore, the above expression is

strictly increasing w.r.t. ℓ . □

Remark 5.43 (on Algorithm 5.41).

(𝑖) The first search direction is 𝑝 (0) = 𝑀−1𝑏, which is equal to the steepest descent direction−𝑀−1∇𝑓 (𝑥 (𝑘 ) )
in the optimization context. When 𝑝 (0) is a direction of positive curvature (if 𝜃 (0) > 0), then 𝑑 (1) is
the same as though we had applied the steepest descent method with Cauchy step size (Algorithm 4.6).

(𝑖𝑖) By contrast, when 𝑝 (0) is a direction of non-positive curvature, Algorithm 5.41 stops and returns

𝑑 (0) = 0. This is, of course, not a useful descent direction for the outer, inexact Newton method, as

will be detected by a quality test for the inexact Newton direction, and a fallback to a gradient step

will be the consequence.

(𝑖𝑖𝑖) The strictly increasing monotonicity of 𝑏ᵀ𝑑 (ℓ ) = −𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (ℓ ) w.r.t. the iteration counter ℓ means

that the descent properties of the iterates 𝑑 (ℓ ) progressively improve, as long as the search direc-

tions 𝑝 (ℓ ) remain directions of positive curvature for 𝐴. Therefore, it is reasonable to continue

performing CG iterations until either the desired tolerance is reached, or a direction of non-positive

curvature is encountered. This is the strategy Algorithm 5.41 is following.

As we already mentioned, the globalization of the inexact Newton method can be done along the same

lines as in Algorithm 5.30. This leads to the following algorithm.

Algorithm 5.44 (Globalized inexact Newton method for (UP); compare Algorithm 5.30).
Input: initial guess 𝑥 (0) ∈ R𝑛
Input: routine to evaluate 𝑓 and 𝑓 ′ (or ∇𝑓 )
Input: routine to evaluate 𝑓 ′′ (or matrix-vector products with 𝑓 ′′)
Input: s. p. d. matrix𝑀 (or matrix-vector products with𝑀−1)
Input: routine to determine the forcing sequence 𝜂 (𝑘 )

Input: globalization parameters 𝜂 ∈ (0, 1), 𝜌 > 0 and exponent 𝑝 > 0

Input: Armijo parameter 𝜎 ∈ (0, 1/2) // to be passed through to the Armijo backtracking line search

Input: backtracking parameter 𝛽 ∈ (0, 1) // to be passed through to the Armijo backtracking line search

Output: approximately stationary point of (UP)
1: Set 𝑘 B 0

2: Set 𝑓 (0) B 𝑓 (𝑥 (0) ) // evaluate the initial objective value

3: Set 𝑟 (0) B 𝑓 ′(𝑥 (0) )ᵀ = ∇𝑓 (𝑥 (0) ) // evaluate the initial residual

4: Set 𝑑
(0)
𝐺
B −𝑀−1𝑟 (0) // evaluate the negative𝑀-gradient
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5: Set 𝛿 (0) B −(𝑟 (0) )ᵀ𝑑 (0)
𝐺

// 𝛿 (0) = ∥∇𝑀 𝑓 (𝑥 (0) )∥2𝑀 = ∥𝑑 (0)
𝐺
∥2
𝑀

6: while stopping criterion not met do
7: Determine the inexact Newton direction 𝑑

(𝑘 )
𝑁

using Algorithm 5.41 with 𝐴 = 𝑓 ′′(𝑥 (𝑘 ) ), 𝑏 = −𝑟 (𝑘 ) ,
preconditioner𝑀 and relative residual 𝜀rel = 𝜂

(𝑘 )

8: Evaluate the generalized angle condition for the Newton direction

𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 )
𝑁
≤ −min

{
𝜂, 𝜌 ∥𝑑 (𝑘 )

𝐺
∥𝑝
𝑀

}
∥𝑑 (𝑘 )
𝐺
∥𝑀 ∥𝑑 (𝑘 )𝑁

∥𝑀 (5.27)

9: if true then
10: Set 𝑑 (𝑘 ) B 𝑑

(𝑘 )
𝑁

// use the inexact Newton direction

11: else
12: Set 𝑑 (𝑘 ) B 𝑑

(𝑘 )
𝐺

// use the steepest descent direction as fallback

13: end if
14: Determine a step size 𝛼 (𝑘 ) > 0 from an Armijo backtracking line search procedure (Algorithm 5.11),

applied to 𝜑 (𝛼) B 𝑓 (𝑥 (𝑘 ) + 𝛼 𝑑 (𝑘 ) ), with initial trial step size 𝛼 (𝑘,0) = 1, Armijo parameter 𝜎 and

backtracking parameter 𝛽 // 𝜑 (0) = 𝑓 (𝑘 ) and 𝜑 ′(0) = (𝑟 (𝑘 ) )ᵀ𝑑 (𝑘 ) = −𝛿 (𝑘 ) in case of 𝑑 (𝑘 ) = 𝑑 (𝑘 )
𝐺

, or

𝜑 ′(0) = 𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 )
𝑁

in case of 𝑑 (𝑘 ) = 𝑑 (𝑘 )
𝑁

, are already known

15: Set 𝑥 (𝑘+1) B 𝑥 (𝑘 ) + 𝛼 (𝑘 )𝑑 (𝑘 )
16: Set 𝑓 (𝑘+1) B 𝑓 (𝑥 (𝑘+1) ) // can be returned by the Armijo backtracking line search routine

17: Set 𝑟 (𝑘+1) B 𝑓 ′(𝑥 (𝑘+1) )ᵀ = ∇𝑓 (𝑥 (𝑘+1) )
18: Set 𝑑

(𝑘+1)
𝐺

B −𝑀−1𝑟 (𝑘+1) // evaluate the negative𝑀-gradient

19: Set 𝛿 (𝑘+1) B −(𝑟 (𝑘+1) )ᵀ𝑑 (𝑘+1)
𝐺

// 𝛿 (𝑘+1) = ∥∇𝑀 𝑓 (𝑥 (𝑘+1) )∥2𝑀 = ∥𝑑 (𝑘+1)
𝐺
∥2
𝑀

20: Set 𝑘 B 𝑘 + 1
21: end while
22: return 𝑥 (𝑘 )

Remark 5.45 (on Algorithm 5.44).

(𝑖) See Remark 5.31 on choosing the globalization parameters 𝜌 and 𝑝 .

(𝑖𝑖) The quantity ∥𝑑 (𝑘 )
𝑁
∥𝑀 required to evaluate the generalized angle condition (5.27) can be returned

at negligible additional cost by the truncated CG algorithm (Algorithm 5.41), as described in (4.33)–

(4.34).

The global convergence of Algorithm 5.44 can be verified very similarly as in Theorem 5.32. In fact,

Step (1) in the proof (admissibility of search directions) remains exactly the same since the generalized

angle condition and the fallback to steepest descent directions remains the same as in Algorithm 5.30.

In Step (2) (admissibility of step sizes), we need to take into account the fact that the inexact Newton

direction satisfies the Newton system only with a residual. We end up replacing the estimate (5.28)

by

∥𝑑 (𝑘 ) ∥𝑀 ≥ min

{
1 − 𝜂 (𝑘 )
𝐶

, 1

}
∥∇𝑀 𝑓 (𝑥 (𝑘 ) )∥𝑀 ≥ min

{
1 − 𝜂 (𝑘 )
𝐶

, 1

} −𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 )
∥𝑑 (𝑘 ) ∥𝑀

(5.39)

for all 𝑘 ∈ 𝐾 , and we have to modify the function 𝜓 accordingly. (Quiz 5.7: Can you fill in the

details?)
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The transition to fast local convergence can be shown similarly as in Theorem 5.33. We can verify

again that

𝑑 (𝑘 ) = 𝑑 (𝑘 )
𝑁

and 𝛼 (𝑘 ) = 1 (5.29)

holds for sufficiently large indices 𝑘 . Consequently, the convergence mode (Q-linear, Q-superlinear or

even Q-quadratic) follows depending on the choice of forcing sequence, using Theorem 5.39; see also

Geiger, Kanzow, 1999, Satz 10.8.

The combination of the inexact Newton method as outer algorithm with the truncated CG algorithm as

inner solver is often referred to as truncated Newton CG method. Since we do not necessarily need

to set up the full Hessian matrix 𝑓 ′′(𝑥 (𝑘 ) ), but matrix-vector products with 𝑓 ′′(𝑥 (𝑘 ) ) are sufficient, one

also speaks of a Hessian-free optimization. Matrix-vector products with 𝑓 ′′(𝑥 (𝑘 ) ) can be realized,

e. g., using algorithmic diffentiation techniques (Chapter 4).

End of Week 5

§ 5.7 Quasi-Newton Methods

In contrast to inexact Newton methods (§ 5.6), quasi-Newton methods make use of the freedom

Newton-like methods offer in a different way. We discuss quasi-Newton methods only in the con-

text of optimization. A quasi-Newton method determines symmetric (and often positive definite)

approximations 𝐻 (𝑘 ) of the Hessians 𝑓 ′′(𝑥 (𝑘 ) ) but then solves the systems

𝐻 (𝑘 )𝑑 (𝑘 ) = −∇𝑓 (𝑥 (𝑘 ) ) (5.40)

exactly before taking a step in the direction 𝑑 (𝑘 ) . Quasi-Newton methods are also known as variable
metric methods since, in contrast to gradient methods which maintain 𝐻 (𝑘 ) ≡ 𝑀 constant, the model

Hessian 𝐻 (𝑘 ) changes from iteration to iteration.

The model Hessian 𝐻 (𝑘+1) is constructed based on information gained in the 𝑘-th step. A consis-

tent requirement in all quasi-Newton methods is the so-called secant condition or quasi-Newton
condition,

𝐻 (𝑘+1) (𝑥 (𝑘+1) − 𝑥 (𝑘 ) ) = ∇𝑓 (𝑥 (𝑘+1) ) − ∇𝑓 (𝑥 (𝑘 ) ). (5.41)

This condition can be motivated in several ways:

(1) It follows from the fundamental theorem of calculus
30

that

∇𝑓 (𝑥 + 𝑑) = ∇𝑓 (𝑥) + 𝑓 ′′(𝑥 + 𝑑) 𝑑 +
∫

1

0

[𝑓 ′′(𝑥 + 𝑡 𝑑) − 𝑓 ′′(𝑥 + 𝑑)] 𝑑 d𝑡 (5.42)

holds for all 𝑥, 𝑑 ∈ R𝑛 . For the integral term, we have the following estimate, which uses the 𝐶2

property of 𝑓 : for any 𝜀 > 0, there exists 𝛿 > 0 such that∫ 1

0

[𝑓 ′′(𝑥 + 𝑡 𝑑) − 𝑓 ′′(𝑥 + 𝑑)] 𝑑 d𝑡

𝑀−1
≤ 𝜀 ∥𝑑 ∥𝑀

30
The function 𝑡 ↦→ ∇𝑓 (𝑥+𝑡 𝑑) is the integral of its derivative 𝑡 ↦→ 𝑓 ′′ (𝑥+𝑡 𝑑) 𝑑 , and thus

∫
1

0
𝑓 ′′ (𝑥+𝑡 𝑑) 𝑑 d𝑡 = ∇𝑓 (𝑥+𝑡 𝑑)

��1
0
=

∇𝑓 (𝑥 + 𝑑) − ∇𝑓 (𝑥)
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holds for all ∥𝑑 ∥𝑀 ≤ 𝛿 .31

Omitting this integral term from (5.42), plugging in 𝑥 (𝑘 ) for 𝑥 and 𝑥 (𝑘+1)−𝑥 (𝑘 ) for𝑑 , and replacing
the true Hessian 𝑓 ′′(𝑥 + 𝑑) by its approximation 𝐻 (𝑘+1) , we obtain

∇𝑓 (𝑥 (𝑘+1) ) = ∇𝑓 (𝑥 (𝑘 ) ) + 𝐻 (𝑘+1) (𝑥 (𝑘+1) − 𝑥 (𝑘 ) ),

which is the secant condition (5.41). Hence the secant condition approximately mimics the

property (5.42) of the true Hessian.

(2) Let us consider the two quadratic models
32
at the consecutive iterates 𝑥 (𝑘 ) and 𝑥 (𝑘+1) ,

𝑚 (𝑘 ) (𝑥) = 𝑓 (𝑥 (𝑘 ) ) + 𝑓 ′(𝑥 (𝑘 ) ) (𝑥 − 𝑥 (𝑘 ) ) + 1

2

(𝑥 − 𝑥 (𝑘 ) )ᵀ𝐻 (𝑘 ) (𝑥 − 𝑥 (𝑘 ) ), (5.43a)

𝑚 (𝑘+1) (𝑥) = 𝑓 (𝑥 (𝑘+1) ) + 𝑓 ′(𝑥 (𝑘+1) ) (𝑥 − 𝑥 (𝑘+1) ) + 1

2

(𝑥 − 𝑥 (𝑘+1) )ᵀ𝐻 (𝑘+1) (𝑥 − 𝑥 (𝑘+1) ) . (5.43b)

By construction, the derivative of the old model𝑚 (𝑘 ) agrees with the derivative of 𝑓 at 𝑥 (𝑘 ) .
Also, the derivative of the new model𝑚 (𝑘+1) agrees with the derivative of 𝑓 at 𝑥 (𝑘+1) . We require

now, in addition, that the derivative of the new model agrees with the derivative of 𝑓 also at the

old iterate 𝑥 (𝑘 ) , i. e.,

(𝑚 (𝑘+1) )′(𝑥 (𝑘 ) ) = 𝑓 ′(𝑥 (𝑘 ) )
⇔ ∇𝑚 (𝑘+1) (𝑥 (𝑘 ) ) = ∇𝑓 (𝑥 (𝑘 ) )
⇔ ∇𝑓 (𝑥 (𝑘+1) ) + 𝐻 (𝑘+1) (𝑥 (𝑘 ) − 𝑥 (𝑘+1) ) = ∇𝑓 (𝑥 (𝑘 ) ), since 𝐻 (𝑘+1) is symmetric

⇔ secant condition (5.41).

Using the Dennis-Moré conditions (Corollary 5.37) for Newton-like methods, we can now characterize

the fast (Q-superlinear) local convergence (without line search) of quasi-Newton methods.

Theorem 5.46 (Fast local convergence of quasi-Newton methods). Suppose that 𝑓 : R𝑛 → R is a 𝐶2

function. Suppose that the sequence 𝑥 (𝑘 ) is generated using the Newton-like method Algorithm 5.34 with

model Hessians 𝐻 (𝑘 ) which are symmetric and satisfy the secant condition (5.41), and with zero residuals

𝜁 (𝑘 ) = 0. Suppose that 𝑥 (𝑘 ) converges to 𝑥∗, where 𝑓 ′′(𝑥∗) is non-singular. Finally, suppose that for any
𝜀 > 0, there exists 𝛿 > 0 such that

∥(𝐻 (𝑘+1) − 𝐻 (𝑘 ) ) 𝑑 (𝑘 ) ∥𝑀−1 ≤ 𝜀 ∥𝑑 (𝑘 ) ∥𝑀 (5.44)

holds for all ∥𝑑 (𝑘 ) ∥𝑀 ≤ 𝛿 .33. Then the conditions of Corollary 5.37 hold, and therefore 𝑥 (𝑘 ) converges to
𝑥∗ Q-superlinearly w.r.t. the𝑀-norm, and 𝑓 ′(𝑥∗) = 0 holds.

31
We could likewise say that the left-hand side belongs to 𝑜 (∥𝑑 ∥𝑀 ).

32
In contrast to (5.2), we write the model here in terms of 𝑥 , not in terms of the direction 𝑑 , which is notationally more

convenient. That is, we write𝑚 (𝑘 ) (𝑥) rather than 𝑞 (𝑘 ) (𝑑).
33
In other words, ∥(𝐻 (𝑘+1) − 𝐻 (𝑘 ) ) 𝑑 (𝑘 ) ∥𝑀−1 ∈ 𝑜 (∥𝑑 (𝑘 ) ∥𝑀 )
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Proof. We can estimate

∥(𝑓 ′′(𝑥 (𝑘 ) ) − 𝐻 (𝑘 ) ) 𝑑 (𝑘 ) ∥𝑀−1
≤ ∥(𝑓 ′′(𝑥 (𝑘 ) ) − 𝐻 (𝑘+1) ) 𝑑 (𝑘 ) ∥𝑀−1 + ∥(𝐻 (𝑘+1) − 𝐻 (𝑘 ) ) 𝑑 (𝑘 ) ∥𝑀−1 by the triangle inequality.

By assumption, the second term is bounded by 𝜀 ∥𝑑 (𝑘 ) ∥𝑀 , provided that ∥𝑑 (𝑘 ) ∥𝑀 ≤ 𝛿 :

≤ ∥ 𝑓 ′′(𝑥 (𝑘 ) ) 𝑑 (𝑘 ) − ∇𝑓 (𝑥 (𝑘+1) ) + ∇𝑓 (𝑥 (𝑘 ) )∥𝑀−1 + 𝜀 ∥𝑑 (𝑘 ) ∥𝑀 by the secant condition.

Using the uniform continuity of 𝑓 ′′ “near the
(
𝑥 (𝑘 )

)
” (as in the proof of Lemma 5.13), we can bound

the first term by 𝜀 ∥𝑥 (𝑘+1) − 𝑥 (𝑘 ) ∥𝑀 , provided that ∥𝑥 (𝑘+1) − 𝑥 (𝑘 ) ∥𝑀 is sufficiently small:

≤ 𝜀 ∥𝑥 (𝑘+1) − 𝑥 (𝑘 ) ∥𝑀 + 𝜀 ∥𝑑 (𝑘 ) ∥𝑀
= 2 𝜀 ∥𝑥 (𝑘+1) − 𝑥 (𝑘 ) ∥𝑀 .

We have shown that condition (5.34a) of Corollary 5.37 holds, which implies the Q-superlinear conver-

gence and the stationarity of 𝑥∗. □

In view of

∥(𝐻 (𝑘+1) − 𝐻 (𝑘 ) ) 𝑑 (𝑘 ) ∥𝑀−1 ≤ ∥𝐻 (𝑘+1) − 𝐻 (𝑘 ) ∥𝑀−1←𝑀 ∥𝑑 (𝑘 ) ∥𝑀 ,

the convergence 𝐻 (𝑘+1) −𝐻 (𝑘 ) → 0 is sufficient to ensure the prerequisite (5.44) of Theorem 5.46.

Let us now discuss how to construct quasi-Newton matrices 𝐻 (𝑘 ) in practice. From now on, we also

include a step size 𝛼 (𝑘 ) > 0 in the update of the iterates

𝑥 (𝑘+1) B 𝑥 (𝑘 ) + 𝛼 (𝑘 )𝑑 (𝑘 ) .

To simplify notation, we introduce

𝑠 (𝑘 ) B 𝑥 (𝑘+1) − 𝑥 (𝑘 ) = 𝛼 (𝑘 )𝑑 (𝑘 ) and 𝑦 (𝑘 ) B ∇𝑓 (𝑥 (𝑘+1) ) − ∇𝑓 (𝑥 (𝑘 ) ) . (5.45)

One important class of quasi-Newton methods constructs 𝐻 (𝑘+1) as a function of the previous ma-

trix 𝐻 (𝑘 ) and the two vectors 𝑠 (𝑘 ) and 𝑦 (𝑘 ) :

𝐻 (𝑘+1) B Φ
(
𝐻 (𝑘 ) , 𝑠 (𝑘 ) , 𝑦 (𝑘 )

)
. (5.46)

Due to the dependence of 𝐻 (𝑘+1) on 𝐻 (𝑘 ) , we also speak of a quasi-Newton update formula.

For reference purposes, we state a generic line-search quasi-Newton method in Algorithm 5.47.

Algorithm 5.47 (Generic globalized quasi-Newton method for (UP)).
Input: initial guess 𝑥 (0) ∈ R𝑛
Input: routine to evaluate 𝑓 and 𝑓 ′ (or ∇𝑓 )
Input: initial symmetric model Hessian 𝐻 (0) ∈ R𝑛×𝑛 (possibly s. p. d.)

Input: routine that implements the quasi-Newton update Φ
Input: s. p. d. matrix𝑀 (or matrix-vector products with𝑀−1)
Output: approximately stationary point of (UP)
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1: Set 𝑘 B 0

2: Set 𝑓 (0) B 𝑓 (𝑥 (0) ) // evaluate the initial objective value

3: Set 𝑟 (0) B 𝑓 ′(𝑥 (0) )ᵀ = ∇𝑓 (𝑥 (0) ) // evaluate the initial residual

4: Set 𝑑
(0)
𝐺
B −𝑀−1𝑟 (0) // evaluate the negative𝑀-gradient

5: Set 𝛿 (0) B −(𝑟 (0) )ᵀ𝑑 (0)
𝐺

// 𝛿 (0) = ∥∇𝑀 𝑓 (𝑥 (0) )∥2𝑀 = ∥𝑑 (0)
𝐺
∥2
𝑀

6: while stopping criterion not met do
7: Determine the quasi-Newton direction 𝑑 (𝑘 ) by solving

𝐻 (𝑘 )𝑑 (𝑘 ) = −𝑟 (𝑘 ) (5.40)

8: Determine a step size 𝛼 (𝑘 ) > 0 from a line search procedure with preferred step size 𝛼 (𝑘 ) = 1

9: Set 𝑠 (𝑘 ) B 𝛼 (𝑘 )𝑑 (𝑘 )

10: Set 𝑥 (𝑘+1) B 𝑥 (𝑘 ) + 𝑠 (𝑘 )
11: Set 𝑓 (𝑘+1) B 𝑓 (𝑥 (𝑘+1) )
12: Set 𝑟 (𝑘+1) B 𝑓 ′(𝑥 (𝑘+1) )ᵀ = ∇𝑓 (𝑥 (𝑘+1) )
13: Set 𝑑

(𝑘+1)
𝐺

B −𝑀−1𝑟 (𝑘+1) // evaluate the negative𝑀-gradient

14: Set 𝛿 (𝑘+1) B −(𝑟 (𝑘+1) )ᵀ𝑑 (𝑘+1)
𝐺

// 𝛿 (𝑘+1) = ∥∇𝑀 𝑓 (𝑥 (𝑘+1) )∥2𝑀 = ∥𝑑 (𝑘+1)
𝐺
∥2
𝑀

15: Set 𝑦 (𝑘 ) B 𝑟 (𝑘+1) − 𝑟 (𝑘 )
16: Determine the quasi-Newton matrix 𝐻 (𝑘+1) B Φ

(
𝐻 (𝑘 ) , 𝑠 (𝑘 ) , 𝑦 (𝑘 )

)
17: Set 𝑘 B 𝑘 + 1
18: end while
19: return 𝑥 (𝑘 )

We recall the following desirable properties:

(1) 𝐻 (𝑘+1) must be symmetric (provided that 𝐻 (𝑘 ) is symmetric).

(2) 𝐻 (𝑘+1) must satisfy the secant condition (5.41), now written in the form

𝐻 (𝑘+1)𝑠 (𝑘 ) = 𝑦 (𝑘 ) . (5.47)

(3) 𝐻 (𝑘+1) should be close to 𝐻 (𝑘 ) in the sense that ∥(𝐻 (𝑘+1) −𝐻 (𝑘 ) ) 𝑠 (𝑘 ) ∥𝑀−1 ∈ 𝑜 (∥𝑠 (𝑘 ) ∥𝑀 ) in order

to satisfy the condition (5.44) for fast local convergence.

(4) Ideally, the matrix 𝐻 (𝑘+1) should be positive definite (provided that 𝐻 (𝑘 ) is positive definite).

Notice that condition (4) guarantees that 𝑑 (𝑘 ) , and thus 𝑠 (𝑘 ) = 𝛼 (𝑘 )𝑑 (𝑘 ) , is a descent direction.

A necessary condition for the positive definiteness of 𝐻 (𝑘+1) is obtained by multiplying the secant

condition (5.41) by 𝑠 (𝑘 ) :

0 < (𝑠 (𝑘 ) )ᵀ𝐻 (𝑘+1)𝑠 (𝑘 )︸               ︷︷               ︸
evaluation of the bilinear form 𝐻 (𝑘+1)

in the particular direction 𝑠 (𝑘 )

= (𝑦 (𝑘 ) )ᵀ 𝑠 (𝑘 ) =
(
𝑓 ′(𝑥 (𝑘+1) ) − 𝑓 ′(𝑥 (𝑘 ) )

)
(𝑥 (𝑘+1) − 𝑥 (𝑘 ) ) . (5.48)

For strictly convex functions, (5.48) is always satisfied in view of Theorem 2.9; see (2.26). Otherwise,

we need a line search procedure to guarantee (5.48). The Wolfe-Powell line search lends itself for this

purpose.
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Lemma 5.48 (Wolfe-Powell line search ensures (5.48)). Suppose that 𝑑 (𝑘 ) is a descent direction for 𝑓 at

𝑥 (𝑘 ) . If 𝛼 (𝑘 ) > 0 satisfies the curvature condition (5.17) for some 𝜏 < 1, then the necessary condition (5.48)

for positive definiteness of 𝐻 (𝑘+1) is satisfied.

Proof. We can estimate

𝑓 ′(𝑥 (𝑘+1) ) 𝑑 (𝑘 ) ≥ 𝜏 𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 ) by the curvature condition (5.17)

> 𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 ) since 𝑑 (𝑘 ) is a descent condition.

This can be rewritten as

(𝑦 (𝑘 ) )ᵀ𝑑 (𝑘 ) > 0,

and since 𝑠 (𝑘 ) = 𝛼 (𝑘 )𝑑 (𝑘 ) holds with positive step size 𝛼 (𝑘 ) , (5.48) follows. □

There are infinitely many possibilities (in case 𝑛 > 1) to satisfy the secant condition (5.47). (Quiz 5.8:
Why?) We are now describing some of the most prominent quasi-Newton update formulas of the

form

𝐻 (𝑘+1) B Φ
(
𝐻 (𝑘 ) , 𝑠 (𝑘 ) , 𝑦 (𝑘 )

)
. (5.46)

• SR1 (Symmetric rank-1) update:
There is only one symmetric rank-1 update formula that satisfies the secant condition (Nocedal,

Wright, 2006, Chapter 6.2), and it is given by

ΦSR1(𝐻, 𝑠, 𝑦) = 𝐻 +
(𝑦 − 𝐻 𝑠) (𝑦 − 𝐻 𝑠)ᵀ
(𝑦 − 𝐻 𝑠)ᵀ𝑠 , (5.49)

which requires that 𝐻 (𝑘 )𝑠 (𝑘 ) ≠ 𝑦 (𝑘 ) holds throughout the iterations. That, however, is problem-

atic. Suppose that we have taken a full step (𝛼 (𝑘 ) = 1), i. e., 𝑠 (𝑘 ) = 𝑑 (𝑘 ) holds. Suppose, moreover,

that the step size 𝛼 (𝑘 ) = 1 gave us an almost stationary point of the line search function 𝜑 . Then

(𝑦 (𝑘 ) − 𝐻 (𝑘 )𝑠 (𝑘 ) )ᵀ𝑠 (𝑘 )

= (𝑦 (𝑘 ) − 𝐻 (𝑘 )𝑑 (𝑘 ) )ᵀ𝑑 (𝑘 ) due to 𝑠 (𝑘 ) = 𝑑 (𝑘 )

=
(
∇𝑓 (𝑥 (𝑘+1) ) − ∇𝑓 (𝑥 (𝑘 ) ) − 𝐻 (𝑘 )𝑑 (𝑘 )

)ᵀ
𝑑 (𝑘 ) since 𝑦 (𝑘 ) = ∇𝑓 (𝑥 (𝑘+1) ) − ∇𝑓 (𝑥 (𝑘 ) )

= 𝑓 ′(𝑥 (𝑘+1) ) 𝑑 (𝑘 ) due to the quasi-Newton system (5.40)

= 𝜑 ′(𝛼 (𝑘 ) ),

which is almost zero.

Moreover, the positive definiteness of 𝐻
(𝑘+1)
SR1

cannot be guaranteed, even if 𝐻 (𝑘 ) was positive
definite, since the denominator in (5.49) may be negative. (Still, the SR1 has its purpose, in

particular in the context of trust-region methods.)

• PSB (Powell-symmetric-Broyden) update:
Condition (3) from our list of desirable properties suggests to keep 𝐻 (𝑘+1) close to 𝐻 (𝑘 ) . To this
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end, we consider the auxiliary problem

Minimize

1

2

∥𝐻 (𝑘+1) − 𝐻 (𝑘 ) ∥2𝐹 , where 𝐻 (𝑘+1) ∈ R𝑛×𝑛
sym

subject to the secant condition (5.47).

(5.50)

Here ∥·∥𝐹 is the Frobenius norm, see (2.7). Problem (5.50) can be shown to have a unique

solution
34
, which is given in terms of the update formula

ΦPSB(𝐻, 𝑠, 𝑦) = 𝐻 +
(𝑦 − 𝐻 𝑠) 𝑠ᵀ + 𝑠 (𝑦 − 𝐻 𝑠)ᵀ

𝑠ᵀ𝑠
− (𝑦 − 𝐻 𝑠)ᵀ𝑠 𝑠 𝑠ᵀ

(𝑠ᵀ𝑠)2 (5.51)

This formula is said to be a rank-2 update since the rank of 𝐻 (𝑘+1) − 𝐻 (𝑘 ) is at most 2. To see

this, consider that ΦPSB is of the form

ΦPSB(𝐻, 𝑠, 𝑦) = 𝐻 + 𝑣 𝑠ᵀ + 𝑠 𝑣ᵀ + 𝛾 𝑠 𝑠ᵀ with 𝑣 = (𝑦 − 𝐻 𝑠)/∥𝑠 ∥2 and 𝛾 =
𝑣ᵀ𝑠

∥𝑠 ∥2
= 𝐻 + 𝛾 (𝑠 − 𝛾−1𝑣) (𝑠 − 𝛾−1𝑣)ᵀ︸                       ︷︷                       ︸

symmetric, rank 1

−𝛾−1𝑣 𝑣ᵀ︸ ︷︷ ︸
symmetric, rank 1

.

Like SR1, the PSB update formula also cannot guarantee the positive definiteness.

• DFP (Davidon-Fletcher-Powell) update:
The DFP update considers an auxiliary problem

Minimize

1

2

∥𝑊 −ᵀ(𝐻 (𝑘+1) − 𝐻 (𝑘 ) )𝑊 −1∥2𝐹 , where 𝐻 (𝑘+1) ∈ R𝑛×𝑛
sym

subject to the secant condition (5.47),

where𝑊 is any non-singular matrix with the property𝑊 ᵀ𝑊𝑠 (𝑘 ) = 𝑦 (𝑘 ) . Using (2.6) and the

property trace(𝐴𝐵𝐶) = trace(𝐵𝐶𝐴) for products of matrices, and setting𝑀 B𝑊 ᵀ𝑊 (which is

s. p. d.), we can rewrite this problem as

Minimize

1

2

trace

(
𝑀−1(𝐻 (𝑘+1) − 𝐻 (𝑘 ) )𝑀−1(𝐻 (𝑘+1) − 𝐻 (𝑘 ) )

)
, where 𝐻 (𝑘+1) ∈ R𝑛×𝑛

sym

subject to the secant condition (5.47)

(5.52)

with data𝑀 𝑠 (𝑘 ) = 𝑦 (𝑘 ) .35

It can be shown that the unique solution of problem (5.52) is independent of𝑀 and it is given by

ΦDFP(𝐻, 𝑠, 𝑦) = (Id − 𝜌 𝑦 𝑠ᵀ)𝐻 (Id − 𝜌 𝑠 𝑦ᵀ) + 𝜌 𝑦 𝑦ᵀ

= 𝐻 + 𝜌 (𝑦 − 𝐻 𝑠) 𝑦ᵀ + 𝜌 𝑦 (𝑦 − 𝐻 𝑠)ᵀ − 𝜌2(𝑦 − 𝐻 𝑠)ᵀ𝑠 𝑦 𝑦ᵀ,
(5.53)

where 𝜌 = 1/(𝑦ᵀ𝑠). This update formula can be seen to also be of rank 2. This time, positive

definiteness can be guaranteed; see Lemma 5.49.

34
see for instance Ulbrich, Ulbrich, 2012, p.76

35
The average Hessian

∫
1

0
𝑓 ′′ (𝑥 (𝑘 ) + 𝑡 𝑠 (𝑘 ) ) d𝑡 is one possible matrix𝑀 , provided it is positive definite.
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• BFGS (Broyden-Fletcher-Goldfarb-Shanno) update:
The BFGS formula starts from the optimization problem

Minimize

1

2

∥𝑊 [(𝐻 (𝑘+1) )−1 − (𝐻 (𝑘 ) )−1]𝑊 ᵀ∥2𝐹 , 𝐻 (𝑘+1) ∈ R𝑛×𝑛
sym

subject to the secant condition (5.47),

where𝑊 is again any non-singular matrix with the property𝑊 ᵀ𝑊𝑠 (𝑘 ) = 𝑦 (𝑘 ) . Similarly as in

(5.52), we can rewrite this problem as

Minimize

1

2

trace

(
𝑀 [(𝐻 (𝑘+1) )−1 − (𝐻 (𝑘 ) )−1]𝑀 [(𝐻 (𝑘+1) )−1 − (𝐻 (𝑘 ) )−1]

)
, 𝐻 (𝑘+1) ∈ R𝑛×𝑛

sym

subject to the secant condition (5.47)

(5.54)

with data𝑀 𝑠 (𝑘 ) = 𝑦 (𝑘 ) .

The solution of this problem — once again independent of𝑊 — results in the rank-2 update

formula

ΦBFGS(𝐻, 𝑠, 𝑦) = 𝐻 −
𝐻 𝑠 𝑠ᵀ𝐻

𝑠ᵀ𝐻 𝑠
+ 𝜌 𝑦 𝑦ᵀ (5.55)

where 𝜌 = 1/(𝑦ᵀ𝑠). Also here, Lemma 5.49 will ensure the positive definiteness.

• Broyden class update:
The update formulas of the Broyden class are the affine combinations of the DFP and BFGS

formulas. For any parameter 𝜆 ∈ R, we obtain

Φ𝜆
Broyden

(𝐻, 𝑠, 𝑦) = (1 − 𝜆) ΦBFGS(𝐻, 𝑠, 𝑦) + 𝜆 ΦDFP(𝐻, 𝑠, 𝑦) . (5.56)

The formulas obtained by restricting 𝜆 ∈ [0, 1] are known as the convex Broyden class.

In (5.48) we had identified 𝑦ᵀ𝑠 > 0 as a necessary condition for any quasi-Newton update formula

satisfying the secant condition to be positive definite. Indeed, this condition is already sufficient in

case of the DFP and BFGS updates. Consequently, the positive definiteness can be ensured using a

Wolfe-Powell line search as we proved in Lemma 5.48.

Lemma 5.49 (Positive definiteness of the DFP and BFGS updates). Suppose that 𝐻 is symmetric and

positive definite and that 𝑦ᵀ𝑠 > 0 holds. Then 𝐻+
BFGS

B ΦBFGS(𝐻, 𝑠, 𝑦) and 𝐻+
DFP
B ΦDFP(𝐻, 𝑠, 𝑦) are

symmetric and positive definite as well.

Note: One can show this result even for all members of the non-negative Broyden class (𝜆 ≥ 0); see

Ulbrich, Ulbrich, 2012, Satz 13.4.

Proof. The symmetry of 𝐻+
BFGS

and 𝐻+
DFP

are obvious. For any 𝑣 ∈ R𝑛 , 𝑣 ≠ 0, we have

𝑣ᵀ𝐻+
DFP

𝑣 = (𝑣ᵀ − 𝜌 (𝑣ᵀ𝑦) 𝑠ᵀ)𝐻 (𝑣 − 𝜌 𝑠 (𝑣ᵀ𝑦)) + 𝜌 (𝑣ᵀ𝑦)2 ≥ 0.
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Equality in this inequality can hold only if both summands are zero. The first summand is zero precisely

when 𝑣 is a certain multiple of 𝑠 , but in that case the second summand will be strictly positive due to

𝜌 = 1/(𝑦ᵀ𝑠) > 0.

As for BFGS, we have

𝑣ᵀ𝐻+
BFGS

𝑣 = 𝑣ᵀ𝐻 𝑣 − (𝑠
ᵀ𝐻 𝑣)2
𝑠ᵀ𝐻 𝑠

+ 𝜌 (𝑦ᵀ𝑣)2

By the Cauchy-Schwarz inequality w.r.t. the 𝐻 -inner product, we can estimate this as

𝑣ᵀ𝐻+
BFGS

𝑣 ≥ 𝑣ᵀ𝐻 𝑣 − (𝑠
ᵀ𝐻 𝑠) (𝑣 𝐻 𝑣)
𝑠ᵀ𝐻 𝑠

+ (𝑦
ᵀ𝑣)2
𝑦ᵀ𝑠

=
(𝑦ᵀ𝑣)2
𝑦ᵀ𝑠

≥ 0.

If this expression were equal to zero, then both inequalities would need to be equalities. In the first

inequality, this implies that 𝑣 is a (non-zero) multiple of 𝑠 . But then the second inequality is strict since

𝑦ᵀ𝑠 > 0 holds. □

While quasi-Newton methods avoid the evaluation of second-order derivatives of the objective 𝑓 , we

still need to solve a linear system (5.40) in every iteration. This brings up the question whether we

could perhaps work with the inverse matrix
36 𝐵 (𝑘 ) = (𝐻 (𝑘 ) )−1 and avoid the solution of linear systems

altogether, by evaluating

𝑑 (𝑘 ) = −𝐵 (𝑘 )∇𝑓 (𝑥 (𝑘 ) ) instead of solving 𝐻 (𝑘 )𝑑 (𝑘 ) = −∇𝑓 (𝑥 (𝑘 ) ). (5.57)

This is indeed possible, and we can find update formulas for the inverse matrices. The fact that

common update formulas for 𝐻 (𝑘 ) are of low rank can be exploited, and it leads to low-rank update

formulas for 𝐵 (𝑘 ) . This is a consequence of the following key result, which has applications far beyond

quasi-Newton methods.

Lemma 5.50 (Sherman-Morrison-Woodbury formula). Suppose that 𝐴 ∈ R𝑛×𝑛 and 𝐶 ∈ R𝑟×𝑟 are
non-singular matrices and that𝑈 ∈ R𝑛×𝑟 , 𝑉 ∈ R𝑟×𝑛 are arbitrary. Then 𝐴 +𝑈 𝐶𝑉 is non-singular if and

only if 𝐶−1 +𝑉𝐴−1𝑈 is non-singular. In this case,

(𝐴 +𝑈 𝐶𝑉 )−1 = 𝐴−1 −𝐴−1𝑈 (𝐶−1 +𝑉𝐴−1𝑈 )−1𝑉𝐴−1. (5.58)

The significance of this lemma is the following. Typically we have 𝑟 ≪ 𝑛. Knowing the inverse 𝐴−1,
we can evaluate the inverse of the perturbed matrix 𝐴 + 𝑈 𝐶𝑉 with little effort, since the matrix

𝐶−1 +𝑉𝐴−1𝑈 on the right hand side, which is to be inverted, is only of size 𝑟 × 𝑟 . In particular, the

Sherman-Morrison-Woodbury lemma 5.50 states that the inverse of a rank-𝑟 update is a rank-𝑟 update

of the inverse.

36
We are pointing out that in part of the literature, notably in Nocedal, Wright, 2006, the notations for 𝐵 and 𝐻 are reversed.

106 https://tinyurl.com/scoop-nlo 2023-07-14

https://tinyurl.com/scoop-nlo


cbn Nonlinear Optimization

Proof. Suppose first that 𝐶−1 +𝑉𝐴−1𝑈 is non-singular. Then it can be checked straightforwardly that

the inverse of 𝐴 +𝑈 𝐶𝑉 is given by the right-hand side in (5.58). For the converse statement, we can

reverse the roles as follows:

𝐴↭ 𝐶−1, 𝐶 ↭ 𝐴−1, 𝑉 ↭ 𝑈 , 𝑈 ↭ 𝑉 .

□

Dropping indices, the update formulas we discussed in (5.46) are of the form

𝐻+ = Φ(𝐻, 𝑠, 𝑦).

We will obtain update formulas for the inverse of the form

𝐵+ = Ψ(𝐵, 𝑠, 𝑦)

with the property that 𝐵 = 𝐻−1 implies 𝐵+ = (𝐻+)−1. Since ΦDFP and ΦBFGS are expressed in terms of

rank-2 updates of the input 𝐻 , the Sherman-Morrison-Woodbury lemma 5.50 allows us to express also

ΨDFP and ΨBFGS in terms of rank-2 update formulas. Indeed, we can obtain the

• inverse DFP quasi-Newton update:
The Sherman-Morrison-Woodbury formula applied to the DFP update formula (5.53) yields

ΨDFP(𝐵, 𝑠, 𝑦) = 𝐵 −
𝐵 𝑦 𝑦ᵀ𝐵

𝑦ᵀ𝐵 𝑦
+ 𝜌 𝑠 𝑠ᵀ (5.59)

where, again, 𝜌 = 1/(𝑦ᵀ𝑠).

• inverse BFGS quasi-Newton update:
Similarly, we can obtain

ΨBFGS(𝐵, 𝑠, 𝑦) = (Id − 𝜌 𝑠 𝑦ᵀ) 𝐵 (Id − 𝜌 𝑦 𝑠ᵀ) + 𝜌 𝑠 𝑠ᵀ

= 𝐵 + 𝜌 (𝑠 − 𝐵 𝑦) 𝑠ᵀ + 𝜌 𝑠 (𝑠 − 𝐵 𝑦)ᵀ − 𝜌2(𝑠 − 𝐵 𝑦)ᵀ𝑦 𝑠 𝑠ᵀ,
(5.60)

cf. homework problem 6.4. Interestingly, it turns out that the DFP and BFGS updates are inverse to

each other. More precisely, we have

ΨDFP(·, 𝑠, 𝑦) = ΦBFGS(·, 𝑦, 𝑠) and ΨBFGS(·, 𝑠, 𝑦) = ΦDFP(·, 𝑦, 𝑠) . (5.61)

Using an inverse quasi-Newton formula and obtaining the quasi-Newton direction from (5.57) solves

both issues with Newton’s method identified in the beginning of § 5.5. In the literature, the BFGS update

is reported to be generally the most efficient among the quasi-Newton updates. For completeness, we

therefore now state a globalized algorithm using the inverse BFGS update.

Algorithm 5.51 (Globalized quasi-Newton method with inverse BFGS update for (UP)).
Input: initial guess 𝑥 (0) ∈ R𝑛
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Input: routine to evaluate 𝑓 and 𝑓 ′ (or ∇𝑓 )
Input: routine that implements the inverse BFGS update ΨBFGS

Input: s. p. d. matrix𝑀 (or matrix-vector products with𝑀−1)
Input: Armijo and curvature parameters 0 < 𝜎 < 𝜏 < 1 with 𝜎 ∈ (0, 1/2) // to be passed through to the

Wolfe-Powell line search

Input: expansion parameter 𝛾 > 1 // to be passed through to the Wolfe-Powell line search

Input: nesting parameters 𝛾,𝛾 ∈ (0, 1/2] // to be passed through to the Wolfe-Powell line search

Output: approximately stationary point of (UP)
1: Setze 𝑘 B 0

2: Setze 𝑓 (0) B 𝑓 (𝑥 (0) )
3: Setze 𝑟 (0) B 𝑓 ′(𝑥 (0) )ᵀ = ∇𝑓 (𝑥 (0) )
4: Setze 𝑑

(0)
𝐺
B −𝑀−1𝑟 (0)

5: Setze 𝛿 (0) B −(𝑟 (0) )ᵀ𝑑 (0)
𝐺

// 𝛿 (0) = ∥∇𝑀 𝑓 (𝑥 (0) )∥2𝑀 = ∥𝑑 (0)
𝐺
∥2
𝑀

Input: Set 𝐵
(0)
BFGS
B 𝑀−1 // initial model Hessian equals the user-defined base metric

6: while stopping criterion not met do
7: Determine the quasi-Newton direction 𝑑 (𝑘 ) from

𝑑 (𝑘 ) B −𝐵 (𝑘 )
BFGS
∇𝑓 (𝑥 (𝑘 ) )

8: Determine a step size 𝛼 (𝑘 ) > 0 from a Wolfe-Powell line search procedure (Algorithm 5.18),

applied to 𝜑 (𝛼) B 𝑓 (𝑥 (𝑘 ) + 𝛼 𝑑 (𝑘 ) ), with initial trial step size 𝛼 (𝑘,0) , Armijo parameter 𝜎 , curvature

parameter 𝜏 , expansion parameter 𝛾 and nesting parameters 𝛾,𝛾 // 𝜑 (0) = 𝑓 (𝑘 ) is already known and

𝜑 ′(0) = (𝑟 (𝑘 ) )ᵀ𝑑 (𝑘 ) is easily evaluated

9: Set 𝑠 (𝑘 ) B 𝛼 (𝑘 )𝑑 (𝑘 )

10: Set 𝑥 (𝑘+1) B 𝑥 (𝑘 ) + 𝑠 (𝑘 )
11: Set 𝑓 (𝑘+1) B 𝑓 (𝑥 (𝑘+1) )
12: Set 𝑟 (𝑘+1) B 𝑓 ′(𝑥 (𝑘+1) )ᵀ = ∇𝑓 (𝑥 (𝑘+1) )
13: Set 𝑑

(𝑘+1)
𝐺

B −𝑀−1𝑟 (𝑘+1) // evaluate the negative𝑀-gradient

14: Set 𝛿 (𝑘+1) B −(𝑟 (𝑘+1) )ᵀ𝑑 (𝑘+1)
𝐺

// 𝛿 (𝑘+1) = ∥∇𝑀 𝑓 (𝑥 (𝑘+1) )∥2𝑀 = ∥𝑑 (𝑘+1)
𝐺
∥2
𝑀

15: Set 𝑦 (𝑘 ) B 𝑟 (𝑘+1) − 𝑟 (𝑘 )
16: Evaluate 𝐵

(𝑘+1)
BFGS

B ΨBFGS(𝐵 (𝑘 )
BFGS

, 𝑠 (𝑘 ) , 𝑦 (𝑘 ) )
17: Set 𝑘 B 𝑘 + 1
18: end while
19: return 𝑥 (𝑘 )

Remark 5.52 (on Algorithm 5.51).

(𝑖) The choice 𝐵 (0)
BFGS

= 𝑀−1 lends itself as the inverse of the initial model Hessian. In this way, the

user-defined base metric 𝑀 serves as the initial model Hessian, as in gradient descent methods.

However, in contrast to gradient descent methods, the metric then evolves according to the data 𝑠 (𝑘 )

and 𝑦 (𝑘 ) acquired throughout the iterations.

(𝑖𝑖) Unfortunately, the convergence results for Algorithm 5.51 are not as rich as for other methods.

• One can show the local Q-superlinear convergence of 𝑥 (𝑘 ) to a point 𝑥∗ satisfying the second-
order sufficient optimality condition (see Theorem 3.3), provided that 𝑥 (0) is sufficiently close
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to 𝑥∗, the step sizes are fixed to 𝛼 (𝑘 ) = 1, and the initial Hessian 𝑀 is sufficiently close to

𝑓 ′′(𝑥∗).

• Global convergence can be proved under the assumption that the generalized condition numbers

of the inverse BFGS matrices 𝐵
(𝑘 )
BFGS

w.r.t. 𝑀−1 remains bounded. This is equivalent to the

generalized condition numbers of the (non-inverse) BFGS matrices 𝐻
(𝑘 )
BFGS

w.r.t. 𝑀 remaining

bounded. (Quiz 5.9: Can you see why this is equivalent?)

Under this assumption, Lemma 5.5 ensures that the angle condition holds, and thus the search

directions are admissible (Lemma 5.4). Moreover, under the assumption that the sublevel set

M𝑓 (𝑥 (0) ) B {𝑥 ∈ R𝑛 | 𝑓 (𝑥) ≤ 𝑓 (𝑥 (0) )} is compact, the Wolfe-Powell step sizes can be shown

to be admissible (Ulbrich, Ulbrich, 2012, Satz 9.5). The global convergence, in the sense that

every accumulation point of the sequence of iterates 𝑥 (𝑘 ) is a stationary point, then follows

from the global convergence theorem 5.9. See Ulbrich, Ulbrich, 2012, Satz 13.11 for details.

• Unfortunately, the boundedness of the (inverse) BFGS matrices’ generalized condition numbers

cannot be guaranteed a priori. One possible remedy is to introduce a generalized angle

condition such as

𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 ) ≤ −min

{
𝜂, 𝜌 ∥𝑑 (𝑘 )

𝐺
∥𝑝
𝑀

}
∥𝑑 (𝑘 )
𝐺
∥𝑀 ∥𝑑 (𝑘 ) ∥𝑀 (5.27)

into Algorithm 5.51. Due to the estimate

−𝑓 ′(𝑥 (𝑘 ) ) 𝑑 ≥ 2

√
𝜅

𝜅 + 1 ∥𝑑
(𝑘 )
𝐺
∥𝑀 ∥𝑑 ∥𝑀

for all 𝑑 ∈ R𝑛 that we have from Lemma 5.5, a violation of condition (5.27) either means

that the residual norm ∥𝑑 (𝑘 )
𝐺
∥𝑀 = ∥ 𝑓 ′(𝑥 (𝑘 ) )∥𝑀−1 has already become small (so that further

convergence can be entrusted to the local convergence result), or it otherwise indicates run-away

generalized condition numbers of 𝐻 (𝑘 ) w.r.t. 𝑀 .
37

When (5.27) is violated, we might reset the matrix to 𝐵
(𝑘 )
BFGS
B 𝐵

(0)
BFGS

, discard and re-evaluate

the current direction 𝑑 (𝑘 ) , effectively resorting to a steepest descent step. Under these modifi-

cations of Algorithm 5.51, the a priori assumption on the boundedness of the (inverse) BFGS

matrices can be dropped in the proof of global convergence. For further details, see Geiger,

Kanzow, 1999, p.167 and the reference Kosmol, 1989, Kapitel 11.5 they are citing.

(𝑖𝑖𝑖) In practice, Algorithm 5.51 often exhibits Q-superlinear convergence. This is remarkable since only

first-order derivatives of 𝑓 are being used.

Limited-Memory BFGS Method

While the quasi-Newton methods we discussed so far successfully avoid second-order derivatives of

the objective and replace the solutions of linear systems by matrix-vector products to obtain the search

37
Notice that 𝜅 ↦→ 2

√
𝜅

𝜅+1 is monotone decreasing and it goes to 0 if and only if 𝜅 →∞.
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directions, one disadvantage remains. That issue is the high memory requirement to store the inverse

quasi-Newton matrices 𝐵 (𝑘 ) (or their non-inverted counterparts 𝐻 (𝑘 ) ) when the problem dimension 𝑛

is not small. For instance, a problem of the (still moderate) dimension 𝑛 = 10 000 already requires

𝑛 (𝑛 + 1)
2

8 B︸︷︷︸
storage for one double precision number

≈ 381MiB

of storage, while a problem of size 𝑛 = 100 000 requires about 37GiB.
38
!

Typically (but not always), the true Hessian 𝑓 ′′ is sparse for large-scale problems. By contrast, the quasi-

Newton matrices 𝐻 (𝑘 ) and their inverses 𝐵 (𝑘 ) are always fully populated, although their difference to

their initial values 𝐻 (𝑘 ) and 𝐵 (𝑘 ) is at most of rank 2𝑘 .

Two ideas can be used to solve the storage issue.

(1) Instead of storing the matrices 𝐵 (𝑘 ) entry by entry, we only store the pairs of vectors

(𝑦 (0) , 𝑠 (0) ), (𝑦 (1) , 𝑠 (1) ), . . .

As we will see, this is sufficient to evalulate the matrix-vector products 𝐵 (𝑘 )𝑟 .

(2) The above modification still requires us to store two additional vectors of length 𝑛 per iteration.

We can, however, limit the storage by keeping only the most recent 𝑚 pairs of vectors and

dropping the previous.

The combination of these ideas leads to limited-memory quasi-Newtonmethods. While the limited-

memory idea is generally applicable to all low-rank quasi-Newton update formulas, we concentrate

here on the inverse BFGS update. We start by reviewing the respective update formula (5.60), which

leads to the recursion

𝐵
(𝑘+1)
BFGS

= (𝑉 (𝑘 ) )ᵀ𝐵 (𝑘 )
BFGS

𝑉 (𝑘 ) + 𝜌 (𝑘 )𝑠 (𝑘 ) (𝑠 (𝑘 ) )ᵀ,
where 𝜌 (𝑘 ) B 1/(𝑦 (𝑘 ) )ᵀ𝑠 (𝑘 ) and 𝑉 (𝑘 ) B Id − 𝜌 (𝑘 )𝑦 (𝑘 ) (𝑠 (𝑘 ) )ᵀ. Working out the first few elements of

this sequence, we obtain

𝐵
(1)
BFGS

= (𝑉 (0) )ᵀ𝐵 (0)
BFGS

𝑉 (0) + 𝜌 (0)𝑠 (0) (𝑠 (0) )ᵀ

𝐵
(2)
BFGS

= (𝑉 (1) )ᵀ𝐵 (1)
BFGS

𝑉 (1) + 𝜌 (1)𝑠 (1) (𝑠 (1) )ᵀ

= (𝑉 (1) )ᵀ(𝑉 (0) )ᵀ𝐵 (0)
BFGS

𝑉 (0)𝑉 (1) + 𝜌 (0) (𝑉 (1) )ᵀ𝑠 (0) (𝑠 (0) )ᵀ𝑉 (1) + 𝜌 (1)𝑠 (1) (𝑠 (1) )ᵀ

etc. We only need to evaluate matrix-vector products such as

𝐵
(2)
BFGS

𝑟 = (𝑉 (1) )ᵀ(𝑉 (0) )ᵀ𝐵 (0)
BFGS

𝑉 (0)𝑉 (1)𝑟 + 𝜌 (0) (𝑉 (1) )ᵀ𝑠 (0) (𝑠 (0) )ᵀ𝑉 (1)𝑟 + 𝜌 (1)𝑠 (1) (𝑠 (1) )ᵀ𝑟,

which can be realized efficiently as follows.

Algorithm 5.53 (Recursive evaluation of 𝐵
(𝑘 )
BFGS

𝑟 ).

38
A Mebibyte (MiB) are 2

20
bytes, a Gibibyte (GiB) are 2

30
bytes. The prefixes “mebi” and gibi replace the former “mega”

und “giga”, which should however be reserved to mean 10
6
and 10

9
, respectively.
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Input: initial matrix 𝐵
(0)
BFGS

(or matrix-vector products with 𝐵
(0)
BFGS

)

Input: pairs of vectors (𝑦 (𝑖 ) , 𝑠 (𝑖 ) ) and scalars 𝜌 (𝑖 ) = 1/(𝑦 (𝑖 ) )ᵀ𝑠 (𝑖 ) for 𝑖 = 0, . . . , 𝑘 − 1
Input: vector 𝑟 ∈ R𝑛
Output: 𝐵 (𝑘 )

BFGS
𝑟

1: for 𝑖 B 𝑘 − 1, 𝑘 − 2, . . . , 0 do
2: Set 𝛼 (𝑖 ) B 𝜌 (𝑖 ) (𝑠 (𝑖 ) )ᵀ𝑟
3: Set 𝑟 B 𝑟 − 𝛼 (𝑖 )𝑦 (𝑖 )
4: end for // 𝑟 { 𝑉 (0)𝑉 (1) · · ·𝑉 (𝑘−1)𝑟
5: Set 𝑑 B 𝐵

(0)
BFGS

𝑟

6: for 𝑖 B 0, 1, . . . , 𝑘 − 1 do
7: Set 𝛽 (𝑖 ) B 𝜌 (𝑖 ) (𝑦 (𝑖 ) )ᵀ𝑑
8: Set 𝑑 B 𝑑 + (𝛼 (𝑖 ) − 𝛽 (𝑖 ) ) 𝑠 (𝑖 )
9: end for
10: return 𝑑 // 𝑑 = 𝐵

(𝑘 )
BFGS

𝑟

Remark 5.54 (on Algorithm 5.53).

(𝑖) We do not need 𝐵
(0)
BFGS

as a matrix since only matrix-vector products with 𝐵
(0)
BFGS

are required.

(𝑖𝑖) Using Algorithm 5.53, it is even possible to change the inverse base metric 𝐵
(0)
BFGS

during the run of

the quasi-Newton algorithm. This is impossible when the update formula (5.60) is used to explicitly

form the matrices 𝐵
(𝑘 )
BFGS

.

We now come back to the second idea of limiting the storage of the pairs of vectors (𝑦 (𝑖 ) , 𝑠 (𝑖 ) ) to the

𝑚 most recent ones.
39

This idea is easily incorporated into Algorithm 5.53. The resulting update rule is

called the inverse limited-memory BFGS update rule or briefly, the (inverse) L-BFGS or (inverse)
LM-BFGS rule.

Algorithm 5.55 (Recursive evaluation of 𝐵
(𝑘 )
LM-BFGS

𝑟 ).

Input: initial matrix 𝐵
(0)
BFGS

(or matrix-vector products with 𝐵
(0)
BFGS

)

Input: pairs of vectors (𝑦 (𝑖 ) , 𝑠 (𝑖 ) ) and scalars 𝜌 (𝑖 ) = 1/(𝑦 (𝑖 ) )ᵀ𝑠 (𝑖 ) for 𝑖 = 𝑘 −𝑚, . . . , 𝑘 − 1
Input: vector 𝑟 ∈ R𝑛
Output: 𝐵 (𝑘 )

BFGS
𝑟

1: for 𝑖 B 𝑘 − 1, 𝑘 − 2, . . . , 𝑘 −𝑚 do
2: Set 𝛼 (𝑖 ) B 𝜌 (𝑖 ) (𝑠 (𝑖 ) )ᵀ𝑟
3: Set 𝑟 B 𝑟 − 𝛼 (𝑖 )𝑦 (𝑖 )
4: end for // 𝑟 { 𝑉 (𝑘−𝑚)𝑉 (𝑘−𝑚−1) · · ·𝑉 (𝑘−1)𝑟
5: Set 𝑑 B 𝐵

(0)
BFGS

𝑟

6: for 𝑖 B 𝑘 −𝑚,𝑘 −𝑚 − 1, . . . , 𝑘 − 1 do
7: Set 𝛽 (𝑖 ) B 𝜌 (𝑖 ) (𝑦 (𝑖 ) )ᵀ𝑑
8: Set 𝑑 B 𝑑 + (𝛼 (𝑖 ) − 𝛽 (𝑖 ) ) 𝑠 (𝑖 )
9: end for
10: return 𝑑 // 𝑑 = 𝐵

(𝑘 )
BFGS

𝑟

39
We do not relabel the vectors.
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We conclude with some remarks on limited-memory quasi-Newton methods.

Remark 5.56 (on limited-memory quasi-Newton methods).
(𝑖) During the first iterations, the number of vectors pairs is gradually increased until the desired

size𝑚max of the storage window is reached. That is, we use𝑚 = min{𝑘,𝑚max}. Typically, 3 ≤
𝑚max ≤ 10 holds.

(𝑖𝑖) The modifications in Algorithm 5.51 in order to use the inverse limited-memory BFGS update rather

than the full (unlimited) inverse BFGS update are minor. In Line 7, we obtain the quasi-Newton

direction by evaluating

𝑑 (𝑘 ) = −𝐵 (𝑘 )
LM-BFGS

∇𝑓 (𝑥 (𝑘 ) )

using Algorithm 5.55. The evaluation of the next inverse model Hessian 𝐵
(𝑘+1)
LM-BFGS

in Line 16 is

replaced by adding the most recent vector pair (𝑦 (𝑘 ) , 𝑠 (𝑘 ) ) to the storage.

(𝑖𝑖𝑖) We cannot expect a limited-memory quasi-Newton method to converge Q-superlinearly in general.

§ 5.8 Nonlinear Conjugate Gradient Methods

Let us recap the contents of § 5 up to here. After introducing the general framework of line search

methods, we discussed a first example, the gradient descent method, in § 5.3. This makes do with

first-order derivatives but does not yield Q-superlinear convergence in general. This led us to consider

(inexact) Newton methods (§ 5.4, § 5.6), which achieve Q-superlinear or even Q-quadratic convergence

but are more expensive due to the use of second-order derivatives and solving (albeit only inexactly) a

linear systems with 𝑓 ′′(𝑥 (𝑘 ) ) in each iteration. As a compromise, we then introduced quasi-Newton

methods (§ 5.7), which make do with first-order derivatives and are capable of achieving Q-superlinear

convergence.

An alternative class of methods which also works with first-order derivatives only is based on the

extension of the conjugate gradient (CG) method (§ 4.6) to nonlinear objective functions. These

methods are known as nonlinear conjugate gradient methods.

The essential characteristics of the CG method for quadratic objectives were:

(1) Every new search direction 𝑑 (𝑘+1) was obtained from the current search direction 𝑑 (𝑘 ) and the

direction of steepest descent, by forming a linear combination such that 𝑑 (𝑘 ) and 𝑑 (𝑘+1) became

𝐴-orthogonal. The 𝐴-orthogonality with all previous search directions was automatic.

(2) The Cauchy step size (exact minimizing step size) was taken along every search direction. This

was possible due to the objective being a quadratic polynomial.

For nonlinear CG methods, we need to observe the following in comparison.

(1) The Cauchy step size is no longer available. Instead, a line search procedure is used, which is

often a strong Wolfe-Powell line search.
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(2) We continue to denote the residual as 𝑟 (𝑘 ) B ∇𝑓 (𝑥 (𝑘 ) ).

(3) Since the Hessian of the objective is no longer a constant, s. p. d. matrix 𝐴, the requirement

of 𝐴-conjugate (𝐴-orthogonal) search directions does not make sense anymore. However, one

maintains the construction principle that every new search direction 𝑑 (𝑘+1) is obtained from a

linear combination of the current search direction 𝑑 (𝑘 ) and the direction of steepest descent:

𝑑 (0) B −𝑀−1𝑟 (0) for 𝑘 = 0,

𝑑 (𝑘 ) B −𝑀−1𝑟 (𝑘 ) + 𝛽 (𝑘 ) 𝑑 (𝑘−1) for 𝑘 ≥ 1.
(4.23)

The coefficients 𝛽 are obtained using any of the formulas in (4.24’), which are no longer equivalent

for nonlinear CG methods but yield distinct methods; see Table 5.1.

Algorithm 5.57 (Generic nonlinear conjugate gradient method; compare Algorithm 4.17).
Input: initial guess 𝑥 (0) ∈ R𝑛
Input: right-hand side 𝑏 ∈ R𝑛
Input: s. p. d. matrix𝑀 (or matrix-vector products with𝑀−1)
Output: approximately stationary point of (UP)
1: Set 𝑘 B 0

2: Set 𝑟 (0) B ∇𝑓 (𝑥 (0) ) // evaluate the initial residual

3: Set 𝑑 (0) B −𝑀−1𝑟 (0) // evaluate the initial negative𝑀-gradient

4: Set 𝛿 (0) B −(𝑟 (0) )ᵀ𝑑 (0) // 𝛿 (0) = ∥∇𝑀 𝑓 (𝑥 (0) )∥2𝑀
5: while stopping criterion not met do
6: Determine a step size 𝛼 (𝑘 ) > 0 from an appropriate line search procedure

7: // the details depend on the type of method (rule for choosing 𝛽)

8: Set 𝑥 (𝑘+1) B 𝑥 (𝑘 ) + 𝛼 (𝑘 )𝑑 (𝑘 )
9: Set 𝑟 (𝑘+1) B ∇𝑓 (𝑥 (𝑘+1) ) // updating the residual is not possible

10: Set 𝑑 (𝑘+1) B −𝑀−1𝑟𝑘+1 // evaluate the negative𝑀-gradient

11: Set 𝛿𝑘+1 B −(𝑟𝑘+1)ᵀ𝑑 (𝑘+1) // 𝛿 (𝑘+1) = ∥∇𝑀 𝑓 (𝑥 (𝑘+1) )∥2𝑀 = ∥𝑟 (𝑘+1) ∥2
𝑀−1

12: Set 𝑦 (𝑘 ) B 𝑟 (𝑘+1) − 𝑟 (𝑘 ) // some nonlinear CG methods use this

13: Determine 𝛽 (𝑘+1) // different nonlinear CG methods differ here

14: Set 𝑑 (𝑘+1) B 𝑑 (𝑘+1) + 𝛽 (𝑘+1)𝑑 (𝑘 ) // obtain the new search direction

15: Set 𝑘 B 𝑘 + 1
16: end while
17: return 𝑥 (𝑘 )

Different nonlinear CG methods differ with respect to the rule for choosing 𝛽 (𝑘+1) . Altogether, we had
seen in (4.24’) the two expressions

(𝑟 (𝑘+1) − 𝑟 (𝑘 ) )ᵀ𝑀−1 𝑟 (𝑘+1) and (𝑟 (𝑘+1) )ᵀ𝑀−1 𝑟 (𝑘+1) (5.62)

for the numerator and the three expressions

(𝑟 (𝑘+1) − 𝑟 (𝑘 ) )ᵀ 𝑑 (𝑘 ) , −(𝑟 (𝑘 ) )ᵀ 𝑑 (𝑘 ) and (𝑟 (𝑘 ) )ᵀ𝑀−1 𝑟 (𝑘 ) (5.63)
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for the denominator.
40

All six combinations (as well as additional variants) appear in the literature

and yield meaningful methods. Some prominent choices are summarized in Table 5.1. Some formulas

use the abbreviation 𝑦 (𝑘 ) = ∇𝑓 (𝑥 (𝑘+1) ) − ∇𝑓 (𝑥 (𝑘 ) ) = 𝑟 (𝑘+1) − 𝑟 (𝑘 ) as in quasi-Newton methods.

The line search procedure should yield an approximately stationary point of the line search function

𝜑 (𝛼) = 𝑓 (𝑥 (𝑘 ) + 𝛼 𝑑 (𝑘 ) ). Typically, the strong Wolfe-Powell conditions are required for this purpose

with a small curvature parameter such as 𝜏 = 10
−1

or 𝜏 = 10
−2
. In the (theoretical) case of an

exact line search, yielding an exactly stationary step size 𝛼 (𝑘 ) of the line search function, we have

(𝑟 (𝑘+1) )ᵀ𝑑 (𝑘 ) = 𝑓 ′(𝑥 (𝑘+1) ) 𝑑 (𝑘 ) = 𝜑 ′(𝛼 (𝑘 ) ) = 0. Moreover, we also have (𝑟 (𝑘 ) )ᵀ𝑑 (𝑘−1) = 0 from the

previous iteration, and therefore

(𝑟 (𝑘+1) − 𝑟 (𝑘 ) )ᵀ 𝑑 (𝑘 ) = −(𝑟 (𝑘 ) )ᵀ 𝑑 (𝑘 ) = (𝑟 (𝑘 ) )ᵀ (𝑀−1 𝑟 (𝑘 ) − 𝛽 (𝑘 ) 𝑑 (𝑘−1) ) = (𝑟 (𝑘 ) )ᵀ𝑀−1 𝑟 (𝑘 ) .

In this case, we see that the three different expressions in (5.63) for the denominator of 𝛽 (𝑘+1) coincide.

Convergence proofs for nonlinear CGmethods are siginificantly more technical than for other methods,

and we do not go into the details. It can be generally stated that the methods using (𝑟 (𝑘 ) )ᵀ𝑀−1 𝑟 (𝑘 ) as
numerator admit better convergence theories but that the methods using (𝑟 (𝑘 ) − 𝑟 (𝑘−1) )ᵀ𝑀−1 𝑟 (𝑘 ) are
often faster in practice.

As a stopping criterion we can use again a relative and/or absolute criterion involving 𝑟 (𝑘 ) = ∇𝑓 (𝑥 (𝑘 ) ),
see (4.14).

End of Week 6

40
The expression −(𝑟 (𝑘 ) )ᵀ 𝑑 (𝑘 ) was not explicitly given but can be derived immediately from (4.22), which implies (𝑟 (𝑘+1) −
𝑟 (𝑘 ) )ᵀ 𝑑 (𝑘 ) = −(𝑟 (𝑘 ) )ᵀ 𝑑 (𝑘 ) .
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Table 5.1: Some common nonlinear conjugate gradient methods.
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§ 6 Trust-Region Methods for Nonlinear Unconstrained Problems

The line search methods from § 5 proceed by first determining a search direction 𝑑 (𝑘 ) , by (inexactly)

minimizing a quadratic model of the objective

𝑞 (𝑘 ) (𝑑) = 𝑓 (𝑥 (𝑘 ) ) + 𝑓 ′(𝑥 (𝑘 ) ) 𝑑 + 1

2

𝑑ᵀ𝐻 (𝑘 )𝑑 (5.2)

or by (inexactly) solving the linear system

𝐻 (𝑘 )𝑑 (𝑘 ) = −∇𝑓 (𝑥 (𝑘 ) ) . (5.4)

Subsequently, a suitable step size 𝛼 (𝑘 ) > 0 is determined and the iterate is updated according to

𝑥 (𝑘+1) B 𝑥 (𝑘 ) + 𝛼 (𝑘 ) 𝑑 (𝑘 )︸            ︷︷            ︸
𝑠 (𝑘 )

.

Trust-region methods, by contrast, determine the direction and the step size simultaneously. They

generate the combined step 𝑠 (𝑘 ) as a (usually inexact) solution of the trust-region subproblem

Minimize 𝑞 (𝑘 ) (𝑠) = 𝑓 (𝑥 (𝑘 ) ) + 𝑓 ′(𝑥 (𝑘 ) ) 𝑠 + 1

2

𝑠ᵀ𝐻 (𝑘 )𝑠, where 𝑠 ∈ R𝑛

subject to ∥𝑠 ∥𝑀 ≤ Δ(𝑘 ) .
(6.1)

As for line search methods, 𝐻 (𝑘 ) is the model Hessian, which we require to be symmetric but not

necessarily positive definite. The quantity Δ(𝑘 ) > 0 is the trust-region radius governing the trust
region {

𝑠 ∈ R𝑛
�� ∥𝑠 ∥𝑀 ≤ Δ(𝑘 )

}
attached to the quadratic model.

Note: At 𝑠 = 0, the value of the model 𝑞 (𝑘 ) as well as its derivative agree with those of 𝑠 ↦→ 𝑓 (𝑥 (𝑘 ) + 𝑠).
In case of the Newton model (𝐻 (𝑘 ) = 𝑓 ′′(𝑥 (𝑘 ) )), the second derivatives agree as well. Either way,

for small values of ∥𝑠 ∥𝑀 , the model 𝑞 (𝑘 ) will be in good agreement with 𝑠 ↦→ 𝑓 (𝑥 (𝑘 ) + 𝑠) by Taylor’s

theorem 2.3.

Since the trust region is a compact set and the objective is continuous (in fact, infinitely smooth),

problem (6.1) always has a global minimizer even when 𝐻 (𝑘 ) is not positive definite.

Analogously as in line search methods, trust-region algorithms need to monitor the quality of the

step 𝑠 (𝑘 ) , in order to obtain sufficient descent. In fact, we should rather speak of the step proposal 𝑠 (𝑘 )

because trust-region methods may reject the proposal. The basis of evaluation of the quality of a

tentative step 𝑠 (𝑘 ) at the point 𝑥 (𝑘 ) is the comparison of the actual reduction in objective values

ared(𝑥 (𝑘 ) ; 𝑠 (𝑘 ) ) B 𝑓 (𝑥 (𝑘 ) ) − 𝑓 (𝑥 (𝑘 ) + 𝑠 (𝑘 ) ) (6.2)

to the predicted reduction based on the model 𝑞 (𝑘 ) associated with the iterate 𝑥 (𝑘 )

pred(𝑥 (𝑘 ) ; 𝑠 (𝑘 ) ) B 𝑞 (𝑘 ) (0) − 𝑞 (𝑘 ) (𝑠 (𝑘 ) )
= 𝑓 (𝑥 (𝑘 ) ) − 𝑞 (𝑘 ) (𝑠 (𝑘 ) )

= −𝑓 ′(𝑥 (𝑘 ) ) 𝑠 (𝑘 ) − 1

2

(𝑠 (𝑘 ) )ᵀ𝐻 (𝑘 )𝑠 (𝑘 ) . (6.3)
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This comparison is achieved in terms of the ratio of these two quantities,

𝜌 (𝑥 (𝑘 ) ; 𝑠 (𝑘 ) ) B ared(𝑥 (𝑘 ) ; 𝑠 (𝑘 ) )
pred(𝑥 (𝑘 ) ; 𝑠 (𝑘 ) )

. (6.4)

In our algorithms, we are going to produce only proposals satisfying

pred(𝑥 (𝑘 ) ; 𝑠 (𝑘 ) ) > 0, (6.5)

i. e., for which the model predicts a decrease. The actural decrease (6.2), however, can take either

sign.

Suppose now that 𝑠 (𝑘 ) is an (inexact) solution of the trust-region subproblem (6.1). Based on the value

of 𝜌 (𝑥 (𝑘 ) ; 𝑠 (𝑘 ) ), two decisions need to be taken:

• whether to accept or reject the step proposal 𝑠 (𝑘 ) ,
• how to choose the next the next trust-region radius.

These decisions usually depend on two algorithmic parameters 0 < 𝜂1 < 𝜂2 < 1:

(1) In case 𝜌 (𝑥 (𝑘 ) ; 𝑠 (𝑘 ) ) < 𝜂1, the step proposal 𝑠 (𝑘 ) is considered unsatisfactory. The reason for this

must be that the model 𝑞 (𝑘 ) does not coincide well with the true objective function 𝑓 within the

current trust region. In other words, the current trust region is too large.

We therefore reject and discard the step by setting 𝑥 (𝑘+1) B 𝑥 (𝑘 ) . We label this iterate unsuc-

cessful.
41
We also choose a new trust-region radius Δ(𝑘+1) < Δ(𝑘 ) . In fact, the new trust-region

radius should even satisfy Δ(𝑘+1) < ∥𝑠 (𝑘 ) ∥𝑀 in order to avoid computing the same unsuccessful

step proposal again in the subsequent iteration.

(2) In case 𝜌 (𝑥 (𝑘 ) ; 𝑠 (𝑘 ) ) ≥ 𝜂1, the step proposal 𝑠 (𝑘 ) is considered satisfactory and we accept it by

setting 𝑥 (𝑘+1) B 𝑥 (𝑘 ) + 𝑠 (𝑘 ) . The step is labeled successful. The trust region radius Δ(𝑘+1) for the
subsequent step is chosen as follows.

(a) In case 𝜌 (𝑥 (𝑘 ) ; 𝑠 (𝑘 ) ) ≥ 𝜂2, the coincidence between the predicted and actual reductions is

considered exceptionally good. We can therefore allow the trust region for the next step to

grow. However, this is sensible only if the current step 𝑠 (𝑘 ) actually did lie on the boundary

of the trust region, i. e., when ∥𝑠 (𝑘 ) ∥𝑀 = Δ(𝑘 ) holds.

(b) Otherwise we keep the trust-region radius: Δ(𝑘+1) B Δ(𝑘 ) .

We may call 𝜂1 the acceptance threshold and 𝜂2 the quality threshold.

The above guidelines lead to the following generic trust-region method (Algorithm 6.1).

Algorithm 6.1 (Generic trust-region method).
Input: initial guess 𝑥 (0) ∈ R𝑛

41
We still count this as an iterate since essentially the same amount of work has been carried out as in a successful iterate.

https://tinyurl.com/scoop-nlo 117

https://tinyurl.com/scoop-nlo


R. Herzog cbn

Input: routine to evaluate 𝑓 and 𝑓 ′ (or ∇𝑓 )
Input: routine to construct the model Hessians 𝐻 (𝑘 )

Input: s. p. d. matrix𝑀 (or matrix-vector products with𝑀−1)
Input: initial trust-region radius Δ(0) > 0

Input: trust-region step quality parameters 0 < 𝜂1 < 𝜂2 < 1

Input: trust-region growth parameters 0 < 𝛾1 < 1 < 𝛾2
Output: approximately stationary point of (UP)
1: Set 𝑘 B 0

2: Set 𝑓 (0) B 𝑓 (𝑥 (0) ) // evaluate the initial objective value

3: while stopping criterion not met do
4: Determine a step proposal 𝑠 (𝑘 ) by an inexact solution of the trust-region subproblem (6.1)

5: Evaluate the ratio 𝜌 (𝑥 (𝑘 ) ; 𝑠 (𝑘 ) ) according to (6.4)
6: if 𝜌 (𝑥 (𝑘 ) ; 𝑠 (𝑘 ) ) ≥ 𝜂1 then // satisfactory step proposal

7: Set 𝑥 (𝑘+1) B 𝑥 (𝑘 ) + 𝑠 (𝑘 ) // accept the step proposal

8: Set 𝑓 (𝑘+1) B 𝑓 (𝑥 (𝑘+1) )
9: if 𝜌 (𝑥 (𝑘 ) ; 𝑠 (𝑘 ) ) ≥ 𝜂2 and ∥𝑠 (𝑘 ) ∥𝑀 = Δ(𝑘 ) then
10: // exceptionally good step proposal and trust region too small

11: Set Δ(𝑘+1) B 𝛾2 Δ
(𝑘 )

// grow the trust region

12: else // satisfactory but not exceptionally good step, or trust region sufficiently large

13: Set Δ(𝑘+1) B Δ(𝑘 ) // keep the trust region

14: end if
15: else // unsatisfactory step proposal

16: Set 𝑥 (𝑘+1) B 𝑥 (𝑘 ) // reject the step proposal

17: Set 𝑓 (𝑘+1) B 𝑓 (𝑘 )

18: Set Δ(𝑘+1) B 𝛾1 ∥𝑠 (𝑘 ) ∥𝑀 // shrink the trust region

19: end if
20: Set 𝑘 B 𝑘 + 1
21: end while
22: return 𝑥 (𝑘 )

Remark 6.2 (on Algorithm 6.1). The evaluation of the ratio 𝜌 (𝑥 (𝑘 ) ; 𝑠 (𝑘 ) ) requires

• one function evaluation 𝑓 (𝑥 (𝑘 ) + 𝑠 (𝑘 ) ) and
• one model evaluation 𝑞 (𝑘 ) (𝑠 (𝑘 ) ) = 𝑓 (𝑥 (𝑘 ) ) + 𝑓 ′(𝑥 (𝑘 ) ) 𝑠 (𝑘 ) + 1

2
(𝑠 (𝑘 ) )ᵀ𝐻 (𝑘 )𝑠 (𝑘 )

per iteration. If the step proposal is accepted, then 𝑓 (𝑥 (𝑘 ) +𝑠 (𝑘 ) ) becomes 𝑓 (𝑥 (𝑘+1) ), so that really only one
evaluation of the objective 𝑓 is required per iteration. The evaluation of 𝑞 (𝑘 ) (𝑠 (𝑘 ) ) is usually a by-product

of the computation of the (inexact) solution of the trust-region subproblem (6.1).

In the remainder of this section we will consider the following questions.

(1) Which requirements do we have to impose on Algorithm 6.1, in particular concerning the choice

of model Hessians 𝐻 (𝑘 ) and the inexactness of the trust-region subproblem solves, in order to

obtain global convergence? (§ 6.1)

(2) How can we obtain fast local convergence? (§ 6.2)
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(3) What is a good algorithmic approach to solving the trust-region subproblems (6.1) with adjustable

accuracy? (§ 6.3)

Assumption 6.3. Throughout § 6 we are assuming that 𝑓 : R𝑛 → R is a 𝐶1
function.

§ 6.1 Global Convergence

In line search methods, we used the angle condition to compare candidate search directions, such

as the Newton direction in Algorithm 5.30 or the inexact Newton direction in Algorithm 5.44, to a

reference direction. The steepest descent direction 𝑑
(𝑘 )
𝐺

served as that reference and simultaneously as

the fallback search direction. This was essential in establishing the global convergence.

A similar idea for trust-region methods uses as reference the Cauchy point or Cauchy step 𝑠𝐶 . The
Cauchy point is defined as the unique solution of the trust-region subproblem (6.1), but restricted to

the subspace generated by the steepest descent direction. Dropping the iteration index for the time

being, the Cauchy point problem reads

Minimize 𝑞(𝑠) = 𝑓 (𝑥) + 𝑓 ′(𝑥) 𝑠 + 1

2

𝑠ᵀ𝐻 𝑠, where 𝑠 ∈ R𝑛, 𝜏 ∈ R

subject to ∥𝑠 ∥𝑀 ≤ Δ(𝑘 )

and 𝑠 = −𝜏 ∇𝑀 𝑓 (𝑥).

(6.6)

We assume 𝑓 ′(𝑥) ≠ 0. (Quiz 6.1: Why?) Abbreviating

𝑔 B ∇𝑀 𝑓 (𝑥)

and reducing the problem to the variable 𝜏 by plugging in the constraint 𝑠 = −𝜏 ∇𝑀 𝑓 (𝑥), we obtain
the reduced Cauchy point problem

Minimize 𝑞(−𝜏 𝑔) = 𝑓 (𝑥) − 𝜏 ∥𝑔∥2𝑀 +
𝜏2

2

𝑔ᵀ𝐻 𝑔, where 𝜏 ∈ R

subject to |𝜏 | ≤ Δ

∥𝑔∥𝑀
.

(6.7)

This is the minimization of a univariate quadratic polynomial over a compact interval that is symmetric

about 0. The solution of this problem is given in the following lemma.

Lemma 6.4 (Evaluation of the Cauchy point). Suppose that 𝑔 ≠ 0 and Δ ≥ 0 hold. Then the unique

solution 𝑠𝐶 = −𝜏𝐶 𝑔 of (6.6), respectively the unique solution 𝜏𝐶 of the reduced problem (6.7), is given by

𝜏𝐶 =


min

{ ∥𝑔∥2
𝑀

𝑔ᵀ𝐻 𝑔
,

Δ

∥𝑔∥𝑀

}
, if 𝑔ᵀ𝐻 𝑔 > 0,

Δ

∥𝑔∥𝑀
otherwise.

(6.8)
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Therefore, the decrease predicted by the model at the Cauchy point 𝑠𝐶 satisfies

pred(𝑥 ; 𝑠𝐶 ) = 𝑓 (𝑥) − 𝑞(𝑠𝐶 )

≥ 1

2

∥𝑔∥𝑀 min

{
Δ,

∥𝑔∥3
𝑀

max{0, 𝑔ᵀ𝐻 𝑔}

}
≥ 1

2

∥𝑔∥𝑀 min

{
Δ,

∥𝑔∥𝑀
max{0, 𝜆max(𝐻 ;𝑀)}

}
, (6.9)

where we interpret

∥𝑔∥3
𝑀

0
and

∥𝑔∥𝑀
0

as +∞.

Proof. We denote the objective in (6.7), which is a univariate quadratic polynomial, by

𝜑 (𝜏) B 𝑓 (𝑥) − 𝜏 ∥𝑔∥2𝑀 +
𝜏2

2

𝑔ᵀ𝐻 𝑔.

For any 𝜏 ∈ R and 𝑠 = −𝜏 𝑔, we have

pred(𝑥 ; 𝑠) = 𝑓 (𝑥) − 𝑞(−𝜏 𝑔) = 𝑓 (𝑥) − 𝜑 (𝜏) = 𝜏 ∥𝑔∥2𝑀 −
𝜏2

2

𝑔ᵀ𝐻 𝑔. (∗)

We need to distinguish two cases to find the optimal value for 𝜏 .

Case 1: 𝑔ᵀ𝐻 𝑔 > 0 (𝜑 is strongly convex)

The derivative of 𝜑 is equal to zero precisely at

𝜏∗ =
∥𝑔∥2

𝑀

𝑔ᵀ𝐻 𝑔
> 0.

In case this value is feasible, it is the unique solution of (6.7). Otherwise, due to 𝜑 ′(0) =

−𝜏 ∥𝑔∥2
𝑀

< 0, 𝜑 ′ is negative on the entire interval [0, Δ
∥𝑔∥𝑀 ], and therefore 𝜑 is decreasing on

this interval. Consequently, the maximal feasible value 𝜏 = Δ
∥𝑔∥𝑀 is the unique solution of (6.7).

To summarize this case:

𝜏𝐶 = min

{ ∥𝑔∥2
𝑀

𝑔ᵀ𝐻 𝑔
,

Δ

∥𝑔∥𝑀

}
.

In order to evaluate pred(𝑥 ; 𝑠𝐶 ), we obtain from (∗):

pred(𝑥 ; 𝑠𝐶 ) = 𝜏𝐶 ∥𝑔∥2𝑀 −
𝜏2
𝐶

2

𝑔ᵀ𝐻 𝑔

=


1

2

∥𝑔∥4
𝑀

𝑔ᵀ𝐻 𝑔 = 1

2
∥𝑔∥𝑀

∥𝑔∥3
𝑀

max{0,𝑔ᵀ𝐻 𝑔} if 𝜏𝐶 =
∥𝑔∥2

𝑀

𝑔ᵀ𝐻 𝑔
≤ Δ

∥𝑔∥𝑀
,

𝜏𝐶

[
∥𝑔∥2

𝑀
− 1

2

[
Δ
∥𝑔∥𝑀

]
𝑔ᵀ𝐻 𝑔

]
if 𝜏𝐶 =

Δ

∥𝑔∥𝑀
≤
∥𝑔∥2

𝑀

𝑔ᵀ𝐻 𝑔
.

In the first case, (6.9) is satisfied since clearly

1

2

∥𝑔∥𝑀
∥𝑔∥3

𝑀

max{0, 𝑔ᵀ𝐻 𝑔} ≥
1

2

∥𝑔∥𝑀 min

{
Δ,

∥𝑔∥3
𝑀

max{0, 𝑔ᵀ𝐻 𝑔}

}
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holds. Moreover, due to (2.12), we have 𝜆max(𝐻 ;𝑀) ≥ 𝑔ᵀ𝐻 𝑔
∥𝑔∥2

𝑀

> 0 and therefore

· · · ≥ 1

2

∥𝑔∥𝑀 min

{
Δ,

∥𝑔∥𝑀
max{0, 𝜆max(𝐻 ;𝑀)}

}
.

In the second case, we have

𝜏𝐶

[
∥𝑔∥2𝑀 −

1

2

[ Δ

∥𝑔∥𝑀

]
𝑔ᵀ𝐻 𝑔

]
≥ 𝜏𝐶

[
∥𝑔∥2𝑀 −

1

2

[ ∥𝑔∥2
𝑀

𝑔ᵀ𝐻 𝑔

]
𝑔ᵀ𝐻 𝑔

]
=

1

2

𝜏𝐶 ∥𝑔∥2𝑀

=
1

2

Δ ∥𝑔∥𝑀

≥ 1

2

∥𝑔∥𝑀 min

{
Δ,

∥𝑔∥3
𝑀

max{0, 𝑔ᵀ𝐻 𝑔}

}
=

1

2

∥𝑔∥𝑀 min

{
Δ,

∥𝑔∥𝑀
max{0, 𝜆max(𝐻 ;𝑀)}

}
,

so (6.9) also holds here.

Case 2: 𝑔ᵀ𝐻 𝑔 ≤ 0 (𝜑 is concave)

Since 𝜑 is now concave, the solution 𝜏𝐶 of (6.7) must lie on the boundary of the feasible interval.

In view of 𝜑 ′(0) = −𝜏 ∥𝑔∥2
𝑀

< 0, we have

𝜏𝐶 = + Δ

∥𝑔∥𝑀
.

Therefore, we obtain

pred(𝑥 ; 𝑠𝐶 ) = Δ ∥𝑔∥𝑀 +
1

2

[ Δ

∥𝑔∥𝑀
]
2 |𝑔ᵀ𝐻 𝑔|

≥ Δ ∥𝑔∥𝑀

≥ 1

2

∥𝑔∥𝑀 min

{
Δ,

∥𝑔∥3
𝑀

max{0, 𝑔ᵀ𝐻 𝑔}

}
≥ 1

2

∥𝑔∥𝑀 min

{
Δ, ∞

}
=

1

2

∥𝑔∥𝑀 Δ

≥ 1

2

∥𝑔∥𝑀 min

{
Δ,

∥𝑔∥𝑀
max{0, 𝜆max(𝐻 ;𝑀)}

}
,

so (6.9) holds again. □

In order to formulate a condition on the step proposals 𝑠 (𝑘 ) that ensures the global convergence of the
general trust-region method (Algorithm 6.1), we compare

• the decrease in the current model pred(𝑥 (𝑘 ) ; 𝑠 (𝑘 ) ) obtained by the proposed step 𝑠 (𝑘 )

• with the decrease in the model pred(𝑥 (𝑘 ) ; 𝑠 (𝑘 )
𝐶
) obtained by the Cauchy step 𝑠

(𝑘 )
𝐶

.
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We require that 𝑠 (𝑘 ) realizes at least a fixed fraction of the decrease obtained by 𝑠
(𝑘 )
𝐶

. In fact, it will be

sufficient that 𝑠 (𝑘 ) realizes a fixed fraction of the lower bound (6.9).

Definition 6.5 (Fraction of Cauchy decrease condition).
Consider the trust-region subproblem

Minimize 𝑞(𝑠) = 𝑓 (𝑥) + 𝑓 ′(𝑥) 𝑠 + 1

2

𝑠ᵀ𝐻 𝑠, where 𝑠 ∈ R𝑛

subject to ∥𝑠 ∥𝑀 ≤ Δ
(6.10)

with 𝑓 ′(𝑥) ≠ 0 and thus also 𝑔 B ∇𝑀 𝑓 (𝑥) ≠ 0. The Cauchy step for (6.10) is denoted by 𝑠𝐶 .

(𝑖) A vector 𝑠 ∈ R𝑛 satisfies the fraction of Cauchy decrease condition for (6.10) if there exists a

constant 𝐶 ∈ (0, 1] such that

pred(𝑥 ; 𝑠) ≥ 𝐶 pred(𝑥 ; 𝑠𝐶 ) (6.11)

holds.

(𝑖𝑖) A vector 𝑠 ∈ R𝑛 satisfies the weak fraction of Cauchy decrease condition for (6.10) if there

exists a constant 𝐶 ∈ (0, 1] such that

pred(𝑥 ; 𝑠) ≥ 𝐶 1

2

∥𝑔∥𝑀 min

{
Δ,

∥𝑔∥𝑀
max{0, 𝜆max(𝐻 ;𝑀)}

}
(6.12)

holds.

Note: By (6.9), the fraction of Cauchy decrease condition (6.11) implies the weak fraction of Cauchy

decrease condition (6.12). Moreover, the weak fraction of Cauchy decrease condition (6.12) implies that

an accepted step size proposal satisfies

𝑓 (𝑥) − 𝑓 (𝑥 + 𝑠) = ared(𝑥 ; 𝑠)
= 𝜌 (𝑥 ; 𝑠) pred(𝑥 ; 𝑠) by definition of the ratio 𝜌 (·; ·)
≥ 𝜂1 pred(𝑥 ; 𝑠) since the step proposal was accepted

> 0 by (6.12).

In particular, any trust-region method that falls into the framework of Algorithm 6.1 is a descent
method.

Our proof of global convergence requires (roughly) the following auxiliary results to be shown:

(1) The weak fraction of Cauchy decrease condition implies that Algorithm 6.1 cannot get stuck in

an infinite sequence of consecutively rejected steps (Lemma 6.6 and Corollary 6.7).

(2) If the sequence of function values 𝑓 (𝑥 (𝑘 ) ) is bounded below, then any subsequence of successful

steps, whose associated trust-region radii Δ(𝑘 ) sum up to∞, is a sequence of vanishing gradients
(Lemma 6.8).
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We now show that for sufficiently small trust-region radius, step proposals satisfying the (weak)

fraction of Cauchy decrease condition will always be successful. This result even holds uniformly for

an entire class of trust-region subproblems.

Lemma 6.6 (Any acceptance threshold is achievable for small trust-region radius). Suppose that
𝑥 ∈ R𝑛 is a point satisfying 𝑓 ′(𝑥) ≠ 0. Suppose, moreover, that 𝜂1 ∈ (0, 1) and 𝐶 > 0 and 𝐻 > 0 are

given. Then there exist 𝛿 > 0 and Δ > 0 such that the following holds: for any trust-region subproblem

Minimize 𝑓 (𝑥) + 𝑓 ′(𝑥) 𝑠 + 1

2

𝑠ᵀ𝐻 𝑠, where 𝑠 ∈ R𝑛

subject to ∥𝑠 ∥𝑀 ≤ Δ

with data 𝑥 ∈ 𝐵𝑀
𝛿
(𝑥) and Δ ∈ (0,Δ] and 𝐻 symmetric with ∥𝐻 ∥𝑀−1←𝑀 ≤ 𝐻 , any step proposal 𝑠 that is

feasible and satisfies the weak fraction of Cauchy decrease condition

pred(𝑥 ; 𝑠) ≥ 𝐶 1

2

∥𝑔∥𝑀 min

{
Δ,

∥𝑔∥𝑀
max{0, 𝜆max(𝐻 ;𝑀)}

}
(6.12)

achieves a ratio 𝜌 (𝑥 ; 𝑠) ≥ 𝜂1.

Proof. The ratio under consideration satisfies

𝜌 (𝑥 ; 𝑠) = ared(𝑥 ; 𝑠)
pred(𝑥 ; 𝑠) = 1 − pred(𝑥 ; 𝑠) − ared(𝑥 ; 𝑠)

pred(𝑥 ; 𝑠) .

In order to show that it is > 𝜂1 we need to estimate the numerator of the fraction from above and the

denominator from below.

We begin with the denominator. Since 𝑓 ′ is continuous, we can find 𝛿 > 0 such that

∥𝑔∥𝑀 = ∥∇𝑀 𝑓 (𝑥)∥𝑀 ≥
∥∇𝑀 𝑓 (𝑥)∥𝑀

2

C 𝜀

holds for all 𝑥 ∈ 𝐵𝑀
𝛿
(𝑥). We now set Δ B 𝜀/𝐻 and consider a trust-region problem with data as

specified in the statement of the lemma. Then we have

Δ ≤ Δ =
𝜀

𝐻
=
∥∇𝑀 𝑓 (𝑥)∥𝑀

2𝐻
≤ ∥∇𝑀 𝑓 (𝑥)∥𝑀

𝐻
=
∥𝑔∥𝑀
𝐻
≤

{ ∥𝑔∥𝑀
𝜆max (𝐻 ;𝑀 ) , in case 𝜆max(𝐻 ;𝑀) > 0

∞ in case 𝜆max(𝐻 ;𝑀) ≤ 0.

Notice that we have used (2.13) to infer 𝜆max(𝐻 ;𝑀) ≤ ∥𝐻 ∥𝑀−1←𝑀 ≤ 𝐻 in the last inequality. By the

weak fraction of Cauchy decrease condition, we therefore conclude

pred(𝑥 ; 𝑠) ≥ 𝐶 1

2

∥𝑔∥𝑀 min

{
Δ,

∥𝑔∥𝑀
max{0, 𝜆max(𝐻 ;𝑀)}

}
≥ 𝐶 1

2

∥𝑔∥𝑀 min

{
Δ,
∥𝑔∥𝑀
𝐻

}
(6.13a)

= 𝐶
1

2

∥𝑔∥𝑀 Δ. (6.13b)
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For the numerator, we can estimate

pred(𝑥 ; 𝑠) − ared(𝑥 ; 𝑠)

= −𝑓 ′(𝑥) 𝑠 − 1

2

𝑠ᵀ𝐻 𝑠 −
[
𝑓 (𝑥) − 𝑓 (𝑥 + 𝑠)

]
see (6.3)

= −𝑓 ′(𝑥) 𝑠 − 1

2

𝑠ᵀ𝐻 𝑠 + 𝑓 ′(𝑥 + 𝜉 𝑠) 𝑠 by Taylor’s theorem 2.4

≤ ∥ 𝑓 ′(𝑥 + 𝜉 𝑠) − 𝑓 ′(𝑥)∥𝑀−1 ∥𝑠 ∥𝑀 −
1

2

𝜆min(𝐻 ;𝑀) ∥𝑠 ∥2𝑀 by (2.3) and (2.12)

≤ ∥ 𝑓 ′(𝑥 + 𝜉 𝑠) − 𝑓 ′(𝑥)∥𝑀−1 Δ +
1

2

𝐻 Δ2
by (2.13) and ∥𝑠 ∥𝑀 ≤ Δ.

Notice that 𝑥 + 𝜉 𝑠 and 𝑥 are both close to 𝑥 , namely

∥𝑥 + 𝜉 𝑠 − 𝑥 ∥𝑀 ≤ 𝛿 + Δ ≤ 𝛿 + Δ and ∥𝑥 − 𝑥 ∥𝑀 ≤ 𝛿.

Using the continuity of 𝑓 ′ and reducing 𝛿 and Δ if necessary, we can thus achieve

∥ 𝑓 ′(𝑥 + 𝜉𝑘 𝑠) − 𝑓 ′(𝑥)∥𝑀−1 +
1

2

𝐻 Δ ≤ 1

2

(1 − 𝜂1)𝐶 𝜀.

This allows us to continue the estimate above as follows,

pred(𝑥 ; 𝑠) − ared(𝑥 ; 𝑠) ≤ ∥ 𝑓 ′(𝑥 + 𝜉𝑘 𝑠) − 𝑓 ′(𝑥)∥𝑀−1 Δ +
1

2

𝐻 Δ2

≤ 1

2

(1 − 𝜂1)𝐶 𝜀 Δ

≤ 1

2

(1 − 𝜂1)𝐶 ∥𝑔∥𝑀 Δ.

Combining this with the estimate (6.13) of the denominator, we conclude

𝜌 (𝑥 ; 𝑠) = 1 − pred(𝑥 ; 𝑠) − ared(𝑥 ; 𝑠)
pred(𝑥 ; 𝑠) ≥ 1 −

1

2
(1 − 𝜂1)𝐶 ∥𝑔∥𝑀 Δ

𝐶 1

2
∥𝑔∥𝑀 Δ

= 𝜂1. □

The result of Lemma 6.6 immediately implies that Algorithm 6.1 produces infinitely many successful

step proposals, provided that it does not stop with 𝑓 ′(𝑥 (𝑘 ) ) = 0 and that the model Hessians remain

bounded.

Corollary 6.7 (Infinitely many successful step proposals). Suppose that the iterates 𝑥 (𝑘 ) of Algorithm 6.1

satisfy 𝑓 ′(𝑥 (𝑘 ) ) ≠ 0 and that the model Hessians𝐻 (𝑘 ) are symmetric with ∥𝐻 (𝑘 ) ∥𝑀−1←𝑀 ≤ 𝐻 . Moverover,

suppose that the step proposals 𝑠 (𝑘 ) are feasible and satisfy the weak fraction of Cauchy decrease condition
(6.12). Then there exist infinitely many indices 𝑘 satisfying 𝜌 (𝑥 (𝑘 ) ; 𝑠 (𝑘 ) ) ≥ 𝜂1, i. e., the step proposal will
be accepted.

Note: In particular, a successful step can only be followed by finitely many unsuccessful steps.
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Proof. We proceed by way of contradiction. Suppose the opposite, i. e., that 𝜌 (𝑥 (𝑘 ) ; 𝑠 (𝑘 ) ) < 𝜂1 holds
for all 𝑘 ≥ 𝑘0. This means that from a certain iterate onwards, all step proposals will be rejected. By

the logic of Algorithm 6.1, see Line 18, this implies

Δ(𝑘+1) B 𝛾1 ∥𝑠 (𝑘 ) ∥𝑀 ≤ 𝛾1 Δ(𝑘 )

for all 𝑘 ≥ 𝑘0 and thus Δ(𝑘 ) → 0. Moreover, the iterates 𝑥 (𝑘 ) and model Hessians𝐻 (𝑘 ) remain constant

for 𝑘 ≥ 𝑘0. In particular, the entire sequence

(
𝐻 (𝑘 )

)
is bounded. The subproblems (6.1) thus satisfy the

prerequisites of Lemma 6.6.
42

This entails that, no matter how close the acceptance threshold 𝜂1 is to 1,

as soon as the trust-region radius Δ(𝑘 ) has become sufficiently small, we will have 𝜌 (𝑥 (𝑘 ) ; 𝑠 (𝑘 ) ) ≥ 𝜂1
and the step proposal will be accepted. This is in contradiction with our assumption. □

We proceed to show Statement (2).

Lemma 6.8. Suppose that the iterates 𝑥 (𝑘 ) of Algorithm 6.1 satisfy 𝑓 ′(𝑥 (𝑘 ) ) ≠ 0 and that the model Hes-

sians 𝐻 (𝑘 ) are symmetric with ∥𝐻 (𝑘 ) ∥𝑀−1←𝑀 ≤ 𝐻 . Assume that the sequence of objective values 𝑓 (𝑥 (𝑘 ) )
is bounded below by 𝑓 . Moverover, suppose that the step proposals 𝑠 (𝑘 ) satisfy the weak fraction of Cauchy
decrease condition (6.12). If 𝐾 ⊆ N0 is any (finite or infinite) index set of successful steps such that

∥𝑔 (𝑘 ) ∥𝑀 ≥ 𝜀 > 0 holds, then the associated trust-region radii are summable:∑︁
𝑘∈𝐾

Δ(𝑘 ) < ∞.

Proof. For any index 𝑘 ∈ 𝐾 we have by assumption 𝜌 (𝑥 (𝑘 ) ; 𝑠 (𝑘 ) ) ≥ 𝜂1 and thus

𝑓 (𝑥 (𝑘 ) ) − 𝑓 (𝑥 (𝑘+1) ) = ared(𝑥 (𝑘 ) ; 𝑠 (𝑘 ) )
≥ 𝜂1 pred(𝑥 (𝑘 ) ; 𝑠 (𝑘 ) )

≥ 𝜂1𝐶
1

2

∥𝑔 (𝑘 ) ∥𝑀 min

{
Δ(𝑘 ) ,

∥𝑔 (𝑘 ) ∥𝑀
𝐻

}
as in (6.13a)

≥ 𝜂1𝐶
1

2

𝜀 min

{
Δ(𝑘 ) ,

𝜀

𝐻

}
by assumption.

Since the function values 𝑓 (𝑥 (𝑘 ) ) are monotone decreasing and, by assumption, bounded below, we

must have ∑︁
𝑘∈𝐾

𝜂1𝐶
1

2

𝜀 min

{
Δ(𝑘 ) ,

𝜀

𝐻

}
< ∞.

42
We can use 𝑥 = 𝑥 (𝑘0 ) and we do not need the variation in 𝑥 .
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More precisely, let 𝑘min be the smallest index in 𝐾 , then we have∑︁
𝑘∈𝐾

𝜂1𝐶
1

2

𝜀 min

{
Δ(𝑘 ) ,

𝜀

𝐻

}
≤

∑︁
𝑘∈𝐾

𝑓 (𝑥 (𝑘 ) ) − 𝑓 (𝑥 (𝑘+1) )

≤
∞∑︁
𝑘=𝑘min

𝑓 (𝑥 (𝑘 ) ) − 𝑓 (𝑥 (𝑘+1) ) all summands are ≥ 0 and a superset of the above

≤ 𝑓 (𝑥 (𝑘min ) ) − 𝑓 since 𝑓 (𝑥 (𝑘 ) ) ≥ 𝑓 for all 𝑘 ∈ N0

< ∞.

This implies the claim. □

With Statements (1) and (2) in place, we can now prove a global convergence theorem for Algo-

rithm 6.1.

Theorem 6.9 (Global convergence of model Algorithm 6.1). Suppose that the model Hessians𝐻 (𝑘 ) in Al-
gorithm 6.1 are symmetric with ∥𝐻 (𝑘 ) ∥𝑀−1←𝑀 ≤ 𝐻 . Assume that the sequence of objective values 𝑓 (𝑥 (𝑘 ) )
is bounded below by 𝑓 . Moverover, suppose that the step proposals 𝑠 (𝑘 ) are feasible and satisfy the weak

fraction of Cauchy decrease condition (6.12). Then the following holds.

(1) Algorithm 6.1 either terminates after finitely many iterations due to 𝑓 ′(𝑥 (𝑘 ) ) = 0, or else we have
43

lim inf

𝑘→∞
∥ 𝑓 ′(𝑥 (𝑘 ) )∥𝑀−1 = 0. (6.14)

(2) Suppose in addition that 𝑓 ′ is uniformly continuous on the set of iterates {𝑥 (𝑘 ) | 𝑘 ∈ N0}.44 Then
Algorithm 6.1 either terminates after finitely many iterations due to 𝑓 ′(𝑥 (𝑘 ) ) = 0, or else we have

lim

𝑘→∞
𝑓 ′(𝑥 (𝑘 ) ) = 0. (6.15)

Note: Statement (6.15) implies that all accumulation points of

(
𝑥 (𝑘 )

)
are stationary points. Quiz 6.2:

Details?

Proof. Statement (1): Assume that Algorithm 6.1 does not terminate, i. e., we have 𝑓 ′(𝑥 (𝑘 ) ) ≠ 0

for all iterates. Suppose that (6.14) does not hold. This means that there exists 𝜀1 > 0 such that

𝑔 (𝑘 ) B ∇𝑀 𝑓 (𝑥 (𝑘 ) ) satisfies ∥𝑔 (𝑘 ) ∥𝑀 ≥ 𝜀1 for all 𝑘 ≥ 𝑘0. Let 𝑆 ⊆ N0 denote the index set of successful

step proposals. This index set is infinite by Corollary 6.7. From Lemma 6.8, we further obtain∑︁
𝑘∈𝑆

Δ(𝑘 ) < ∞. (∗)

43
Statement (6.14) means that there exists a subsequence

(
𝑥 (𝑘 )

)
𝑘∈𝐾 such that 𝑓 ′ (𝑥 (𝑘 ) ) 𝑘∈𝐾−−−−→ 0.

44
Unlike in the proof of, e. g., Lemma 5.13, we cannot deduce the uniform continuity since the sequence 𝑥 (𝑘 ) is not necessarily
bounded.
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This implies in particular Δ(𝑘 )
𝑘∈𝑆−−−→ 0.

Step (1) We show that 𝑥 (𝑘 ) is a Cauchy sequence.

Let 𝑘 > ℓ ≥ 0 be any two indices. Then

∥𝑥 (𝑘 ) − 𝑥 (ℓ ) ∥𝑀 ≤
𝑘−1∑︁
𝑗=ℓ
𝑗∈𝑆

∥𝑠 ( 𝑗 ) ∥𝑀 unsuccessful steps do not move 𝑥

≤
𝑘−1∑︁
𝑗=ℓ
𝑗∈𝑆

Δ( 𝑗 ) ≤
∞∑︁
𝑗=ℓ
𝑗∈𝑆

Δ( 𝑗 ) ≤
∑︁
𝑗∈𝑆

Δ( 𝑗 ) .

The last sum is finite by (∗). Therefore, the tails of this series (“Reihenreste”)
∞∑︁
𝑗=ℓ
𝑗∈𝑆

Δ( 𝑗 ) converge
to 0 as ℓ →∞. This shows that 𝑥 (𝑘 ) is a Cauchy sequence.

Step (2) We show that

(
Δ(𝑘 )

)
𝑘≥𝐿 is bounded away from 0.

𝑥 (𝑘 ) has been shown to be a Cauchy sequence, hence it converges to some 𝑥 . The continuity of

𝑓 ′ and ∥𝑔 (𝑘 ) ∥𝑀 ≥ 𝜀1 for all 𝑘 ≥ 𝑘0 imply ∥∇𝑀 𝑓 ′(𝑥)∥𝑀 ≥ 𝜀1. We now apply Lemma 6.6 with 𝜂2
(the quality threshold) in place of 𝜂1 (the acceptance threshold). It shows that there exists Δ and

an index 𝐿 ∈ N0 such that 𝜌 (𝑥 (𝑘 ) ; 𝑠 (𝑘 ) ) ≥ 𝜂2 holds for all indices 𝑘 ≥ 𝐿 (such that 𝑥 (𝑘 ) is close
enough to 𝑥 ) satisfying Δ(𝑘 ) ≤ Δ.

We now show, by way of induction, that

Δ(𝑘 ) ≥ min

{
Δ(𝐿) , 𝛾1 Δ

}
for all 𝑘 ≥ 𝐿 (∗∗)

holds, so that indeed the trust-region radii are bounded away from 0. Claim (∗∗) holds trivially
for 𝑘 = 𝐿. As induction hypothesis, suppose that (∗∗) is true for some 𝑘 ≥ 𝐿. In the induction

step, we distinguish two cases. In case Δ(𝑘 ) ≤ Δ, we have 𝜌 (𝑥 (𝑘 ) ; 𝑠 (𝑘 ) ) ≥ 𝜂2 as noted above.

Therefore,

Δ(𝑘+1) = 𝛾2 Δ
(𝑘 ) > Δ(𝑘 ) ≥ min

{
Δ(𝐿) , 𝛾1 Δ

}
.

In the opposite case Δ(𝑘 ) > Δ, the step might not have been successful and the trust-region

radius might have been reduced, but we can estimate it as

Δ(𝑘+1) ≥ 𝛾1 Δ(𝑘 ) > 𝛾1 Δ ≥ min

{
Δ(𝐿) , 𝛾1 Δ

}
.

To summarize, we have shown (∗∗) for 𝑘 + 1 and the induction is complete.

We now have reached the contradiction that Δ(𝑘 ) is bounded away from zero for 𝑘 ≥ 𝐿 and

simultaneously, the subsequence Δ(𝑘 )
𝑘∈𝑆−−−→ 0; see above Step (1).

Statement (2): Suppose now that 𝑓 ′ is uniformly continuous on the set of iterates {𝑥 (𝑘 ) | 𝑘 ∈ N0}, i. e.,
for every 𝜀 > 0, there exists 𝛿 > 0 such that ∥𝑥 (𝑘 ) − 𝑥 (ℓ ) ∥𝑀 ≤ 𝛿 implies ∥ 𝑓 ′(𝑥 (𝑘 ) ) − 𝑓 ′(𝑥 (ℓ ) )∥𝑀−1 ≤ 𝜀.
We proceed again by contradiction and assume that (6.15) does not hold. That is, there exists 𝜀2 > 0

such that the index set

𝐾2 𝜀2 B
{
𝑘 ∈ N0

�� ∥ 𝑓 ′(𝑥 (𝑘 ) )∥𝑀−1 ≥ 2 𝜀2
}

https://tinyurl.com/scoop-nlo 127

https://tinyurl.com/scoop-nlo


R. Herzog cbn

is infinite. The uniform continuity of 𝑓 ′ implies the existence of 𝛿 > 0 such that

∥ 𝑓 ′(𝑥 (ℓ ) )∥𝑀−1 ≥ ∥ 𝑓 ′(𝑥 (𝑘 ) )∥𝑀−1 − ∥ 𝑓 ′(𝑥 (𝑘 ) ) − 𝑓 ′(𝑥 (ℓ ) )∥𝑀−1 ≥ 𝜀2 (∗∗∗)

holds for all 𝑥 (ℓ ) with the property ∥𝑥 (ℓ ) − 𝑥 (𝑘 ) ∥𝑀 ≤ 𝛿 for some 𝑘 ∈ 𝐾2 𝜀2 .

Consider now also the index set

𝐾𝜀2 B
{
𝑘 ∈ N0

�� ∥ 𝑓 ′(𝑥 (𝑘 ) )∥𝑀−1 ≥ 𝜀2},
which is infinite as well due to 𝐾2 𝜀2 ⊆ 𝐾𝜀2 . Recall that 𝑆 ⊆ N0 denotes the index set of successful step

proposals. The set 𝑆 ∩ 𝐾𝜀2 may be finite or infinite. In any case, Lemma 6.8 implies∑︁
𝑘∈𝑆∩𝐾𝜀

2

Δ(𝑘 ) < ∞.

Therefore, there exists 𝑘0 ∈ 𝑆 ∩ 𝐾𝜀2 such that the remainder of this series (“Reihenrest”) that comes

after 𝑘0 is small. More precisely,

∞∑︁
𝑗=𝑘0

𝑗∈𝑆∩𝐾𝜀
2

Δ( 𝑗 ) < 𝛿. (∗∗∗∗)

In fact, by making 𝑘0 larger, if necessary, 𝑘0 can be chosen to lie in 𝑘0 ∈ 𝐾2 𝜀2 . (Quiz 6.3: Why?)

We now show by induction that ∥𝑥 (ℓ ) − 𝑥 (𝑘0 ) ∥𝑀 < 𝛿 holds for all ℓ ≥ 𝑘0. The claim holds trivially for

ℓ = 𝑘0. As induction hypothesis, suppose that there exists ℓ ≥ 𝑘0 such that ∥𝑥 ( 𝑗 ) − 𝑥 (𝑘0 ) ∥𝑀 < 𝛿 is true

for 𝑗 = 𝑘0, . . . , ℓ . We can invoke (∗∗∗) to see that ∥ 𝑓 ′(𝑥 ( 𝑗 ) )∥𝑀−1 ≥ 𝜀2 holds for all 𝑗 = 𝑘0, . . . , ℓ . In other

words, all indices 𝑗 = 𝑘0, . . . , ℓ belong to 𝐾𝜀2 . We can therefore estimate

∥𝑥 (ℓ+1) − 𝑥 (𝑘0 ) ∥𝑀 ≤
ℓ∑︁

𝑗=𝑘0
𝑗∈𝑆

Δ( 𝑗 ) unsuccessful steps do not move 𝑥

=

ℓ∑︁
𝑗=𝑘0

𝑗∈𝑆∩𝐾𝜀
2

Δ( 𝑗 ) all indices 𝑗 = 𝑘0, . . . , ℓ belong to 𝐾𝜀2

≤
∞∑︁
𝑗=𝑘0

𝑗∈𝑆∩𝐾𝜀
2

Δ( 𝑗 ) summands are positive

< 𝛿 by (∗∗∗∗).

This concludes the induction step and we have shown that indeed ∥𝑥 (ℓ ) − 𝑥 (𝑘0 ) ∥𝑀 < 𝛿 holds for

all ℓ ≥ 𝑘0. Invoking again (∗∗∗), we infer that ∥ 𝑓 ′(𝑥 (ℓ ) )∥𝑀−1 ≥ 𝜀2 holds for all ℓ ≥ 𝑘0, which is in

contradiction to (6.14). □

Remark 6.10 (on the global convergence theorem 6.9). For the global convergence theorem 6.9 to hold,

it is not strictly necessary that the step proposal satisfy ∥𝑠 (𝑘 ) ∥𝑀 ≤ Δ(𝑘 ) . A relaxed constraint of the form

∥𝑠 (𝑘 ) ∥𝑀 ≤ 𝛽 Δ(𝑘 ) is enough and allows us to gain some more flexibility in a practical algorithm; see for

instance Ulbrich, Ulbrich, 2012, Satz 14.10 and eq.(14.50). However, in this class we are not going to exploit

this algorithmically.
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§ 6.2 Fast Local Convergence

In this section we show that the generic trust-region method Algorithm 6.1 will transition to a local,

inexact Newton method. This means that the trust-region constraint ∥𝑠 (𝑘 ) ∥𝑀 ≤ Δ(𝑘 ) will be inactive
from a certain interation index onwards. If one then solves the trust-region subproblems to sufficient

accuracy (compare the forcing sequence in inexact Newton methods in § 5.6), one can obtain Q-

superlinear or even Q-quadratic convergence of the iterates.

We restrict the discussion here to trust region Newton methods, which are defined by the choice

𝐻 (𝑘 ) = 𝑓 ′′(𝑥 (𝑘 ) ). However, model Hessians based on quasi-Newton updates are very important in

practice as well.
45
.

Theorem 6.11 (Transition to fast local convergence in Algorithm 6.1). Suppose that 𝑓 is of class𝐶2
and

that the model Hessians 𝐻 (𝑘 ) in Algorithm 6.1 are the exact Hessians 𝑓 ′′(𝑥 (𝑘 ) ). Assume that the sequence

of objective values 𝑓 (𝑥 (𝑘 ) ) is bounded below by 𝑓 . Moverover, suppose that the step proposals 𝑠 (𝑘 ) are
feasible and satisfy the weak fraction of Cauchy decrease condition (6.12). Suppose further that the sublevel

setM𝑓 (𝑥 (0) ) B {𝑥 ∈ R𝑛 | 𝑓 (𝑥) ≤ 𝑓 (𝑥 (0) )} is compact.

(𝑖) Suppose that 𝑥∗ is an accumulation point of 𝑥 (𝑘 ) and that 𝑓 ′′(𝑥∗) is positive semidefinite. Then the

entire sequence convergences to 𝑥∗, i. e., 𝑥∗ is indeed the unique limit point of 𝑥 (𝑘 ) .

(𝑖𝑖) There exists an index 𝑘0 ∈ N, such that

(a) 𝜌 (𝑥 (𝑘 ) ; 𝑠 (𝑘 ) ) > 𝜂1 holds for all 𝑘 ≥ 𝑘0, i. e., the step proposal will be accepted.

(b) 𝑓 ′′(𝑥 (𝑘 ) ) is positive semidefinite and ∥ 𝑓 ′′(𝑥 (𝑘 ) )−1 ∇𝑓 (𝑥 (𝑘 ) )∥𝑀 ≤
Δ(𝑘 )

2

holds for all 𝑘 ≥ 𝑘0.

(𝑖𝑖𝑖) If, in addition, the step proposals 𝑠 (𝑘 ) satisfy

∥ 𝑓 ′′(𝑥 (𝑘 ) ) 𝑠 (𝑘 ) + ∇𝑓 (𝑥 (𝑘 ) )∥𝑀−1 ≤ 𝜂 (𝑘 ) ∥∇𝑓 (𝑥 (𝑘 ) )∥𝑀−1 (6.16)

with a forcing sequence 𝜂 (𝑘 ) ↘ 0, then 𝑥 (𝑘 ) converges to 𝑥∗ Q-superlinearly w.r.t. the𝑀-norm.

Statement (b) means that from a certain index 𝑘0 onwards, full exact Newton steps would be useful

step proposals that are not only feasible w.r.t. the constraint ∥𝑠 (𝑘 ) ∥𝑀 ≤ Δ(𝑘 ) but lie well inside the
trust region.

Condition (6.16) requires that the step proposal 𝑠 (𝑘 ) will eventually be close to the full exact Newton

step in the sense that the relative residual norm is bounded by the forcing sequence 𝜂 (𝑘 ) ; compare the

condition (5.36) for inexact Newton methods for root finding.

45
In contrast to the quasi-Newton line search methods from § 5.7, the positive definiteness of 𝐻 (𝑘 ) is no longer required. A

further distinction is that one works with quasi-Newton update formulas for the model Hessian 𝐻 (𝑘 ) and not for the

inverse 𝐵 (𝑘 ) , since the inexact iterative solution of the trust-region subproblems (6.1) is based on matrix-vector products

with 𝐻 (𝑘 ) .
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§ 6.3 Solution of the Trust-Region Subproblem

We now address options for the inexact numerical solution of the trust-region subproblem (6.1), i. e.,

with a problem of the form

Minimize 𝑞(𝑠) = 𝑓 − 𝑏ᵀ𝑠 + 1

2

𝑠ᵀ𝐻 𝑠, where 𝑠 ∈ R𝑛

subject to ∥𝑠 ∥𝑀 ≤ Δ.
(6.17)

The data of the problem are the model offset𝑞(0) = 𝑓 ∈ R, (negative) model derivative−𝑞′(0) = 𝑏 ∈ R𝑛 ,
symmetric model Hessian 𝐻 ∈ R𝑛×𝑛 and trust-region radius Δ > 0.

Although the Cauchy point is a sufficiently accurate solution of the trust-region subproblem in order

to achieve global convergence (Theorem 6.9), and fast local convergence can only take effect as soon

as the trust-region constraint ∥𝑠 ∥𝑀 ≤ Δ is inactive and no longer plays a role (Theorem 6.11), we will

characterize the exact global solution(s) of (6.17) first.

Note: Due to the possibility of negative eigenvalues in 𝐻 , problem (6.17) is not convex in general.

Theorem 6.12 (Characterization of global solutions of the trust-region subproblem (6.17)).
(𝑖) Suppose that 𝑠 ∈ R𝑛 is a global minimizer of (6.17). Then there exists 𝜇 ∈ R such that the following

holds:

𝜇 ≥ 0, ∥𝑠 ∥𝑀 − Δ ≤ 0, 𝜇 (∥𝑠 ∥𝑀 − Δ) = 0 (6.18a)

(𝐻 + 𝜇 𝑀) 𝑠 = 𝑏 (6.18b)

𝐻 + 𝜇 𝑀 is positive semidefinite. (6.18c)

The number 𝜇 is uniquely determined.

(𝑖𝑖) Now suppose that (𝑠, 𝜇) ∈ R𝑛 × R is such that (6.18) is satisfied. Then 𝑠 is a global minimizer of

(6.17).

(𝑖𝑖𝑖) If (𝑠, 𝜇) ∈ R𝑛 × R is such that (6.18) is satisfied and in addition, 𝐻 + 𝜇 𝑀 is positive definite, then 𝑠

is the unique global minimizer of (6.17).

Proof. Statement (𝑖): Suppose that 𝑠 is a global minimizer of (6.17). Then ∥𝑠 ∥𝑀 ≤ Δ is obvious.

Case 1: ∥𝑠 ∥𝑀 < Δ holds.

Then 𝑠 is also a local minimizer of the unconstrained problem

Minimize 𝑞(𝑠), where 𝑠 ∈ R𝑛 .

Consequently, the necessary optimality condition of first order (Theorem 3.1) holds, i. e.,

∇𝑞(𝑠) = 𝐻 𝑠 − 𝑏 = 0,
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as well as the necessary optimality condition of second order (Theorem 3.2), i. e., 𝐻 is positive

semidefinite. This shows that (6.18) holds for the choice 𝜇 = 0.
46

Owing to the complementarity in (6.18a), 𝜇 = 0 is the only possible choice.

Case 2: ∥𝑠 ∥𝑀 = Δ holds, and in particular, 𝑠 ≠ 0.

We first show that there exists 𝜇 ≥ 0 such that (𝐻+𝜇 𝑀) 𝑠 = 𝑏 holds. We proceed by contradiction

and therefore suppose that for all 𝜇 ≥ 0, we have (𝐻 + 𝜇 𝑀) 𝑠 ≠ 𝑏.

The choice 𝜇 = 0 implies 𝑦 B ∇𝑞(𝑠) = 𝐻 𝑠 − 𝑏 ≠ 0. The choices 𝜇 > 0 imply that the vectors 𝑦

and𝑀 𝑠 cannot be anti-parallel. Therefore,𝑀−1𝑦 and 𝑠 cannot be anti-parallel either. Concerning

the angle 𝛼 (w.r.t. the𝑀-inner product) between these two vectors, we thus have

cos𝛼 =
(𝑀−1𝑦)ᵀ𝑀 𝑠

∥𝑀−1𝑦 ∥𝑀 ∥𝑠 ∥𝑀
=

𝑦ᵀ𝑠

∥𝑦 ∥𝑀−1 ∥𝑠 ∥𝑀
> −1.

Let 𝑣 be a vector in the direction of the angle bisector between −𝑀−1𝑦 and −𝑠 , e. g.,

𝑣 B − 𝑀−1𝑦

∥𝑦 ∥𝑀−1
− 𝑠

∥𝑠 ∥𝑀
≠ 0.

Then we have

𝑦ᵀ𝑣 = 𝑦ᵀ
(
− 𝑀−1𝑦

∥𝑦 ∥𝑀−1
− 𝑠

∥𝑠 ∥𝑀

)
= −∥𝑦 ∥𝑀−1 −

𝑦ᵀ𝑠

∥𝑠 ∥𝑀
∥𝑦 ∥𝑀−1
∥𝑦 ∥𝑀−1

= −∥𝑦 ∥𝑀−1
(
1 + cos𝛼

)
< 0.

Hence we conclude 𝑞′(𝑠) 𝑣 = 𝑦ᵀ𝑣 < 0 and therefore 𝑣 is a descent direction for 𝑞 at 𝑠 . Due to[
d

d𝑡

1

2

∥𝑠 + 𝑡 𝑣 ∥2𝑀
]
𝑡=0

= 𝑣ᵀ𝑀 𝑠

=

(
− 𝑀−1𝑦

∥𝑦 ∥𝑀−1
− 𝑠

∥𝑠 ∥𝑀

)ᵀ
𝑀 𝑠

= − 𝑦ᵀ𝑠

∥𝑦 ∥𝑀−1
∥𝑠 ∥𝑀
∥𝑠 ∥𝑀

− ∥𝑠 ∥𝑀

= −∥𝑠 ∥𝑀
(
cos𝛼 + 1

)
< 0

we have ∥𝑠 + 𝑡 𝑣 ∥𝑀 < ∥𝑠 ∥𝑀 = Δ for small enough 𝑡 > 0. Hence we can obtain a feasible point

with a strictly smaller objective value than 𝑠 , which is in contradiction to the optimality of 𝑠 .

Consequently, it must be possible to satisfy the conditions (6.18a) and (6.18b) with some 𝜇 ≥ 0.

It is not difficult to see that, in fact, 𝜇 must be unique. Indeed, the assumption 𝐻 𝑠 + 𝜇1𝑀 𝑠 = 𝑏 =

𝐻 𝑠 + 𝜇2𝑀 𝑠 leads to (𝜇1 − 𝜇2)𝑀 𝑠 = 0, which is only possible for 𝜇1 = 𝜇2 due to 𝑠 ≠ 0 and the

invertibility of𝑀 .

46
In this case 𝑞 is convex, and thus 𝑠 is also a a global minimizer of the unconstrained problem.
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It remains to show that 𝐻 + 𝜇 𝑀 is positive semidefinite, i. e., (6.18c). To this end, we consider a

direction 𝑑 ∈ R𝑛 with the property 𝑑ᵀ𝑀 𝑠 < 0. We need to show

𝑑ᵀ(𝐻 + 𝜇 𝑀) 𝑑 ≥ 0.

Let us define 𝑡 B
−2𝑑ᵀ𝑀 𝑠

∥𝑑 ∥2
𝑀

> 0. Then

∥𝑠 + 𝑡 𝑑 ∥2𝑀 = ∥𝑠 ∥2𝑀 + 2 𝑡 𝑑ᵀ𝑀 𝑠 + 𝑡2 ∥𝑑 ∥2𝑀 = ∥𝑠 ∥2𝑀 ≤ Δ2.

The global optimality of 𝑠 implies

0 ≤ 𝑞(𝑠 + 𝑡 𝑑) − 𝑞(𝑠)

= 𝑞′(𝑠) (𝑡 𝑑) + 1

2

(𝑡 𝑑)ᵀ𝐻 (𝑡 𝑑)

= 𝑡 𝑦ᵀ𝑑 + 𝑡
2

2

𝑑ᵀ𝐻 𝑑

= −𝑡 𝜇 𝑠ᵀ𝑀 𝑑 + 𝑡
2

2

𝑑ᵀ𝐻 𝑑 due to 𝑦 = 𝐻 𝑠 − 𝑏 = −𝜇 𝑀 𝑠

=
𝑡2

2

𝜇 ∥𝑑 ∥2𝑀 +
𝑡2

2

𝑑ᵀ𝐻 𝑑 due to

𝑡

2

∥𝑑 ∥2𝑀 = −𝑑ᵀ𝑀 𝑠

=
𝑡2

2

𝑑ᵀ(𝐻 + 𝜇 𝑀) 𝑑.

Thus we have confirmed that 𝑑ᵀ(𝐻 + 𝜇 𝑀) 𝑑 ≥ 0 holds for all directions 𝑑 ∈ R𝑛 satisfying

𝑑ᵀ𝑀 𝑠 < 0. Since the sign of 𝑑 is irrelevant, the same result likewise holds for directions

𝑑ᵀ𝑀 𝑠 > 0. The remaining case of directions 𝑑ᵀ𝑀 𝑠 = 0 follows by continuity.

Statement (𝑖𝑖): Suppose that (𝑠, 𝜇) ∈ R𝑛 × R is such that (6.18) is satisfied. Let 𝑠 ∈ R𝑛 with ∥𝑠 ∥𝑀 ≤ Δ
be an arbitrary comparison point, 𝑑 B 𝑠 − 𝑠 and 𝑦 B ∇𝑞(𝑠) = 𝐻 𝑠 − 𝑏 as above. We estimate

𝑞(𝑠) − 𝑞(𝑠) = 𝑦ᵀ𝑑 + 1

2

𝑑ᵀ𝐻 𝑑

= −𝜇 𝑠ᵀ𝑀 𝑑 + 1

2

𝑑ᵀ𝐻 𝑑 due to 𝑦 = 𝐻 𝑠 − 𝑏 = −𝜇 𝑀 𝑠 by (6.18b)

≥ −𝜇 𝑠ᵀ𝑀 𝑑 − 1

2

𝜇 ∥𝑑 ∥2𝑀 by (6.18c)

= −𝜇
2

(
2 𝑠ᵀ𝑀 𝑑 + ∥𝑑 ∥2𝑀

)
= −𝜇

2

(
∥𝑑 + 𝑠 ∥2𝑀 − ∥𝑠 ∥2𝑀

)
= −𝜇

2

(
∥𝑠 ∥2𝑀 − ∥𝑠 ∥2𝑀

)
≥ 0.

The previous inequality requires a comment. It holds trivially in case 𝜇 = 0. For 𝜇 > 0, (6.18a) implies

∥𝑠 ∥2
𝑀

= Δ2
, and by assumption we have ∥𝑠 ∥2

𝑀
≤ Δ2

. This shows the final inequality and thus the global

optimality of 𝑠 for (6.17).
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Statement (𝑖𝑖𝑖): If 𝐻 + 𝜇 𝑀 is even positive definite, then the estimate above can be sharpened for 𝑠 ≠ 𝑠 ,

i. e., 𝑑 ≠ 0:

𝑞(𝑠) − 𝑞(𝑠) = −𝜇 𝑠ᵀ𝑀 𝑑 + 1

2

𝑑ᵀ𝐻 𝑑

> − 𝜇 𝑠ᵀ𝑀 𝑑 − 1

2

𝜇 ∥𝑑 ∥2𝑀
= · · ·

= −𝜇
2

(
∥𝑠 ∥2𝑀 − ∥𝑠 ∥2𝑀

)
≥ 0.

This shows that 𝑠 is even the unique global minimizer of (6.17). □

Remark 6.13 (on the characterization of global minimizers).

(𝑖) The remarkable fact about Theorem 6.12 is that the optimality condition (6.18) is simultaneously

necessary and sufficient, even though problem (6.17) is generally non-convex.

(𝑖𝑖) As an alternative to the proof in Theorem 6.12 we might use an optimality condition of Karush-

Kuhn-Tucker type (see Chapter 2) to prove that (6.18a) and (6.18b) are necessary conditions for any

local minimizer and, in particular, for global minimizers of (6.17). In this way, we will see that the

number 𝜇 can be viewed as the unique Lagrange multiplier pertaining to the constraint

1

2

(
∥𝑠 ∥2𝑀 − Δ2

)
≤ 0,

which is of course equivalent to ∥𝑠 ∥𝑀 ≤ Δ. As we can see easily, the linear independence constraint

qualification (LICQ) always holds.
47

Proceeding in this way, however, we will not find the condition

(6.18c) that is — as we saw in the proof — characteristic for global minimizers of (6.17).

(𝑖𝑖𝑖) It was proved in Martínez, 1994 that (6.17) can have, besides its global minimizers, at most one

additional local minimizer which is not a global minimizer.

Based on the characterization (6.18), one can devise methods to find an exact global minimizer of

the trust-region subproblem (6.17). The most prominent method utilizes a one-dimensional Newton

method for the equation

1

∥(𝐻 + 𝜇 𝑀)−1𝑏∥𝑀
− 1

Δ
= 0

to determine the value of 𝜇, unless 𝜇 = 0 and 𝑠 = 𝐻−1𝑏 already solve (6.18); see Nocedal, Wright, 2006,

Chapter 4.3 for details if you are interested.

In the remainder of this section we discuss a practical method to find an inexact solution 𝑠 to the

trust-region subproblem (6.17). Our goal is to satisfy

47
See Definition 8.16 for the definition of LICQ. In case ∥𝑠 ∥𝑀 < Δ, the only constraint present is inactive, sothe LICQ holds.

Otherwise we have ∥𝑠 ∥𝑀 = Δ > 0 and thus 𝑠 ≠ 0. This implies that the gradient of the only active constraint, 𝑀 𝑠 , is

non-zero and thus linearly independent, so the LICQ holds also in this case.
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(𝑖) the conditions for global convergence imposed in Theorem 6.9, i. e., the trust-region constraint

∥𝑠 ∥𝑀 ≤ Δ and the (weak) fraction of Cauchy decrease condition (6.11),

(𝑖𝑖) the conditions for fast local convergence imposed in Theorem 6.11.

It will turn out that a clever modification of the conjugate gradient method — the Steihaug(-Toint)
conjugate gradient method48 — is capable of satisfying these requirements.

49

This variant of the CG method will be applied to the linear system 𝐻 𝑠 = 𝑏. In case that 𝐻 is s. p. d., this

system constitutes the necessary and sufficient optimality condition for an unconstrained trust-region

subproblem, i. e., (6.17) with Δ = ∞. The Steihaug-Toint variant of the CG algorithm has two significant

modifications compared to the base version (Algorithm 4.17).
50

(1) Similarly as in the truncated conjugate method (Algorithm 5.41), we start the method with

𝑠 (0) = 0 and we detect the occurrence of a search direction 𝑝 (ℓ ) with non-positive curvature

(𝑝 (ℓ ) )ᵀ𝐻𝑝 (ℓ ) ≤ 0. In constrat to the truncated CG method, where we would stop immediately,

we proceed with the current step and produce 𝑠 (ℓ+1) = 𝑠 (ℓ ) + 𝛼∗𝑝 (ℓ ) , where 𝛼∗ is not the usual
Cauchy step size but is chosen such that 𝑠 (ℓ+1) lies on the boundary of the trust region. We then

stop the method.

(2) In case that the current step would leave the trust region, i. e., in case ∥𝑠 (ℓ ) + 𝛼 (ℓ ) 𝑝 (ℓ ) ∥𝑀 > Δ,
we do not utilize the full step size 𝛼 (ℓ ) but, again, proceed only to the boundary of the trust

region and then stop the algorithm.

If none of these two situations occur, then the Steihaug-Toint CG method stops as soon as an approx-

imate solution to 𝐻 𝑠 = −𝑏 has been found with sufficiently small residual norm. With regards to

Theorem 6.11 we utilize the relative residual norm and a tolerance given by a suitable forcing sequence,

compare (5.37),

∥residual associated with 𝑠 (ℓ ) ∥𝑀−1
∥residual associated with 0∥𝑀−1

=
∥𝜁 (ℓ ) ∥𝑀−1
∥𝑏∥𝑀−1

=
∥𝐻 𝑠 (ℓ ) − 𝑏∥𝑀−1
∥𝑏∥𝑀−1

≤ 𝜂. (6.19)

In case the outer iterate 𝑥 (𝑘 ) is already close to a point 𝑥∗ satisfying the second-order sufficient

optimality condition, one can guarantee that the Steihaug-Toint CG method will not stop for any of

the two reasons above but it stops as soon as (6.19) holds. Therefore, the condition (6.16) concerning

the accuracy of the step proposal is satisfied, and Theorem 6.11 yields the Q-superlinear convergence,

provided that the further requisites of that theorem hold.

The Steihaug-Toint CG algorithm for the inexact solution of (6.17) is given in Algorithm 6.14.

Algorithm 6.14 (Steihaug-Toint conjugate gradient method for the trust-region subproblem (6.17)).
Input: negative model derivative −𝑞′(0) = 𝑏 ∈ R𝑛

48
after Steihaug, 1983 and Toint, 1981

49
Other, slighly more elaborate approaches, can be found in the literature, e. g., the dogleg method and the two-
dimensional subspace minimization approach; see Nocedal, Wright, 2006, Chapter 4.1 if you are interested.

50
As we did with the truncated conjugate method (Algorithm 5.41) in the context of inexact Newton methods, we switch to

problem adapted variable names. That is, we use iterates 𝑠 (ℓ ) , search directions 𝑝 (ℓ ) and residuals 𝜁 (ℓ ) .
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Input: symmetric matrix 𝐻 (or matrix-vector products with 𝐻 )

Input: s. p. d. matrix𝑀 (or matrix-vector products with𝑀−1)
Input: relative residual 𝜀rel
Input: trust-region radius Δ > 0

Output: approximate solution of the trust-region subproblem (6.17)

1: Set ℓ B 0

2: Set 𝑠 (0) B 0 // zero initial guess

3: Set 𝜁 (0) B −𝑏 // evaluate the initial residual

4: Set 𝑝 (0) B −𝑀−1𝜁 (0)
5: Set 𝛿 (0) B −(𝜁 (0) )ᵀ𝑝 (0) // 𝛿 (0) = ∥𝜁 (0) ∥2

𝑀−1

6: while 𝛿 (ℓ ) ≥ 𝜀2
rel
𝛿 (0) do // check stopping criterion (6.19)

7: Set 𝑞 (ℓ ) B 𝐻 𝑝 (ℓ )

8: Set 𝜃 (ℓ ) B (𝑞 (ℓ ) )ᵀ𝑝 (ℓ )
9: if 𝜃 (ℓ ) > 0 then
10: Set 𝛼 (ℓ ) B 𝛿 (ℓ )/𝜃 (ℓ )
11: Set 𝑠 (ℓ+1) B 𝑠 (ℓ ) + 𝛼 (ℓ ) 𝑝 (ℓ )
12: if ∥𝑠 (ℓ+1) ∥𝑀 > Δ then // iterate would leave the trust region

13: Determine 𝛼∗ as the positive solution of ∥𝑠 (ℓ ) + 𝛼 𝑝 (ℓ ) ∥𝑀 = Δ
14: Set 𝑠 (ℓ+1) B 𝑠 (ℓ ) + 𝛼∗ 𝑝 (ℓ ) // go to the boundary of the trust region

15: Set ℓ B ℓ + 1
16: Abort the while loop
17: else
18: Set 𝜁 (ℓ+1) B 𝜁 (ℓ ) + 𝛼 (ℓ )𝑞 (ℓ )
19: Set 𝑝 (ℓ+1) B −𝑀−1𝜁 (ℓ+1)
20: Set 𝛿 (ℓ+1) B −(𝜁 (ℓ+1) )ᵀ𝑝 (ℓ+1) // 𝛿 (ℓ+1) = ∥𝜁 (ℓ+1) ∥2

𝑀−1

21: Set 𝛽 (ℓ+1) B 𝛿 (ℓ+1)/𝛿 (ℓ )
22: Set 𝑝 (ℓ+1) B 𝑝 (ℓ+1) + 𝛽 (ℓ+1) 𝑝 (ℓ )
23: Set ℓ B ℓ + 1
24: end if
25: else
26: Determine 𝛼∗ as the positive solution of ∥𝑠 (ℓ ) + 𝛼 𝑝 (ℓ ) ∥𝑀 = Δ
27: Set 𝑠 (ℓ+1) B 𝑠 (ℓ ) + 𝛼∗ 𝑝 (ℓ ) // go to the boundary of the trust region

28: Set ℓ B ℓ + 1
29: Abort the while loop
30: end if
31: end while
32: return 𝑠 (ℓ )

Remark 6.15 (on Algorithm 6.14).

(𝑖) The first iterate 𝑠 (1) is the Cauchy point of problem (6.17).

(𝑖𝑖) We consider three cases which may occur in an iteration.

(a) In case of a “usual” CG step (identical to what the plain CG algorithm 4.17 would produce),
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then

𝑞(𝑠 (ℓ+1) ) = 𝑞(𝑠 (ℓ ) ) − 1

2

𝛼 (ℓ )︸ ︷︷ ︸
>0

𝛿 (ℓ )︸ ︷︷ ︸
>0

holds, see (4.12).

(b) If 𝜃 (ℓ ) > 0 holds (the current search direction 𝑝 (ℓ ) is a direction of positive curvature) but

the full Cauchy step 𝑠 (ℓ ) + 𝛼 (ℓ ) 𝑝 (ℓ ) lands outside the trust region, then it is useful follow the

convex function

𝛼 ↦→ 𝜑 (𝛼) B 𝑓 + 𝑏ᵀ(𝑠 (ℓ ) + 𝛼 𝑝 (ℓ ) ) + 1

2

(𝑠 (ℓ ) + 𝛼 𝑝 (ℓ ) )ᵀ𝐻 (𝑠 (ℓ ) + 𝛼 𝑝 (ℓ ) )

in the direction 𝛼 > 0 to the boundary of the trust region in order to obtain the largest possible

descent, since

𝜑 ′(0) = 𝑏ᵀ𝑝 (ℓ ) + (𝑠 (ℓ ) )ᵀ𝐻 𝑝 (ℓ ) = (𝜁 (ℓ ) )ᵀ𝑝 (ℓ ) = −𝛿ℓ = −∥𝜁 (ℓ ) ∥2𝑀−1 < 0

ist.

(c) If, by contrast, 𝜃 (ℓ ) ≤ 0 holds (the current search direction 𝑝 (ℓ ) is a direction of non-positive

curvature), then the function 𝜑 is concave. This suggests, again, to proceed to the boundary of

the trust region in the direction 𝛼 > 0.

(𝑖𝑖𝑖) The considerations above show: in case the Steihaug-Toint CG algorithm does not stop with 𝑠 (1)

but continues, the further iterates continue to reduce the objective 𝑞 monotonically. Therefore, the

inexact solution 𝑠 (ℓ ) returned by Algorithm 6.14 always satisfies the fraction of Cauchy decrease

condition (6.11) with 𝐶 = 1.

(𝑖𝑣) The reason for terminating the algorithm when an iterate 𝑠 (ℓ+1) is about to leave the trust region
is the following. As we know from Lemma 4.22, the sequence of norms ∥𝑠 (ℓ ) − 0∥𝑀 is strictly

monotonically increasing. If we would let the algorithm continue, we would never return into the

trust region.

(𝑣) Concerning the recursive update of the quantity ∥𝑠 (ℓ ) ∥𝑀 without using the matrix𝑀 , we can refer

to (4.33)–(4.34) to obtain the formulas

𝜔 (0) B 0, 𝜔 (𝑘+1) B 𝜔 (𝑘 ) + 2𝛼 (𝑘 )𝜉 (𝑘 ) + (𝛼 (𝑘 ) )2 𝛾 (𝑘 ) (6.20a)

𝜉 (0) B 0, 𝜉 (𝑘+1) B 𝛽 (𝑘+1) (𝜉 (𝑘 ) + 𝛼 (𝑘 )𝛾 (𝑘 ) ) (6.20b)

𝛾 (0) B 𝛿 (0) , 𝛾 (𝑘+1) B 𝛿 (𝑘+1) + (𝛽 (𝑘+1) )2 𝛾 (𝑘 ) (6.20c)

for the quantities

𝜔 (ℓ ) B ∥𝑠 (ℓ ) − 0∥2𝑀 , 𝜉 (ℓ ) B (𝑠 (ℓ ) − 0)ᵀ𝑀 𝑝 (ℓ ) , 𝛾 (ℓ ) B ∥𝑝 (ℓ ) ∥2𝑀 .

(𝑣𝑖) Using these quantities, we can evaluate the step size 𝛼∗ required to reach the boundary by solving

the quadratic equation

∥𝑠 (ℓ ) + 𝛼 𝑝 (ℓ ) ∥2𝑀 = 𝜔 (ℓ ) + 𝛼 𝜉 (ℓ ) + 𝛼2𝛾 (ℓ ) = Δ2.
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Due to 𝜔 (ℓ ) = ∥𝑠 (ℓ ) ∥2
𝑀

< Δ, this equation has exactly one positive solution, which is

𝛼∗ B − 𝜉 (ℓ )

2𝛾 (ℓ )
+ 𝜉 (ℓ )

2𝛾 (ℓ )

(
1 − 4𝛾 (ℓ ) (𝜔 (ℓ ) − Δ2)

)
1/2
.

End of Week 7
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Chapter 2 Theory for Constrained Optimization
Problems

§ 7 Introduction

In this chapter we come back to the generic constrained nonlinear optimization problem (nonlinear
program or NLP) with basic set R𝑛 from (1.1),

Minimize 𝑓 (𝑥) where 𝑥 ∈ R𝑛

subject to 𝑔𝑖 (𝑥) ≤ 0 for 𝑖 = 1, . . . , 𝑛ineq

and ℎ 𝑗 (𝑥) = 0 for 𝑗 = 1, . . . , 𝑛eq.

 (7.1)

We have finitely many (possibly zero) inequality constraints 𝑔𝑖 : R
𝑛 → R and equality constraints

ℎ 𝑗 : R
𝑛 → R, i. e., 𝑛ineq, 𝑛eq ∈ N0. The set

𝐹 B
{
𝑥 ∈ R𝑛

��𝑔𝑖 (𝑥) ≤ 0 for all 𝑖 = 1, . . . , 𝑛ineq, ℎ 𝑗 (𝑥) = 0 for all 𝑗 = 1, . . . , 𝑛eq
}

(7.2)

associated with problem (7.1) is termed the feasible set. Any 𝑥 ∈ 𝐹 is termed a feasible point.

Our goal is to derive optimality conditions for (7.1) which are verifiable numerically and which will

serve as the basis for numerical algorithms.

Assumption 7.1. Throughout Chapter 2 we are assuming that 𝑓 : R𝑛 → R, 𝑔𝑖 : R𝑛 → R andℎ 𝑗 : R𝑛 → R
are all 𝐶1

functions, 𝑖 = 1, . . . , 𝑛ineq and 𝑗 = 1, . . . , 𝑛eq.

The derivation of a first-order optimality condition for problem (7.1) is significantly more complex than

the derivation for the unconstrained problem (UP) achieved in Theorem 3.1. Recall that the proof was

based on considering curves 𝛾 (𝑡) = 𝑥∗ + 𝑡 𝑑 which run through the local minimizer 𝑥∗. Since problem
(UP) was unconstrained, we were free to choose any direction 𝑑 and we obtained 𝑓 ′(𝑥∗) 𝑑 = 0 for all

𝑑 ∈ R𝑛 . In the present situation, however, 𝛾 (𝑡) may not be feasible even for arbitrarily small 𝑡 > 0.

Therefore, we will need to restrict the directions 𝑑 .

It will turn out that the appropriate set of directions is the tangent cone.
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§ 7.1 The Tangent Cone

Definition 7.2 (Tangent cone). Suppose that𝑀 ⊆ R𝑛 is an arbitrary set and 𝑥 ∈ 𝑀 . Then

T𝑀 (𝑥) B
{
𝑑 ∈ R𝑛

���� there exist sequences 𝑥 (𝑘 ) ∈ 𝑀 and 𝑡 (𝑘 ) ↘ 0 such that 𝑑 = lim

𝑘→∞

𝑥 (𝑘 ) − 𝑥
𝑡 (𝑘 )

}
(7.3)

is termed the tangent cone of𝑀 at 𝑥 . A vector 𝑑 ∈ T𝑀 (𝑥) is termed a tangent direction of𝑀 at 𝑥 . We

also define T𝑀 (𝑥) B ∅ for 𝑥 ∉ 𝑀 .

Note: The sequence 𝑥 (𝑘 ) in (7.3) necessarily converges to 𝑥 .

The tangent cone is also known as contingent cone or Bouligand cone in the literature. By the way,

a set 𝐾 ⊆ R𝑛 is termed a cone if 𝑥 ∈ 𝐾 and 𝛽 > 0 imply that 𝛽 𝑥 ∈ 𝐾 holds.

Lemma 7.3 (Properties of the tangent cone). Suppose that𝑀 ⊆ R𝑛 is an arbitrary set. Then T𝑀 (𝑥) is a
closed cone.

Proof. We can assume 𝑥 ∈ 𝑀 since otherwise T𝑀 (𝑥) = ∅ holds, which is a closed cone.

We first show the cone property. Suppose that 𝑑 ∈ T𝑀 (𝑥) and 𝛽 > 0. That is, there exist sequences

𝑥 (𝑘 ) ∈ 𝑀 and 𝑡 (𝑘 ) ↘ 0 such that 𝑑 = lim𝑘→∞
𝑥 (𝑘 )−𝑥
𝑡 (𝑘 )

. Replacing 𝑡 (𝑘 ) by 𝛽−1𝑡 (𝑘 ) , the limit becomes 𝛽 𝑑 .

This shows 𝛽 𝑑 ∈ T𝑀 (𝑥).

It remains to show the closeness of T𝑀 (𝑥). To this end, let 𝑑 (ℓ ) ∈ T𝑀 (𝑥) be a sequence which converges

to some 𝑑 ∈ R𝑛 . We need to show 𝑑 ∈ T𝑀 (𝑥).

For each ℓ ∈ N, there exist sequences
(
𝑥 (ℓ,𝑘 )

)
𝑘
∈ 𝑀 and

(
𝑡 (ℓ,𝑘 )

)
𝑘
satisfying

𝑥 (ℓ,𝑘 ) → 𝑥, 𝑡 (ℓ,𝑘 ) ↘ 0 and

𝑥 (ℓ,𝑘 ) − 𝑥
𝑡 (ℓ,𝑘 )

→ 𝑑 (ℓ ) as 𝑘 →∞.

This implies that for each ℓ ∈ N, there exists an index 𝑘 (ℓ ) such that

∥𝑥 (ℓ,𝑘 (ℓ ) ) − 𝑥 ∥ ≤ 1

ℓ
, 0 < 𝑡 (ℓ,𝑘

(ℓ ) ) ≤ 1

ℓ
and

𝑥 (ℓ,𝑘 (ℓ ) ) − 𝑥
𝑡 (ℓ,𝑘 (ℓ ) )

− 𝑑 (ℓ )
 ≤ 1

ℓ
.

We now consider the “diagonal” sequences

𝑥 (ℓ ) B 𝑥 (ℓ,𝑘
(ℓ ) )

and �̂� (ℓ ) B 𝑡 (ℓ,𝑘
(ℓ ) ) .

These satisfy 𝑥 (ℓ ) → 𝑥 and �̂� (ℓ ) ↘ 0 as well as𝑥 (ℓ ) − 𝑥
�̂� (ℓ )

− 𝑑
 ≤ 𝑥 (ℓ ) − 𝑥

�̂� (ℓ )
− 𝑑 (ℓ )

 + ∥𝑑 (ℓ ) − 𝑑 ∥ ≤ 1

ℓ
+ ∥𝑑 (ℓ ) − 𝑑 ∥ → 0,

which shows that 𝑑 belongs to T𝑀 (𝑥). □
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We can now formulate and prove a first version of the first-order necessary optimality condition for

local minimizers of (7.1).

Theorem 7.4 (First-order necessary optimality condition).
Suppose that 𝑥∗ is a local minimizer of (7.1). Then

𝑓 ′(𝑥∗) 𝑑 ≥ 0 for all 𝑑 ∈ T𝐹 (𝑥∗) . (7.4)

This theorem states that in a local minimizer, 𝑓 is growing to first order in any direction tangent to

the feasible set.

Proof. Suppose that 𝑑 ∈ T𝐹 (𝑥∗). Then there exist sequences 𝑥 (𝑘 ) ∈ 𝐹 and 𝑡 (𝑘 ) ↘ 0 such that

𝑑 = lim

𝑘→∞

𝑥 (𝑘 ) − 𝑥∗

𝑡 (𝑘 )

holds. Since 𝑓 is continuously differentiable, the mean value theorem 2.4 implies that there exist

numbers 𝜉 (𝑘 ) ∈ (0, 1) such that

𝑓 (𝑥 (𝑘 ) ) = 𝑓 (𝑥∗) + 𝑓 ′
(
𝑥∗ + 𝜉 (𝑘 ) (𝑥 (𝑘 ) − 𝑥∗)

)
(𝑥 (𝑘 ) − 𝑥∗).

Using the local optimality of 𝑥∗ and the fact that 𝑥 (𝑘 ) → 𝑥∗, we obtain

0 ≤ 𝑓 (𝑥 (𝑘 ) ) − 𝑓 (𝑥∗)
= 𝑓 ′

(
𝑥∗ + 𝜉 (𝑘 ) (𝑥 (𝑘 ) − 𝑥∗)

)
(𝑥 (𝑘 ) − 𝑥∗) .

Division by 𝑡 (𝑘 ) leaves us with

0 ≤ 𝑓 ′
(
𝑥∗ + 𝜉 (𝑘 ) (𝑥 (𝑘 ) − 𝑥∗)︸                    ︷︷                    ︸

→𝑥∗

) (𝑥 (𝑘 ) − 𝑥∗
𝑡 (𝑘 )︸     ︷︷     ︸
→𝑑

)
.

Using again the 𝐶1
-property of 𝑓 , we infer that the expression on the right converges, so we conclude

0 ≤ 𝑓 ′(𝑥∗) 𝑑. □

In analogy to § 3, we refer to points 𝑥 ∈ 𝐹 satisfying (7.4) as stationary points.

There are two obstacles that make the first-order necessary optimality condition (7.4) generally difficult

to use in practice:

(1) (7.4) comes in the form of a variational inequality. Even when a candidate point 𝑥∗ is given, it may

be difficult to verify (7.4) due to the generally infinite number of tangent directions 𝑑 ∈ T𝐹 (𝑥∗).
Finding a candidate point 𝑥∗ on the basis of (7.4) is even more difficult.
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(2) The tangent cone’s implicit definition can render its explicit characterization difficult. After all,

T𝐹 (𝑥) only refers to the feasible set 𝐹 itself but it does not depend on the description (7.2) of 𝐹

in terms of the inequality and equality constraints 𝑔𝑖 and ℎ 𝑗 .

Therefore we now seek to replace the tangent cone T𝐹 (𝑥) by a cone which is simpler to handle

algorithmically. More precisely, we will try and replace an analytical/geometrical object (the tangent

cone) by an algebraic object (the linearizing cone).

§ 7.2 The Linearizing Cone

Definition 7.5 (Linearizing cone).
Consider the feasible set 𝐹 as in (7.2).

(𝑖) For 𝑥 ∈ 𝐹 , we define

A(𝑥) B {𝑖 ∈ {1, . . . , 𝑛ineq} | 𝑔𝑖 (𝑥) = 0} the set of active indices at 𝑥,
I(𝑥) B {𝑖 ∈ {1, . . . , 𝑛ineq} | 𝑔𝑖 (𝑥) < 0} the set of inactive indices at 𝑥 .

(𝑖𝑖) For 𝑥 ∈ 𝐹 , the set

T lin

𝐹 (𝑥) B
{
𝑑 ∈ R𝑛

����� 𝑔′𝑖 (𝑥) 𝑑 ≤ 0 for all 𝑖 ∈ A(𝑥)
ℎ′𝑗 (𝑥) 𝑑 = 0 for all 𝑗 = 1, . . . , 𝑛eq

}
(7.5)

is termed the linearizing cone or cone of first-order feasible directions to the feasible set at 𝑥 .
We set T lin

𝐹
(𝑥) B ∅ when 𝑥 ∉ 𝐹 .

Note: Inactive inequalities do not play a role in the definition of the linearizing cone.

Remark 7.6 (on the linearizing cone).
(𝑖) Consider the closed convex polyhedral set

1

𝐹 lin(𝑥) =
{
𝑦 ∈ R𝑛

����� 𝑔𝑖 (𝑥) + 𝑔′𝑖 (𝑥) (𝑦 − 𝑥) ≤ 0 for all 𝑖 = 1, . . . , 𝑛ineq

ℎ 𝑗 (𝑥) + ℎ′𝑗 (𝑥) (𝑦 − 𝑥) = 0 for all 𝑗 = 1, . . . , 𝑛eq

}
for a given point 𝑥 ∈ 𝐹 . One can show that the linearizing cone is also the tangent cone to 𝐹 lin(𝑥)
at the point 𝑥 ∈ 𝐹 ∩ 𝐹 lin(𝑥) , i. e.,

T lin

𝐹 (𝑥) = T𝐹 lin (𝑥 ) (𝑥) .

(𝑖𝑖) T lin

𝐹
(𝑥) is a closed convex cone.

1
A convex polyhedral set is the intersection of finitely many half spaces.
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(𝑖𝑖𝑖) In contrast to the tangent cone T𝐹 (𝑥), the linearizing cone T lin

𝐹
(𝑥) does depend on the description

of the feasible set 𝐹 in terms of the inequality and equality constraints.

The details of this remark are worked out in homework problem 8.3 and homework problem 8.4.

Lemma 7.7 (Relation between the cones).
Consider the feasible set 𝐹 as in (7.2) and 𝑥 ∈ 𝐹 . Then T𝐹 (𝑥) ⊆ T lin

𝐹
(𝑥).

Proof. Suppose that 𝑑 ∈ T𝐹 (𝑥). Then there exist sequences 𝑥 (𝑘 ) ∈ 𝐹 and 𝑡 (𝑘 ) ↘ 0 such that

𝑑 = lim

𝑘→∞

𝑥 (𝑘 ) − 𝑥
𝑡 (𝑘 )

.

We prove that 𝑔′𝑖 (𝑥) 𝑑 ≤ 0 holds for all 𝑖 ∈ A(𝑥). Let us fix 𝑖 ∈ A(𝑥). The mean value theorem 2.4

implies

0 ≥ 𝑔𝑖 (𝑥 (𝑘 ) ) since 𝑥 (𝑘 ) is feasible

= 𝑔𝑖 (𝑥)︸    ︷︷    ︸
=0

+ 𝑔′𝑖
(
𝑥 + 𝜉 (𝑘 ) (𝑥 (𝑘 ) − 𝑥)

)
(𝑥 (𝑘 ) − 𝑥)

with some 𝜉 (𝑘 ) ∈ (0, 1). Division by 𝑡 (𝑘 ) and passage to the limit 𝑘 →∞ yields 0 ≥ 𝑔′𝑖 (𝑥) 𝑑 .

Analogously we can show ℎ′𝑗 (𝑥) 𝑑 = 0 for all 𝑗 = 1, . . . , 𝑛eq, and thus we obtain 𝑑 ∈ T lin

𝐹
(𝑥). □

§ 7.3 Polar Cones

The formulation of optimality conditions in an algebraic form amenable to solution algorithms is going

to require the introduction of a dual description of the linearizing cone T lin

𝐹
(𝑥). We now introduce

such a dual description for arbitrary sets.

Definition 7.8 (Polar cone). Suppose that𝑀 ⊆ R𝑛 is an arbitrary set. The polar cone to𝑀 is defined as

𝑀◦ B {𝑠 ∈ R𝑛 | 𝑠ᵀ𝑥 ≤ 0 for all 𝑥 ∈ 𝑀}. (7.6)

Note: The polar cone consists of the normal vectors 𝑠 ∈ R𝑛 of hyperplanes through the origin such

that 𝑀 is entirely contained in the negative half space 𝐻− (𝑠, 0) = {𝑦 ∈ R𝑛 | 𝑠ᵀ𝑦 ≤ 0}. One also says

that the hyperplane 𝑠ᵀ𝑦 = 0 separates 0 and𝑀 .

Lemma 7.9 (Properties of the polar cone). Suppose that𝑀,𝑀1, 𝑀2 ⊆ R𝑛 are arbitrary sets.

(𝑖) 𝑀◦ is a closed convex cone.
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Figure 7.1: Illustration of two sets𝑀 which have the same polar cone𝑀◦.

(𝑖𝑖) 𝑀1 ⊆ 𝑀2 implies𝑀◦
2
⊆ 𝑀◦

1
.

Proof. The proof is part of homework problem 8.2. □

Example 7.10 (Polar cones).

(𝑖) Suppose that𝐴 is an affine subspace of R𝑛 , i. e.,𝐴 = 𝑈 +{𝑥} where𝑈 is a subspace of R𝑛 and 𝑥 ∈ R𝑛 .
Then 𝐴◦ = {𝑥}◦ ∩𝑈 ⊥ (the intersection of the polar cone of {𝑥} with the orthogonal complement of

𝑈 w.r.t. the Euclidean inner product).

(𝑖𝑖) In the absence of inequality constraints (𝑛ineq = 0), the polar of the linearizing cone has the

representation

T lin

𝐹 (𝑥)◦ = {𝑠 ∈ R𝑛 | 𝑠 is some linear combination of ℎ′𝑗 (𝑥)ᵀ, 𝑗 = 1, . . . , 𝑛eq}
= rangeℎ′(𝑥)ᵀ

for 𝑥 ∈ 𝐹 .

(𝑖𝑖𝑖) Let 𝑁 B (R≥0)𝑛 denote the non-negative orthant in R𝑛 . Then 𝑁 ◦ = (R≤0)𝑛 is the non-positive

orthant.

(𝑖𝑣) For 0 ∈ R𝑛 , we have {0}◦ = R𝑛 and (R𝑛)◦ = {0}.

The proof is part of homework problem 8.2.
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§ 7.4 The Farkas Lemma and the Representation of T lin
𝐹
(𝑥)◦

We recall that our plan is to understand the dual description T lin

𝐹
(𝑥)◦ of the linearizing cone T lin

𝐹
(𝑥).

In the absence of inequality constraints, this polar has already been characterized in Statement (𝑖𝑖) of
Example 7.10. For the general case, we require the Farkas lemma.

Lemma 7.11 (Farkas lemma (1902)).
Suppose that 𝐵 ∈ R𝑚×𝑛 and 𝑐 ∈ R𝑛 . Then the following are equivalent.

(𝑖) The linear system 𝐵ᵀ𝜉 = 𝑐 has a non-negative solution 𝜉 ≥ 0.

(𝑖𝑖) All elements of {𝑑 ∈ R𝑛 | 𝐵 𝑑 ≥ 0} satisfy 𝑐ᵀ𝑑 ≥ 0.

Statement (𝑖) means that 𝑐 belongs to the closed convex cone
2

𝐾 B {𝐵ᵀ 𝜉 | 𝜉 ∈ R𝑚, 𝜉 ≥ 0}.

In order to understand Statement (𝑖𝑖), we reason as follows:

𝐵 𝑑 ≥ 0 ⇔ 𝜉ᵀ𝐵 𝑑 ≥ 0 for all 𝜉 ≥ 0 (by Statement (𝑖𝑖𝑖) of Example 7.10)

⇔ 𝑑ᵀ(𝐵ᵀ𝜉) ≥ 0 for all 𝜉 ≥ 0

⇔ 𝐾 is a subset of the half space 𝐻+(𝑑, 0) = {𝑥 ∈ R𝑛 | 𝑑ᵀ𝑥 ≥ 0}.

We can thus read Statement (𝑖𝑖) as follows. Any half space 𝐻+(𝑑, 0) that contains the cone 𝐾 also

contains the point 𝑐 . Therefore, the negation of Statement (𝑖𝑖) means that there exists a vector 𝑑 such

that 𝐾 is contained in 𝐻+(𝑑, 0) but the point 𝑐 is not. In this case, we say that the hyperplane 𝐻 (𝑑, 0)
separates separates 𝐾 and 𝑐 .

𝐻 (𝑑, 0)

𝑑

𝑐
0

𝐾

𝐻 (𝑑, 0)

𝑑

𝑐

0

𝐾

Figure 7.2: Illustration of both cases in the Farkas lemma 7.11. Left: Statements (𝑖) and (𝑖𝑖) are both
true. Right: Statements (𝑖) and (𝑖𝑖) are both false.

Proof of Lemma 7.11. We first show Statement (𝑖) ⇒ Statement (𝑖𝑖): Suppose that 𝜉 ≥ 0 satisfies

𝐵ᵀ𝜉 = 𝑐 . Moreover, let 𝑑 ∈ R𝑛 be such that 𝐵 𝑑 ≥ 0. Then we obtain

𝑐ᵀ𝑑 = (𝐵ᵀ𝜉)ᵀ𝑑 = 𝜉ᵀ(𝐵 𝑑) ≥ 0.

2
It is very easy to check that 𝐾 is a convex cone. We do not prove here that it is closed. Please see Herzog, 2022,

Lemma 6.10 if you are interested in the proof.
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In order to prove Statement (𝑖𝑖) ⇒ Statement (𝑖), we consider the contraposition, i. e., ¬ State-

ment (𝑖) ⇒ ¬ Statement (𝑖𝑖). Thus we assume 𝑐 ∉ 𝐾 . Due to 0 ∈ 𝐾 we must have 𝑐 ≠ 0. Let cl𝐵
𝑅
(𝑐) be

the closed ball with radius 𝑅 = ∥𝑐 ∥. We consider the orthogonal projection of 𝑐 onto 𝐾 ∩ cl𝐵
𝑅
(𝑐), i. e.,

Minimize ∥𝑥 − 𝑐 ∥, where 𝑥 ∈ R𝑛

subject to 𝑥 ∈ 𝐾 ∩ cl𝐵𝑅 (𝑐).
(∗)

Since 𝐾 is closed and cl𝐵
𝑅
(𝑐) is compact, 𝐾 ∩ cl𝐵

𝑅
(𝑐) is compact as well. By the Weierstraß’ extreme

value theorem
3
, problem (∗) has a global minimizer𝑤 . The point𝑤 is also a global minimizer of the

relaxed problem

Minimize ∥𝑥 − 𝑐 ∥, where 𝑥 ∈ R𝑛

subject to 𝑥 ∈ 𝐾,
(∗∗)

since points outside of cl𝐵
𝑅
(𝑐) are definitely not global minimizers of (∗∗). (Quiz 7.1: Why is it that

points outside of cl𝐵
𝑅
(𝑐) cannot be global minimizers of (∗∗)?)

We now prove that 𝑑 = 𝑤 − 𝑐 serves as the normal vector of a hyperplane which separates 𝐾 from the

point 𝑐 . The construction is illustrated in Figure 7.3. Notice that we have 𝑑 ≠ 0 due to 𝐾 ∋ 𝑤 ≠ 𝑐 ∉ 𝐾 .

Suppose that 𝑦 is an arbitrary point in 𝐾 . All points on the line segment between 𝑦 and 𝑤 , i. e.,

𝛼 𝑦 + (1 − 𝛼)𝑤 for 𝛼 ∈ [0, 1], also belong to 𝐾 due to convexity. We obtain

∥𝑤 − 𝑐 ∥2 ≤ ∥𝛼 𝑦 + (1 − 𝛼)𝑤 − 𝑐 ∥2 since𝑤 is optimal for (∗∗)
= ∥𝛼 (𝑦 −𝑤) + (𝑤 − 𝑐)∥2

= 𝛼2∥𝑦 −𝑤 ∥2 + 2𝛼 (𝑦 −𝑤)ᵀ(𝑤 − 𝑐) + ∥𝑤 − 𝑐 ∥2.

This implies

2 (𝑦 −𝑤)ᵀ(𝑤 − 𝑐︸︷︷︸
=𝑑

) ≥ −𝛼 ∥𝑦 −𝑤 ∥2

for all 𝛼 ∈ [0, 1]. Passage to the limit 𝛼 ↘ 0 implies

(𝑦 −𝑤)ᵀ𝑑 ≥ 0 for all 𝑦 ∈ 𝐾. (∗∗∗)

Inserting 𝑦 = 2𝑤 and 𝑦 = 0 (both belong to 𝐾), we conclude 𝑤 ᵀ𝑑 ≥ 0 and simultaneously 𝑤 ᵀ𝑑 ≤ 0,

hence

𝑤 ᵀ𝑑 = 0. (∗∗∗∗)
Moreover,

𝑐ᵀ𝑑 = (𝑐 −𝑤)ᵀ𝑑 +𝑤 ᵀ𝑑 = −∥𝑤 − 𝑐︸︷︷︸
=𝑑≠0

∥2 +𝑤 ᵀ𝑑︸ ︷︷ ︸
=0

< 0. (∗∗∗∗∗)

Overall we obtain

𝑦ᵀ𝑑 ≥ 𝑤 ᵀ𝑑 by (∗∗∗)
= 0 by (∗∗∗∗)
> 𝑐ᵀ𝑑 by (∗∗∗∗∗)

for all 𝑦 ∈ 𝐾 . This shows that 𝐾 ⊆ 𝐻+(𝑑, 0) but 𝑐 ∉ 𝐻+(𝑑, 0). In other words, we obtain that indeed,

𝑑 = 𝑤 − 𝑐 serves as the normal vector of a hyperplane which separates 𝐾 from the point 𝑐 . That is,

Statement (𝑖𝑖) does not hold, which was to be proved. □
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𝑐
𝑤

𝑦

0

𝐾𝐾

Figure 7.3: Illustration of the construction of the normal vector 𝑑 = 𝑤 − 𝑐 of the separating hyperplane
(red) in the proof of the Farkas-Lemmas 7.11.

Remark 7.12. Statement (𝑖) of the Farkas-Lemmas 7.11 can be verified numerically by checking whether

or not the linear optimization problem

Minimize 0
⊤𝜉, where 𝜉 ∈ R𝑚

subect to 𝐵⊤𝜉 = 𝑐

and 𝜉 ≥ 0

has a feasible point, e. g., using phase I of the simplex method; see for instance Herzog, 2022, § 7.2.

Lemma 7.13 (Representation of T lin

𝐹
(𝑥)◦).

Consider the feasible set 𝐹 as in (7.2) and 𝑥 ∈ 𝐹 . Then the polar T lin

𝐹
(𝑥)◦ of the linearizing cone (7.5) has

the representation

T lin

𝐹 (𝑥)◦ =
{ ∑︁
𝑖∈A(𝑥 )

𝜇𝑖∇𝑔𝑖 (𝑥) +
𝑛eq∑︁
𝑗=1

𝜆 𝑗∇ℎ 𝑗 (𝑥)
����� 𝜇𝑖 ≥ 0 for 𝑖 ∈ A(𝑥)
𝜆 𝑗 ∈ R for 𝑗 = 1, . . . , 𝑛eq

}

=


𝑛ineq∑︁
𝑖=1

𝜇𝑖∇𝑔𝑖 (𝑥) +
𝑛eq∑︁
𝑗=1

𝜆 𝑗∇ℎ 𝑗 (𝑥)

�������
𝜇𝑖 ≥ 0 for 𝑖 = 1, . . . , 𝑛ineq

𝜇𝑖 = 0 for 𝑖 ∈ I(𝑥)
𝜆 𝑗 ∈ R for 𝑗 = 1, . . . , 𝑛eq

 . (7.7)

Proof. We first show that the set on the right-hand side is a subset of T lin

𝐹
(𝑥)◦. To this end, let 𝑦 be a

vector from the right-hand side of (7.7) and let 𝑑 ∈ T lin

𝐹
(𝑥) be arbitrary, i. e., we have 𝑔′𝑖 (𝑥) 𝑑 ≤ 0 for

all 𝑖 ∈ A(𝑥) and ℎ′𝑗 (𝑥) 𝑑 = 0 for all 𝑗 = 1, . . . , 𝑛eq. We need to show 𝑦ᵀ𝑑 ≤ 0. This follows immediately

from

𝑦ᵀ𝑑 =
∑︁

𝑖∈A(𝑥 )
𝜇𝑖︸︷︷︸
≥0

𝑔′𝑖 (𝑥) 𝑑︸ ︷︷ ︸
≤0

+
𝑛eq∑︁
𝑗=1

𝜆 𝑗 ℎ
′
𝑗 (𝑥) 𝑑︸  ︷︷  ︸
=0

≤ 0 + 0.
It remains to show that, conversely, T lin

𝐹
(𝑥)◦ is also a subset of the set on the right-hand side. Here we

will use the Farkas lemma 7.11 and set

𝐵 B


−𝑔′𝑖 (𝑥) |𝑖∈A(𝑥 )
−ℎ′𝑗 (𝑥) | 𝑗=1,...,𝑛eq
ℎ′𝑗 (𝑥) | 𝑗=1,...,𝑛eq

 .
3
A continuous function attains its global minimum (and its global maximum) on any compact set.
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This choice implies

𝑑 ∈ T lin

𝐹 (𝑥) ⇔ 𝐵 𝑑 ≥ 0.

Now let 𝑦 ∈ T lin

𝐹
(𝑥)◦, hence

𝑦ᵀ𝑑 ≤ 0 for all 𝑑 ∈ R𝑛 satisfying 𝐵 𝑑 ≥ 0.

We need to show that 𝑦 has a representation as the elements in the right-hand side of (7.7). Using the

Farkas lemma 7.11 with 𝑐 = −𝑦 yields that the system

𝐵ᵀ𝜉 = −𝑦 has a solution 𝜉 ≥ 0.

We split 𝜉 according to

𝜉 C
©«
𝜇𝑖 |𝑖∈A(𝑥 )
𝜆+𝑗 | 𝑗=1,...,𝑛eq
𝜆−𝑗 | 𝑗=1,...,𝑛eq

ª®®¬ and set 𝜆 B 𝜆+ − 𝜆− .

Hence we can write 𝐵ᵀ𝜉 = −𝑦 or −𝐵ᵀ𝜉 = 𝑦 as

∑︁
𝑖∈A(𝑥 )

𝜇𝑖∇𝑔𝑖 (𝑥) +
𝑛eq∑︁
𝑗=1

𝜆 𝑗∇ℎ 𝑗 (𝑥) = 𝑦,

which confirms that 𝑦 has indeed a representation as in (7.7). □

§ 8 First-Order Necessary Optimality Conditions

We are now in the position to revisit first-order optimality conditions for (7.1). We already know from

Theorem 7.4 that we have

𝑓 ′(𝑥∗) 𝑑 ≥ 0 for all 𝑑 ∈ T𝐹 (𝑥∗) (7.4)

at a local minimizer 𝑥∗. Equivalently, we could write

−∇𝑓 (𝑥∗) ∈ T𝐹 (𝑥∗)◦. (8.1)

However, the tangent cone T𝐹 (𝑥∗) and its polar T𝐹 (𝑥∗)◦ are generally difficult to characterize. By

contrast, the linearizing cone T lin

𝐹
(𝑥∗) and its polar T lin

𝐹
(𝑥∗)◦ have an explicit description in terms of

the constraint functions’ derivatives and are much easier to handle.

We have the relation T𝐹 (𝑥) ⊆ T lin

𝐹
(𝑥) and thus, by Lemma 7.9, T lin

𝐹
(𝑥)◦ ⊆ T𝐹 (𝑥)◦. This means that,

unfortunately, T lin

𝐹
(𝑥)◦ may be “too small” and we cannot expect, in general,

−∇𝑓 (𝑥∗) ∈ T lin

𝐹 (𝑥∗)◦. (8.2)

Before we address this gap and how to overcome it, let us see what (8.2) means explicitly.
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Definition 8.1 (Lagrange function). The function

L(𝑥, 𝜇, 𝜆) B 𝑓 (𝑥) +
𝑛ineq∑︁
𝑖=1

𝜇𝑖 𝑔𝑖 (𝑥) +
𝑛eq∑︁
𝑗=1

𝜆 𝑗 ℎ 𝑗 (𝑥)

= 𝑓 (𝑥) + 𝜇ᵀ𝑔(𝑥) + 𝜆ᵀℎ(𝑥) (8.3)

is termed the Lagrange function or Lagrangian associated with problem (7.1).

One says that the constraints 𝑔 and ℎ are adjoined to the objective 𝑓 .

Definition 8.2 (KKT conditions, Lagrange multipliers).
(𝑖) The conditions

∇𝑥L(𝑥, 𝜇, 𝜆) =


∇𝑓 (𝑥) +

𝑛ineq∑︁
𝑖=1

𝜇𝑖∇𝑔𝑖 (𝑥) +
𝑛eq∑︁
𝑗=1

𝜆 𝑗∇ℎ 𝑗 (𝑥)

∇𝑓 (𝑥) + 𝑔′(𝑥)ᵀ𝜇 + ℎ′(𝑥)ᵀ𝜆


= 0, (8.4a)

ℎ(𝑥) = 0, (8.4b)

𝜇 ≥ 0, 𝑔(𝑥) ≤ 0, 𝜇ᵀ𝑔(𝑥) = 0 (8.4c)

are termed the Karush-Kuhn-Tucker conditions or KKT conditions4 associated with problem

(7.1).

(𝑖𝑖) Given a point 𝑥 ∈ 𝐹 , any vectors 𝜇 and 𝜆 satisfying (8.4) are called Lagrange multipliers
associated with the inequality and equality constraints, respectively, at 𝑥 .

(𝑖𝑖𝑖) We denote the set of all Lagrange multipliers at 𝑥 ∈ 𝐹 by

Λ(𝑥) B
{
(𝜇, 𝜆)

�����𝑔′(𝑥)ᵀ𝜇 + ℎ′(𝑥)ᵀ𝜆 = −∇𝑓 (𝑥)
𝜇 ≥ 0, 𝜇ᵀ𝑔(𝑥) = 0

}
. (8.5)

We set Λ(𝑥) B ∅ for 𝑥 ∉ 𝐹 .

(𝑖𝑣) A point 𝑥 is called aKKT point for problem (7.1) if Λ(𝑥) ≠ ∅, i. e., if there exist Lagrange multipliers

(𝜇, 𝜆) such that (𝑥, 𝜇, 𝜆) satisfy the KKT conditions (8.4).

Remark 8.3 (on the KKT conditions).
(𝑖) Condition (8.4c) is known as a complementarity condition.5 It can be written equivalently as

𝜇𝑖 ≥ 0, 𝑔𝑖 (𝑥) ≤ 0, 𝜇𝑖 𝑔𝑖 (𝑥) = 0 for all 𝑖 = 1, . . . , 𝑛ineq,

4
Karush, 1939; Kuhn, Tucker, 1951

5
A complementarity system is any system of inequalities and equalities in the form 𝑎 ≷ 0, 𝑏 ≷ 0 and 𝑎ᵀ𝑏 = 0.
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i. e., for every 𝑖 , at least one of the two numbers 𝜇𝑖 and 𝑔𝑖 (𝑥) is equal to 0. (This explains the name

complementarity.)

In particular, a Lagrange multiplier 𝜇𝑖 associated with an inactive inequality constraint 𝑔𝑖 (𝑥) < 0

must be equal to 0. Sometimes, one writes (8.4c) in the form

0 ≤ 𝜇 ⊥ 𝑔(𝑥) ≤ 0.

(𝑖𝑖) Given 𝑥 ∈ 𝐹 , the conditions (8.5) on the Lagrange multipliers are linear equations and inequalities.

Therefore, the set Λ(𝑥) is a polyhedron. Whether or not Λ(𝑥) is empty can be verified numerically

by checking whether or not the linear optimization problem

Minimize 0
ᵀ𝜇 + 0ᵀ𝜆

subject to 𝑔′(𝑥)ᵀ𝜇 + ℎ′(𝑥)ᵀ𝜆 = −∇𝑓 (𝑥)
and 𝜇 ≥ 0

and 𝜇ᵀ𝑔(𝑥) = 0

(8.6)

has a feasible point, e. g., using phase I of the simplex method; see for instance Herzog, 2022, § 7.2.

The associated dual problem reads

Minimize 𝑓 ′(𝑥) 𝑑, where 𝑑 ∈ R𝑛

subject to 𝑔′𝑖 (𝑥) 𝑑 ≤ 0 for 𝑖 ∈ A(𝑥)
and ℎ′𝑗 (𝑥) 𝑑 = 0 for 𝑗 = 1, . . . , 𝑛eq.

(8.7)

That is, the dual problem considers the minimization of the linearized objective on the linearizing

cone T lin

𝐹
(𝑥).

The primal problem (8.6) cannot be unbounded. The dual problem (8.7) always has the feasible

point 𝑑 = 0. Therefore, only the following two situations can occur:

(1) Both problems (8.6) and (8.7) are solvable.

This means that Lagrange multipliers exist, i. e., Λ(𝑥) ≠ ∅.

(2) The primal problem (8.6) is infeasible, and the dual problem (8.7) is unbounded.

No Lagrange multipliers exist, i. e., Λ(𝑥) = ∅.

Situation (2) means that there exists a descent direction for the objective 𝑓 at 𝑥 , which belongs to the

linearizing cone. By contrast, in situation (1), all directions in the linearizing cone as non-descent

directions.

We will now see that the KKT conditions are just an explicit way of writing (8.2).

Lemma 8.4 (Significance of the KKT conditions).
Consider the optimization problem (7.1). The following statements are equivalent.
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(𝑖) 𝑥 is a KKT point.

That is, there exist Lagrange multipliers (𝜇, 𝜆) such that the KKT conditions (8.4) hold.

(𝑖𝑖) 𝑥 is a feasible point that satisfies (8.2).

That is, −∇𝑓 (𝑥) ∈ T lin

𝐹
(𝑥)◦.

Proof. Equation (8.4a) of the KKT conditions state that

−∇𝑓 (𝑥) =
𝑛ineq∑︁
𝑖=1

𝜇𝑖 ∇𝑔𝑖 (𝑥) +
𝑛eq∑︁
𝑗=1

𝜆 𝑗 ∇ℎ 𝑗 (𝑥) (∗)

holds with scalars 𝜆 𝑗 and 𝜇𝑖 , for which (8.4c) implies: 𝜇𝑖 ≥ 0 for all 𝑖 = 1, . . . , 𝑛ineq and even 𝜇𝑖 = 0 for

𝑖 ∈ I(𝑥). Owing to the representation (7.7) of the polar T lin

𝐹
(𝑥)◦ of the linearizing cone, (∗) together

with the conditions on 𝜇 is equivalent to −∇𝑓 (𝑥) ∈ T lin

𝐹
(𝑥)◦. Moreover, the conditions (8.4b) and

(8.4c) ensure the feasibility of 𝑥 . □

The KKT conditions (8.4) associate with an optimization problem (7.1) a (generally nonlinear) system of

equations and inequalities. (Quiz 8.1: In which case are the KKT conditions affine conditions?) They

are the basis of most numerical constrained optimization solvers. Unfortunately, the KKT conditions are

not, in general, necessary optimality conditions, since they express the condition −∇𝑓 (𝑥) ∈ T lin

𝐹
(𝑥)◦

instead of −∇𝑓 (𝑥) ∈ T𝐹 (𝑥)◦. The following example shows that this may actually be an issue in

practice.

Example 8.5 (T lin

𝐹
(𝑥) ⊊ T𝐹 (𝑥)). Consider the optimization problem

Minimize − 𝑥1
subject to 𝑥2 + 𝑥31 ≤ 0

and − 𝑥2 ≤ 0.

(8.8)

The feasible set has the following shape:
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Obviously, 𝑥∗ = (0, 0)ᵀ is the unique global minimizer of (8.8), and there are no further local minimizers.

The inequalities 𝑔1 and 𝑔2 are both active in 𝑥∗, and we find

∇𝑔1(𝑥) =
(
3𝑥2

1

1

)
⇒ ∇𝑔1(𝑥∗) =

(
0

1

)
∇𝑔2(𝑥) =

(
0

−1

)
⇒ ∇𝑔2(𝑥∗) =

(
0

−1

)
.

We evaluate

T𝐹 (𝑥∗) = {𝑑 ∈ R2 | 𝑑1 ≤ 0, 𝑑2 = 0} = R≤0 × {0},
T lin

𝐹 (𝑥∗) = {𝑑 ∈ R2 | 𝑔′𝑖 (𝑥∗) 𝑑 ≤ 0, 𝑖 = 1, 2}
= {𝑑 ∈ R2 | 𝑑2 = 0} = R × {0},

so that we infer T lin

𝐹
(𝑥∗) ⊊ T𝐹 (𝑥∗).

The optimality condition (7.4) is satisfied as expected from Theorem 7.4:

𝑓 ′(𝑥∗) 𝑑 =
(
−1 0

)
𝑑 ≥ 0 for all 𝑑 ∈ T𝐹 (𝑥∗) = R≤0 × {0}.

The same variational inequality is not satisfied with the larger cone T lin

𝐹
(𝑥∗). Consequently, −∇𝑓 (𝑥∗)

belongs to T𝐹 (𝑥∗)◦ but it does not belong to T lin

𝐹
(𝑥∗)◦:

−∇𝑓 (𝑥∗) ∈ T𝐹 (𝑥∗)◦ = {𝑠 ∈ R2 | 𝑠1 ≥ 0} = R≥0 × R,
−∇𝑓 (𝑥∗) ∉ T lin

𝐹 (𝑥∗)◦ = {𝑠 ∈ R2 | 𝑠1 = 0} = {0} × R.

Consequently, the KKT conditions cannot be satisfied at 𝑥∗. Here they boil down to(
−1
0

)
+ 𝜇1

(
0

1

)
+ 𝜇2

(
0

−1

)
=

(
0

0

)
and they cannot be satisfied for any 𝜇 ∈ R2, 𝜇 ≥ 0.

We are going to bridge the gap between −∇𝑓 (𝑥) ∈ T lin

𝐹
(𝑥)◦ and −∇𝑓 (𝑥) ∈ T𝐹 (𝑥)◦ by means of

constraint qualifications (CQs).

§ 8.1 First-Order Necessary Optimality Conditions Under the Abadie and Guignard CQ

Definition 8.6 (Abadie CQ and Guignard CQ
6
).

(𝑖) A feasible point 𝑥 ∈ 𝐹 satisfies the Abadie constraint qualification (ACQ) in case T lin

𝐹
(𝑥) =

T𝐹 (𝑥).7

(𝑖𝑖) A feasible point 𝑥 ∈ 𝐹 satisfies theGuignard constraint qualification (GCQ) in case T lin

𝐹
(𝑥)◦ =

T𝐹 (𝑥)◦.
6
see Guignard, 1969 and Flegel, Kanzow, 2005, Corollary 3.8

7
Some authors also speak of a quasiregular point; see Bertsekas, 1999, p.345–349.
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Note: The ACQ implies the GCQ.

Theorem 8.7 (KKT conditions are necessary optimality conditions under the Abadie CQ and the

Guignard CQ).
Suppose that 𝑥∗ is a local minimizer of (7.1) which satisfies the Abadie CQ or the Guignard CQ. Then

Λ(𝑥∗) ≠ ∅, i. e., there exist Lagrange multipliers 𝜇∗ and 𝜆∗ (not necessarily unique) such that the KKT

conditions (8.4) are satisfied.

Proof. As a local minimizer of (7.1), 𝑥∗ is feasible of course. From Theorem 7.4 and the ACQ or GCQ

we infer

−∇𝑓 (𝑥∗) ∈ T lin

𝐹 (𝑥∗)◦ = T𝐹 (𝑥∗)◦.

Lemma 8.4 confirms that this is equivalent to the KKT conditions. □

Remark 8.8 (on the significance of constraint qualifications).
(𝑖) Constraint qualifications (CQs) render the KKT conditions necessary optimality conditions. Therefore,

the KKT conditions (8.4) are sometimes called a qualified optimality system.

(𝑖𝑖) If the GCQ does not hold at a local minimizer 𝑥∗, then Lagrange multipliers may fail to exist, as we

saw in Example 8.5. It is also possible that they do exist, but it depends on the objective.

(𝑖𝑖𝑖) CQs tell us whether the tangent cone to the feasible set admits an algebraic description in terms of

the linearizing cone. The latter depends on our description of the feasible set 𝐹 in terms of inequality

and equality constraints. Two different descriptions of the same feasible set may differ w.r.t. the

CQs they satisfy.

(𝑖𝑣) A general weakness of CQs is that they need to be checked at the point 𝑥∗, which is usually a priori

unknown. Algorithms searching for KKT points may miss minimizers which fail to satisfy a CQ.

(𝑣) The verification of the ACQ or GCQ is often cumbersome. Therefore, we will later introduce stronger

CQs which are easier to handle and which imply the ACQ.

(𝑣𝑖) In the absence of CQs, one arrives at Fritz-John conditions (FJ conditions)8 Note: Was bedeuten

denn die FJ-Bedingungen wirklich, vor allem natürlich für den Fall 𝜇0 = 0? Das wird eine Aussage

über den Linearisierungskegel sein.

𝜇0∇𝑓 (𝑥) + 𝑔′(𝑥)ᵀ𝜇 + ℎ′(𝑥)ᵀ𝜆 = 0, (8.9a)

ℎ(𝑥) = 0, (8.9b)

𝜇 ≥ 0, 𝑔(𝑥) ≤ 0, 𝜇ᵀ𝑔(𝑥) = 0, (8.9c)

𝜇0 ≥ 0. (8.9d)

A point 𝑥 is termed a Fritz-John point for problem (7.1) if there exist (𝜇0, 𝜇, 𝜆) which are not all

zero, such that (𝑥, 𝜇0, 𝜇, 𝜆) satisfy the FJ conditions (8.9).

8
John, 1948
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One calls (8.9) an unqualified optimality system since one can show—without assuming any

CQ—that any local minimizer of (7.1) is an FJ point; see for instance Geiger, Kanzow, 2002, p.72. In

case we happen to have 𝜇0 > 0, we can re-normalize the vector (𝜇0, 𝜇, 𝜆) so that 𝜇0 = 1 holds, and

we have indeed a KKT point.

§ 8.2 First-Order Necessary Optimality Conditions Under Affine Constraints

We consider a special case of problem (7.1) which has only affine (“linear”) constraints.

Minimize 𝑓 (𝑥), where 𝑥 ∈ R𝑛

subject to 𝐴ineq 𝑥 ≤ 𝑏ineq
and 𝐴eq 𝑥 = 𝑏eq

 (8.10)

with 𝐴ineq ∈ R𝑛ineq×𝑛 and 𝐴eq ∈ R𝑛eq×𝑛 as well as 𝑏ineq ∈ R𝑛ineq and 𝑏eq ∈ R𝑛eq . The KKT conditions

associated with (8.10) read

∇𝑓 (𝑥) +𝐴ᵀ
ineq

𝜇 +𝐴ᵀ
eq
𝜆 = 0, (8.11a)

𝐴eq 𝑥 − 𝑏eq = 0, (8.11b)

𝜇 ≥ 0, 𝐴ineq 𝑥 − 𝑏ineq ≤ 0, 𝜇ᵀ(𝐴ineq 𝑥 − 𝑏ineq) = 0. (8.11c)

Theorem 8.9 (KKT conditions are necessary optimality conditions under affine constraints).
Suppose that 𝑥∗ is a local minimizer of (8.10). Then Λ(𝑥∗) ≠ ∅, i. e., there exist Lagrange multipliers 𝜇∗

and 𝜆∗ (not necessarily unique) such that the KKT conditions (8.11) are satisfied.

Proof. When the feasible set 𝐹 is described exclusively in terms of affine constraints, one can show

that the Abadie CQ holds at every feasible point; see homework problem 8.4. □

The observation that affine constraints imply the ACQ everywhere is the reason why one does not

explicitly require CQs in linear optimization; compare Herzog, 2022, § 8.

End of Week 8

§ 8.3 First-Order Necessary Optimality Conditions Under MFCQ

Definition 8.10 (Mangasarian-Fromovitz Constraint Qualification).
A feasible point 𝑥 ∈ 𝐹 satisfies the Mangasarian-Fromovitz constraint qualification (MFCQ) if the
following conditions hold:

(𝑖) The gradients
{
∇ℎ 𝑗 (𝑥)

}𝑛eq
𝑗=1

are linearly independent. In other words, the Jacobian ℎ′(𝑥) has full
row rank (is surjective).
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(𝑖𝑖) There exists a vector 𝑑 ∈ R𝑛 such that

𝑔′𝑖 (𝑥) 𝑑 < 0 for all 𝑖 ∈ A(𝑥),
ℎ′𝑗 (𝑥) 𝑑 = 0 for all 𝑗 = 1, . . . , 𝑛eq.

(8.12)

The vector 𝑑 from (8.12) is sometimes called an MFCQ vector. Notice that condition (𝑖) implies

0 ≤ 𝑛eq ≤ 𝑛, i. e., there cannot be too many equality constraints.

Lemma 8.11 (alternative formulation of condition (𝑖𝑖)). Suppose that 𝑥 is a feasible point for (7.1). Then

the following are equivalent to condition (𝑖𝑖):

(𝑖𝑖𝑖) There exists a vector 𝑑 ∈ R𝑛 such that

𝑔(𝑥) + 𝑔′(𝑥) 𝑑 < 0,

ℎ(𝑥) + ℎ′(𝑥) 𝑑 = 0.
(8.13)

(𝑖𝑣) There exists a vector 𝑑 ∈ R𝑛 such that

𝑔′𝑖 (𝑥) 𝑑 ≤ −1 for all 𝑖 ∈ A(𝑥),
ℎ′𝑗 (𝑥) 𝑑 = 0 for all 𝑗 = 1, . . . , 𝑛eq.

(8.14)

Proof. □

Remark 8.12 (on the Mangasarian-Fromovitz CQs). We can numerically verify the MFCQ at a feasible

point 𝑥 as follow.

(𝑖) We determine the row rank of ℎ′(𝑥), e. g., by computing its singular values.

(𝑖𝑖) We verify whether or not the linear optimization problem with zero objective and constraints as in

(8.14) is feasible.
9

Lemma 8.13 (MFCQ implies existence of a feasible curve).
Suppose that 𝑥 is a feasible point for (7.1) which satisfies the MFCQ with the MFCQ vector 𝑑 . Then there

exist 𝜀 > 0 and a curve 𝛾 : (−𝜀, 𝜀) → R𝑛 with the following properties:

(𝑖) 𝛾 is of class 𝐶1
on (−𝜀, 𝜀).

(𝑖𝑖) 𝛾 satisfies


ℎ(𝛾 (𝑡)) = 0 for 𝑡 ∈ (−𝜀, 𝜀),
𝑔(𝛾 (𝑡)) ≤ 0 for 𝑡 ∈ [0, 𝜀),
𝑔(𝛾 (𝑡)) < 0 for 𝑡 ∈ (0, 𝜀) .

9
Further reading: Burke, 2014, Ch.7.2, p.76, who also discusses the dual of this LP.
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(𝑖𝑖𝑖) 𝛾 (0) = 𝑥 and ¤𝛾 (0) = 𝑑 .

Proof. In the absence of equality constraints, we simply set 𝛾 (𝑡) B 𝑥 + 𝑡 𝑑 on some interval (−𝜀0, 𝜀0);
then 𝛾 (0) = 𝑥 and ¤𝛾 (0) = 𝑑 hold. Otherwise, we will apply the implicit function theorem to show the

existence of the curve 𝛾 with the desired properties. The curve will be constructed using only the

equality constraints. However, we cannot apply the implicit function theorem directly to ℎ(𝛾 (𝑡)) = 0

since the number of equality constraints 𝑛eq is generally smaller than the dimension 𝑛. As a remedy,

we consider the function

𝐻 (𝑦, 𝑡) B ℎ
(
𝑥 + 𝑡 𝑑 + ℎ′(𝑥)ᵀ𝑦

)
. (∗)

This function is of class 𝐶1
and it satisfies 𝐻 (0, 0) = ℎ(𝑥) = 0. The partial Jacobian w.r.t. 𝑦 is

𝐻𝑦 (𝑦, 𝑡) = ℎ′
(
𝑥 + 𝑡 𝑑 + ℎ′(𝑥)ᵀ𝑦

)
ℎ′(𝑥)ᵀ.

In particular,

𝐻𝑦 (0, 0) = ℎ′(𝑥) ℎ′(𝑥)ᵀ

holds, which is an s. p. d. matrix in R𝑛eq×𝑛eq . (Quiz 8.2: Can you argue why?)

We now apply the implicit function theorem to 𝐻 (𝑦, 𝑡) = 0. There exists 𝜀0 > 0 and a 𝐶1
-curve

𝜉 : (−𝜀0, 𝜀0) → R𝑛eq such that

𝐻 (𝜉 (𝑡), 𝑡) = 0 holds for 𝑡 ∈ (−𝜀0, 𝜀0) and 𝜉 (0) = 0.

The derivative of 𝜉 can be obtained from the linear system

𝐻𝑦 (𝜉 (𝑡), 𝑡) ¤𝜉 (𝑡) = −𝐻𝑡 (𝜉 (𝑡), 𝑡) = −ℎ′
(
𝑥 + 𝑡 𝑑 + ℎ′(𝑥)ᵀ𝜉 (𝑡)

)
𝑑.

In particular, at 𝑡 = 0, we obtain

𝐻𝑦 (0, 0) ¤𝜉 (0) = −𝐻𝑡 (0, 0) = −ℎ′(𝑥) 𝑑 = 0,

which shows
¤𝜉 (0) = 0. Using 𝜉 , we now define the 𝐶1

-curve

𝛾 (𝑡) B 𝑥 + 𝑡 𝑑 + ℎ′(𝑥)ᵀ𝜉 (𝑡) for 𝑡 ∈ (−𝜀0, 𝜀0).

This function has the properties

𝛾 (0) = 𝑥 + 0𝑑 + ℎ′(𝑥)ᵀ𝜉 (0) = 𝑥 + ℎ′(𝑥)ᵀ0 = 𝑥

and ¤𝛾 (𝑡) = 𝑑 + ℎ′(𝑥)ᵀ ¤𝜉 (𝑡) and thus

¤𝛾 (0) = 𝑑 + ℎ′(𝑥)ᵀ ¤𝜉 (0) = 𝑑 + ℎ′(𝑥)ᵀ0 = 𝑑,

as desired. Moreover, by construction, we have

ℎ(𝛾 (𝑡)) = 𝐻 (𝜉 (𝑡), 𝑡) = 0 for all 𝑡 ∈ (−𝜀0, 𝜀0) .

It remains to show 𝑔(𝛾 (𝑡)) ≤ 0 for 𝑡 ∈ [0, 𝜀0) and the strict inequality when 𝑡 ∈ (0, 𝜀0). When

𝑖 ∈ {1, . . . , 𝑛ineq} is an inactive index at 𝑥 , i. e., 𝑔𝑖 (𝑥) < 0, then by continuity, there exists 𝜀𝑖 > 0 such

that

𝑔𝑖 (𝛾 (𝑡)) < 0 for all 𝑡 ∈ (−𝜀𝑖 , 𝜀𝑖) .
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By contrast, when 𝑖 is an active index at 𝑥 , i. e., 𝑔𝑖 (𝑥) = 0, let us abbreviate 𝜑 (𝑡) B 𝑔𝑖 (𝛾 (𝑡)). By the

chain rule, this function is of class 𝐶1
. Then 𝜑 (0) = 𝑔𝑖 (𝛾 (0)) = 𝑔𝑖 (𝑥) = 0 holds as well as

¤𝜑 (𝑡) = 𝑔′𝑖 (𝛾 (𝑡)) ¤𝛾 (𝑡)
and thus ¤𝜑 (0) = 𝑔′𝑖 (𝛾 (0)) ¤𝛾 (0)

= 𝑔′𝑖 (𝑥) 𝑑 < 0.

The properties 𝜑 (0) = 0 and ¤𝜑 (0) < 0 and the continuity of ¤𝜑 imply that there exists 𝜀𝑖 > 0 such that

𝜑 (𝑡) ≤ 0 holds for all 𝑡 ∈ [0, 𝜀𝑖) and even 𝜑 (𝑡) < 0 for all 𝑡 ∈ (0, 𝜀𝑖).

Choosing 𝜀 B min{𝜀0, 𝜀1, . . . , 𝜀𝑛ineq} yields Statement (𝑖𝑖). □

Corollary 8.14 (MFCQ implies ACQ).
Suppose that 𝑥 is a feasible point for (7.1) which satisfies the MFCQ. Then the ACQ holds at 𝑥 .

Proof. We need to show T lin

𝐹
(𝑥) = T𝐹 (𝑥). The inclusion T𝐹 (𝑥) ⊆ T lin

𝐹
(𝑥) follows from Lemma 7.7. We

only need to show the reverse inclusion T lin

𝐹
(𝑥) ⊆ T𝐹 (𝑥).

To this end, let 𝑑0 ∈ T lin

𝐹
(𝑥) be arbitrary and let 𝑑 be an MFCQ vector, i. e., we have

𝑔′𝑖 (𝑥) 𝑑0 ≤ 0 and 𝑔′𝑖 (𝑥) 𝑑 < 0 for all 𝑖 ∈ A(𝑥),
ℎ′𝑗 (𝑥) 𝑑0 = 0 and ℎ′𝑗 (𝑥) 𝑑 = 0 for all 𝑗 = 1, . . . , 𝑛eq.

We set 𝑑 (𝜏) B 𝑑0 + 𝜏 𝑑 for 𝜏 > 0. Then

𝑔′𝑖 (𝑥) 𝑑 (𝜏) < 0 for all 𝑖 ∈ A(𝑥),
ℎ′𝑗 (𝑥) 𝑑 (𝜏) = 0 for all 𝑗 = 1, . . . , 𝑛eq.

That is, 𝑑 (𝜏) is also an MFCQ vector.

We show 𝑑 (𝜏) ∈ T𝐹 (𝑥) for any fixed 𝜏 > 0. Lemma 8.13 implies the existence of a curve𝛾 : (−𝜀, 𝜀) → R𝑛
such that 𝛾 (𝑡) ∈ 𝐹 holds for 𝑡 ∈ [0, 𝜀) and 𝛾 (0) = 𝑥 as well as ¤𝛾 (0) = 𝑑 (𝜏). To show that 𝑑 (𝜏) ∈ T𝐹 (𝑥)
holds, let 𝑡 (𝑘 ) ∈ (0, 𝜀) be any sequence with 𝑡 (𝑘 ) ↘ 0 and 𝑥 (𝑘 ) B 𝛾 (𝑡 (𝑘 ) ) ∈ 𝐹 .

Then we have 𝑥 (𝑘 ) → 𝛾 (0) = 𝑥 and

𝑑 (𝜏) = ¤𝛾 (0) = lim

𝑘→∞

𝛾 (𝑡 (𝑘 ) ) − 𝛾 (0)
𝑡 (𝑘 )

= lim

𝑘→∞

𝑥 (𝑘 ) − 𝑥
𝑡 (𝑘 )

,

which confirms 𝑑 (𝜏) ∈ T𝐹 (𝑥) for any 𝜏 > 0. Since T𝐹 (𝑥) is closed by Lemma 7.3, the limit point

𝑑0 = lim

𝜏↘0

𝑑 (𝜏) belongs to T𝐹 (𝑥) as well. □

Theorem 8.15 (KKT conditions are necessary optimality conditions under the MFCQ).
Suppose that 𝑥∗ is a local minimizer of (7.1) which satisfies the MFCQ. Then Λ(𝑥∗) ≠ ∅, i. e., there exist
Lagrange multipliers 𝜇∗ and 𝜆∗ (not necessarily unique) such that the KKT conditions (8.4) are satisfied.

The set of Lagrange multipliers Λ(𝑥∗) is compact.
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Proof. The existence of Lagrange multipliers follows directly from the combination of Corollary 8.14

and Theorem 8.7. We do not give a proof of compactness here. □

§ 8.4 First-Order Necessary Optimality Conditions Under LICQ

Definition 8.16 (Linear Independence Constraint Qualification).
A feasible point 𝑥 ∈ 𝐹 satisfies the linear independence constraint qualification (LICQ) if the
gradients

{
∇ℎ 𝑗 (𝑥)

}𝑛eq
𝑗=1
∪

{
∇𝑔𝑖 (𝑥)

}
𝑖∈A(𝑥 ) are linearly independent.

10

Notice that the LICQ implies 0 ≤ 𝑛eq + |A(𝑥) | ≤ 𝑛, i. e., there cannot be too many equality plus active

inequality constraints.

Lemma 8.17 (LICQ implies MFCQ).
Suppose that 𝑥 is a feasible point for (7.1) which satisfies the LICQ. Then the MFCQ holds at 𝑥 .

Proof. The LICQ directly implies condition (𝑖) in Definition 8.10 since any subset of linearly independent
vectors is linearly independent as well. Define

𝐴 B

[
𝑔′𝑖 (𝑥) |𝑖∈A(𝑥 )
ℎ′𝑗 (𝑥) | 𝑗=1,...,𝑛eq

]
and 𝑏 B

(
−1, . . . ,−1︸     ︷︷     ︸
|A (𝑥0 ) |

, 0, . . . , 0︸  ︷︷  ︸
𝑛eq

)ᵀ
.

The rows of 𝐴 are linearly independent, hence 𝐴 is surjective so that 𝐴𝑑 = 𝑏 has a solution 𝑑 ∈ R𝑛 .
This vector 𝑑 satisfies (8.14) and thus it also satisfies condition (𝑖𝑖) of Definition 8.10. □

Theorem 8.18 (KKT conditions are necessary optimality conditions under the LICQ).
Suppose that 𝑥∗ is a local minimizer of (7.1) which satisfies the LICQ. Then Λ(𝑥∗) is a singleton, i. e., there
exist uniquely defined Lagrange multipliers 𝜇∗ and 𝜆∗ such that the KKT conditions (8.4) are satisfied.

Proof. By Lemma 8.17, the MFCQ holds at 𝑥∗, so that the setΛ(𝑥∗) of Lagrange multipliers is non-empty

(and compact) by Theorem 8.15. It remains to show the uniqueness. Due to the complementarity system

(8.4c), the components of 𝜇∗ corresponding to inactive constraints must be 0. These components can

therefore be removed from the linear system, and (8.5) reduces to[
𝑔′𝑖 (𝑥) |𝑖∈A(𝑥 )
ℎ′𝑗 (𝑥) | 𝑗=1,...,𝑛eq

] ᵀ (
𝜇∗𝑖 |𝑖∈A(𝑥 )
𝜆∗𝑗 | 𝑗=1,...,𝑛eq

)
= −∇𝑓 (𝑥).

The LICQ states that the matrix (without the transpose sign) has full row rank and hence the system

matrix (including the transpose sign) has full column rank. This implies that 𝜇∗ and 𝜆∗ must be

unique. □

10
Some authors also speak of a regular point; see Bertsekas, 1999, p.349.
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We summarize the relations between the various constraint qualifications:

LICQ

Lemma 8.17

=========⇒ MFCQ

Corollary 8.14

===========⇒ ACQ

Definition 8.6

===========⇒ GCQ (8.15)

The reverse relations do not hold in general. However, we can note that for problems without inequality

constraints, LICQ and MFCQ are identical (and 𝑑 = 0 is an MFCQ vector).

All CQs ensure that the KKT conditions are necessary optimality conditions for local minimizers, i. e.,

CQ ensure the existence of Lagrange multipliers. Under the MFCQ, the set of multipliers is compact,

and the multipliers are unique under the LICQ.

§ 8.5 First-Order Sufficient Optimality Conditions for Convex Problems

The KKT conditions so far were shown to be necessary optimality conditions of first order, provided

that some constraint qualification was satisfied. There is one important class of problems where the

KKT conditions also serve as sufficient optimality conditions.

Minimize 𝑓 (𝑥) where 𝑥 ∈ R𝑛

subject to 𝑔𝑖 (𝑥) ≤ 0

and 𝐴𝑥 = 𝑏.

 (8.16)

For problem (8.16) we assume that

(1) 𝑓 is of class 𝐶1
and convex on R𝑛 ,

(2) 𝑔𝑖 is of class 𝐶
1
and convex on R𝑛 ,

(3) 𝐴 ∈ R𝑛eq×𝑛 and 𝑏 ∈ R𝑛eq .

Note: Under these conditions, the feasible set 𝐹 is convex. We refer to this type of problem as a

convex nonlinear optimization problem or convex nonlinear program (convex NLP). To be

more precise, we can speak of a convex description of a convex NLP.

Problems such as (8.16), which seek to minimize a convex objective over a convex feasible set have

the remarkable property that every local minimizer is already a global minimizer; see for instance

Herzog, 2022, Satz 14.2.

There are customized constraint qualifications which apply only to convex NLPs. They are known as

Slater constraint qualifications and they can be shown to imply the ACQ, but we do not discuss

them here. However, we do point out that the KKT conditions are sufficient optimality conditions for

convex NLPs.

Theorem 8.19 (KKT conditions are sufficient optimality conditions for convex problems).
Suppose that 𝑥∗ is a KKT point for problem (8.16). Then 𝑥∗ is a global minimizer of (8.16).
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Proof. Let (𝜇∗, 𝜆∗) ∈ Λ(𝑥∗) be any Lagrange multiplier for (8.16) at 𝑥∗, and let 𝑥 ∈ R𝑛 be an arbitrary

feasible point. We estimate

𝑓 (𝑥) ≥ 𝑓 (𝑥∗) + 𝑓 ′(𝑥∗) (𝑥 − 𝑥∗) by Statement (a) of Theorem 2.9

= 𝑓 (𝑥∗) − (𝜇∗)ᵀ𝑔′(𝑥∗) (𝑥 − 𝑥∗) − (𝜆∗)ᵀ𝐴 (𝑥 − 𝑥∗)︸      ︷︷      ︸
=𝑏−𝑏=0

by the KKT condition (8.4a)

= 𝑓 (𝑥∗) −
𝑛ineq∑︁
𝑖=1

𝜇∗𝑖 𝑔
′
𝑖 (𝑥∗) (𝑥 − 𝑥∗)

≥ 𝑓 (𝑥∗) −
𝑛ineq∑︁
𝑖=1

𝜇∗𝑖︸︷︷︸
=0 on I(𝑥∗ )
≥0 on A(𝑥∗ )

(
𝑔𝑖 (𝑥)︸    ︷︷    ︸

≤0 on I(𝑥∗ )
≤0 on A(𝑥∗ )

− 𝑔𝑖 (𝑥∗)︸      ︷︷      ︸
<0 on I(𝑥∗ )
=0 on A(𝑥∗ )

)
again by Statement (a) of Theorem 2.9

≥ 𝑓 (𝑥∗),

which shows that 𝑥∗ is indeed a global minimizer. □

Theorem 8.19 implies that convex problems do not require second-order optimality conditions. For

non-convex problems, however, second-order conditions bring additional information. Moreover,

Theorem 5.33 We address them in the following section.

§ 9 Second-Order Optimality Conditions

We begin by motivating which directions 𝑑 ∈ T lin

𝐹
(𝑥) should play a role in second-order optimality

conditions. Suppose that 𝑥 is a KKT point for (7.1) with multipliers (𝜇, 𝜆) and 𝑑 ∈ T lin

𝐹
(𝑥). We have

0 =
[
∇𝑓 (𝑥) + 𝑔′(𝑥)ᵀ𝜇 + ℎ′(𝑥)ᵀ𝜆

] ᵀ
𝑑 by the KKT condition (8.4a)

= 𝑓 ′(𝑥) 𝑑 +
∑︁

𝑖∈A(𝑥 )
𝜇𝑖︸︷︷︸
≥0

𝑔′𝑖 (𝑥) 𝑑︸        ︷︷        ︸
≤0

+
𝑛eq∑︁
𝑗=1

𝜆 𝑗 ℎ
′
𝑗 (𝑥) 𝑑︸         ︷︷         ︸
=0

by (8.4c) and the definition of T lin

𝐹 (𝑥)

≤ 𝑓 ′(𝑥) 𝑑.

Directions 𝑑 ∈ T lin

𝐹
(𝑥) satisfying ∇𝑓 (𝑥)ᵀ𝑑 > 0 do not require second-order information in a second-

order sufficient condition, nor do they contribute information in a second-order necessary condition.

The remaining directions

𝑑 ∈ T lin

𝐹 (𝑥) with 𝑓 ′(𝑥) 𝑑 = 0 (9.1)

are termed critical directions since second-order derivatives do matter in those directions.

By our calculation above, the following two conditions are equivalent for 𝑑 ∈ T lin

𝐹
(𝑥).

(1) 𝑓 ′(𝑥) 𝑑 = 0.

(2) 𝑔′𝑖 (𝑥) 𝑑 = 0 for all 𝑖 ∈ A(𝑥) with 𝜇𝑖 > 0.

This motivates the following definition.
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Definition 9.1 (strongly and weakly active inequalities, critical cone).
Suppose that 𝑥 is a KKT point for (7.1) with multipliers (𝜇, 𝜆).

(𝑖) We further distinguish the indices in the active set as follows:

A0(𝑥, 𝜇) B {𝑖 ∈ A(𝑥) | 𝜇𝑖 = 0} the set of weakly active indices at 𝑥,
A> (𝑥, 𝜇) B {𝑖 ∈ A(𝑥) | 𝜇𝑖 > 0} the set of strongly active indices at 𝑥 .

(𝑖𝑖) The set

T critical

NLP
(𝑥) B

{
𝑑 ∈ T lin

𝐹 (𝑥)
�� 𝑓 ′(𝑥) 𝑑 = 0

}
=

{
𝑑 ∈ T lin

𝐹 (𝑥)
��𝑔′𝑖 (𝑥) 𝑑 = 0 for all 𝑖 ∈ A> (𝑥, 𝜇)

}
=

 𝑑 ∈ R𝑛

�������
𝑔′𝑖 (𝑥) 𝑑 = 0 for all 𝑖 ∈ A> (𝑥, 𝜇)
𝑔′𝑖 (𝑥) 𝑑 ≤ 0 for all 𝑖 ∈ A0(𝑥, 𝜇)
ℎ′𝑗 (𝑥) 𝑑 = 0 for all 𝑗 = 1, . . . , 𝑛eq

 (9.2)

is termed the critical cone to the problem (7.1) at 𝑥 . When 𝑥 is not a KKT point, then we set

T critical

NLP
(𝑥) B ∅.

Remark 9.2 (on the critical cone T critical

NLP
(𝑥)).

(𝑖) The critical cone is a closed convex cone. Just like the linearizing cone, it has an algebraic description

in terms of the constraint (and objective) gradients.

(𝑖𝑖) The multipliers (𝜇, 𝜆) for a KKT point may not be unique. The weakly and strongly active indices at 𝑥

depend on the inequality constraint multiplier 𝜇 and thus they may differ for different multipliers at

the same KKT point 𝑥 . Nevertheless, the critical cone T critical

NLP
(𝑥) does not depend on the multipliers.

(Quiz 9.1: Can you explain how this is possible?)

(𝑖𝑖𝑖) Unlike the tangent cone and the linearizing cone, the critical cone does not only depend on the

feasible set (or its description in terms of the constraints) but in fact depends also on the objective 𝑓 .

We therefore do not say “critical cone to 𝐹 ” but instead “critical cone to the problem”.

(𝑖𝑣) For any specific choice of the multipliers (𝜇, 𝜆), T critical

NLP
(𝑥) can also be viewed as the usual linearizing

cone for a modified problem, that is obtained by replacing inequalities which are active at 𝑥 by

equations.

§ 9.1 Second-Order Necessary Optimality Conditions

We only consider second-order necessary optimality conditions for local minimizers satisfying the

LICQ.

Theorem 9.3 (Second-order necessary optimality condition under the LICQ).
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Suppose that 𝑓 , 𝑔 and ℎ are 𝐶2
functions. Suppose that 𝑥∗ is a local minimizer of (7.1) which satisfies the

LICQ. Let (𝜇∗, 𝜆∗) be the associated unique Lagrange multipliers; see Theorem 8.18. Then

𝑑ᵀL𝑥𝑥 (𝑥∗, 𝜇∗, 𝜆∗) 𝑑 ≥ 0 for all 𝑑 ∈ T critical

NLP
(𝑥∗) . (9.3)

Note: Besides second derivatives of the objective, the second-order optimality conditions also involve

the second derivatives of all constraints except those where 𝜇∗𝑖 = 0.

Proof. Let 𝑑 be any fixed element of T critical

NLP
(𝑥∗), 𝑑 ≠ 0. The proof is based on constructing a curve 𝛾

which satisfies 𝛾 (0) = 𝑥∗ and ¤𝛾 (0) = 𝑑 , and along which we are going to run through the Lagrangian.

The construction of the curve will be based on Lemma 8.13, which requires the MFCQ to be satisfied.

We will therefore define an auxiliary feasible set with slightly tightened constraints compared to (7.1),

so that 𝑑 becomes an MFCQ vector for the auxiliary set. More precisely, we will have to treat some of

the active inequality constraints as equality constraints.

To define the modified constraints, we decompose the weakly active indices according to

A<
0
(𝑥∗, 𝜇∗, 𝑑) B {𝑖 ∈ A0(𝑥∗, 𝜇∗) | 𝑔′𝑖 (𝑥∗) 𝑑 < 0},

A=
0
(𝑥∗, 𝜇∗, 𝑑) B {𝑖 ∈ A0(𝑥∗, 𝜇∗) | 𝑔′𝑖 (𝑥∗) 𝑑 = 0}.

Clearly, the inequalities 𝑔𝑖 with 𝑖 ∈ A=
0
(𝑥∗, 𝜇∗, 𝑑) have to become equalities in order for 𝑑 to be

an MFCQ vector. In addition, we also convert the inequalities which are strongly active at 𝑥∗ into
equalities. Hence we define the modified constraints as

𝑔(𝑥) B
(
𝑔𝑖 (𝑥) |𝑖∈I(𝑥∗ )
𝑔𝑖 (𝑥) |𝑖∈A<

0
(𝑥∗,𝜇∗,𝑑 )

)
the corresponding inactive set at 𝑥∗ is I(𝑥∗) = I(𝑥∗)
the corresponding active set at 𝑥∗ is A(𝑥∗) = A<

0
(𝑥∗, 𝜇∗, 𝑑)

ℎ(𝑥) B ©«
ℎ 𝑗 (𝑥) | 𝑗=1,...,𝑛eq
𝑔𝑖 (𝑥) |𝑖∈A> (𝑥∗,𝜇∗ )
𝑔𝑖 (𝑥) |𝑖∈A=

0
(𝑥∗,𝜇∗,𝑑 )

ª®¬
The new feasible set

𝐹 B {𝑥 ∈ R𝑛 | 𝑔(𝑥) ≤ 0, ℎ(𝑥) = 0}

satisfies 𝐹 ⊆ 𝐹 (Quiz 9.2: Why?), and 𝑥∗ ∈ 𝐹 holds.

We now verify that the chosen vector 𝑑 ∈ T critical

NLP
(𝑥∗) indeed satisfies the MFCQ at 𝑥∗ for the modified

problem. Following Definition 8.10, we show:

(𝑖) The gradients
{
∇ℎ 𝑗 (𝑥∗)

}
𝑗
are linearly independent.

This is true sincewe assumed the LICQ. (We could even have included the gradients {∇𝑔𝑖 (𝑥∗)}𝑖∈A(𝑥∗ )
of all active inequalities, not only those in A<

0
(𝑥∗, 𝜇∗, 𝑑).)

(𝑖𝑖) The given vector 𝑑 is an MFCQ vector.

Indeed, it satisfies

𝑔′𝑖 (𝑥∗) 𝑑 < 0 for all 𝑖 ∈ A(𝑥∗),

ℎ
′
𝑗 (𝑥∗) 𝑑 = 0 for all 𝑗 .
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The first statement is true by

{
𝑔′𝑖 (𝑥∗) 𝑑

}
𝑖∈A(𝑥∗ ) =

{
𝑔′
𝑘
(𝑥∗) 𝑑

}
𝑘∈A<

0
(𝑥∗,𝜇∗,𝑑 ) and the definition of

A<
0
(𝑥∗, 𝜇∗, 𝑑). The second statement holds since the constraints collected in ℎ are composed

of former equality constraints and some of the former active inequality constraints. Since 𝑑

belongs to the critical cone and thus, in particular, to the linearizing cone T lin

𝐹
(𝑥∗), all directional

derivatives are zero.

Since the MFCQ holds, we can apply Lemma 8.13. We infer that there exists 𝜀 > 0 and a curve

𝛾 : (−𝜀, 𝜀) → R𝑛 with the following properties:

(𝑖) 𝛾 is of class 𝐶2
on (−𝜀, 𝜀).

(𝑖𝑖) 𝛾 (𝑡) ∈ 𝐹 for 𝑡 ∈ [0, 𝜀) and even 𝑔(𝛾 (𝑡)) < 0 for 𝑡 ∈ (0, 𝜀).

(𝑖𝑖𝑖) 𝛾 (0) = 𝑥∗ and ¤𝛾 (0) = 𝑑 .

The 𝐶2
-property of 𝛾 is easy to see when we revisit the proof of Lemma 8.13. Since 𝐻 (𝑦, 𝑡) = ℎ

(
𝑥 +

𝑡 𝑑 + ℎ′(𝑥)ᵀ𝑦
)
is now of class 𝐶2

, the implicit function theorem implies that 𝜉 and thus 𝛾 are 𝐶2
curves

as well.

We finally define the function to run through the Lagrangian along 𝛾 as

𝜑 (𝑡) B L(𝛾 (𝑡), 𝜇∗, 𝜆∗) .

Then 𝜑 is also of class 𝐶2
on (−𝜀, 𝜀) and has the following derivatives:

¤𝜑 (𝑡) = ¤𝛾 (𝑡)ᵀ∇𝑥L(𝛾 (𝑡), 𝜇∗, 𝜆∗)
¥𝜑 (𝑡) = ¥𝛾 (𝑡)ᵀ∇𝑥L(𝛾 (𝑡), 𝜇∗, 𝜆∗) + ¤𝛾 (𝑡)ᵀL𝑥𝑥 (𝛾 (𝑡), 𝜇∗, 𝜆∗) ¤𝛾 (𝑡) .

In particular, for 𝑡 = 0 we obtain

¤𝜑 (0) = ¤𝛾 (0)ᵀ∇𝑥L(𝑥∗, 𝜇∗, 𝜆∗) = 0 by the KKT conditions

¥𝜑 (0) = ¥𝛾 (0)ᵀ∇𝑥L(𝑥∗, 𝜇∗, 𝜆∗) + ¤𝛾 (0)ᵀL𝑥𝑥 (𝑥∗, 𝜇∗, 𝜆∗) ¤𝛾 (0)
= 0 + 𝑑ᵀL𝑥𝑥 (𝑥∗, 𝜇∗, 𝜆∗) 𝑑.

Furthermore, for 𝑡 ∈ [0, 𝜀), we have

𝜑 (𝑡) = L(𝛾 (𝑡), 𝜇∗, 𝜆∗) = 𝑓 (𝛾 (𝑡)) +
𝑛ineq∑︁
𝑖=1

𝜇∗𝑖 𝑔𝑖 (𝛾 (𝑡)) +
𝑛eq∑︁
𝑗=1

𝜆∗𝑗 ℎ 𝑗 (𝛾 (𝑡))

= 𝑓 (𝛾 (𝑡)) +
∑︁

𝑖∈A> (𝑥∗ )

>0︷︸︸︷
𝜇∗𝑖

=0, since 𝛾 (𝑡 ) ∈𝐹︷          ︸︸          ︷
𝑔𝑖 (𝛾 (𝑡)) +

∑︁
𝑖∈A0 (𝑥∗ )

=0︷︸︸︷
𝜇∗𝑖 𝑔𝑖 (𝛾 (𝑡)) +

∑︁
𝑖∈I(𝑥∗ )

=0︷︸︸︷
𝜇∗𝑖 𝑔𝑖 (𝛾 (𝑡)) +

𝑛eq∑︁
𝑗=1

?︷︸︸︷
𝜆∗𝑗

=0, since 𝛾 (𝑡 ) ∈𝐹︷           ︸︸           ︷
ℎ 𝑗 (𝛾 (𝑡))

= 𝑓 (𝛾 (𝑡)).

By assumption, 𝛾 (0) = 𝑥∗ is a (global) minimizer of 𝑓 , restricted to a neighborhood 𝑈 (𝑥∗) and
intersected with 𝐹 . If necessary, we make 𝜀 > 0 smaller so that 𝛾 (𝑡) ∈ 𝑈 (𝑥∗) ∩ 𝐹 ⊆ 𝑈 (𝑥∗) ∩ 𝐹 holds

for all 𝑡 ∈ [0, 𝜀). It follows that 𝑡 = 0 is a (global) minimizer of the 𝐶2
-function 𝜑 , restricted to [0, 𝜀).
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We already know ¤𝜑 (0) = 0. If we had ¥𝜑 (0) < 0, then by continuity, ¥𝜑 would be negative on an

entire interval [0, 𝜀′) with 0 < 𝜀′ ≤ 𝜀. Therefore, ¤𝜑 would be negative on (0, 𝜀′). This would be a

contradiction to 𝑡 = 0 being a minimizer of 𝜑 on [0, 𝜀). Therefore, we must have

¥𝜑 (0) = 𝑑ᵀL𝑥𝑥 (𝑥∗, 𝜇∗, 𝜆∗) 𝑑 ≥ 0. □

Remark 9.4 (on Theorem 9.3).

(𝑖) Theorem 9.3 states that, at a local minimizer that satisfies the LICQ, the Hessian of the Lagrangian

is necessarily positive semidefinite on the critical cone. Since T critical

NLP
(𝑥∗) has a simple algebraic

description, this condition can be verified numerically. (Quiz 9.3: How could this be done?)

(𝑖𝑖) Since the critical cone T critical

NLP
(𝑥∗) is in general not a subspace, eigenvalues of L𝑥𝑥 (𝑥∗, 𝜇∗, 𝜆∗) do

not provide a precise representation of (9.3) in general.

(𝑖𝑖𝑖) The critical cone is a subspace in case all inequality constraints (if any) are either inactive or strongly

active. This situation is called strict complementarity.11 In this case, (9.3) is equivalent to the

positive semidefiniteness of the Hessian L𝑥𝑥 (𝑥∗, 𝜇∗, 𝜆∗) projected to that subspace. (Quiz 9.4: Is
there another case when (9.3) is characterized by eigenvalues?)

(𝑖𝑣) In the absence of any constraints, Theorem 9.3 reduces to the second-order necessary optimality

condition of Theorem 3.2. (Quiz 9.5: Can you provide the details?)

§ 9.2 Second-Order Sufficient Optimality Conditions

We would like to obtain a second-order sufficient optimality condition which are as close a possible to

the second-order necessary condition from Theorem 9.3.

Theorem 9.5 (Second-order sufficient optimality condition).
Suppose that 𝑓 , 𝑔 and ℎ are 𝐶2

functions. Suppose that 𝑥∗ is a KKT point for problem (7.1).
12
Moreover,

assume that there exists 𝛼 > 0 such that
13

𝑑ᵀL𝑥𝑥 (𝑥∗, 𝜆∗, 𝜇∗) 𝑑 ≥ 𝛼 ∥𝑑 ∥2 holds for all 𝑑 ∈ T critical

NLP
(𝑥∗) . (9.4)

Then for every 𝛽 ∈ (0, 𝛼), there exists a neighborhood𝑈 (𝑥∗) of 𝑥∗ such that

𝑓 (𝑥) ≥ 𝑓 (𝑥∗) + 𝛽
2

∥𝑥 − 𝑥∗∥2 for all 𝑥 ∈ 𝑈 (𝑥∗) ∩ 𝐹 . (9.5)

In particular, 𝑥∗ is a strict local minimizer of 𝑓 .

11
In other words, for all components 𝑖 , either 𝜇∗

𝑖
= 0 or 𝑔𝑖 (𝑥∗) = 0 holds but not both.

12
We do not require a constraint qualification to be satisfied at 𝑥∗, but we still need Lagrange multipliers to exist.

13
That is, the Hessian of the Lagrangian is positive definite on the critical cone T critical

NLP
(𝑥∗).
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Proof. We assume the contrary, i. e., there exists 𝛽 ∈ (0, 𝛼) and a sequence 𝑥 (𝑘 ) ⊆ 𝐹 with the properties

𝑥 (𝑘 ) → 𝑥∗, 𝑥 (𝑘 ) ≠ 𝑥∗ and 𝑓 (𝑥 (𝑘 ) ) < 𝑓 (𝑥∗) + 𝛽

2
∥𝑥 (𝑘 ) − 𝑥∗∥2. From this, we are going to construct a

direction 𝑑∗ ∈ T critical

NLP
(𝑥∗) which violates (9.4).

To this end we define

𝑑 (𝑘 ) B
𝑥 (𝑘 ) − 𝑥∗

∥𝑥 (𝑘 ) − 𝑥∗∥
.

Due to ∥𝑑 (𝑘 ) ∥ = 1, we can find a convergent subsequence

𝑑 (𝑘
(ℓ ) ) → 𝑑∗ as ℓ →∞ with some 𝑑∗ ∈ R𝑛 and ∥𝑑∗∥ = 1.

Step (1) We begin by confirming 𝑑∗ ∈ T lin

𝐹
(𝑥∗).

By construction, we have 𝑑∗ ∈ T𝐹 (𝑥∗), and by Lemma 7.7, we have T𝐹 (𝑥∗) ⊆ T lin

𝐹
(𝑥∗).

Step (2) We show 𝑓 ′(𝑥∗) 𝑑∗ ≤ 0 and 𝑑∗ ∈ T critical

NLP
(𝑥∗).

We can estimate

𝑓 (𝑥∗) + 𝛽
2

∥𝑥 (𝑘 (ℓ ) ) − 𝑥∗∥2 > 𝑓 (𝑥 (𝑘 (ℓ ) ) ) by assumption

= 𝑓 (𝑥∗) + 𝑓 ′(𝑥∗ + 𝜉 (𝑘 (ℓ ) ) (𝑥 (𝑘 (ℓ ) ) − 𝑥∗)) (𝑥 (𝑘 (ℓ ) ) − 𝑥∗)

by the mean value theorem 2.4. This further implies

𝛽

2

∥𝑥 (𝑘 (ℓ ) ) − 𝑥∗∥2 > 𝑓 ′(𝑥∗ + 𝜉 (𝑘 (ℓ ) ) (𝑥 (𝑘 (ℓ ) ) − 𝑥∗)) (𝑥 (𝑘 (ℓ ) ) − 𝑥∗) .

We divide by ∥𝑥 (𝑘 (ℓ ) ) − 𝑥∗∥:

𝛽

2

∥𝑥 (𝑘 (ℓ ) ) − 𝑥∗∥ > 𝑓 ′(𝑥∗ + 𝜉 (𝑘 (ℓ ) ) (𝑥 (𝑘 (ℓ ) ) − 𝑥∗)) 𝑥 (𝑘
(ℓ ) ) − 𝑥∗

∥𝑥 (𝑘 (ℓ ) ) − 𝑥∗∥
.

Passing to the limit yields

0 ≥ 𝑓 ′(𝑥∗) 𝑑∗. (9.6)

Moreover, the KKT conditions imply −∇𝑓 (𝑥∗) ∈ T lin

𝐹
(𝑥∗)◦, hence 𝑓 ′(𝑥∗) 𝑑 ≥ 0 for all 𝑑 ∈

T lin

𝐹
(𝑥∗) and in particular for 𝑑∗ by the result of Step (1). Together with (9.6), we obtain

𝑓 ′(𝑥∗) 𝑑 = 0. By definition (9.2), this means 𝑑∗ ∈ T critical

NLP
(𝑥∗).

Step (3) We show that 𝑑∗ violates (9.4).
We estimate

𝑓 (𝑥∗) + 𝛽
2

∥𝑥 (𝑘 ) − 𝑥∗∥2

> 𝑓 (𝑥 (𝑘 ) ) by assumption

≥ 𝑓 (𝑥 (𝑘 ) ) +
𝑛ineq∑︁
𝑖=1

𝜇∗𝑖︸︷︷︸
≥0

𝑔𝑖 (𝑥 (𝑘 ) )︸          ︷︷          ︸
≤0

+
𝑛eq∑︁
𝑗=1

𝜆∗𝑗 ℎ 𝑗 (𝑥 (𝑘 ) )︸           ︷︷           ︸
=0

= L(𝑥 (𝑘 ) , 𝜇∗, 𝜆∗)
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By Taylor’s theorem 2.4, we find 𝜂 (𝑘 ) ∈ (0, 1) such that

= L(𝑥∗, 𝜇∗, 𝜆∗)︸         ︷︷         ︸
=𝑓 (𝑥∗ )

+ ∇𝑥L(𝑥∗, 𝜇∗, 𝜆∗)ᵀ︸              ︷︷              ︸
= 0 by the KKT conditions

(𝑥 (𝑘 ) − 𝑥∗)

+ 1

2

(𝑥 (𝑘 ) − 𝑥∗)ᵀL𝑥𝑥
(
𝑥∗ + 𝜂 (𝑘 ) (𝑥 (𝑘 ) − 𝑥∗), 𝜇∗, 𝜆∗

)
(𝑥 (𝑘 ) − 𝑥∗).

The division by ∥𝑥 (𝑘 ) − 𝑥∗∥2 and passage to the limit on the subsequence 𝑘 (ℓ ) yields

(𝑑∗)ᵀL𝑥𝑥 (𝑥∗, 𝜇∗, 𝜆∗) 𝑑∗ ≤ 𝛽 ∥𝑑∗∥2 < 𝛼 ∥𝑑∗∥2 since 𝛽 ∈ (0, 𝛼).

We have thus reached a contradiction to (9.4). □

Note: In the absence of any constraints, Theorem 9.5 reduces to the second-order sufficient optimality

condition of Theorem 3.3.

End of Week 9
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Chapter 3 Numerical Techniques for Constrained
Optimization Problems

§ 10 Introduction

We will discuss in this chapter numerical algorithms for the solution of nonlinear programs (7.1).

Similarly as in Chapter 1, where we considered algorithms that generally went after stationary points,

we will now aim to find KKT points and associated Lagrange multipliers.

The class of methods we discuss are akin to those of § 5, which build a sequence of quadratic models

of the objective. In the constrained case, these models are obtained by formulating a quadratic model

of the Lagrangian and by linearizing the constraints about the current iterate (𝑥 (𝑘 ) , 𝜇 (𝑘 ) , 𝜆 (𝑘 ) ). This
leads to the following type of subproblems:

Minimize L(𝑥 (𝑘 ) , 𝜇 (𝑘 ) , 𝜆 (𝑘 ) )︸                 ︷︷                 ︸
constant

+L𝑥 (𝑥 (𝑘 ) , 𝜇 (𝑘 ) , 𝜆 (𝑘 ) ) 𝑑 +
1

2

𝑑ᵀ𝐻 (𝑘 )𝑑, where 𝑑 ∈ R𝑛

subject to 𝑔(𝑥 (𝑘 ) ) + 𝑔′(𝑥 (𝑘 ) ) 𝑑 ≤ 0

and ℎ(𝑥 (𝑘 ) ) + ℎ′(𝑥 (𝑘 ) ) 𝑑 = 0.

(10.1)

The solution 𝑑 (𝑘 ) of (10.1) (provided it exists and is ideally unique) then serves to update the iterate

according to

𝑥 (𝑘+1) B 𝑥 (𝑘 ) + 𝛼 (𝑘 )𝑑 (𝑘 ) ,

where the step size 𝛼 (𝑘 ) is determined by a line search in an effort to globalize the method. Moreover,

the Lagrange multipliers need to be updated as well.

Since (10.1) is a quadratic program (QP), the ensuing class of methods is known as sequential
quadratic programming method (SQP method). The symmetric Hessian 𝐻 (𝑘 ) of the subproblem’s

objective can be taken to be equal to L𝑥𝑥 (𝑥 (𝑘 ) , 𝜇 (𝑘 ) , 𝜆 (𝑘 ) ), but in view of the effort generally expected

in evaluating this matrix (or its matrix-vector products), it is more customary in practice to resort to a

substitute as we did with quasi-Newton methods in § 5.5. It is worthwhile noticing that SQP methods

are infeasible methods, i. e., they allow the iterates 𝑥 (𝑘 ) to violate the constraints and only obtain

feasibility in the limit.

An important property for QPs such as (10.1) is the following result. It states that a QP already has a

solution when it is neither infeasible nor unbounded.
1
The result was originally stated for convex QPs

1
The special case of LPs was considered in Herzog, 2022, Satz 6.9.
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in Frank, Wolfe, 1956. A direct proof which includes the non-convex case was given in Blum, Oettli,

1972.

Lemma 10.1 (Frank-Wolfe lemma). A QP has a global minimizer if and only if the feasible set is

nonempty and the objective is bounded below on the feasible set.

§ 11 Local SQP as Local Newton’s Method

We saw in § 5.4 that the sequential minimization of second-order Taylor models of the objective in

unconstrained problems agrees with Newton’s method applied to the first-order optimality condition;

see around (5.24). A similar observation holds here. To make this more precise, we first consider in

§ 11.1 a problem (7.1) with no inequality constraints before returning to the general case in § 11.2.

§ 11.1 Equality Constrained Problems

Consider a problem (7.1) with no inequality constraints. Consequently, we also omit the Lagrange

multipliers 𝜇. At a point (𝑥, 𝜆), the QP (10.1) with exact second-order Taylor polynomial reads

Minimize L(𝑥, 𝜆) + L𝑥 (𝑥, 𝜆) 𝑑 +
1

2

𝑑ᵀL𝑥𝑥 (𝑥, 𝜆) 𝑑, where 𝑑 ∈ R𝑛

subject to ℎ(𝑥) + ℎ′(𝑥) 𝑑 = 0.

(11.1)

Since the constraints in any QP are linear, the Abadie CQ holds everywhere, and the associated KKT

conditions become first-order necessary optimality conditions for the QP. In case of (11.1), the KKT

conditions read

∇𝑥L(𝑥, 𝜆) + L𝑥𝑥 (𝑥, 𝜆) 𝑑 + ℎ′(𝑥)ᵀ𝜆 = 0,

ℎ(𝑥) + ℎ′(𝑥) 𝑑 = 0,

or written more compactly, [
L𝑥𝑥 (𝑥, 𝜆) ℎ′(𝑥)ᵀ
ℎ′(𝑥) 0

] (
𝑑

𝜆

)
= −

(
∇𝑥L(𝑥, 𝜆)
ℎ(𝑥)

)
. (11.2)

An equality constrained QP has a very similar characterization of solvability as an unconstrained

quadratic problem. First we notice that every local minimizer is already a global minimizer.

Lemma 11.1. Suppose that 𝑑∗ is a local minimizer of the equality constrained QP (11.1). Then 𝑑∗ is already
a global minimizer of (11.1).

Note: Simple examples show that this statement is not true for the case of QPs with inequality

constraints!
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Proof. Let 𝑑 be any feasible point for (11.1) in the neighborhood of optimality of 𝑑∗. Let us denote the
objective in (11.1) by 𝑞(𝑑). We obtain

0 ≤ 𝑞(𝑑) − 𝑞(𝑑∗)

= L(𝑥, 𝜆)︸  ︷︷  ︸
cancel

+L𝑥 (𝑥, 𝜆) 𝑑 +
1

2

𝑑ᵀL𝑥𝑥 (𝑥, 𝜆) 𝑑 −
[
L(𝑥, 𝜆)︸  ︷︷  ︸
cancel

+L𝑥 (𝑥, 𝜆) 𝑑∗ +
1

2

𝑑∗ᵀL𝑥𝑥 (𝑥, 𝜆) 𝑑∗
]

= L𝑥 (𝑥, 𝜆) 𝑑 +
1

2

𝑑ᵀL𝑥𝑥 (𝑥, 𝜆) 𝑑 + (𝜆∗)ᵀ
(
ℎ(𝑥) + ℎ′(𝑥) 𝑑︸           ︷︷           ︸

=0

)
−

[
L𝑥 (𝑥, 𝜆) 𝑑∗ +

1

2

𝑑∗ᵀL𝑥𝑥 (𝑥, 𝜆) 𝑑∗ + (𝜆∗)ᵀ
(
ℎ(𝑥) + ℎ′(𝑥) 𝑑∗︸             ︷︷             ︸

=0

) ]
= L𝑥 (𝑥, 𝜆) 𝑑 +

1

2

𝑑ᵀL𝑥𝑥 (𝑥, 𝜆) 𝑑 + (𝜆∗)ᵀℎ′(𝑥) 𝑑

−
[
L𝑥 (𝑥, 𝜆) 𝑑∗ +

1

2

𝑑∗ᵀL𝑥𝑥 (𝑥, 𝜆) 𝑑∗ + (𝜆∗)ᵀℎ′(𝑥) 𝑑∗
]
.

Since (𝑑∗, 𝜆∗) satisfies the KKT system (11.2), we can reduce the term inside the bracket:

= L𝑥 (𝑥, 𝜆) 𝑑 +
1

2

𝑑ᵀL𝑥𝑥 (𝑥, 𝜆) 𝑑 + (𝜆∗)ᵀℎ′(𝑥) 𝑑 +
[ 1
2

𝑑∗ᵀL𝑥𝑥 (𝑥, 𝜆) 𝑑∗
]
.

We complete the square:

= L𝑥 (𝑥, 𝜆) 𝑑 + (𝜆∗)ᵀℎ′(𝑥) 𝑑 +
1

2

(𝑑 − 𝑑∗)ᵀL𝑥𝑥 (𝑥, 𝜆) (𝑑 − 𝑑∗) + 𝑑∗ᵀL𝑥𝑥 (𝑥, 𝜆) 𝑑.

Using the KKT system (11.2) for (𝑑∗, 𝜆∗) again, we can simplify this to

0 ≤ 𝑞(𝑑) − 𝑞(𝑑∗) = 1

2

(𝑑 − 𝑑∗)ᵀL𝑥𝑥 (𝑥, 𝜆) (𝑑 − 𝑑∗). (∗)

By varying 𝑑 in the feasible neighborhood of 𝑑∗, 𝑑 − 𝑑∗ ranges over kerℎ′(𝑥) intersected with a

neighborhood of 0. Since the right-hand term in (∗) is invariant to scaling, i. e., it continues to hold

when 𝑑 − 𝑑∗ is multiplied by a scalar, we indeed get (∗) for all 𝑑 such that 𝑑 − 𝑑∗ ∈ kerℎ′(𝑥). Due to
the linearity of the constraints, this means that (∗) indeed holds for all 𝑑 which are feasible for (11.1).

Consequently, 𝑑∗ is a global minimizer. □

Without additional assumptions, the equality constrained QP (11.1) may be infeasible or unbounded. To

discuss its solvability, it is going to be helpful to consider the reduced QP. To this end, suppose that

ℎ′(𝑥) has rank 𝑟 , where 0 ≤ 𝑟 ≤ min{𝑛, 𝑛eq}.2 The rank of a matrix coincides with the dimension of its

range. By the dimension formula 𝑛 = dim kerℎ′(𝑥) + dim rangeℎ′(𝑥), we must have dim kerℎ′(𝑥) =
𝑛 − 𝑟 , which has values in {max{𝑛 − 𝑛eq, 0}, . . . , 𝑛}.

Let us denote by 𝑍 ∈ R𝑛×(𝑛−𝑟 ) a matrix whose columns constitute a basis of kerℎ′(𝑥).3 We can thus

express any vector 𝑑 satisfying the linear system ℎ(𝑥) +ℎ′(𝑥) 𝑑 = 0 in the form 𝑑 = 𝑑hom +𝑑part, where
𝑑part is any fixed (“particular”) solution of ℎ(𝑥) + ℎ′(𝑥) 𝑑 = 0 and 𝑑hom ∈ kerℎ′(𝑥). Using the basis 𝑍 ,
2
When the LICQ holds, then 𝑟 = 𝑛eq, but we do not require this in general.

3
In case of 𝑟 = 𝑛, we have a matrix of zero width, which does not cause a problem.
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we can thus express any vector 𝑑 solving the linear system in the form 𝑑 = 𝑍𝑦 + 𝑑part with unique

coefficient vector 𝑦 ∈ R𝑛−𝑟 . Plugging this representation into (11.1), we can express it equivalently as

the reduced QP

Minimize L(𝑥, 𝜆) + L𝑥 (𝑥, 𝜆) (𝑍𝑦 + 𝑑part) +
1

2

(𝑍𝑦 + 𝑑part)ᵀL𝑥𝑥 (𝑥, 𝜆) (𝑍𝑦 + 𝑑part)

Dropping all constant terms in the objective, we obtain the equivalent form

Minimize

[
L𝑥 (𝑥, 𝜆) + 𝑑ᵀpartL𝑥𝑥 (𝑥, 𝜆)

]
𝑍𝑦 + 1

2

𝑦ᵀ𝑍 ᵀL𝑥𝑥 (𝑥, 𝜆) 𝑍𝑦, where 𝑦 ∈ R𝑛−𝑟 . (11.3)

We refer to the matrix 𝑍 ᵀL𝑥𝑥 (𝑥, 𝜆) 𝑍 as the reduced Hessian. The first-order necessary optimality

conditions for (11.3) are

𝑍 ᵀL𝑥𝑥 (𝑥, 𝜆) 𝑍𝑦 = −𝑍 ᵀ
[
∇𝑥L(𝑥, 𝜆) + L𝑥𝑥 (𝑥, 𝜆) 𝑑part

]
. (11.4)

We are now in a position to discuss the solvability of (11.1).

Lemma 11.2 (Solvability and global solutions of the equality constrained QP (11.1); compare Lemma 4.1).

(𝑖) Suppose that the linear system ℎ(𝑥) + ℎ′(𝑥) 𝑑 = 0 is solvable, and that 𝑑part is some particular

solution. Suppose, moreover, that the reduced Hessian 𝑍 ᵀL𝑥𝑥 (𝑥, 𝜆) 𝑍 is positive semidefinite. Then

the objective in the reduced QP (11.3) is convex. In this case, the following are equivalent:

(a) The QP (11.1) possesses at least one (global) minimizer.

(b) The QP (11.1) is neither unbounded nor infeasible.

(c) The KKT conditions (11.2) are solvable.

(d) The reduced QP (11.3) possesses at least one (global) minimizer.

(e) The reduced QP (11.3) is not unbounded.

(f) The first-order optimality condition (11.4) is solvable.

The global minimizers of (11.1) are precisely the KKT points, i. e., the 𝑑-components of solutions

(𝑑, 𝜆) to the KKT system (11.2).

(𝑖𝑖) Suppose that the linear system ℎ(𝑥) + ℎ′(𝑥) 𝑑 = 0 is solvable, and that 𝑑part is some particular

solution. Suppose now that the reduced Hessian 𝑍 ᵀL𝑥𝑥 (𝑥, 𝜆) 𝑍 is not positive semidefinite. Then

the QP (11.1) and the reduced QP (11.3) are unbounded.

(𝑖𝑖𝑖) Suppose that the linear system ℎ(𝑥) + ℎ′(𝑥) 𝑑 = 0 is not solvable. Then the QP (11.1) is infeasible

and the reduced QP cannot be formulated for lack of a particular solution 𝑑part.
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Proof. The proof is part of homework problem 10.1. □

Note: In the situation of Statement (𝑖𝑖), the KKT system may still be solvable, but clearly a KKT point

is not a (local or global) minimizer. (Quiz 11.1: Can you explain this?)

As a consequence of Lemma 11.2, we can characterize the unique solvability of equality constrained

QPs now.

Corollary 11.3 (Unique solvability of the equality constrained QP (11.1)). The following are equivalent:

(𝑖) The QP (11.1) possesses a unique (global) minimizer.

(𝑖𝑖) The reduced QP (11.3) possesses a unique (global) minimizer.

(𝑖𝑖𝑖) The linear system ℎ(𝑥) +ℎ′(𝑥) 𝑑 = 0 is solvable, and the reduced Hessian 𝑍 ᵀL𝑥𝑥 (𝑥, 𝜆) 𝑍 is positive

definite.

If the above hold, let 𝑥∗ denote the unique global minimizer of (11.1). Then the following are equivalent:

(𝑖) ℎ′(𝑥) has full row rank, i. e., the LICQ is satisfied at 𝑥∗.

(𝑖𝑖) Λ(𝑥∗) is a singleton, i. e., there is a unique multiplier 𝜆∗ corresponding to 𝑥∗.

Let us now see how, in the absence of inequalities, the local SQP method is equivalent to local

Newton’s method applied to the KKT conditions. To be precise, by the local SQP method for an

equality constrained NLP (7.1) we mean the following iteration. Given an iterate (𝑥 (𝑘 ) , 𝜆 (𝑘 ) ), consider
the QP

Minimize L(𝑥 (𝑘 ) , 𝜆 (𝑘 ) )︸          ︷︷          ︸
constant

+L𝑥 (𝑥 (𝑘 ) , 𝜆 (𝑘 ) ) 𝑑 +
1

2

𝑑ᵀL𝑥𝑥 (𝑥 (𝑘 ) , 𝜆 (𝑘 ) ) 𝑑, where 𝑑 ∈ R𝑛

subject to ℎ(𝑥 (𝑘 ) ) + ℎ′(𝑥 (𝑘 ) ) 𝑑 = 0.

(11.5)

under the assumption that L𝑥𝑥 (𝑥 (𝑘 ) , 𝜆 (𝑘 ) ) is positive definite on kerℎ′(𝑥 (𝑘 ) ), so that (11.5) is uniquely

solvable. Suppose moreover, that ℎ′(𝑥 (𝑘 ) ) has full row rank (i. e., the LICQ holds), then the unique

solution of (11.5) is characterized by the KKT conditions[
L𝑥𝑥 (𝑥 (𝑘 ) , 𝜆 (𝑘 ) ) ℎ′(𝑥 (𝑘 ) )ᵀ

ℎ′(𝑥 (𝑘 ) ) 0

] (
𝑑

𝜆

)
= −

(
∇𝑥L(𝑥 (𝑘 ) , 𝜆 (𝑘 ) )

ℎ(𝑥 (𝑘 ) )

)
(11.6)

with unique Lagrange multiplier. We then set(
𝑥 (𝑘+1)

𝜆 (𝑘+1)

)
B

(
𝑥 (𝑘 )

𝜆 (𝑘 )

)
+

(
𝑑

𝜆

)
.
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On the other hand, the KKT conditions for an equality constrained NLP (7.1) read

∇𝑥L(𝑥, 𝜆) = 0,

ℎ(𝑥) = 0.

This is a (nonlinear) system of equations for the unknowns (𝑥, 𝜆). A step of local Newton’s method at

an iterate (𝑥 (𝑘 ) , 𝜆 (𝑘 ) ) is given by[
L𝑥𝑥 (𝑥 (𝑘 ) , 𝜆 (𝑘 ) ) ℎ′(𝑥 (𝑘 ) )ᵀ

ℎ′(𝑥 (𝑘 ) ) 0

] (
𝑑

𝜆

)
= −

(
∇𝑥L(𝑥 (𝑘 ) , 𝜆 (𝑘 ) )

ℎ(𝑥 (𝑘 ) )

)
(11.6)

followed by (
𝑥 (𝑘+1)

𝜆 (𝑘+1)

)
B

(
𝑥 (𝑘 )

𝜆 (𝑘 )

)
+

(
𝑑

𝜆

)
.

This is exactly the same iteration as above. Therefore, the SQP method is sometimes also called the

Lagrange Newton method.

In practice, the QP (11.5) is usually formulated equivalently as

Minimize 𝑓 (𝑥 (𝑘 ) )︸  ︷︷  ︸
constant

+𝑓 ′(𝑥 (𝑘 ) ) 𝑑 + 1

2

𝑑ᵀL𝑥𝑥 (𝑥 (𝑘 ) , 𝜆 (𝑘 ) ) 𝑑, where 𝑑 ∈ R𝑛

subject to ℎ(𝑥 (𝑘 ) ) + ℎ′(𝑥 (𝑘 ) ) 𝑑 = 0

(11.7)

whose KKT conditions are[
L𝑥𝑥 (𝑥 (𝑘 ) , 𝜆 (𝑘 ) ) ℎ′(𝑥 (𝑘 ) )ᵀ

ℎ′(𝑥 (𝑘 ) ) 0

] (
𝑑

𝜆 (𝑘+1)

)
= −

(
∇𝑥 𝑓 (𝑥 (𝑘 ) )
ℎ(𝑥 (𝑘 ) )

)
(11.8)

Note: When we use the Lagrange multiplier associated with (11.7) as the next iterate (as indicated in

(11.8)), then the iteration is again the same as above. (Quiz 11.2: Can you show this?)

§ 11.2 Problems with General Constraints

We now address the relation of the local SQP method and Newton’s method for general NLPs (7.1).

The formulation of the sequence of QPs (compare (10.1))

Minimize L(𝑥 (𝑘 ) , 𝜇 (𝑘 ) , 𝜆 (𝑘 ) )︸                 ︷︷                 ︸
constant

+L𝑥 (𝑥 (𝑘 ) , 𝜇 (𝑘 ) , 𝜆 (𝑘 ) ) 𝑑 +
1

2

𝑑ᵀL𝑥𝑥 (𝑥 (𝑘 ) , 𝜇 (𝑘 ) , 𝜆 (𝑘 ) ) 𝑑, where 𝑑 ∈ R𝑛

subject to 𝑔(𝑥 (𝑘 ) ) + 𝑔′(𝑥 (𝑘 ) ) 𝑑 ≤ 0

and ℎ(𝑥 (𝑘 ) ) + ℎ′(𝑥 (𝑘 ) ) 𝑑 = 0,

(11.9)

the associated KKT system

∇𝑥L(𝑥 (𝑘 ) , 𝜇 (𝑘 ) , 𝜆 (𝑘 ) ) + L𝑥𝑥 (𝑥 (𝑘 ) , 𝜇 (𝑘 ) , 𝜆 (𝑘 ) ) 𝑑 + 𝑔′(𝑥 (𝑘 ) )ᵀ𝜇 + ℎ′(𝑥 (𝑘 ) )ᵀ𝜆 = 0, (11.10a)

𝜇 ≥ 0, 𝑔(𝑥 (𝑘 ) ) + 𝑔′(𝑥 (𝑘 ) ) 𝑑 ≤ 0, 𝜇ᵀ
(
𝑔(𝑥 (𝑘 ) ) + 𝑔′(𝑥 (𝑘 ) ) 𝑑

)
= 0, (11.10b)

ℎ(𝑥 (𝑘 ) ) + ℎ′(𝑥 (𝑘 ) ) 𝑑 = 0, (11.10c)
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and the update ©«
𝑥 (𝑘+1)

𝜇 (𝑘+1)

𝜆 (𝑘+1)

ª®¬ B ©«
𝑥 (𝑘 )

𝜇 (𝑘 )

𝜆 (𝑘 )

ª®¬ + ©«
𝑑

𝜇

𝜆

ª®¬
are straightforward.

The characterization of solvability and unique solvability of QPs with inequality constraints, however,

is more intricate than in Lemma 11.2. We do not attempt such a characterization here. Moreover, a QP

with inequality constraints may have local minimizers which are not global minimizers.

Finally, it is not obvious how to interpret this scheme as a Newton method for the KKT conditions

(8.4) of (7.1), i. e.,

∇𝑥L(𝑥, 𝜇, 𝜆) = 0, (11.11a)

𝜇 ≥ 0, 𝑔(𝑥) ≤ 0, 𝜇ᵀ𝑔(𝑥) = 0, (11.11b)

ℎ(𝑥) = 0. (11.11c)

To this end, we rewrite the complementarity condition (11.11b) in the equivalent form

𝜇 ∈ 𝐾 and 𝑔(𝑥)ᵀ(𝜈 − 𝜇) ≤ 0 for all 𝜈 ∈ 𝐾 (11.12)

with the closed convex cone 𝐾 B R
𝑛ineq

≥0 (the non-negative orthant).

Lemma 11.4 (Complementarity is equivalent to variational inequality).
(11.11b) and (11.12) are equivalent.

Proof. The proof is part of homework problem 10.3. □

Definition 11.5 (Normal cone). Suppose that𝑀 ⊆ R𝑛 is an arbitrary set and 𝑥 ∈ 𝑀 . The set

N𝑀 (𝑥) B {𝑠 ∈ R𝑛 | 𝑠ᵀ(𝑦 − 𝑥) ≤ 0 for all 𝑦 ∈ 𝑀} (11.13)

is termed the normal cone of𝑀 at 𝑥 . A vector 𝑠 ∈ N𝑀 (𝑥) is termed a normal direction of𝑀 at 𝑥 . We

set N𝑀 (𝑥) B ∅ for 𝑥 ∉ 𝑀 .

Lemma 11.6 (Properties of the normal cone). Suppose that 𝑀 ⊆ R𝑛 is a set and 𝑥 ∈ 𝑀 . Then the

following holds.

(𝑖) The normal cone is a closed convex cone.

(𝑖𝑖) N𝑀 (𝑥) = (𝑀 − {𝑥})◦ holds.

Proof. The proof is part of homework problem 10.4. □
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𝑥

Figure 11.1: Normal cone N𝑀 (𝑥) (blue) of a (convex) set 𝑀 at a point 𝑥 . We are showing the shifted

cone {𝑥} + N𝑀 (𝑥).

Using the notion of normal cone, we can express the variational inequality (11.12) and thus the comple-

mentarity condition (11.11b) in the equivalent form

𝑔(𝑥) ∈ N𝐾 (𝜇) . (11.14)

Finally, we see that the entire KKT system (11.11) takes the form

0 ∈ ©«
+∇𝑥L(𝑥, 𝜇, 𝜆)
−𝑔(𝑥)
−ℎ(𝑥)

ª®¬︸              ︷︷              ︸
C𝐹 (𝑥,𝜇,𝜆)

+NR𝑛×𝐾×R𝑛eq (𝑥, 𝜇, 𝜆)︸                   ︷︷                   ︸
C𝑁 (𝑥,𝜇,𝜆)

. (11.15)

Due to the Cartesian structure, the set NR𝑛×𝐾×R𝑛eq (𝑥, 𝜇, 𝜆) is simply

NR𝑛×𝐾×R𝑛eq (𝑥, 𝜇, 𝜆) =
©«

0

𝑠

0

ª®¬
������ 𝑠 ∈ N𝐾 (𝜇)


Equation (11.15) is known as a generalized equation, for which an extension of the classical Newton

method exists.

§ 11.3 Local Convergence of a Generalized Newton Method

In this section, we discuss the local convergence of a generalized form of Newton’s method, applied to

the generalized equation
0 ∈ 𝐹 (𝑧) + 𝑁 (𝑧), (11.16)

where 𝐹 : R𝑛 → R𝑛 is a function of class 𝐶1
and 𝑁 : R𝑛 ⇒ R𝑛 is a set-valued map.

4
Apparently

Newton’s method for generalized equations, referred to as generalized Newton method or Josephy-
Newton method, was introduced in the Ph.D. dissertation Josephy, 1979b, supervised by Stephen

4
In other words, 𝑁 is a function mapping R𝑛 into P(R𝑛), the power set of R𝑛 .
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M. Robinson. At an iterate 𝑧 (𝑘 ) , the (local) generalized Newton method produces its next iterate as a

solution of

0 ∈ 𝐹 (𝑧 (𝑘 ) ) + 𝐹 ′(𝑧 (𝑘 ) ) (𝑧 (𝑘+1) − 𝑧 (𝑘 ) ) + 𝑁 (𝑧 (𝑘+1) ) . (11.17)

This iteration coincides with the usual Newton method in case of 𝑁 (𝑧) = {0}. The local convergence

analysis of the classical Newton method (Theorem 5.27) is based on the assumption of invertibility of

the Jacobian 𝐹 ′(𝑧∗) at a root 𝑧∗ of 𝐹 . This condition is not quite the correct one for the generalized

Newton method. We notice, however, that the invertibility condition for the classical Newton method

is equivalent to the map

Δ ↦→ unique solution 𝑧 of Δ = 𝐹 (𝑧∗) + 𝐹 ′(𝑧∗) (𝑧 − 𝑧∗)

being affine and thus Lipschitz continuous (with Lipschitz constant equal to the operator norm of the

inverse of 𝐹 ′(𝑧∗)). This Lipschitz continuity turns out to be the condition applicable to generalized

equations as well.

Note: Here and throughout the remainder of § 11.3 we will frequently need (generalized) equations

with parameters, which we highlight in this color. By contrast, unknowns will be highlighted in this

color. Also notice that we carry out our analysis w.r.t. a general inner product𝑀 . The results, however,

are qualitatively independent of the specific choice of𝑀 .

Definition 11.7 (Strong regularity, introduced in Robinson, 1980). Suppose that 𝑧∗ is a solution of the

generalized equation

0 ∈ 𝐹 (𝑧) + 𝑁 (𝑧). (11.16)

That generalized equation is said to be strongly regular at 𝑧∗ if there exist open balls 𝐵𝑀
−1

𝛿
(0) and

𝐵𝑀𝜀 (𝑧∗) such that

(𝑖) for every Δ ∈ 𝐵𝑀−1
𝛿
(0), the linearized and perturbed generalized equation

Δ ∈ 𝐹 (𝑧∗) + 𝐹 ′(𝑧∗) (𝑤 − 𝑧∗) + 𝑁 (𝑤) (11.18)

has a solution𝑤 (Δ) ∈ 𝐵𝑀𝜀 (𝑧∗),

(𝑖𝑖) there is no other solution in 𝐵𝑀𝜀 (𝑧∗),

(𝑖𝑖𝑖) the map 𝐵𝑀
−1

𝛿
(0) ∋ Δ ↦→ 𝑤 (Δ) ∈ 𝐵𝑀𝜀 (𝑧∗) is Lipschitz continuous, i. e.,

∥𝑤 (Δ) −𝑤 (Δ′)∥𝑀 ≤ 𝐿 ∥Δ − Δ′∥𝑀−1 (11.19)

holds for all Δ,Δ′ ∈ 𝐵𝑀−1
𝛿
(0) with some Lipschitz constant 𝐿 ≥ 0.

Just like the invertibility of 𝐹 ′ extends from a point into an entire neighborhood (Lemma 5.25), strong

regularity at a point 𝑧∗ implies that it holds in an entire neighborhood𝑈 (𝑧∗). Although the Lipschitz

constant may grow, we can allow the ball 𝐵𝑀
−1

𝛿
(0) containing the perturbation Δ to be uniform.

Theorem 11.8 (Strong regularity extends to a neighborhood). Suppose that 𝑧∗ is a solution of the

generalized equation (11.16) and that (11.16) is strongly regular at 𝑧∗ with Lipschitz constant 𝐿 in (11.19).

Then there exist open balls 𝐵𝑀𝜌 (𝑧∗), 𝐵𝑀
−1

𝑅
(0) and 𝐵𝑀𝑟 (𝑧∗) such that the following holds:
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(𝑖) for every 𝑧 ∈ 𝐵𝑀𝜌 (𝑧∗) and every Δ ∈ 𝐵𝑀−1
𝑅
(0), the linearized and perturbed generalized equation

Δ ∈ 𝐹 (𝑧) + 𝐹 ′(𝑧) (𝑤 − 𝑧) + 𝑁 (𝑤) (11.20)

has a solution𝑤 (Δ) ∈ 𝐵𝑀𝑟 (𝑧∗),

(𝑖𝑖) there is no other solution in 𝐵𝑀𝑟 (𝑧∗),

(𝑖𝑖𝑖) the map 𝐵𝑀
−1

𝑅
(0) ∋ Δ ↦→ 𝑤 (Δ) ∈ 𝐵𝑀𝑟 (𝑧∗) — which now depends on 𝑧 — is Lipschitz continuous,

i. e.,

∥𝑤 (Δ) −𝑤 (Δ′)∥𝑀 ≤ 𝐿(𝑧) ∥Δ − Δ′∥𝑀−1 (11.21)

holds for all Δ,Δ′ ∈ 𝐵𝑀−1
𝑅
(0), with Lipschitz constant

5

𝐿(𝑧) = 𝐿

1 − 𝐿 ∥𝐹 ′(𝑧) − 𝐹 ′(𝑧∗)∥𝑀−1←𝑀
.

Proof. The result and its proof are given in Robinson, 1980, Theorem 2.4 and Josephy, 1979a, Corollary 1.

□

We can now prove a local convergence result for the generalized Newton method.

Theorem 11.9 (Local convergence of the generalized Newton method; compare Josephy, 1979a;

Izmailov, Kurennoy, Solodov, 2012 and Theorem 5.27). Suppose that 𝐹 : R𝑛 → R𝑛 is a 𝐶1
function.

Suppose, moreover, that 𝑧∗ is a solution of the generalized equation (11.16) and that (11.16) is strongly

regular at 𝑧∗. Then there exists a neighborhood 𝐵𝑀𝜀 (𝑧∗) such that

(𝑖) 𝑧∗ is the unique solution of 0 ∈ 𝐹 (·) + 𝑁 (·) in 𝐵𝑀𝜀 (𝑧∗).

(𝑖𝑖) For any initial guess 𝑧 (0) ∈ 𝐵𝑀𝜀 (𝑧∗), the generalized Newton method is well-defined, and it generates

a sequence 𝑧 (𝑘 ) which converges to 𝑧∗.

(𝑖𝑖𝑖)
(
𝑧 (𝑘 )

)
converges to 𝑧∗ Q-superlinearly w.r.t. the𝑀-norm.

(𝑖𝑣) If 𝐹 ′ is Lipschitz continuous in 𝐵𝑀𝜀 (𝑧∗), then this convergence is even Q-quadratic.

Proof. Let 𝐿 denote the Lipschitz constant associated with the strong regularity of (11.16) at 𝑧∗; see
(11.19). Owing to the continuity of 𝐹 ′, we can find, for any 𝜀1 > 0, a radius 𝑟1(𝜀1) > 0 such that

∥𝐹 ′(𝑧) − 𝐹 ′(𝑧∗)∥𝑀−1←𝑀 ≤ 𝜀1 holds for all 𝑧 ∈ 𝐵𝑀
𝑟1 (𝜀1 ) (𝑧

∗) . (∗)

5
Compare this to the statement

∥𝐹 ′ (𝑥)−1∥𝑀←𝑀−1 ≤
∥𝐹 ′ (𝑥∗)−1∥𝑀←𝑀−1

1 − ∥Id − 𝐹 ′ (𝑥∗)−1𝐹 ′ (𝑥)∥𝑀←𝑀
≤

∥𝐹 ′ (𝑥∗)−1∥𝑀←𝑀−1
1 − ∥𝐹 ′ (𝑥∗)−1

𝑀←𝑀−1 ∥∥𝐹
′ (𝑥∗) − 𝐹 ′ (𝑥)∥

𝑀←𝑀

in the proof of Lemma 5.25.
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Moreover, due to the continuity of 𝐹 ′ we can show (Quiz 11.3: Can you do it?) that, for any 𝜀2 > 0,

there exists a radius 𝑟2(𝜀2) > 0 such that

∥𝐹 (𝑧) + 𝐹 ′(𝑧) (𝑧∗ − 𝑧) − 𝐹 (𝑧∗)∥𝑀−1 ≤ 𝜀2 ∥𝑧 − 𝑧∗∥𝑀 holds for all 𝑧 ∈ 𝐵𝑀
𝑟2 (𝜀2 ) (𝑧

∗). (∗∗)

Let 𝑅, 𝑟 and 𝜌 denote the radii from Theorem 11.8. We require that the initial guess 𝑧 (0) belongs to
𝐵𝑀𝜀 (𝑧∗) with 𝜀 B min{𝜌, 𝑟, 𝑟1( 1

2𝐿
), 𝑟2( 1

4𝐿
), 4𝐿 𝑅}.

Step (1) Local uniqueness of 𝑧∗:
Since we can write 0 ∈ 𝐹 (𝑧∗) + 𝑁 (𝑧∗) also as

0 ∈ 𝐹 (𝑧∗) + 𝐹 ′(𝑧∗) (𝑧∗ − 𝑧∗) + 𝑁 (𝑧∗),

condition (𝑖𝑖) of Theorem 11.8 shows that 𝑧∗ is the only solution in 𝐵𝑀𝑟 (𝑧∗). This proves State-
ment (𝑖).

Step (2) Well-posedness of the Newton iteration (11.17):

We proceed by induction. Since 𝑧 (0) ∈ 𝐵𝑀𝜌 (𝑧∗) holds, the initial Newton step

0 ∈ 𝐹 (𝑧 (0) ) + 𝐹 ′(𝑧 (0) ) (𝑧 (1) − 𝑧 (0) ) + 𝑁 (𝑧 (1) ) (∗∗∗)

has a unique solution 𝑧 (1) ∈ 𝐵𝑀𝑟 (𝑧∗) by Theorem 11.8. We need to estimate ∥𝑧 (1) − 𝑧∗∥𝑀 . To this

end, we regard 𝑧∗ as the unique solution in 𝐵𝑀𝑟 (𝑧∗) of a perturbed version of (∗∗∗), namely

Δ(0) ∈ 𝐹 (𝑧 (0) ) + 𝐹 ′(𝑧 (0) ) (𝑧∗ − 𝑧 (0) ) + 𝑁 (𝑧∗) . (∗∗∗∗)

with Δ(0) B 𝐹 (𝑧 (0) ) + 𝐹 ′(𝑧 (0) ) (𝑧∗ − 𝑧 (0) ) − 𝐹 (𝑧∗). The norm of Δ(0) can be estimated by (∗∗) as

∥Δ(0) ∥𝑀−1 ≤
1

4𝐿
∥𝑧 (0) − 𝑧∗∥𝑀 <

𝜀

4𝐿
≤ 𝑅.

We can therefore invoke Theorem 11.8 to obtain

∥𝑧 (1) − 𝑧∗∥𝑀 = ∥𝑤 (0) −𝑤 (Δ(0) )∥𝑀

≤ 𝐿

1 − 𝐿 ∥𝐹 ′(𝑧 (0) ) − 𝐹 ′(𝑧∗)∥𝑀−1←𝑀
∥0 − Δ(0) ∥𝑀−1 by (11.21)

≤ 𝐿

1 − 𝐿 1

2𝐿

1

4𝐿
∥𝑧 (0) − 𝑧∗∥𝑀

=
1

2

∥𝑧 (0) − 𝑧∗∥𝑀 .

The induction step merely requires a repetition of this argument so we do not expand on it. We

only note that

∥𝑧 (𝑘+1) − 𝑧∗∥𝑀 ≤
1

2

∥Δ(𝑘 ) ∥𝑀−1 (∗∗∗∗∗)

holds for all 𝑘 ∈ N0. This concludes Statement (𝑖𝑖), and in fact we have shown the Q-linear

convergence of 𝑧 (𝑘 ) → 𝑧∗.
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Step (3) We now verify that the sequence indeed converges Q-superlinearly. To this end, we infer from

(∗∗) that, for any 𝜀2 > 0, we have

∥Δ(𝑘 ) ∥𝑀−1 = ∥𝐹 (𝑧 (𝑘 ) ) + 𝐹 ′(𝑧 (𝑘 ) ) (𝑧∗ − 𝑧 (𝑘 ) ) − 𝐹 (𝑧∗)∥𝑀−1 ≤ 𝜀2 ∥𝑧 (𝑘 ) − 𝑧∗∥𝑀

for 𝑘 ∈ N0 sufficiently large. Plugging this into (∗∗∗∗∗) proves Statement (𝑖𝑖𝑖).

Step (4) In case 𝐹 ′ is Lipschitz in 𝐵𝑀𝜀 (𝑧∗) with Lipschitz constant 𝐾 , then we can obtain

∥Δ(𝑘 ) ∥𝑀−1 = ∥𝐹 (𝑧 (𝑘 ) ) + 𝐹 ′(𝑧 (𝑘 ) ) (𝑧∗ − 𝑧 (𝑘 ) ) − 𝐹 (𝑧∗)∥𝑀−1

=

∫ 1

0

[
𝐹 ′(𝑧 (𝑘 ) ) − 𝐹 ′(𝑧∗ + 𝑠 (𝑧 (𝑘 ) − 𝑧∗))

]
d𝑠 (𝑧∗ − 𝑧 (𝑘 ) )


𝑀−1

≤
∫

1

0

𝐹 ′(𝑧 (𝑘 ) ) − 𝐹 ′(𝑧∗ + 𝑠 (𝑧 (𝑘 ) − 𝑧∗))
𝑀−1←𝑀 ∥𝑧

∗ − 𝑧 (𝑘 ) ∥𝑀

≤
∫

1

0

𝐾 𝑠 d𝑠 ∥𝑧∗ − 𝑧 (𝑘 ) ∥2𝑀

=
1

2

𝐾 ∥𝑧 (𝑘 ) − 𝑧∗∥2𝑀 .

From there, the Q-quadratic convergence follows using (∗∗∗∗∗), and Statement (𝑖𝑣) is proved. □

End of Week 10

§ 11.4 Local Convergence of the SQP Method

In this sectionwe establish the local fast convergence of the SQPmethod under appropriate assumptions.

We begin by confirming that the Josephy-Newton method (11.17) applied to the KKT system in the

form of the generalized equation

0 ∈ ©«
∇𝑥L(𝑥, 𝜇, 𝜆)
−𝑔(𝑥)
−ℎ(𝑥)

ª®¬︸            ︷︷            ︸
C𝐹 (𝑥,𝜇,𝜆)

+NR𝑛×𝐾×R𝑛eq (𝑥, 𝜇, 𝜆)︸                   ︷︷                   ︸
C𝑁 (𝑥,𝜇,𝜆)

(11.15)

is identical to the local SQP method described in (11.10). One step of the Josephy-Newton method (11.17)

applied to (11.15) at iterate 𝑧 (𝑘 ) B (𝑥 (𝑘 ) , 𝜇 (𝑘 ) , 𝜆 (𝑘 ) ) reads

∇𝑥L(𝑥 (𝑘 ) , 𝜇 (𝑘 ) , 𝜆 (𝑘 ) ) + L𝑥𝑥 (𝑥 (𝑘 ) , 𝜇 (𝑘 ) , 𝜆 (𝑘 ) ) 𝑑 + 𝑔′(𝑥 (𝑘 ) )ᵀ𝜇 + ℎ′(𝑥 (𝑘 ) )ᵀ𝜆 = 0,

𝑔(𝑥 (𝑘 ) ) + 𝑔′(𝑥 (𝑘 ) ) 𝑑 ∈ N𝐾 (𝜇) = NR𝑛ineq≥0
(𝜇),

ℎ(𝑥 (𝑘 ) ) + ℎ′(𝑥 (𝑘 ) ) 𝑑 = 0.

By Lemma 11.4, we can rewrite the inclusion as

𝜇 ≥ 0, 𝑔(𝑥 (𝑘 ) ) + 𝑔′(𝑥 (𝑘 ) ) 𝑑 ≤ 0, 𝜇ᵀ
(
𝑔(𝑥 (𝑘 ) ) + 𝑔′(𝑥 (𝑘 ) ) 𝑑

)
= 0.
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A comparison with (11.10) shows that, indeed, the local SQP method is the Josephy-Newton method

applied to (11.15).

The natural next questions are:

(1) What does the strong regularity of the KKT system (11.15) mean when spelled out?

(2) Under which conditions is the KKT system (11.15) strongly regular at a given KKT triplet

(𝑥∗, 𝜇∗, 𝜆∗)?

To address question (1), we consider the linearized and perturbed generalized equation Δ ∈ 𝐹 (𝑧∗) +
𝐹 ′(𝑧∗) (𝑧 − 𝑧∗) + 𝑁 (𝑧) specifically for the case (11.15). We obtain

©«
Δ1

Δ2

Δ3

ª®¬ ∈ ©«
∇𝑥L(𝑥∗, 𝜇∗, 𝜆∗)
−𝑔(𝑥∗)
−ℎ(𝑥∗)

ª®¬ +

L𝑥𝑥 (𝑥∗, 𝜇∗, 𝜆∗) 𝑔′(𝑥∗)ᵀ ℎ′(𝑥∗)ᵀ
−𝑔′(𝑥∗) 0 0

−ℎ′(𝑥∗) 0 0

 ©«
𝑥 − 𝑥∗
𝜇 − 𝜇∗
𝜆 − 𝜆∗

ª®¬
+ {0}
+ N𝐾 (𝜇)
+ {0}.

(11.22)

This can be verified to be the KKT conditions for the QP

Minimize

1

2

(𝑥 − 𝑥∗)ᵀL𝑥𝑥 (𝑥∗, 𝜇∗, 𝜆∗) (𝑥 − 𝑥∗) + [𝑓 ′(𝑥∗) − Δᵀ1] (𝑥 − 𝑥∗), where 𝑥 ∈ R𝑛

subject to 𝑔(𝑥∗) + 𝑔′(𝑥∗) (𝑥 − 𝑥∗) + Δ2 ≤ 0

and ℎ(𝑥∗) + ℎ′(𝑥∗) (𝑥 − 𝑥∗) + Δ3 = 0,

and (𝜇, 𝜆) are the Lagrange multipliers. If we wanted to study the strong regularity of the KKT system

(11.15) “by hand”, we would need to show — under appropriate assumptions — that the linearized

and perturbed KKT conditions (11.22) have a unique solution near (𝑥∗, 𝜇∗, 𝜆∗) when (Δ1,Δ2,Δ3) is
sufficiently small. It is, however, more convenient to resort to the answer of question (2), which is

given in the following theorem.

Theorem 11.10 (Strong regularity of the KKT conditions, see Dontchev, Rockafellar, 1996, Theorem 5).
Suppose that 𝑓 , 𝑔 and ℎ are 𝐶2

functions. Moreover, suppose that 𝑥∗ is a KKT point for problem (7.1) with

associated Lagrange multipliers 𝜇∗ and 𝜆∗. Then the following are equivalent:

(𝑖) The KKT system (11.15) is strongly regular at (𝑥∗, 𝜇∗, 𝜆∗).

(𝑖𝑖) The LICQ holds at 𝑥∗, and for each partition of the weakly active set A0(𝑥∗, 𝜇∗) into A+0 (𝑥∗, 𝜇∗),
A0

0
(𝑥∗, 𝜇∗) and A−

0
(𝑥∗, 𝜇∗), and the associated cone6

𝐾 B

𝑑 ∈ R
𝑛

�������
𝑔′𝑖 (𝑥) 𝑑 = 0 for all 𝑖 ∈ A> (𝑥∗, 𝜇∗) ∪ A+0 (𝑥∗, 𝜇∗)
𝑔′𝑖 (𝑥) 𝑑 ≤ 0 for all 𝑖 ∈ A0

0
(𝑥∗, 𝜇∗)

ℎ′𝑗 (𝑥) 𝑑 = 0 for all 𝑗 = 1, . . . , 𝑛eq

 ,
we have [

L𝑥𝑥 (𝑥∗, 𝜇∗, 𝜆∗) 𝐾
]
∩ 𝐾◦ = {0}.

6
Note that 𝐾 is similar to the critical cone (9.2). However, the weakly active constraints in A+

0
(𝑥∗, 𝜇∗) are treated as

strongly active ones, those in A0

0
(𝑥∗, 𝜇∗) continue to be treated as weakly active, while those in A−

0
(𝑥∗, 𝜇∗) are treated

as inactive.
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Admittedly, this characterization of strong regularity of a KKT system is not particularly handy, not

even in the presence of strict complementarity (when the set A0(𝑥∗, 𝜇∗) of weakly active constraints

is empty).

The characterization would become more tractable if some sort of second-order sufficient optimality

condition could be used. The following example due to Robinson, 1980, Section 4, however, shows that

the standard second-order sufficient optimality condition (Theorem 9.5) is not sufficient to establish

the strong regularity.

Example 11.11 (The standard second-order sufficient optimality condition is not sufficient for strong

regularity).

Minimize

1

2

(𝑥2
1
− 𝑥2

2
) − Δ1 𝑥1, where 𝑥 ∈ R2

subject to − 𝑥1 + 2𝑥2 ≤ 0

and − 𝑥1 − 2𝑥2 ≤ 0.

Here Δ1 ∈ R represents a perturbation.
7
The KKT conditions associated with this QP read

©«
Δ1

0

0

0

ª®®®¬ ∈

1 0 −1 −1
0 −1 2 −2
1 −2 0 0

1 2 0 0


©«
𝑥1
𝑥2
𝜇1
𝜇2

ª®®®¬ + NR2×R2≥0 (𝑥
∗, 𝜇∗) .

(The problem is chosen deliberately as a QP so that the linearization of the KKT conditions does not change

them.) The unperturbed problem (Δ1 = 0) has a unique global minimizer at 𝑥∗ = (0, 0)ᵀ, which is also the

only local minimizer. The LICQ holds at any point, and the unique Lagrange multipliers at 𝑥∗ are given
by 𝜇∗ = (0, 0)ᵀ. Therefore, according to (9.2), the critical cone is T critical

NLP
(𝑥∗) = T lin

𝐹
(𝑥∗) = R≤0 × {0}.

The second-order sufficient optimality condition (Theorem 9.5) holds since we have

𝑑ᵀ
[
1 0

0 −1

]
𝑑 > 0 for all 𝑑 ∈ T critical

NLP
(𝑥∗) = R≤0 × {0}, 𝑑 ≠ 0.

Let us now consider the perturbed problem with arbitrary Δ1 > 0. Then the problem under consideration

has three KKT points:

(𝑖) 𝑥∗ = (Δ1, 0)ᵀ with unique multiplier 𝜇∗ = (0, 0)ᵀ.
This is a saddle point of the problem. Both constraints are inactive (so the problem is locally

unconstrained) and the Hessian has eigenvalues of either sign.

(𝑖𝑖) 𝑥∗ = 2

3
(2Δ1,Δ1)ᵀ with unique multiplier 𝜇∗ = 1

3
(1, 0)ᵀ.

This is a local minimizer since the second-order sufficient optimality condition holds. (Quiz 11.4:
Can you check this?)

(𝑖𝑖𝑖) 𝑥∗ = 2

3
(2Δ1,−Δ1)ᵀ with unique multiplier 𝜇∗ = 1

3
(0, 1)ᵀ.

This is another local minimizer for the same reason.

7
We do not need to consider the most general perturbations Δ1 ∈ R2 and Δ2 ∈ R2 here to show that strong regularity fails

to hold.
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Taking Δ1 > 0 arbitrarily close to 0, the existence of these three solutions of the KKT conditions imply that

the KKT system does not have a solution which is unique in a neighborhood of 𝑥∗ = (0, 0)ᵀ. Therefore, the
KKT system cannot be strongly regular at (𝑥∗, 𝜇∗).

As a remedy to the situation, Robinson, 1980 considered the strong second-order sufficient condi-
tion.

Definition 11.12 (Strong second-order sufficient condition). Suppose that 𝑓 , 𝑔 and ℎ are 𝐶2
functions.

Suppose that 𝑥∗ is a KKT point for problem (7.1) with associated Lagrange multipliers 𝜇∗ and 𝜆∗. Define
the subspace

T strong

𝐹
(𝑥∗, 𝜇∗) B

{
𝑑 ∈ R𝑛

����� 𝑔′𝑖 (𝑥) 𝑑 = 0 for all 𝑖 ∈ A> (𝑥∗, 𝜇∗)
ℎ′𝑗 (𝑥∗) 𝑑 = 0 for all 𝑗 = 1, . . . , 𝑛eq

}
. (11.23)

We say that the strong second-order sufficient optimality condition holds at 𝑥∗, provided that there
exists 𝛼 > 0 such that

𝑑ᵀL𝑥𝑥 (𝑥∗, 𝜇∗, 𝜆∗) 𝑑 ≥ 𝛼 ∥𝑑 ∥2 holds for all 𝑑 ∈ T strong

𝐹
(𝑥∗, 𝜇∗) . (11.24)

Remark 11.13 (on the strong second-order sufficient optimality condition).
(𝑖) Since T strong

𝐹
(𝑥∗, 𝜇∗) is a subspace, the verification of (11.24) can be performed by verifying the

positivity of the smallest eigenvalue of the Hessian L𝑥𝑥 (𝑥∗, 𝜇∗, 𝜆∗), reduced to this subspace.

(𝑖𝑖) The subspace T strong

𝐹
(𝑥∗, 𝜇∗) is larger than the critical cone T critical

NLP
(𝑥∗), see (9.2). Therefore, the

strong second-order sufficient optimality condition implies the (standard) second-order sufficient

optimality condition (9.4).

(𝑖𝑖𝑖) The subspace T strong

𝐹
(𝑥∗, 𝜇∗) is not necessarily contained in the linearizing cone T lin

𝐹
(𝑥∗).

(𝑖𝑣) In the absence of weakly active constraints, the strong and the standard second-order sufficient

conditions agree.

We have the following result.

Theorem 11.14 (Strong regularity of the KKT conditions under strong second-order optimality

conditions and LICQ, see Robinson, 1980, Theorem 4.1). Suppose that 𝑓 , 𝑔 and ℎ are 𝐶2
functions.

Moreover, suppose that 𝑥∗ is a KKT point for problem (7.1) with associated Lagrange multipliers 𝜇∗ and 𝜆∗.
If the LICQ and the strong second-order sufficient optimality condition holds at 𝑥∗, then the KKT system

(11.15) is strongly regular at (𝑥∗, 𝜇∗, 𝜆∗).

Moreover, it can be shown under the assumptions of the previous theorem, that the solution 𝑥 (Δ) of
the linearized and perturbed KKT conditions (11.22) are indeed local minimizers of the QP (11.22) and

that the LICQ continues to hold for this QP, so that the multipliers (𝜇, 𝜆) are unique. This addition is

relatively easy to show since the LICQ and the strong second-order sufficient optimality condition are

stable in a neighborhood of (𝑥∗, 𝜇∗, 𝜆∗); see also Dontchev, Rockafellar, 1996, Theorem 6.

180 https://tinyurl.com/scoop-nlo 2023-07-14

https://tinyurl.com/scoop-nlo


cbn Nonlinear Optimization

Corollary 11.15 (Local convergence of the local SQP method). Suppose that the assumptions of

Theorem 11.14 hold. Consider the local SQP method described in the beginning of § 11.2. More precisely,

suppose that the iterates (𝑥 (𝑘 ) , 𝜇 (𝑘 ) , 𝜆 (𝑘 ) ) are defined by choosing the solution to the linearized KKT

conditions (11.10) with 𝑑 having minimal norm ∥𝑑 ∥𝑀 . Then there exists a neighborhood 𝐵𝜀 (𝑥∗, 𝜇∗, 𝜆∗)
(w.r.t. the𝑀-norm in R𝑛 and the Euclidean norms in R𝑛eq and R𝑛ineq) such that the following holds:

(𝑖) The local SQP method is well-defined in the sense that the solution 𝑑 having minimal norm ∥𝑑 ∥𝑀
is unique. Moreover, the LICQ holds for all QPs, so that the Lagrange multipliers (𝜇, 𝜆) in (11.10)

associated with 𝑑 are unique.

(𝑖𝑖) In every iteration, the unknown 𝑑 is in fact a local minimizer of the QP (11.9).

(𝑖𝑖𝑖) The convergence (𝑥 (𝑘 ) , 𝜇 (𝑘 ) , 𝜆 (𝑘 ) ) → (𝑥∗, 𝜇∗, 𝜆∗) is Q-superlinear.

(𝑖𝑣) If the second derivatives of 𝑓 , 𝑔𝑖 and ℎ 𝑗 are Lipschitz continuous in a neighborhood of 𝑥∗, then the

convergence is Q-quadratic.

§ 12 Reformulation using Slack Variables

In the remainder of Chapter 3, we will be discussing practical aspects of the solution of NLPs (7.1) by

SQP methods.

As we saw in the previous sections, the presence of inequality constraints renders the theory of NLPs,

but also numerical algorithms, more difficult. It is therefore customary to convert the inequality

constraints into simpler bound constraints using slack variables 𝑠 ∈ R𝑛ineq . Using slacks, we can

reformulate (7.1) equivalently as

Minimize 𝑓 (𝑥), where 𝑥 ∈ R𝑛, 𝑠 ∈ R𝑛ineq

subject to 𝑔(𝑥) + 𝑠 = 0

and ℎ(𝑥) = 0

as well as 𝑠 ≥ 0.


(12.1)

The only inequality constraints are now simple sign constraints on some of the optimization variables,

which are somewhat easier to handle algorithmically than general inequality constraints. It is important

to note that this conversion is usually carried out internally by the solution algorithm and need not be

done by the user.

It should be clear that there is a bijective relation between the feasible points 𝑥 of (7.1) and the feasible

points (𝑥, 𝑠) of (12.1). Moreover, one can show that the slack reformulation (12.1) does not alter the

satisfaction of the GCQ, ACQ, MFCQ, or LICQ. More precisely, the GCQ for (7.1) at 𝑥 implies the GCQ

for (12.1) at (𝑥, 𝑠). Moreover, the ACQ, MFCQ, LICQ hold for (7.1) at 𝑥 if and only if the respective

condition holds for (12.1) at (𝑥, 𝑠). See homework problem 9.3.

Owing to the reformulation (12.1), we can assume from now on that problem (7.1) is of the simplified
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form

Minimize 𝑓 (𝑥), where 𝑥 ∈ R𝑛

subject to ℎ(𝑥) = 0

and 𝑥 ≥ ℓ .

 (12.2)

The lower bound ℓ has values in
[
R ∪ {−∞}

]𝑛
, where −∞ means that the bound is effectively not

present for the respective component. The Lagrangian for (12.2) is

L(𝑥, 𝜇, 𝜆) B 𝑓 (𝑥) + 𝜇ᵀ(ℓ − 𝑥) + 𝜆ᵀℎ(𝑥)

and the QP associated with (12.2), in the form following (11.7), reads

Minimize 𝑓 ′(𝑥 (𝑘 ) ) 𝑑 + 1

2

𝑑ᵀ𝐻 (𝑘 )𝑑, where 𝑑 ∈ R𝑛

subject to ℎ(𝑥 (𝑘 ) ) + ℎ′(𝑥 (𝑘 ) ) 𝑑 = 0

and 𝑥 (𝑘 ) + 𝑑 ≥ ℓ .

(12.3)

§ 13 Numerical Solution of QPs

In this section we discuss numerical approaches to solve equality and inequality constrained QPs. Due

to the possibility to use slack variables, we can assume inequality constrained QPs to be of the form

(13.6).

§ 13.1 Solution of Equality Constrained QPs

We begin with QPs with equality constraints only. These are of the form

Minimize

1

2

𝑑ᵀ𝐴𝑑 − 𝑏ᵀ𝑑

subject to 𝐵 𝑑 = 𝑐

(13.1)

where 𝐴 ∈ R𝑛×𝑛 is symmetric, 𝐵 ∈ R𝑚×𝑛 , 𝑏 ∈ R𝑛 and 𝑐 ∈ R𝑚 .8 We already know from Lemma 11.1 that

all minimizers of (13.1) (if any exist) are global. The KKT conditions associated with problem (13.1) are

given by the linear system [
𝐴 𝐵ᵀ

𝐵 0

] (
𝑑

𝜆

)
=

(
𝑏

𝑐

)
. (13.2)

Assumption 13.1. For simplicity we assume that 𝐵 has full row rank, i. e., the LICQ holds.

Lemma 11.2 suggests the following strategy for a possible algorithm to solve (13.1).

8
The roles are 𝐴 = L𝑥𝑥 (𝑥 (𝑘 ) , 𝜇 (𝑘 ) , 𝜆 (𝑘 ) ), 𝐵 = ℎ′ (𝑥 (𝑘 ) ), 𝑏 = −∇𝑥L(𝑥 (𝑘 ) , 𝜇 (𝑘 ) , 𝜆 (𝑘 ) ) or 𝑏 = −∇𝑓 (𝑥 (𝑘 ) ), see (11.7), and

𝑐 = − ℎ(𝑥 (𝑘 ) ).
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(1) Determine a particular solution 𝑑part of 𝐵 𝑑 = 𝑐 .9

(2) Determine any matrix 𝑍 ∈ R𝑛×(𝑛−𝑟 ) whose columns form a basis of ker𝐵. Then consider the

reduced problem

Minimize

[
−𝑏 + 𝑑ᵀ

part
𝐴
]
𝑍𝑦 + 1

2

𝑦ᵀ𝑍 ᵀ𝐴𝑍𝑦, where 𝑦 ∈ R𝑛−𝑟 , (13.3)

whose first-order necessary optimality conditions are

𝑍 ᵀ𝐴𝑍𝑦 = 𝑍 ᵀ
[
𝑏ᵀ −𝐴𝑑part

]
. (13.4)

Provided that 𝐴 is positive definite on the kernel of 𝐵, i. e., the reduced Hessian 𝑍 ᵀ𝐴𝑍 is s. p. d.,

a unique minimizer exists for (13.3). In this case, the unique minimizer of (13.1) is 𝑑 = 𝑑part + 𝑍𝑦 ,
which is also the unique 𝑑-component of any solution (𝑑, 𝜆) to (13.2).

(3) Recover the unique Lagrange multiplier 𝜆 as any solution of 𝐵ᵀ𝜆 = 𝑏 −𝐴𝑑 .

We recall from § 4 the conjugate gradient Algorithm 4.17 as our preferred solver for s. p. d. systems

such as (13.4). Using the CG method to solve (13.3) has several advantages:

(𝑖) We can take advantage of the possibility to solve the QP only inexactly by using a relative

stopping criterion.

(𝑖𝑖) We can equip the CG method with a detector for search directions of non-positive curvature,

which previously led to the truncated conjugate gradient Algorithm 5.41.

Interestingly, Gould, Hribar, Nocedal, 2001 discovered that the CG algorithm (w.r.t. the 𝑀-inner

product) for the reduced problem (13.4) can actually be formulated in the “full space” and without

making explicit reference to a null space basis matrix 𝑍 . The main idea is to apply the CG method

directly to (13.2) and to employ a preconditioner of the form[
𝑀 𝐵ᵀ

𝐵 0

]
, (13.5)

where𝑀 is still a user-defined inner product on R𝑛 . This is known as a constraint preconditioner.10

Although neither the system matrix in (13.2) nor the preconditioner are positive definite, one can show

that the CG method is still well-defined, as it is equivalent to the CG method for the reduced problem.

One refers to the CG algorithm applied to a symmetric saddle-point system (13.2) as the subspace CG
method or projected CG method. In fact, the solution of a linear system governed by the matrix

(13.5) can be viewed as an orthogonal projection problem w.r.t. the norm induced by 𝑀 onto ker𝐵.

More precisely, since𝑀 is s. p. d., [
𝑀 𝐵ᵀ

𝐵 0

] (
𝑝

𝜆

)
= −

(
𝜁

0

)
9
This is always possible under our assumption of full row rank, i. e., surjectivity of 𝐵. In general, when 𝐵 is not surjective,

then the constraints 𝐵 𝑑 = 𝑐 may be impossible to satisfy. In that case, we would declare the problem infeasible and stop.

10
The name derives from the fact that the preconditioner exactly replicates the constraint block 𝐵 and the block 𝐵ᵀ for the
associated Lagrange multiplier.
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holds if and only if 𝑝 solves the problem

Minimize

1

2

∥𝑝 − ( −𝑀−1𝜁 )∥2𝑀
subject to 𝐵 𝑝 = 0.

We refer to the unique solution as 𝑝 = proj
𝑀
ker𝐵
( −𝑀−1𝜁 ), the𝑀-orthogonal projection of −𝑀−1𝜁 to

ker𝐵.

For completeness, we provide the projected CG algorithm, equipped with a detector of non-positive

curvature, i. e., failure of positive definiteness of 𝐴 on ker𝐵.

Algorithm 13.2 (Truncated projected conjugate gradient method for symmetric systems (13.2) w.r.t.

the constraint preconditioner defined by the𝑀-inner product; compare Algorithm 5.41).
Input: right-hand side 𝑏 ∈ R𝑛
Input: particular solution 𝑑part of 𝐵 𝑑part = 𝑐

Input: symmetric matrix 𝐴 (or matrix-vector products with 𝐴)

Input: s. p. d. matrix𝑀 and matrix 𝐵 ∈ R𝑚×𝑛 of full row rank (or matrix-vector products with

[
𝑀 𝐵ᵀ
𝐵 0

]−1
)

Input: relative residual 𝜀rel
Output: approximate solution of (13.2)

1: Set ℓ B 0

2: Set 𝑑 (0) B 𝑑part // partial solution as initial guess

3: Set 𝜁 (0) B 𝐴𝑑 (0) − 𝑏 // evaluate the initial residual

4: Solve [
𝑀 𝐵ᵀ

𝐵 0

] (
𝑝 (0)

·

)
= −

(
𝜁 (0)

0

)
// steepest descent direction, projected to ker𝐵, w.r.t. 𝑀-inner product

5: Set 𝛿 (0) B −(𝜁 (0) )ᵀ𝑝 (0) // 𝛿 (0) = ∥proj𝑀
ker𝐵
(𝑀−1𝜁 (0) )∥2

𝑀

6: while 𝛿 (ℓ ) ≥ 𝜀2
rel
𝛿 (0) do // check stopping criterion

7: Set 𝑞 (ℓ ) B 𝐴𝑝 (ℓ )

8: Set 𝜃 (ℓ ) B (𝑞 (ℓ ) )ᵀ𝑝 (ℓ )
9: if 𝜃 (ℓ ) > 0 then
10: Set 𝛼 (ℓ ) B 𝛿 (ℓ )/𝜃 (ℓ )
11: Set 𝑑 (ℓ+1) B 𝑑 (ℓ ) + 𝛼 (ℓ )𝑝 (ℓ )
12: Set 𝜁 (ℓ+1) B 𝜁 (ℓ ) + 𝛼 (ℓ )𝑞 (ℓ )
13: Solve [

𝑀 𝐵ᵀ

𝐵 0

] (
𝑝 (ℓ+1)

·

)
= −

(
𝜁 (ℓ+1)

0

)
// steepest descent direction, projected to ker𝐵, w.r.t. 𝑀-inner product

14: Set 𝛿 (ℓ+1) B −(𝜁 (ℓ+1) )ᵀ𝑝 (ℓ+1) // 𝛿 (ℓ+1) = ∥proj𝑀
ker𝐵
(𝑀−1𝜁 (ℓ+1) )∥2

𝑀

15: Set 𝛽 (ℓ+1) B 𝛿 (ℓ+1)/𝛿 (ℓ )
16: Set 𝑝 (ℓ+1) B 𝑝 (ℓ+1) + 𝛽 (ℓ+1) 𝑝 (ℓ )
17: Set ℓ B ℓ + 1
18: else
19: Abort the while loop
20: end if
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21: end while
22: return 𝑑 (ℓ )

Remark 13.3 (on Algorithm 13.2).

(𝑖) One can show that Algorithm 13.2 is equivalent to the classical truncated conjugate gradient

Algorithm 5.41 applied to the reduced problem (13.3). When the initial guesses for Algorithm 5.41

and Algorithm 13.2 are related via

𝑑 (0) = dpart + 𝑍𝑦 (0) ,

then this relation also holds for all subsequent iterates.

(𝑖𝑖) The constraint preconditioner in Algorithm 13.2, which acts as an 𝑀-orthogonal projector onto

ker𝐵, ensures that all directions 𝑝 (ℓ ) belong to ker𝐵. Consequently, all iterates will satisfy 𝑑 (ℓ ) ∈
𝑑part + ker𝐵 and are therefore feasible, i. e., they satisfy 𝐵 𝑑 (ℓ ) = 𝑐 .

(𝑖𝑖𝑖) When 𝐵 is formally not present, i. e., its row dimension is𝑚 = 0, and when 𝑑part = 0 is chosen, then

Algorithm 13.2 reduces to the classical truncated conjugate gradient Algorithm 5.41.

(𝑖𝑣) Algorithm 13.2 as written does not return or maintain an estimate of the Lagrange multiplier 𝜆 of

(13.2), but it could be extended to provide that as well.

(𝑣) Remark 5.43, which refers to the classical truncated conjugate gradient Algorithm 5.41, can be

transferred to Algorithm 13.2. In particular, the first search direction is proj
𝑀
ker𝐵
(𝑀−1𝑏), which is

equal to the steepest descent direction −𝑀−1∇𝑥L(𝑥 (𝑘 ) , 𝜇 (𝑘 ) , 𝜆 (𝑘 ) ) 𝑀-orthogonally projected onto

ker𝐵 in the optimization context. When 𝑝 (0) is a direction of positive curvature (if 𝜃 (0) > 0), then

𝑑 (1) is the same as though we had applied a projected steepest descent method with Cauchy step

size.

(𝑣𝑖) Moreover, the sequence 𝑏ᵀ𝑑 (ℓ ) , corresponding to

𝑏ᵀ𝑑 (ℓ ) = −L𝑥 (𝑥 (𝑘 ) , 𝜆 (𝑘 ) ) 𝑑 (ℓ ) = −𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (ℓ ) − (𝜆 (𝑘 ) )ᵀℎ′(𝑥 (𝑘 ) ) 𝑑 (ℓ )

is strictly monotonically decreasing as long as the search directions 𝑝 (ℓ ) remain directions of positive

curvature for 𝐴. Therefore, it is reasonable to continue performing projected CG iterations until

either the desired tolerance (dictated by the outer SQP iteration, to be discussed) is reached, or a

direction of non-positive curvature is encountered.

End of Week 11
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§ 13.2 Solution of QPs with Additional Lower Bound Constraints

We now come to the solution of QPs with equality constraints and lower bounds, i. e., problems of the

form

Minimize

1

2

𝑑ᵀ𝐴𝑑 − 𝑏ᵀ𝑑

subject to 𝐵 𝑑 = 𝑐

and 𝑑 ≥ ℓ

(13.6)

with lower bounds ℓ ∈
[
R ∪ {−∞}

]𝑛
. The KKT conditions associated with (13.6) are

𝐴𝑑 − 𝜇 + 𝐵ᵀ𝜆 = 𝑏 (13.7a)

𝜇 ≥ 0, ℓ − 𝑑 ≤ 0, 𝜇ᵀ(ℓ − 𝑑) = 0 (13.7b)

𝐵 𝑑 = 𝑐. (13.7c)

Recall that an inequality constrained QP may have many local minimizers. How can we find such a

local minimizer for (13.6) or, more generally, a KKT point with associated Lagrange multipliers? We

cannot use the Josephy-Newton method since in each iteration, we would have to solve precisely a

problem of type (13.6).

There are variousmethods available in the literature for bound constrained (andmore general inequality

constrained) QPs. We will consider here a semismooth Newton method to solve the QP (13.6)

respectively its first-order optimality system (13.7).
11
The semismooth Newton method addresses a

non-smooth (in fact, semismooth) reformulation of the complementarity system (13.7c), achieved by

means of a nonlinear complementarity function.

Definition 13.4 (Nonlinear complementarity function). A functionΦ : R2 → R is said to be a nonlinear
complementarity function (NCP) if the scalar complementarity condition

𝑎 ≥ 0, 𝑏 ≥ 0, 𝑎 𝑏 = 0 for 𝑎, 𝑏 ∈ R

is equivalent to Φ(𝑎, 𝑏) = 0.

Prominent examples of NCP functions are

Φmin(𝑎, 𝑏) B min{𝑎, 𝑏} “min” function, (13.8a)

ΦFB(𝑎, 𝑏) B
√
𝑎2 + 𝑏2 − 𝑎 − 𝑏 Fischer-Burmeister function (Fischer, 1992). (13.8b)

Note: NCP functions must either be nonsmooth at the origin or have vanishing derivative there.

(Quiz 13.1: What is the precise formulation of this statement, and why is this true?)

We will use the NCP function Φmin(𝑎, 𝑏). It allows us to represent the complementarity condition

(13.7c) equivalently as

min{𝜇, 𝑑 − ℓ} = 0, (13.9)

11
Alternative methods comprise active set methods, penalty methods, Augmented Lagrangian methods, and interior point

methods.
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where the “min” is understood componentwise.

We now investigate the generalized differentiability properties of such a function.

Consider a function 𝐹 : R𝑛 → R𝑚 which is Lipschitz continuous on some neighborhood 𝑈 (𝑥) of
𝑥 ∈ R𝑛 . Then Rademacher’s theorem states that 𝐹 is differentiable on𝑈 (𝑥) except on a set of Lebesgue

measure zero; see, for instance Ziemer, 1989, Theorem 2.2.1.
12
We denote by 𝐷𝐹 the set of points in R𝑛

where 𝐹 is differentiable.

Definition 13.5 (Bouligand and Clarke generalized derivatives). Suppose that 𝐹 : R𝑛 → R𝑚 is a

function which is Lipschitz continuous on some neighborhood𝑈 (𝑥) of 𝑥 ∈ R𝑛 .

(𝑖) The Bouligand generalized derivative is defined as the collection of limit points of derivatives of

𝐹 near 𝑥 :

𝜕𝐵𝐹 (𝑥) B
{
𝑀 ∈ R𝑚×𝑛

����� there exists a sequence
(
𝑥 (𝑘 )

)
⊂ 𝐷𝐹

such that 𝑥 (𝑘 ) → 𝑥 and 𝐹 ′(𝑥 (𝑘 ) ) → 𝑀

}
. (13.10)

(𝑖𝑖) The Clarke generalized derivative at 𝑥 is defined as the convex hull
13
of 𝜕𝐵 𝑓 (𝑥):

𝜕𝐹 (𝑥) B conv 𝜕𝐵𝐹 (𝑥). (13.11)

Example 13.6 (Bouligand and Clarke generalized derivatives of Φmin).
The function Φmin(𝑎, 𝑏) B min{𝑎, 𝑏} is globally Lipschitz (with Lipschitz constant 1). It is differentiable

everywhere in R2 except on the diagonal 𝐻 B {(𝑎, 𝑏) ∈ R𝑛 | 𝑎 = 𝑏}. On the open half space 𝐻+ B
{(𝑎, 𝑏) ∈ R𝑛 | 𝑎 > 𝑏}, we have Φmin(𝑎, 𝑏) = 𝑏, while Φmin(𝑎, 𝑏) = 𝑎 holds on 𝐻− B {(𝑎, 𝑏) ∈ R𝑛 | 𝑎 < 𝑏}.
Consequently, we have

Φ′
min
(𝑎, 𝑏) =

{
(0, 1) on 𝐻+,

(1, 0) on 𝐻− .

Since 𝐻+ and 𝐻− are open, the Bouligand generalized derivative agrees with the derivative there. Points

on the diagonal can be approximated by points of differentiability from either side, and hence we obtain

𝜕𝐵Φmin(𝑎, 𝑏) =


{(0, 1)} for (𝑎, 𝑏) ∈ 𝐻+,
{(0, 1)} ∪ {(1, 0)} for (𝑎, 𝑏) ∈ 𝐻,
{(1, 0)} for (𝑎, 𝑏) ∈ 𝐻− .

for the Bouligand generalized derivative and

𝜕Φmin(𝑎, 𝑏) =


{(0, 1)} for (𝑎, 𝑏) ∈ 𝐻+,
{(𝛼, 1 − 𝛼) | 𝛼 ∈ [0, 1]} for (𝑎, 𝑏) ∈ 𝐻,
{(1, 0)} for (𝑎, 𝑏) ∈ 𝐻−

for the Clarke generalized derivative.

12
One also says that 𝐹 is almost everywhere differentiable on𝑈 (𝑥).

13
The convex hull of a set is the smallest convex set containing it.
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Based on the Clarke generalized derivative, we can formulate a generalized Newton iteration

0 = 𝐹 (𝑧 (𝑚) ) +𝑉 (𝑚) (𝑧 (𝑚+1) − 𝑧 (𝑚) ). (13.12)

As a substitute 𝑉 (𝑚) for the Jacobian, we can use any invertible element of 𝜕𝐹 (𝑧 (𝑚) ) ⊆ R𝑛×𝑛 . The
convergence analysis of this generalized Newton scheme is based on the notion of semismoothness.

Hence we also refer to (13.12) as a semismooth Newton method.

Definition 13.7 (Semismooth function; see Mifflin, 1977; Qi, 1993; Qi, Sun, 1993; Pang, Qi, 1993).
Suppose that 𝐹 : R𝑛 → R𝑚 is a function which is Lipschitz continuous on some neighborhood 𝑈 (𝑧) of
𝑧 ∈ R𝑛 . 𝐹 is said to be semismooth at 𝑧 if, for any 𝑑 ∈ R𝑛 and all sequences 𝑑 (𝑘 ) → 𝑑 , 𝑡 (𝑘 ) ↘ 0 and

𝑀 (𝑘 ) ∈ 𝜕𝐹 (𝑧 + 𝑡 (𝑘 )𝑑 (𝑘 ) ), the limit

lim

𝑘→∞
𝑀 (𝑘 )𝑑 (𝑘 )

exists.

There are equivalent characterizations of semismoothness available in the literature that may be easier

to verify, but we do not discuss them here since we are primarily interested in the semismoothness of

the Φmin complementarity function.

Example 13.8 (Φmin is semismooth).
The function Φmin : R

2 → R defined by Φmin(𝑎, 𝑏) B min{𝑎, 𝑏} is semismooth everywhere.

There is a rich calculus available for semismooth function. For our purpose, it is relevant that

(1) 𝐶1
functions are semismooth (Mifflin, 1977, Proposition 4) and their Clarke generalized derivative

equals the classical derivative.

(2) componentwise semismoothness implies semismoothness (Qi, Sun, 1993, Corollary 2.4). This can

be used to show that the “vectorized” versionΦmin : R
2𝑛 → R𝑛 defined byΦmin(𝑎, 𝑏) B min{𝑎, 𝑏},

with the “min” understood componentwise, is semismooth everywhere.

(3) a chain rule holds, showing that the composition of semismooth functions is semismooth (Mifflin,

1977, Theorem 5).

Theorem 13.9 (Convergence of the local semismooth Newton method). Suppose that 𝐹 : R𝑛 → R𝑛
and that 𝑧∗ ∈ R𝑛 is a point where 𝐹 (𝑧∗) = 0. Suppose further that 𝐹 is Lipschitz continuous on some

neighborhood 𝑈 (𝑧∗) of 𝑧∗ ∈ R𝑛 , that 𝐹 is semismooth at 𝑧∗ and that all 𝑉 ∈ 𝜕𝐹 (𝑧∗) are non-singular.
Then there exists a neighborhood 𝐵𝑀

𝛿
(𝑧∗) such that

(𝑖) 𝑧∗ is the unique zero of 𝐹 in 𝐵𝑀
𝛿
(𝑧∗).

(𝑖𝑖) For any initial guess 𝑧 (0) ∈ 𝐵𝑀
𝛿
(𝑧∗), the local semismooth Newton method is well-defined (indeed,

any 𝑉 (𝑘 ) ∈ 𝜕𝐹 (𝑧 (𝑘 ) ) will be invertible), and it generates a sequence 𝑧 (𝑘 ) which converges to 𝑧∗.
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(𝑖𝑖𝑖)
(
𝑧 (𝑘 )

)
converges to 𝑧∗ Q-superlinearly w.r.t. the𝑀-norm.

The proof of Theorem 13.9 can be found, for instance, in Qi, Sun, 1993, Theorem 3.2. The order of

convergence can be shown to be of Q-order 1 + 𝑝 for 𝑝 ∈ [0, 1], i. e., up to Q-quadratic, provided that 𝐹

is semismooth of order 𝑝 , but we do not pursue this any further. Notice that Theorem 13.9 contains the

local convergence theorem 5.27 for the classical Newton method as a special case since 𝐶1
functions

are semismooth and their Clarke generalized derivative equals the classical derivative.

Let us now address the application of the semismooth Newton method to the solution of bound

constrained QPs, respectively their KKT conditions (13.7) written in semismooth form:

𝐴𝑑 − 𝜇 + 𝐵ᵀ𝜆 − 𝑏 = 0 (13.13a)

min{𝜇, 𝑑 − ℓ} = 0 (13.13b)

𝐵 𝑑 − 𝑐 = 0. (13.13c)

We can thus write this system as a root finding problem for the function 𝐹 : R𝑛 × R𝑛eq × R𝑛 →
R𝑛 × R𝑛eq × R𝑛 defined by

𝐹 (𝑑, 𝜇, 𝜆) B ©«
𝐴𝑑 − 𝜇 + 𝐵ᵀ𝜆 − 𝑏
min{𝜇, 𝑑 − ℓ}

𝐵 𝑑 − 𝑐

ª®¬
Since the components 𝐹1 and 𝐹3 are linear and thus 𝐶1

and the function inside the “min” term is also

linear and thus 𝐶1
, we conclude that 𝐹 is everywhere semismooth.

At points satisfying 𝜇 = 𝑑 − ℓ , the Clarke generalized derivative is not unique. Given a point (𝑥, 𝜇, 𝜆),
we define the primal-dual index sets

A(𝑑, 𝜇) B {𝑖 ∈ {1, . . . , 𝑛ineq} | 𝜇𝑖 ≥ 𝑑𝑖 − ℓ𝑖} primal-dual active indices at (𝑑, 𝜇), (13.14a)

I(𝑑, 𝜇) B {𝑖 ∈ {1, . . . , 𝑛ineq} | 𝜇𝑖 < 𝑑𝑖 − ℓ𝑖} primal-dual inactive indices at (𝑑, 𝜇) . (13.14b)

Also, let the diagonal matrices 𝐷I(𝑑,𝜇 ) and 𝐷A(𝑑,𝜇 ) be defined by

[𝐷I(𝑑,𝜇 ) ]𝑖𝑖 =
{
1 if 𝑖 ∈ I(𝑑, 𝜇),
0 if 𝑖 ∈ A(𝑑, 𝜇),

and 𝐷A(𝑑,𝜇 ) = Id − 𝐷I(𝑑,𝜇 ) .

One choice of the Clarke generalized derivative of 𝐹 is then

𝑉 (𝑑, 𝜇, 𝜆) =


𝐴 −Id 𝐵ᵀ

𝐷A(𝑑,𝜇 ) 𝐷I(𝑑,𝜇 ) 0

𝐵 0 0

 .
At an iterate (𝑑 (𝑚) , 𝜇 (𝑚) , 𝜆 (𝑚) ), a semismooth Newton (13.12) step reads

©«
𝐴𝑑 (𝑚) − 𝜇 (𝑚) + 𝐵ᵀ𝜆 (𝑚) − 𝑏

min{𝜇 (𝑚) , 𝑑 (𝑚) − ℓ}
𝐵 𝑑 (𝑚) − 𝑐

ª®¬ +


𝐴 −Id 𝐵ᵀ

𝐷A(𝑑 (𝑚) ,𝜇 (𝑚) ) 𝐷I(𝑑 (𝑚) ,𝜇 (𝑚) ) 0

𝐵 0 0

 ©«
𝑑 (𝑚+1) − 𝑑 (𝑚)
𝜇 (𝑚+1) − 𝜇 (𝑚)
𝜆 (𝑚+1) − 𝜆 (𝑚)

ª®¬ = 0.

Due to most terms in 𝐹 being linear in the unknowns, and using

min{𝜇 (𝑚) , 𝑑 (𝑚) − ℓ} = 𝐷I(𝑑 (𝑚) ,𝜇 (𝑚) )𝜇 (𝑚) + 𝐷A(𝑑 (𝑚) ,𝜇 (𝑚) ) (𝑑 (𝑚) − ℓ),
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we can write the semismooth Newton step more concisely as
𝐴 −Id 𝐵ᵀ

𝐷A(𝑑 (𝑚) ,𝜇 (𝑚) ) 𝐷I(𝑑 (𝑚) ,𝜇 (𝑚) ) 0

𝐵 0 0

 ©«
𝑑 (𝑚+1)

𝜇 (𝑚+1)

𝜆 (𝑚+1)

ª®¬ =
©«

𝑏

𝐷A(𝑑 (𝑚) ,𝜇 (𝑚) )ℓ

𝑐

ª®¬ (13.15)

Notice that the previous iterate enters solely through the active and inactive sets. Also notice that

the matrix — unlike in classical Newton methods — is not symmetric. The Schwarz theorem does

not apply since the matrix is not the Hessian of a twice differentiable function but rather the Clarke

generalized derivative of a nonsmooth reformulation of the first-order optimality conditions in KKT

form. We could, however, easily replace problem (13.15) by an equivalent one with a symmetric matrix.

(Quiz 13.2: Do you see how?)

The middle block row of (13.15) reads:

𝑑 (𝑚+1) = ℓ on A(𝑑 (𝑚) , 𝜇 (𝑚) ),
𝜇 (𝑚+1) = 0 on I(𝑑 (𝑚) , 𝜇 (𝑚) ).

Wemay therefore remove these unknowns from (13.15). For simplicity of notation, we drop the iteration

indices from the unknowns and the active/inactive sets for now and introduce selection matrices

𝑍A B rows of Id ∈ R𝑛×𝑛 pertaining to active indices

𝑍I B rows of Id ∈ R𝑛×𝑛 pertaining to inactive indices

so that we can write

𝑑 = 𝑍 ᵀA𝑑A + 𝑍
ᵀ
I𝑑I and 𝜇 = 𝑍 ᵀA𝜇A + 𝑍

ᵀ
I𝜇I

with subvectors 𝑑A = 𝑍A𝑑 and 𝑑I = 𝑍I𝑑 of 𝑑 , and similarly for 𝜇. Notice that 𝑍 ᵀA𝑍A = 𝐷A holds

and also 𝑍 ᵀI𝑍I = 𝐷I . Moreover, 𝑍A𝑍 ᵀA and 𝑍I𝑍
ᵀ
I are identity matrices of appropriate dimensions.

Plugging in the information 𝑑A = 𝑍A ℓ and 𝜇I = 0 obtained from the middle block row of (13.15), we

arrive at the equivalent reduced problem[
𝑍I𝐴𝑍

ᵀ
I 𝑍I𝐵

ᵀ

𝐵 𝑍 ᵀI 0

] (
𝑑I
𝜆

)
=

(
𝑍I (𝑏 −𝐴𝐷Aℓ)
𝑐 − 𝐵 𝐷Aℓ

)
(13.16)

together with 𝑑A = 𝑍Aℓ , 𝜇I = 0 and

𝜇A = 𝑍A𝐴𝑍
ᵀ
I𝑑I + 𝑍A𝐵

ᵀ𝜆 − 𝑍A𝑏 + 𝑍A𝐴𝐷Aℓ = 𝑍A (𝐴𝑑 + 𝐵ᵀ𝜆 − 𝑏).

(Quiz 13.3: Can you confirm this?)

We are now in a position to state the semismooth Newton method for the lower-bound constrained

QP (13.6).

Algorithm 13.10 (Semismooth Newton method for the KKT conditions (13.13) of the lower-bound

constrained QP (13.6)).
Input: initial guess 𝑑 (0) ∈ R𝑛
Input: initial guess 𝜇 (0) ∈ R𝑛
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Input: right-hand side 𝑏 ∈ R𝑛
Input: right-hand side 𝑐 ∈ R𝑛eq
Input: lower bound ℓ ∈

[
R ∪ {−∞}

]𝑛
Input: symmetric matrix 𝐴 (or matrix-vector products with 𝐴)

Input: matrix 𝐵 of full row rank (or matrix-vector products with 𝐵 and 𝐵ᵀ)
Output: approximate solution of (13.13)

1: Set𝑚 B 0

2: Determine the active and inactive sets

A (𝑚) B
{
𝑖 ∈ {1, . . . , 𝑛}

�� 𝜇 (𝑚)
𝑖
≥ 𝑑 (𝑚)

𝑖
− ℓ𝑖

}
I (𝑚) B

{
𝑖 ∈ {1, . . . , 𝑛}

�� 𝜇 (𝑚)
𝑖

< 𝑑
(𝑚)
𝑖
− ℓ𝑖

}
3: while𝑚 = 0 or A (𝑚) is different from A (𝑚−1) do
4: Set 𝑑 (𝑚+1) B 𝐷A (𝑚) ℓ // Set the active components of 𝑑 (𝑚+1)

5: Solve the linear system // Solve for the inactive components of 𝑑 (𝑚+1) as well as for 𝜆 (𝑚+1)
𝑍I (𝑚)𝐴𝑍

ᵀ
I (𝑚) 𝑍I (𝑚)𝐵

ᵀ

𝐵 𝑍 ᵀI (𝑚) 0

 ©«
𝑑
(𝑚+1)
I (𝑚)

𝜆 (𝑚+1)
ª®¬ =

(
𝑍I (𝑚) (𝑏 −𝐴𝑑 (𝑚+1) )

𝑐 − 𝐵 𝑑 (𝑚+1)

)
6: Set 𝜇

(𝑚+1)
I (𝑚) B 0 // Set the inactive multiplier components

7: Set 𝜇
(𝑚+1)
A (𝑚) B 𝑍A (𝑚) [𝐴𝑑 (𝑚+1) + 𝐵ᵀ𝜆 (𝑚+1) − 𝑏] // Set the active multiplier components

8: Determine the active and inactive sets

A (𝑚+1) B
{
𝑖 ∈ {1, . . . , 𝑛}

�� 𝜇 (𝑚+1)
𝑖

≥ 𝑑 (𝑚+1)
𝑖

− ℓ𝑖
}

I (𝑚+1) B
{
𝑖 ∈ {1, . . . , 𝑛}

�� 𝜇 (𝑚+1)
𝑖

< 𝑑
(𝑚+1)
𝑖

− ℓ𝑖
}

9: Set𝑚 B 𝑚 + 1
10: end while
11: return 𝑑 (𝑚) , 𝜇 (𝑚) and 𝜆 (𝑚)

Remark 13.11 (on Algorithm 13.10).
(𝑖) You can convince yourself that the solution (𝑑 (𝑚+1) , 𝜇 (𝑚+1) , 𝜆 (𝑚+1) ) to the semismooth Newton

system (13.15), achieved through Lines 4 to 7 in Algorithm 4.6, satisfies the necessary optimality

conditions for the equality constrained QP

Minimize

1

2

𝑑ᵀ𝐴𝑑 − 𝑏ᵀ𝑑

subject to 𝐵 𝑑 = 𝑐

and 𝑑 = ℓ on A (𝑚)

and 𝑑 is free on I (𝑚) .

(13.17)

The quantities 𝜇
(𝑚+1)
A (𝑚) and 𝜆 (𝑚+1) serve as the unique Lagrange multipliers associated with the

constraints ℓ − 𝑑 = 0 and 𝐵 𝑑 − 𝑐 = 0, respectively, and 𝜇 (𝑚+1) is then padded with zeros on I (𝑚) .

(𝑖𝑖) In case 𝐴 is positive definite on ker𝐵, the semismooth Newton system (13.15) will be uniquely

solvable, regardless of the active set. (Quiz 13.4: Can you explain why?)
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(𝑖𝑖𝑖) From iteration to iteration, the only quantity that changes is the active set (and therefore also

the complementary, inactive set). Once the active sets agree between two consecutive iterations, a

solution of the KKT conditions has been found.

(𝑖𝑣) In a numerical realization of Algorithm 13.10, we do not actually have to form the selection matri-

ces 𝑍I (𝑚) and 𝑍A (𝑚) . Instead of (13.16), we can formally consider the system[
𝐴 𝐵ᵀ

𝐵 0

] (
𝑑

𝜆

)
=

(
𝑏

𝑐

)
and implement the projected conjugate gradient method (Algorithm 13.2) to work only on the inactive

indices of the unknown 𝑑 , and to consider exclusively the inactive indices of the first block row.

When initialized with 𝑑 = 𝐷Aℓ , the iterations will be identical to those of the projected conjugate
gradient method applied to the reduced problem (13.16) and initialized with 𝑑I = 0. The details are

beyond our scope here.

(𝑣) Algorithm 13.10 is is known as a semismooth Newton method and as a primal-dual active set
method. The latter derives from the fact that

(1) it is an active set method, which means that it maintains and updates a working set of indices

(into the components of the inequality constraints) deemed active, enforces the inequalities as

equalities there, and ignores the inequalities deemed inactive,

(2) the active sets are determined from a combination of primal (𝑑) and dual (𝜇) quantities; see

(13.14). The equality constraint multiplier 𝜆 does not play a role here, therefore we do not

require an initial guess for it.

(𝑣𝑖) In the absence of a better initial guess, an initialization of Algorithm 13.10 with 𝑑 (0) = 0 and

𝜇
(0)
𝑖

= −∞ for all 𝑖 = 1, . . . , 𝑛ineq leads to an initially empty active set A (0) = ∅ and will result in
𝑑 (1) solving the QP with the inequality constraints removed.

(𝑣𝑖𝑖) We recall that the lower bound ℓ can have components equal to −∞. Those components will belong

to the inactive set in all iterations.

(𝑣𝑖𝑖𝑖) In the presence of inequality constraints in (7.1), an SQP method may result in three levels of

iterations:

(1) The outermost iteration (with iteration counter 𝑘) is the SQP iteration. In every iteration, we

have to solve an inequality constrained QP. Using the slack reformulation (12.1), the inequality

constraints in all QPs will be lower bound constraints.

(2) The middle iteration (with iteration counter𝑚) is the semismooth Newton iteration which deals

with the inequality constraints in each QP. In every iteration, we have to solve an equality

constrained QP (13.17).

(3) The innermost iteration (with iteration counter ℓ) arises when we apply the projected conjugate

gradient to the solution of this equality constrained QP, respectively to the linear system

representing its KKT conditions (13.16).
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End of Week 12

§ 14 Further Practical Aspects of SQP Methods

So far we have discussed only local aspects of SQP methods. In order to devise a practical algorithm,

many further questions need to be addressed. Let us mention some of them:

(1) How can we achieve global convergence of an SQP method, in the sense that accumulation

points are KKT points?

(2) How can we ensure that the fast local convergence properties of the local SQP method (see

Corollary 11.15) are preserved under the globalization?

(3) Can we use quasi-Newton updates of the Hessian of the Lagrangian instead of forming it exactly?

(4) How can we deal with potentially infeasible QP subproblems?

(5) How can we deal with non-unique Lagrange multipliers in the QPs, i. e., lack of LICQ?

We will discuss some of these aspects in this section. However, given the wealth of these and further

questions, it can be expected that there are countless useful varieties of practical SQP methods.

§ 14.1 Globalization of SQP Methods by Line Search

We recall that globalization is an effort to ensure that accumulation points of the sequence of iterates

are KKT points. For constrained problems, the two goals “feasibility” and “stationarity” need to be

taken into account simultaneously. Therefore, a line search solely with respect to the objective as in

§ 5 is not appropriate. Instead, one considers line search with respect to amerit function.

Various merit functions are in use in the literature. We consider the ℓ1 penalty function as merit

function, which measures the constraint violation in terms of the ℓ1-norm. It is defined as

𝜙1(𝑥 ;𝛾) B 𝑓 (𝑥) + 𝛾 𝜋1(𝑥)

= 𝑓 (𝑥) + 𝛾
𝑛ineq∑︁
𝑖=1

max{0, 𝑔𝑖 (𝑥)} + 𝛾
𝑛eq∑︁
𝑗=1

|ℎ 𝑗 (𝑥) |

= 𝑓 (𝑥) + 𝛾 ∥max{0, 𝑔(𝑥)}∥1 + 𝛾 ∥ℎ(𝑥)∥1 (14.1)

with the ℓ1-norm ∥·∥1. Here 𝛾 is called the penalty parameter. The function 𝜋1 and thus 𝜙1 are not

everywhere differentiable. However, the (one-sided) directional derivatives

𝜋 ′
1
(𝑥 ;𝑑) = lim

𝑡↘0

𝜋1(𝑥 + 𝑡 𝑑) − 𝜋1(𝑥)
𝑡
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exist everywhere and they are given by

𝜋 ′
1
(𝑥 ;𝑑) =

𝑛ineq∑︁
𝑖=1

𝑔𝑖 (𝑥 )<0

0 +
𝑛ineq∑︁
𝑖=1

𝑔𝑖 (𝑥 )=0

max{0, 𝑔′𝑖 (𝑥) 𝑑} +
𝑛ineq∑︁
𝑖=1

𝑔𝑖 (𝑥 )>0

𝑔′𝑖 (𝑥) 𝑑

+
𝑛eq∑︁
𝑗=1

ℎ 𝑗 (𝑥 )<0

−ℎ′𝑗 (𝑥) 𝑑 +
𝑛eq∑︁
𝑗=1

ℎ 𝑗 (𝑥 )=0

|ℎ′𝑗 (𝑥) 𝑑 | +
𝑛eq∑︁
𝑗=1

ℎ 𝑗 (𝑥 )>0

ℎ′𝑗 (𝑥) 𝑑. (14.2)

Lemma 14.1 (descent direction for 𝜙1; compare Ulbrich, Ulbrich, 2012, Satz 19.11). Suppose that (𝑑, 𝜇, 𝜆)
is a KKT point of

Minimize 𝑓 ′(𝑥 (𝑘 ) ) 𝑑 + 1

2

𝑑ᵀ𝐻 (𝑘 )𝑑, where 𝑑 ∈ R𝑛

subject to 𝑔(𝑥 (𝑘 ) ) + 𝑔′(𝑥 (𝑘 ) ) 𝑑 ≤ 0

and ℎ(𝑥 (𝑘 ) ) + ℎ′(𝑥 (𝑘 ) ) 𝑑 = 0.

(14.3)

Moreover, suppose that

𝛾 ≥ max {∥𝜇∥∞, ∥𝜆∥∞}

holds. Then we have

𝜙 ′
1
(𝑥 ;𝑑) ≤ −𝑑ᵀ𝐻 (𝑘 )𝑑.

When 𝐻 (𝑘 ) is positive definite and 𝑑 ≠ 0, we therefore have

𝜙 ′
1
(𝑥 ;𝑑) < 0,

i. e., 𝑑 is a descent direction for the ℓ1 penalty function.

Proof. We estimate

𝜇ᵀ𝑔′(𝑥 (𝑘 ) ) 𝑑 =

𝑛ineq∑︁
𝑖=1

𝜇𝑖 𝑔
′
𝑖 (𝑥 (𝑘 ) ) 𝑑

=

𝑛ineq∑︁
𝑖=1

𝑔𝑖 (𝑥 (𝑘 ) )>0

𝜇𝑖 𝑔
′
𝑖 (𝑥 (𝑘 ) ) 𝑑 −

𝑛ineq∑︁
𝑖=1

𝑔𝑖 (𝑥 (𝑘 ) )≤0

𝜇𝑖 𝑔𝑖 (𝑥 (𝑘 ) ) since 𝜇𝑖
(
𝑔𝑖 (𝑥 (𝑘 ) ) + 𝑔′𝑖 (𝑥 (𝑘 ) ) 𝑑

)
= 0

≥
𝑛ineq∑︁
𝑖=1

𝑔𝑖 (𝑥 (𝑘 ) )>0

𝜇𝑖 𝑔
′
𝑖 (𝑥 (𝑘 ) ) 𝑑 since 𝜇𝑖 ≥ 0

≥ 𝛾
𝑛ineq∑︁
𝑖=1

𝑔𝑖 (𝑥 (𝑘 ) )>0

𝑔′𝑖 (𝑥 (𝑘 ) ) 𝑑 since 𝛾 ≥ 𝜇𝑖 and 𝑔′𝑖 (𝑥 (𝑘 ) ) 𝑑 ≤ −𝑔𝑖 (𝑥 (𝑘 ) ) < 0.
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For the equality constraints, we obtain similarly

𝜆ᵀℎ′(𝑥 (𝑘 ) ) 𝑑 =

𝑛eq∑︁
𝑗=1

𝜆 𝑗 ℎ
′
𝑗 (𝑥 (𝑘 ) ) 𝑑

=

𝑛eq∑︁
𝑗=1

ℎ 𝑗 (𝑥 (𝑘 ) )≠0

𝜆 𝑗 ℎ
′
𝑗 (𝑥 (𝑘 ) ) 𝑑 +

𝑛eq∑︁
𝑗=1

ℎ 𝑗 (𝑥 (𝑘 ) )=0

𝜆 𝑗 ℎ
′
𝑗 (𝑥 (𝑘 ) ) 𝑑

=

𝑛eq∑︁
𝑗=1

ℎ 𝑗 (𝑥 (𝑘 ) )>0

𝜆 𝑗 ℎ
′
𝑗 (𝑥 (𝑘 ) ) 𝑑 +

𝑛eq∑︁
𝑗=1

ℎ 𝑗 (𝑥 (𝑘 ) )<0

𝜆 𝑗 ℎ
′
𝑗 (𝑥 (𝑘 ) ) 𝑑 since ℎ(𝑥 (𝑘 ) ) + ℎ′(𝑥 (𝑘 ) ) 𝑑 = 0

≥ 𝛾
𝑛eq∑︁
𝑗=1

ℎ 𝑗 (𝑥 (𝑘 ) )>0

ℎ′𝑗 (𝑥 (𝑘 ) ) 𝑑 − 𝛾

𝑛eq∑︁
𝑗=1

ℎ 𝑗 (𝑥 (𝑘 ) )<0

ℎ′𝑗 (𝑥 (𝑘 ) ) 𝑑 since 𝛾 ≥ |𝜆 𝑗 |.

From the stationarity of the Lagrangian for (14.3), i. e., ∇𝑓 (𝑥 (𝑘 ) ) +𝐻 (𝑘 )𝑑 + 𝑔′(𝑥 (𝑘 ) )ᵀ𝜇 + ℎ′(𝑥 (𝑘 ) )ᵀ𝜆 = 0,

we thus have

𝑓 ′(𝑥 (𝑘 ) ) 𝑑 = −𝑑ᵀ𝐻 (𝑘 )𝑑 − 𝜇ᵀ𝑔′(𝑥 (𝑘 ) ) 𝑑 − 𝜆ᵀℎ′(𝑥 (𝑘 ) ) 𝑑

≤ −𝑑ᵀ𝐻 (𝑘 )𝑑 − 𝛾
𝑛ineq∑︁
𝑖=1

𝑔𝑖 (𝑥 (𝑘 ) )>0

𝑔′𝑖 (𝑥 (𝑘 ) ) 𝑑 − 𝛾
𝑛eq∑︁
𝑗=1

ℎ 𝑗 (𝑥 (𝑘 ) )>0

ℎ′𝑗 (𝑥 (𝑘 ) ) 𝑑 + 𝛾
𝑛eq∑︁
𝑗=1

ℎ 𝑗 (𝑥 (𝑘 ) )<0

ℎ′𝑗 (𝑥 (𝑘 ) ) 𝑑. (∗)

Plugging this into the formula (14.2) for the directional derivative, we find

𝜙 ′
1
(𝑥 (𝑘 ) ;𝑑)

= 𝑓 ′(𝑥 (𝑘 ) ) 𝑑 + 𝛾 𝜋 ′
1
(𝑥 (𝑘 ) ;𝑑)

= 𝑓 ′(𝑥 (𝑘 ) ) 𝑑 + 𝛾
𝑛ineq∑︁
𝑖=1

𝑔𝑖 (𝑥 (𝑘 ) )=0

max{0, 𝑔′𝑖 (𝑥 (𝑘 ) ) 𝑑} + 𝛾
𝑛ineq∑︁
𝑖=1

𝑔𝑖 (𝑥 (𝑘 ) )>0

𝑔′𝑖 (𝑥 (𝑘 ) ) 𝑑

− 𝛾
𝑛eq∑︁
𝑗=1

ℎ 𝑗 (𝑥 (𝑘 ) )<0

ℎ′𝑗 (𝑥 (𝑘 ) ) 𝑑 + 𝛾
𝑛eq∑︁
𝑗=1

ℎ 𝑗 (𝑥 (𝑘 ) )=0

|ℎ′𝑗 (𝑥 (𝑘 ) ) 𝑑 | + 𝛾
𝑛eq∑︁
𝑗=1

ℎ 𝑗 (𝑥 (𝑘 ) )>0

ℎ′𝑗 (𝑥 (𝑘 ) ) 𝑑 due to (14.2)

≤ −𝑑ᵀ𝐻 (𝑘 )𝑑 + 𝛾
𝑛ineq∑︁
𝑖=1

𝑔𝑖 (𝑥 (𝑘 ) )=0

max{0, 𝑔′𝑖 (𝑥 (𝑘 ) ) 𝑑} + 𝛾
𝑛eq∑︁
𝑗=1

ℎ 𝑗 (𝑥 (𝑘 ) )=0

|ℎ′𝑗 (𝑥 (𝑘 ) ) 𝑑 | due to (∗)

= −𝑑ᵀ𝐻 (𝑘 )𝑑.

The last equality holds since, due to feasibility, we have 𝑔(𝑥 (𝑘 ) ) + 𝑔′(𝑥 (𝑘 ) ) 𝑑 ≤ 0 and ℎ(𝑥 (𝑘 ) ) +
ℎ′(𝑥 (𝑘 ) ) 𝑑 = 0. This shows

𝜙 ′
1
(𝑥 ;𝑑) ≤ −𝑑ᵀ𝐻 (𝑘 )𝑑

as claimed. When 𝐻 is positive definite
14
and 𝑑 ≠ 0 holds, then clearly

𝜙 ′
1
(𝑥 ;𝑑) ≤ −𝑑ᵀ𝐻 (𝑘 )𝑑 < 0. □

14
In fact, it is enough for 𝐻 to be positive definite on kerℎ′ (𝑥 (𝑘 ) ).
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When all inequality constraints in an NLP (7.1) are converted into lower bound constraints by means

of the slack reformulation (12.2), we use the ℓ1 penalty function in the form

𝜙1(𝑥 ;𝛾) B 𝑓 (𝑥) + 𝛾 ∥ℎ(𝑥)∥1. (14.4)

That is, the lower bound constraints are not included by the penalty function because they can be

taken into account exactly, through the QP solver. The directional derivative (14.2) then simplifies to

𝜋 ′
1
(𝑥 ;𝑑) =

𝑛eq∑︁
𝑗=1

ℎ 𝑗 (𝑥 )<0

−ℎ′𝑗 (𝑥) 𝑑 +
𝑛eq∑︁
𝑗=1

ℎ 𝑗 (𝑥 )=0

|ℎ′𝑗 (𝑥) 𝑑 | +
𝑛eq∑︁
𝑗=1

ℎ 𝑗 (𝑥 )>0

ℎ′𝑗 (𝑥) 𝑑. (14.5)

We now specify an SQP line search model algorithm for the slack reformulation

Minimize 𝑓 (𝑥), where 𝑥 ∈ R𝑛

subject to ℎ(𝑥) = 0

and 𝑥 ≥ ℓ .

 (12.2)

of an NLP (7.1) with lower bound ℓ ∈
[
R ∪ {−∞}

]𝑛
.

Algorithm 14.2 (SQP Model Algorithm with Line Search; compare Geiger, Kanzow, 2002, Algorith-

mus 5.37, Nocedal, Wright, 2006, Algorithm 18.3 and Ulbrich, Ulbrich, 2012, Algorithmus 19.12).

Input: initial guess 𝑥 (0) ∈ R𝑛
Input: routine to evaluate 𝑓 and 𝑓 ′ (or ∇𝑓 )
Input: routine to evaluate ℎ and ℎ′

Input: lower bound ℓ ∈
[
R ∪ {−∞}

]𝑛
Input: initial symmetric model Hessian 𝐻 (0) ∈ R𝑛×𝑛 (possibly s. p. d.)

Input: routine to determine the symmetric model Hessians 𝐻 (𝑘 )

Input: Armijo parameter 𝜎 ∈ (0, 1/2)
Input: backtracking parameter 𝛽 ∈ (0, 1)
Input: penalty rule parameter 𝜌 ∈ (0, 1)
Output: approximate KKT point of (12.2)

1: Set 𝑘 B 0

2: Set the initial penalty parameter 𝛾 (−1) B −∞
3: while stopping criterion not met do
4: Determine a solution 𝑑 (𝑘 ) of

Minimize 𝑓 ′(𝑥 (𝑘 ) ) 𝑑 + 1

2

𝑑ᵀ𝐻 (𝑘 )𝑑, where 𝑑 ∈ R𝑛

subject to ℎ(𝑥 (𝑘 ) ) + ℎ′(𝑥 (𝑘 ) ) 𝑑 = 0

and 𝑥 (𝑘 ) + 𝑑 ≥ ℓ

(12.3)

with associated Lagrange multipliers 𝜇 and 𝜆

5: Set 𝜒 (𝑘 ) B

{
1 if (𝑑 (𝑘 ) )ᵀ𝐻 (𝑘 )𝑑 (𝑘 ) ≥ 0

0 if (𝑑 (𝑘 ) )ᵀ𝐻 (𝑘 )𝑑 (𝑘 ) < 0

// curvature indicator
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6: if 𝛾 (𝑘−1) satisfies 𝛾 (𝑘−1) ≥
𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 ) + 𝜒 (𝑘 ) 1

2
(𝑑 (𝑘 ) )ᵀ𝐻 (𝑘 )𝑑 (𝑘 )

(1 − 𝜌) ∥ℎ(𝑥 (𝑘 ) )∥1
then

7: Set 𝛾 (𝑘 ) B 𝛾 (𝑘−1) // penalty parameter is already large enough

8: else

9: Set 𝛾 (𝑘 ) B
𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 ) + 𝜒 (𝑘 ) 1

2
(𝑑 (𝑘 ) )ᵀ𝐻 (𝑘 )𝑑 (𝑘 )

(1 − 𝜌) ∥ℎ(𝑥 (𝑘 ) )∥1
// increase the penalty parameter

10: end if
11: Determine a step size 𝛼 (𝑘 ) > 0 from an Armijo line search procedure (Algorithm 5.11), applied

to 𝜑 (𝛼) B 𝑓 (𝑥 (𝑘 ) + 𝛼 𝑑 (𝑘 ) ) + 𝛾 (𝑘 ) ∥ℎ(𝑥 (𝑘 ) + 𝛼 𝑑 (𝑘 ) )∥1, with initial trial step size 𝛼 (𝑘,0) = 1, Armijo

parameter 𝜎 and backtracking parameter 𝛽

12: Set 𝑥 (𝑘+1) B 𝑥 (𝑘 ) + 𝛼 (𝑘 )𝑑 (𝑘 ) // update the iterate

13: Set 𝜇 (𝑘+1) B 𝜇 (𝑘 ) + 𝛼 (𝑘 ) (𝜇 − 𝜇 (𝑘 ) ) // update the bound constraint Lagrange multiplier

14: Set 𝜆 (𝑘+1) B 𝜆 (𝑘 ) + 𝛼 (𝑘 ) (𝜆 − 𝜆 (𝑘 ) ) // update the equality constraint Lagrange multiplier

15: Set 𝑘 B 𝑘 + 1
16: end while
17: return 𝑑 (𝑘 ) , 𝜇 (𝑘 ) and 𝜆 (𝑘 )

Remark 14.3 (on Algorithm 14.2).
(𝑖) The choice of the penalty parameter is motivated as follows. We can use the model

𝑞 (𝑘 ) (𝑑) B 𝑓 (𝑥 (𝑘 ) ) + 𝑓 ′(𝑥 (𝑘 ) ) 𝑑 + 𝜒 (𝑘 ) (𝑑) 1
2

𝑑ᵀ𝐻 (𝑘 )𝑑 + 𝛾 ∥ℎ(𝑥 (𝑘 ) ) + ℎ′(𝑥 (𝑘 ) ) 𝑑 ∥1 (14.6)

for the ℓ1 merit function. Here 𝜒 (𝑘 ) is a curvature indicator, defined as

𝜒 (𝑘 ) (𝑑) B
{
1 if 𝑑ᵀ𝐻 (𝑘 )𝑑 ≥ 0,

0 if 𝑑ᵀ𝐻 (𝑘 )𝑑 < 0.

The goal is to make the penalty parameter 𝛾 large enough so that a certain fraction in the decrease

of 𝑞 (𝑘 ) in the current step can be attributed to a decrease in the penalty term. In terms of formulas,

one requires

𝑞 (𝑘 ) (0) − 𝑞 (𝑘 ) (𝑑 (𝑘 ) )︸                    ︷︷                    ︸
decrease in the model of the merit function

≥
fraction︷︸︸︷
𝜌 𝛾

[
∥ℎ(𝑥 (𝑘 ) )∥1 − ∥ℎ(𝑥 (𝑘 ) ) + ℎ′(𝑥 (𝑘 ) ) 𝑑 ∥1

]︸                                                ︷︷                                                ︸
decrease in the penalty term of the model

.

Plugging in the model (14.5), we can rewrite this as

𝛾 ∥ℎ(𝑥 (𝑘 ) )∥1 − 𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 ) − 𝜒 (𝑘 ) (𝑑 (𝑘 ) )
1

2

(𝑑 (𝑘 ) )ᵀ𝐻 (𝑘 )𝑑 (𝑘 ) − 𝛾 ∥ℎ(𝑥 (𝑘 ) ) + ℎ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 ) ∥1

≥ 𝜌 𝛾
[
∥ℎ(𝑥 (𝑘 ) )∥1 − ∥ℎ(𝑥 (𝑘 ) ) + ℎ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 ) ∥1

]
.

Since 𝑑 (𝑘 ) is feasible for the QP (12.3), this is equivalent to

𝛾 ∥ℎ(𝑥 (𝑘 ) )∥1 − 𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 ) − 𝜒 (𝑘 ) (𝑑 (𝑘 ) )
1

2

(𝑑 (𝑘 ) )ᵀ𝐻 (𝑘 )𝑑 (𝑘 )

≥ 𝜌 𝛾 ∥ℎ(𝑥 (𝑘 ) )∥1

https://tinyurl.com/scoop-nlo 197

https://tinyurl.com/scoop-nlo


R. Herzog cbn

and finally to

𝛾 ≥
𝑓 ′(𝑥 (𝑘 ) ) 𝑑 (𝑘 ) + 𝜒 (𝑘 ) (𝑑 (𝑘 ) ) 1

2
(𝑑 (𝑘 ) )ᵀ𝐻 (𝑘 )𝑑 (𝑘 )

(1 − 𝜌) ∥ℎ(𝑥 (𝑘 ) )∥1
.

This is the condition enforced through Lines 6 to 10.

(𝑖𝑖) The step size 𝛼 (𝑘 ) obtained from the Armijo line search is used to update both the optimization

variable and the Lagrange multipliers; see Lines 12 to 14.

(𝑖𝑖𝑖) The model Algorithm 14.2 still leaves a number of important details open, which are touched upon

in the coming subsections.

§ 14.2 Quasi-Newton SQP Methods

The benefits of using quasi-Newton approximations of theHessian of the LagrangianL𝑥𝑥 (𝑥 (𝑘 ) , 𝜇 (𝑘 ) , 𝜆 (𝑘 ) )
as Hessians 𝐻 (𝑘 ) in the sequence of QPs are the same as in unconstrained optimization (§ 5.7). In

contrast to (5.45), quasi-Newton updates are based on the data

𝑠 (𝑘 ) B 𝑥 (𝑘+1) −𝑥 (𝑘 ) = 𝛼 (𝑘 )𝑑 (𝑘 ) and 𝑦 (𝑘 ) B ∇𝑥L(𝑥 (𝑘+1) , 𝜇 (𝑘 ) , 𝜆 (𝑘 ) ) −∇𝑥L(𝑥 (𝑘 ) , 𝜇 (𝑘 ) , 𝜆 (𝑘 ) ) . (14.7)

In the unconstrained optimization context, we used the fact that 𝑑 (𝑘 ) was a descent direction for the

objective. A Wolfe-Powell line search then ensured (𝑦 (𝑘 ) )ᵀ𝑠 (𝑘 ) > 0, which is a necessary condition

for the positive definiteness of any quasi-Newton formula and is also sufficient for DFP and BFGS;

see Lemma 5.49. Unfortunately, we cannot expect this result to be applicable here since 𝑑 (𝑘 ) is not
necessarily a descent direction for L(𝑥 (𝑘 ) , 𝜇 (𝑘 ) , 𝜆 (𝑘 ) ). Therefore, a Wolfe-Powell line search w.r.t. to

L is generally not applicable. Even if it were successful, it might not yield (𝑦 (𝑘 ) )ᵀ𝑠 (𝑘 ) > 0; see the

proof of Lemma 5.48. In any case, the line search applied in Algorithm 14.2 is w.r.t. the merit function,

not the Lagrangian, and one usually goes with the simpler Armijo backtracking procedure.

We describe here an often used modification of the BFGS update proposed by Powell, 1978, which is

still able to maintain positive definiteness. This strategy replaces the BFGS update

ΦBFGS(𝐻, 𝑠, 𝑦) = 𝐻 −
𝐻 𝑠 𝑠ᵀ𝐻

𝑠ᵀ𝐻 𝑠
+ 𝜌 𝑦 𝑦ᵀ with 𝜌 =

1

𝑦ᵀ𝑠
(5.55)

by the damped BFGS

Φdamped BFGS(𝐻, 𝑠, 𝑦) = 𝐻 −
𝐻 𝑠 𝑠ᵀ𝐻

𝑠ᵀ𝐻 𝑠
+ 𝜌 𝑦 𝑦ᵀ with 𝜌 =

1

𝑦ᵀ𝑠
. (14.8a)

Here 𝑦 is a convex combination of 𝑦 and 𝐻 𝑠 , namely

𝑦 B 𝜃 𝑦 + (1 − 𝜃 )𝐻 𝑠, (14.8b)

where the scalar 𝜃 is defined as

𝜃 B

{
1 if 𝑦ᵀ𝑠 ≥ 0.2 𝑠ᵀ𝐻 𝑠,
0.8 𝑠ᵀ𝐻 𝑠
𝑠ᵀ𝐻 𝑠−𝑦ᵀ𝑠 if 𝑦ᵀ𝑠 < 0.2 𝑠ᵀ𝐻 𝑠.

(14.8c)
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When𝐻 is symmetric positive definite, then it can be easily shown that 𝜃 ∈ [0, 1]. (Quiz 14.1: Details?)
One of the extreme cases is 𝜃 = 0, which means Φdamped BFGS(𝐻, 𝑠, 𝑦) = 𝐻 and results in 𝐻 (𝑘+1) = 𝐻 (𝑘 )

in an algorithm. The other extreme case is 𝜃 = 1, which means Φdamped BFGS(𝐻, 𝑠, 𝑦) = ΦBFGS(𝐻, 𝑠, 𝑦),
i. e., a regular BFGS update step.

Lemma 14.4 (Positive definiteness of the damped BFGS update; see Geiger, Kanzow, 2002, Lemma 5.38).
Suppose that𝐻 is symmetric and positive definite and that 𝑦, 𝑠 are any vectors, 𝑠 ≠ 0. Then𝐻+

damped BFGS
B

Φdamped BFGS(𝐻, 𝑠, 𝑦) is symmetric and positive definite as well.

Proof. The proof is part of ??. □

§ 14.3 Infeasible QP Subproblems

The linearizationℎ(𝑥 (𝑘 ) )+ℎ′(𝑥 (𝑘 ) ) 𝑑 of the constraintsℎ(𝑥) = 0may lead to infeasible QP subproblems.

This phenomenon is also known as inconsistent linearization.

Example 14.5 (from Geiger, Kanzow, 2002, p.264). Consider the problem

Minimize 𝑥2, where 𝑥 ∈ R
subject to 1 − 𝑥2 ≤ 0.

The feasible set is (−∞,−1] ∪ [1,∞). When linearized at 𝑥 (𝑘 ) = 0, the constraint 𝑔(𝑥 (𝑘 ) ) +𝑔′(𝑥 (𝑘 ) ) 𝑑 ≤ 0

reads

1 + 0𝑑 ≤ 0,

which is impossible to satisfy.

Quiz 14.2: Would the reformulation using slack variables solve the issue?

A prominent idea to deal with potentially infeasible QPs is to relax and penalize their constraints. We

describe this technique for a QP with general constraints (14.3). To simplify the notation, we write this

here as

Minimize

1

2

𝑑ᵀ𝐴𝑑 − 𝑏ᵀ𝑑

subject to 𝐵eq 𝑑 − 𝑐eq = 0

and 𝐵ineq 𝑑 − 𝑐ineq ≤ 0.

(14.9)

The slack reformulation is contained as a special case.
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The penalty reformulation of (14.9) reads

Minimize

1

2

𝑑ᵀ𝐴𝑑 − 𝑏ᵀ𝑑 + 𝛾
[
1ᵀ𝑣 + 1ᵀ𝑤 + 1ᵀ𝑡

]
, where (𝑑, 𝑣,𝑤, 𝑡) ∈ R𝑛 × R𝑛eq × R𝑛eq × R𝑛ineq

subject to 𝐵eq 𝑑 − 𝑐eq = 𝑣 −𝑤
and 𝐵ineq 𝑑 − 𝑐ineq ≤ 𝑡

as well as 𝑣 ≥ 0, 𝑤 ≥ 0, 𝑡 ≥ 0.

(14.10)

This penalized QP is always feasible (Quiz 14.3: Why?).

A convergence analysis of a modified SQP algorithm utilizing this penalty approach can be found in

Geiger, Kanzow, 2002, Abschnitt 5.5.7 and 5.5.8.

§ 14.4 Fast Local Convergence and the Maratos Effect

We already emphasized in the context of unconstrained optimization methods that a globalization

mechanism is not supposed to interfere with the fast local convergence we typically obtain in a local

version of the method; see for instance Theorem 5.33. Unfortunately, the use of a line search w.r.t.

a merit function can cause the step size 𝛼 (𝑘 ) = 1 to become unacceptable, thus impeding fast local

convergence. This phenomenon is known as theMaratos effect, first described in the dissertation

Maratos, 1978.

Example 14.6 (Maratos effect; compare Geiger, Kanzow, 2002, Beispiel 5.39 and Powell, 1986).
Consider the problem

Minimize 2 (𝑥2
1
+ 𝑥2

2
− 1) − 𝑥1, where 𝑥 ∈ R2

subject to 𝑥2
1
+ 𝑥2

2
− 1 = 0.

(14.11)

We find the following expressions for the derivative of the objective 𝑓 and the equality constraint ℎ:

∇𝑓 (𝑥) = 4𝑥 −
(
1

0

)
, 𝑓 ′′(𝑥) = 4 Id, L𝑥𝑥 (𝑥, 𝜆) = (4 + 2 𝜆) Id,

∇ℎ(𝑥) = 2𝑥, ℎ′′(𝑥) = 2 Id.

It is easy to see that 𝑥∗ = (1, 0)ᵀ is the unique global minimizer and that 𝜆∗ = −3/2 is the unique

associated Lagrange multiplier. The second-order sufficient condition (Theorem 9.5) and the LICQ hold.

Due to the absence of inequality constraints, the strong second-order sufficient condition (Definition 11.12)

coincides with the usual second-order sufficient condition and thus holds as well. Therefore, Corollary 11.15

guarantees the local Q-quadratic convergence of a local SQP method.

We consider an iterate (𝑥 (𝑘 ) , 𝜆 (𝑘 ) ) and the associated QP

Minimize 𝑓 ′(𝑥 (𝑘 ) ) 𝑑 + 1

2

(4 + 2 𝜆 (𝑘 ) ) ∥𝑑 ∥2

subject to ℎ(𝑥 (𝑘 ) ) + 2 (𝑥 (𝑘 ) )ᵀ 𝑑 = 0.
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The KKT conditions of the associated QP read

∇𝑓 (𝑥 (𝑘 ) ) + (4 + 2 𝜆 (𝑘 ) ) 𝑑 + 2 𝜆 𝑥 (𝑘 ) = 0, (14.12a)

ℎ(𝑥 (𝑘 ) ) + 2 (𝑥 (𝑘 ) )ᵀ𝑑 = 0. (14.12b)

Since 𝑓 and ℎ are quadratic, their second-order Taylor expansion is exact. We obtain

𝑓 (𝑥 (𝑘 ) + 𝑑) − 𝑓 (𝑥 (𝑘 ) ) = 𝑓 ′(𝑥 (𝑘 ) ) 𝑑 + 1

2

𝑑ᵀ 𝑓 ′′(𝑥 (𝑘 ) ) 𝑑

= −(4 + 2 𝜆 (𝑘 ) ) ∥𝑑 ∥2 − 2 𝜆 (𝑥 (𝑘 ) )ᵀ𝑑 + 1

2

4 ∥𝑑 ∥2 by (14.12a)

= −(2 + 2 𝜆 (𝑘 ) ) ∥𝑑 ∥2 + 𝜆 ℎ(𝑥 (𝑘 ) ) by (14.12b).

We also have

ℎ(𝑥 (𝑘 ) + 𝑑) − ℎ(𝑥 (𝑘 ) ) = ℎ′(𝑥 (𝑘 ) ) 𝑑 + 1

2

𝑑ᵀℎ′′(𝑥 (𝑘 ) ) 𝑑

= −ℎ(𝑥 (𝑘 ) ) + ∥𝑑 ∥2 by (14.12b).

We now consider the case where 𝑥 (𝑘 ) is already admissible, i. e., ℎ(𝑥 (𝑘 ) ) = 0, but 𝑥 (𝑘 ) ≠ (±1, 0)ᵀ. Moreover,

we assume 𝜆 (𝑘 ) < −1. Then the unique solution 𝑑 of the QP satisfies 𝑑 ≠ 0 (Quiz 14.4: Why?) Thus we

have

𝑓 (𝑥 (𝑘 ) + 𝑑) − 𝑓 (𝑥 (𝑘 ) ) = −(2 + 2 𝜆 (𝑘 ) ) ∥𝑑 ∥2 + 𝜆 ℎ(𝑥 (𝑘 ) )︸  ︷︷  ︸
=0

> 0

and also

ℎ(𝑥 (𝑘 ) + 𝑑) − ℎ(𝑥 (𝑘 ) )︸  ︷︷  ︸
=0

= −ℎ(𝑥 (𝑘 ) )︸  ︷︷  ︸
=0

+∥𝑑 ∥2 > 0.

This means that the full QP step 𝑑 would increase both the value of the objective and the value of the

constraint penalty, i. e.,

𝜙1(𝑥 (𝑘 ) + 𝑑) = 𝑓 (𝑥 (𝑘 ) + 𝑑) + 𝛾 (𝑘 ) |ℎ(𝑥 (𝑘 ) + 𝑑) | > 𝜙1(𝑥 (𝑘 ) ),

for any value of the penalty parameter 𝛾 (𝑘 ) ! Therefore, the Armijo condition will not hold for the full step

size 𝛼 (𝑘 ) = 1. Consequently, a step size 𝛼 (𝑘 ) < 1 will be chosen in Algorithm 14.2, resulting in the loss of

Q-superlinear convergence. Starting close to the solution does not help.

Another concrete example for the Maratos effect is given in Nocedal, Wright, 2006, Example 18.1.

One strategy to overcome the Maratos effect is known as second-order correction. In a nutshell, one

modifies the QP direction 𝑑 in case the step size 𝛼 (𝑘 ) = 1 is not acceptable. This modification requires

the solution of a second QP. We refer the reader to Geiger, Kanzow, 2002, Abschnitt 5.5.6 or Nocedal,

Wright, 2006, p.543 for details.

§ 14.5 Globalization Strategies Different from Line Search

Apart from line search, two other globalization strategies are known in constrained optimization.

These are trust-region and filter approaches.
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Trust-Region Approach

We already saw trust-region methods for unconstrained optimization in § 6. An advantage is that we

can dispense with the positive definiteness of the model Hessians since the trust-region constraint

ensures that the QP cannot be unbounded. However, a direct transfer of the technique by considering

trust-region constrained QPs such as

Minimize 𝑓 ′(𝑥 (𝑘 ) ) 𝑑 + 1

2

𝑑ᵀ𝐻 (𝑘 ) 𝑑, where 𝑑 ∈ R𝑛

subject to ℎ(𝑥 (𝑘 ) ) + ℎ′(𝑥 (𝑘 ) ) 𝑑 = 0

and ℓ − 𝑥 (𝑘 ) − 𝑑 ≤ 0

plus ∥𝑑 ∥𝑀 ≤ Δ(𝑘 )

(14.13)

is impossible. (Quiz 14.5: What might be the problem with (14.13)?)

One possible fix was proposed in the dissertation Omojokun, 1989 supervised by Richard Byrd; see also

Conn, Gould, Toint, 2000, Chapter 15.4. The resulting class of methods is known as composite-step
trust-region methods or Byrd-Omojokun methods. They decompose the step 𝑑 into a normal
step and a tangential step according to 𝑑 = 𝑛 + 𝑡 .

The normal step serves to improve the linearized feasibility. It is defined as the solution to

Minimize ∥ℎ(𝑥 (𝑘 ) ) + ℎ′(𝑥 (𝑘 ) ) 𝑛∥2 + ∥max{0, ℓ − 𝑥 (𝑘 ) − 𝑛}∥2

subject to ∥𝑛∥𝑀 ≤ 𝜁 Δ(𝑘 ) .
(14.14)

Here 𝜁 ∈ (0, 1) is the fraction of the trust region radius reserved for the normal step. Problem (14.14) is

a convex problem with a𝐶1
, piecewise quadratic objective. In the absence of inequality constraints, we

can approximately solve (14.14) by the dogleg method, which considers the Cauchy point 𝑛𝐶 of (14.14)

as well as the unique least-norm solution 𝑛𝑈𝐶 of (14.14) with the trust-region constraint removed:

Minimize

1

2

∥𝑛∥2𝑀
subject to ℎ(𝑥 (𝑘 ) ) + ℎ′(𝑥 (𝑘 ) ) 𝑛 = 0.

(14.15)

Problem (14.15) can be solved using the projected conjugate gradient method (Algorithm 13.2). The

dogleg method then either returns 𝑛𝑈𝐶 (if it satisfies the constraint ∥𝑛𝑈𝐶 ∥𝑀 ≤ 𝜁 Δ(𝑘 ) ), or else it finds
the unique intersection of the path

0 −→ Cauchy point 𝑛𝐶 −→ least-norm solution 𝑛𝑈𝐶

with the trust-region ball ∥𝑛∥𝑀 ≤ 𝜁 Δ(𝑘 ) .

The purpose of the tangential step is to reduce the value of the objective in (14.13) while maintaining

the achieved level of linearized feasibility. The tangential step may use up the remainder of the

trust-region ball. This results in the problem

Minimize 𝑓 ′(𝑥 (𝑘 ) ) (𝑛 + 𝑡) + 1

2

(𝑛 + 𝑡)ᵀL𝑥𝑥 (𝑥 (𝑘 ) , 𝜇 (𝑘 ) , 𝜆 (𝑘 ) ) (𝑛 + 𝑡)

subject to ℎ′(𝑥 (𝑘 ) ) 𝑡 = 0

and 𝑡 ≥ min{0, ℓ − 𝑥 (𝑘 ) − 𝑛}
as well as ∥𝑛 + 𝑡 ∥𝑀 ≤ Δ(𝑘 ) .

(14.16)
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In practice, the trust-region constraint in (14.16) is often replaced by the simpler ∥𝑡 ∥2
𝑀
≤ (Δ(𝑘 ) )2 −

∥𝑛∥2
𝑀
. In the absence of inequality constraints, problem (14.16) too can be solved using the using the

projected conjugate gradient method (Algorithm 13.2), endowed with the Steihaug-Toint modifications

(Algorithm 6.14) to monitor the curvature of search directions and the trust-region constraint.

Finally, there is typically a Lagrange multiplier update step. In the absence of inequality constraints,

this can be formulated as

Minimize

1

2

∥∇𝑓 (𝑥 (𝑘+1) ) + ℎ′(𝑥 (𝑘+1) )ᵀ𝜆∥2
𝑀−1 (14.17)

Filter Approach

A filter approach for the solution of nonlinear optimization problems was first introduced in Fletcher,

Leyffer, 2002. It uses a measure of infeasibility, e. g.,

𝜋1(𝑥) =
𝑛ineq∑︁
𝑖=1

max{0, 𝑔𝑖 (𝑥)} +
𝑛eq∑︁
𝑗=1

|ℎ 𝑗 (𝑥) |,

as in the ℓ1 penalty function. We can then consider the problem

Minimize 𝑓 (𝑥), where 𝑥 ∈ R𝑛

subject to 𝑔𝑖 (𝑥) ≤ 0 for 𝑖 = 1, . . . , 𝑛ineq

and ℎ 𝑗 (𝑥) = 0 for 𝑗 = 1, . . . , 𝑛eq.

 (7.1)

as a minimization problem with two goals, the minimization of both 𝑓 and 𝜋1. Such problems are

known as multiobjective problem.

Filter methods maintain a collection of “interesting” points 𝑥 (𝑘 ) , called the filter. All subsequent
iterates compete against points in this filter. More precisely, we say that a pair

(
𝑓 (𝑥 (𝑘 ) ), 𝜋1(𝑥 (𝑘 ) )

)
dominates another pair

(
𝑓 (𝑥 (ℓ ) ), 𝜋1(𝑥 (ℓ ) )

)
if both 𝑓 (𝑥 (𝑘 ) ) ≤ 𝑓 (𝑥 (ℓ ) ) and ℎ(𝑥 (𝑘 ) ) ≤ ℎ(𝑥 (ℓ ) ) hold, i. e.,

if 𝑥 (𝑘 ) is better than 𝑥 (ℓ ) both with respect to objective value and feasibility violation. A filter is any
collection of points 𝑥 (𝑘 ) such that no pair dominates any other pair, i. e.,

F =

{
𝑥 (1) , . . . , 𝑥 (𝑁 )

��� (𝑓 (𝑥 (𝑘 ) ), 𝜋1(𝑥 (𝑘 ) )) is not dominated by

(
𝑓 (𝑥 (ℓ ) ), 𝜋1(𝑥 (ℓ ) )

)
for any ℓ ≠ 𝑘

}
.

(14.18)

A trial iteration, obtained from the solution of a trust-region constrained QP, is then accepted into the

filter if it provides a certain improvement over the points already present. Points which are dominated

by the new member are then removed from the filter. The details of a practical method are beyond our

scope here.

End of Week 13
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Chapter 4 Differentiation Techniques

All algorithms we considered require at least first-order derivatives of the objective and the constraint

functions. Providing these derivatives can be an extra burden to the user. Therefore, the question arises

whether these derivatives can somehow be obtained automatically. This of course also of interest

outside of applications in optimization.

We generally in this chapter consider first-order derivatives for differentiable functions 𝐹 : R𝑛 → R𝑚 .
We recall the structure of the Jacobian

𝐹 ′(𝑥) =
©«
𝜕𝐹1(𝑥)
𝜕𝑥1

· · · 𝜕𝐹1(𝑥)
𝜕𝑥𝑛

...
...

𝜕𝐹𝑚 (𝑥)
𝜕𝑥1

· · · 𝜕𝐹𝑚 (𝑥)
𝜕𝑥𝑛

ª®®®®®¬
∈ R𝑚×𝑛 .

We denote the partial derivatives of 𝐹 , i. e., the columns of the Jacobian, by
𝜕𝐹
𝜕𝑥 𝑗

.

§ 15 Finite Difference and Complex-Step Approximation

§ 15.1 First- and Second-Order Finite Differences

Finite differencing (also known as numerical differentiation) is the most elementary approach to

evaluate derivatives for a given function. Recalling the differentiation formula

𝐹 ′(𝑥) 𝑑 = lim

𝑡→0

𝐹 (𝑥 + 𝑡 𝑑) − 𝐹 (𝑥)
𝑡

,

it is an obvious idea to approximate this directional derivative by the finite difference

𝐹 ′(𝑥) 𝑑 ≈ 𝐹 (𝑥 + 𝑡 𝑑) − 𝐹 (𝑥)
𝑡

(15.1)

for some value of 𝑡 ≠ 0. In case of 𝑡 > 0, we speak of a forward difference, while 𝑡 < 0 is referred

to as a backward difference. Using (15.1), we can thus approximate derivatives using only function

values. Every column of the Jacobian requires one additonal function evaluation with 𝑣 = 𝑒 𝑗 , the 𝑗-unit

vector.

A Taylor analysis shows that the accuracy of (15.1) is of order 𝑡 (provided that 𝐹 is of class 𝐶2
), in

short:

𝐹 ′(𝑥) 𝑑 − 𝐹 (𝑥 + 𝑡 𝑑) − 𝐹 (𝑥)
𝑡

∈ O(|𝑡 |) as 𝑡 → 0.
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(Quiz 15.1: Can you fill in the details?) Thus, in principle, the approximation can be made arbitrarily

precise by choosing 𝑡 small enough. In numerical practice, however, the accuracy is limited by round-

off effects, which dominate the error when 𝑡 is small, since taking the difference between two similar

numbers is ill-conditioned (“catastrophic cancellation”).

In order to achieve higher accuracy, one resorts to a central difference formula

𝐹 ′(𝑥) 𝑑 ≈ 𝐹 (𝑥 + 𝑡 𝑑) − 𝐹 (𝑥 − 𝑡 𝑑)
2𝑡

(15.2)

which is twice as expensive but yields O(|𝑡 |2) accuracy (provided that 𝐹 is of class 𝐶3
). (Quiz 15.2:

Can you fill in the details here as well?) It thus (often) allows us to use larger values of 𝑡 , which cause

less round-off error. In any case, the optimal value for the step size 𝑡 depends on the function 𝐹 and

the direction 𝑣 and is generally unknown.

Many optimization solvers provide a finite difference functionality and fall back to it in case the user

does not provide the respective derivatives.

§ 15.2 Complex-Step Differentiation

A lesser known approach is complex-step differentiation; see Lyness, Moler, 1967; Squire, Trapp,

1998. It requires 𝐹 : R𝑛 → R𝑚 to be a function which smoothly extends into the complex space to a

function 𝐹 : C𝑛 → C𝑚 . A sufficient condition is that 𝐹 is analytic.

The main idea is to use the Taylor expansion

𝐹 (𝑥 + 𝑖 𝑡 𝑑) ∈ 𝐹 (𝑥) + 𝑖 𝑡 𝐹 ′(𝑥) 𝑑 − 1

2

𝑡2 𝐹 ′′(𝑥) [𝑑, 𝑑] + O(|𝑡 |3) (15.3)

for 𝑥, 𝑑 ∈ R𝑛 , where 𝑖 is the imaginary unit. This means that

𝐹 (𝑥) ∈ Re 𝐹 (𝑥 + 𝑖 𝑡 𝑑) + O(|𝑡 |2) and 𝐹 ′(𝑥) 𝑑 ∈ Im 𝐹 (𝑥 + 𝑖 𝑡 𝑑)
𝑡

+ O(|𝑡 |2)

holds for 𝑡 ∈ R, 𝑡 ≠ 0. This has the advantage that we can obtain a second-order accurate approximation

of 𝐹 ′(𝑥) 𝑑 with just one evaluation of 𝐹 , albeit for a complex argument. Since no differences need to

be taken, catastrophic cancellation does not take place.

Example 15.1 (finite differences vs. complex-step differentiation
1
). We consider the function 𝐹 : R→ R,

given by

𝐹 (𝑥) = exp(𝑥)
(cos𝑥)3 + (sin𝑥)3 .

Its true symbolic derivative (in the direction 𝑑 = 1) is given by

𝐹 ′(𝑥) =
exp(𝑥)

[
(cos𝑥)3 + (sin𝑥)3 − 3

(
(sin𝑥)2 cos𝑥 − (cos𝑥)2 sin𝑥

) ][
(cos𝑥)3 + (sin𝑥)3

]
2

.

1
This example is from Cleve Moler’s blog https://blogs.mathworks.com/cleve/2013/10/14/

complex-step-differentiation/.
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𝐹 can be extended to a function C→ C and the formulas for 𝐹 and 𝐹 ′ remain the same.

We numerically compare

the first-order finite difference

𝐹 (𝑥 + 𝑡) − 𝐹 (𝑥)
𝑡

the second-order central finite difference

𝐹 (𝑥 + 𝑡) − 𝐹 (𝑥 − 𝑡)
2𝑡

the complex-step approximation Im

𝐹 (𝑥 + 𝑖 𝑡)
𝑡

for a range of values 𝑡 > 0 to approximate the derivative 𝐹 ′(𝑥) at 𝑥 = 𝜋
4
. It exact value is 𝐹 ′(𝑥) ≈ 3.1018.

The results are shown in Figure 15.1.
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Figure 15.1: Comparison of the approximation errors of the first- and second-order finite differences as

well as the complex-step approximation for the function in Example 15.1. We clearly see

the limited accuracies due to round-off in the finite difference approximations, while the

complex-step method achieves full machine precision.

§ 16 Algorithmic Differentiation

Algorithmic Differentiation (also known as Automatic Differentiation or AD) is a technique to
evaluate derivatives of functions 𝐹 : R𝑛 → R𝑚 that are realized by computer code. The origins of AD

reach as far back as the 1950s; see the references in Bischof, Hovland, Norris, 2008; Griewank, Walther,
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2008. Algorithmic differentiation is based on the fact that even complicated functions are ultimately

compositions of elementary operations such as “+”, “ · ”, “exp”, etc. Using a table of the derivatives of

these elementary functions and the chain rule, the computer code realizing derivatives (for instance

the directional derivative 𝐹 ′(𝑥) 𝛿𝑥 for a given direction 𝛿𝑥 ) can be automatically generated. We begin

with an example.

Example 16.1 (algorithmic differentiation by hand). We use the function from Example 15.1. When

implemented, e. g., in Python syntax, the function may look like this:

y = exp(x) / (cos(x)**3 + sin(x)**3)

When this expression is broken down into elementary functions, which is similar to what a compiler would

do, we might obtain the following sequence of intermediate results. Next to each elementary operation, we

also write the respective derivative.

𝑒 B e
𝑥 ¤𝑒 B e

𝑥 ¤𝑥
𝑐 B cos(𝑥) ¤𝑐 B − sin(𝑥) ¤𝑥
𝑐3 B 𝑐3 ¤𝑐3 B 3 𝑐2 ¤𝑐
𝑠 B sin(𝑥) ¤𝑠 B cos(𝑥) ¤𝑥
𝑠3 B 𝑠3 ¤𝑠3 B 3 𝑠2 ¤𝑠
𝑑 B 𝑐3 + 𝑠3 ¤𝑑 B ¤𝑐3 + ¤𝑠3

𝑦 B
𝑒

𝑑
¤𝑦 B ¤𝑒

𝑑
− 𝑒

𝑑2
¤𝑑

Here a dot above a quantity means the derivative of that quantity with respect to the input variable 𝑥 , in

a given direction 𝛿𝑥 in input space. In this example, since 𝑥 is a scalar, it is reasonable to set 𝛿𝑥 = 1, which

amounts to ¤𝑥 = 1.

While the differentiation process in Example 16.1 was carried out by hand, we were following a

simple set of rules, which can be formalized and automated. In general, we can think of the result

𝑦 = 𝐹 (𝑥) ∈ R𝑚 being obtained from the input 𝑥 passing through a sequence of elementary operations,

which can be arranged in a computational graph.

Definition 16.2 (Directed graph).

(𝑖) A finite directed graph (digraph) is a pair𝐺 = (𝑉 , 𝐸) consisting of a finite set𝑉 (whose elements

are called vertices) and a finite set 𝐸 (whose elements are called edges or arcs). Every edge is a

pair (𝑢, 𝑣) ∈ 𝐸 with 𝑢, 𝑣 ∈ 𝑉 .

(𝑖𝑖) A digraph is called simple if no edge is of the form (𝑢,𝑢) (no loops), and if every possible edge

(𝑢, 𝑣) appears at most once in 𝐸.

(𝑖𝑖𝑖) The fact that (𝑢, 𝑣) is an edge with tail 𝑢 and head 𝑣 will also be denoted by the short-hand notation

𝑢 ≺ 𝑣 or 𝑣 ≻ 𝑢. In this case, we also call 𝑣 a direct successor of 𝑢 and 𝑢 a direct predecessor of 𝑣 .
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Figure 16.1: Computational graph for a possible realization of the function 𝐹 (𝑥) = exp(𝑥 )
(cos𝑥 )3+(sin𝑥 )3 (left)

and the corresponding graph for its derivative (right).

(𝑖𝑣) A tuple (𝑣0, . . . , 𝑣𝑘 ) of vertices, 𝑘 ≥ 1, is said to be a path from 𝑣0 to 𝑣𝑘 if (𝑣𝑖 , 𝑣𝑖+1) ∈ 𝐸 holds for

𝑖 = 0, 1, . . . , 𝑘 − 1.

(𝑣) A simple digraph is said to be acyclic if there is no path from any vertex back to itself.

We now generalize the computations in Example 16.1 to a general function 𝑦 = 𝐹 (𝑥). We assume

that the function evaluation has been represented as a simple, acyclic digraph, which we term a

computational graph of 𝐹 . The vertices 𝑣0, . . . , 𝑣𝑁 of the graph correspond to intermediate quantities,

which can be scalars or vector-valued quantities. Our convention is that 𝑣0 = 𝑥 is the input and

𝑣𝑁 = 𝑦 = 𝐹 (𝑥) is the output. Consequently, 𝑣0 has no direct predecessors and 𝑣𝑁 has no direct

successors. Every intermediate quantity 𝑣1, . . . , 𝑣𝑁 is going to be a function of some of the other
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intermediate quantities. We denote this fact in the form

𝑣𝑖 = 𝜑𝑖 (𝑣 𝑗 ) 𝑗≺𝑖 . (16.1)

The functions 𝜑𝑖 are called elemental functions. They are typically unary or binary functions, i. e.,

{ 𝑗 | 𝑗 ≺ 𝑖} has typically zero, one or two entries. (Quiz 16.1: How do we usually refer to a quantity 𝑣𝑖
that does not depend on any input?) We can assume that the vertices are ordered to that 𝑗 ≺ 𝑖 implies

𝑗 < 𝑖 . In other words, no intermediate quantity depends on an intermediate quantity with a higher

index.

As illustrated in Example 16.1, we may evaluate a directional derivative 𝐹 ′(𝑥) 𝛿𝑥 by propagating, along-

side the values of the intermediate quantities 𝑣0, 𝑣1, . . . , 𝑣𝑁 , the values of their directional derivatives

¤𝑣𝑖 B 𝜕𝑣𝑖
𝜕𝑥
(𝑥) 𝛿𝑥 through the computational graph. Due to the chain rule, these values obey

¤𝑣𝑖 =
∑︁
𝑗≺𝑖

𝜕𝜑𝑖

𝜕𝑣 𝑗
(𝑣 𝑗 ) ¤𝑣 𝑗 for 𝑖 = 1, . . . , 𝑁 . (16.2)

We initialize the process by setting

¤𝑣0 B 𝛿𝑥

and then implement (16.2) with an outer loop over the vertices 𝑣𝑖 from 𝑖 = 1, . . . , 𝑁 and a (short) inner

loop over the few vertices 𝑣 𝑗 that vertex 𝑣𝑖 depends on. Due to 𝑦 = 𝑣𝑁 , we will obtain the desired

derivative as ¤𝑦 = ¤𝑣𝑁 = 𝐹 ′(𝑥) 𝛿𝑥 .

Remark 16.3 (on the forward mode of algorithmic differentiation).
(𝑖) The process of propagating directional derivatives through the computational graph simultaneously

with the quantities needed for the evaluation of 𝐹 (𝑥) is known as the forward mode of algorithmic

differentiation. The quantities ¤𝑣𝑖 are also known as tangents.

(𝑖𝑖) Mathematically speaking, the forward mode computes 𝐹 ′(𝑥) 𝛿𝑥 , i. e., a Jacobian-vector product, by
evaluating the components of the chain rule from the right. For example, in the graph

𝑣0

𝑣1 𝑣2

𝑣3

𝜑
1
(𝑣 0
) 𝜑

2 (𝑣
0 )

𝜑
3 (𝑣

1 , 𝑣
2 ) 𝜑

3
(𝑣 1
, 𝑣
2
)
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we have (omitting arguments for readability)

¤𝑣3 =
𝜕𝜑3

𝜕𝑣1
¤𝑣1 +

𝜕𝜑3

𝜕𝑣2
¤𝑣2 =

𝜕𝜑3

𝜕𝑣1

( 𝜕𝜑1
𝜕𝑣0
¤𝑣0
)
+ 𝜕𝜑3
𝜕𝑣2

( 𝜕𝜑2
𝜕𝑣0
¤𝑣0
)
. (16.3)

(𝑖𝑖𝑖) It is easily possible to evaluate several directional derivatives of 𝐹 ′(𝑥) 𝛿𝑥 at once. All we have to do

is make 𝛿𝑥 a matrix with one column for each direction in the input space. We will then propagate

all directional derivatives at once. This is known as the vector forward mode, and 𝛿𝑥 is called the

seed matrix. For example, when 𝛿𝑥 = Id, we will obtain the full Jacobian ¤𝑦 = 𝐹 ′(𝑥) 𝛿𝑥 = 𝐹 ′(𝑥)
instead of a single Jacobian-vector product.

(𝑖𝑣) A computational graph is an idealized model of a function that is realized as computer code. For

instance, when variables in a code are overwritten, an acyclic computational graph representation

requires new variable names to be generated for disambiguation. In addition, we often have

constructs which make the conversion into a static computational graph impossible, e. g., loops with

a variable number of iterations. Nonetheless, the forward mode of AD works the same way, even

when the computational graph is developing only at run-time and when it depends on the input 𝑥 .

(𝑣) The smallest computational entity in a computational graph are the elemental functions 𝜑𝑖 . What

precisely qualifies as an elemental function depends on the programming language and the libraries

in use. What is important from the AD tool point of view is that the derivatives of an elemental

function w.r.t. its input parameters are available. For instance, when the computational graph

contains an elemental function which realizes 𝜑 (𝐴,𝑏) = 𝐴−1𝑏, i. e., the solution of a linear system,

then wemay need to provide the AD tool with functions that realize the partial directional derivatives

𝜕𝜑

𝜕𝐴
(𝐴,𝑏) 𝛿𝐴 = −𝐴−1 𝛿𝐴𝐴−1𝑏 and

𝜕𝜑

𝜕𝑏
(𝐴,𝑏) 𝛿𝑏 = 𝐴−1𝛿𝑏.

(Quiz 16.2: Can you confirm these formulas for the partial directional derivatives of 𝜑?)

The forward mode is not the only way to obtain derivatives of a function 𝑦 = 𝐹 (𝑥) using algorithmic

differentiation. The reverse mode starts from the output 𝑦 = 𝑣𝑁 and works its way backwards

through the computational graph to evaluate the derivatives

𝑣𝑖 B 𝛿𝑦
𝜕𝑦

𝜕𝑣𝑖
(𝑣𝑖 , . . . , 𝑣𝑁 )

of 𝑦 w.r.t. each of the intermediate quantities 𝑣𝑖 . The quantities 𝑣𝑖 are also known as adjoints. That is,
the quantities propagated through the graph are the derivatives of the linear combination 𝛿𝑦 𝑦 of the

components of the output 𝑦 w.r.t. the intermediate quantities 𝑣𝑖 . Due to the chain rule, these values

obey

𝑣 𝑗 =
∑︁
𝑖≻ 𝑗

𝑣𝑖
𝜕𝜑𝑖

𝜕𝑣 𝑗
for 𝑗 = 1, . . . , 𝑁 . (16.4)

We initialize the process by setting

𝑣𝑁 B 𝛿𝑦.

For our simple example graph
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𝑣0

𝑣1 𝑣2

𝑣3

𝜑
1
(𝑣 0
) 𝜑

2 (𝑣
0 )

𝜑
3 (𝑣

1 , 𝑣
2 ) 𝜑

3
(𝑣 1
, 𝑣
2
)

we obtain (omitting arguments for readability)

𝑦 = 𝑣3 B 𝛿𝑦

𝑣2 = 𝑣3
𝜕𝜑3

𝜕𝑣2

𝑣 1 = 𝑣3
𝜕𝜑3

𝜕𝑣1

𝑣0 = 𝑣2
𝜕𝜑2

𝜕𝑣0
+ 𝑣 1

𝜕𝜑1

𝜕𝑣0
.

This amounts to the formula

𝛿𝑦 𝐹 ′(𝑥) =
(
𝛿𝑦

𝜕𝜑3

𝜕𝑣2

) 𝜕𝜑2
𝜕𝑣0
+

(
𝛿𝑦

𝜕𝜑3

𝜕𝑣1

) 𝜕𝜑1
𝜕𝑣0

. (16.5)

We observe that the reverse mode computes 𝛿𝑦 𝐹 ′(𝑥), i. e., a vector-Jacobian product, by evaluating

the components of the chain rule from the left. Compare this to the forward mode representation

¤𝑣3 =
𝜕𝜑3

𝜕𝑣2

( 𝜕𝜑2
𝜕𝑣0
¤𝑣0
)
+ 𝜕𝜑3
𝜕𝑣1

( 𝜕𝜑1
𝜕𝑣0
¤𝑣0
)
, (16.3)

where the components of the chain rule are evaluated from the right.

We now work out a slightly more complex example for the reverse mode by hand by revisiting

Example 16.1.
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Example 16.4 (algorithmic differentiation by hand: reverse mode).

𝑒 B e
𝑥

𝑐 B cos(𝑥)
𝑐3 B 𝑐3

𝑠 B sin(𝑥)
𝑠3 B 𝑠3

𝑑 B 𝑐3 + 𝑠3
𝑦 B

𝑒

𝑑

𝑦 B 𝛿𝑦

initialize 𝑑 , 𝑠3, 𝑠 , 𝑐3, 𝑐 and 𝑒 to zero

𝑒 B 𝑒 + 𝛿𝑦 𝜕𝑦
𝜕𝑒

= 𝑒 + 𝑦 1

𝑑

𝑑 B 𝑑 + 𝛿𝑦 𝜕𝑦
𝜕𝑑

= 𝑑 − 𝑦 𝑒

𝑑2

𝑐3 B 𝑐3 + 𝛿𝑦
𝜕𝑦

𝜕𝑑

𝜕𝑑

𝜕𝑐3
= 𝑐3 + 𝑑 1

𝑠3 B 𝑠3 + 𝛿𝑦
𝜕𝑦

𝜕𝑑

𝜕𝑑

𝜕𝑠3
= 𝑠3 + 𝑑 1

𝑠 B 𝑠 + 𝛿𝑦 𝜕𝑦
𝜕𝑠3

𝜕𝑠3

𝜕𝑠
= 𝑠 + 𝑠3 3 𝑠2

𝑥 B 𝑥 + 𝛿𝑦 𝜕𝑦
𝜕𝑠

𝜕𝑠

𝜕𝑥
= 𝑥 + 𝑠 cos(𝑥)

𝑐 B 𝑐 + 𝛿𝑦 𝜕𝑦

𝜕𝑐3

𝜕𝑐3

𝜕𝑐
= 𝑐 + 𝑐3 3 𝑐2

𝑥 B 𝑥 + 𝛿𝑦 𝜕𝑦
𝜕𝑐

𝜕𝑐

𝜕𝑥
= 𝑥 + 𝑐 (− sin(𝑥))

𝑥 B 𝑥 + 𝛿𝑦 𝜕𝑦
𝜕𝑒

𝜕𝑒

𝜕𝑥
= 𝑥 + 𝑒 e𝑥

Remark 16.5 (on the reverse mode of algorithmic differentiation).

(𝑖) The reverse mode propagates the derivatives in reverse order through the computional graph,

compared to the flow of data during the evaluation of 𝐹 (𝑥) itself. Therefore, all intermediate

quantities from the forward pass need to be stored! For example, near the end of the backward pass,

we require access to the intermediate quantity 𝑐 from near the beginning of the forward pass to

evaluate 𝑐 B 𝑐 + 𝑐3 3 𝑐2.

(𝑖𝑖) The chain rule

𝑣 𝑗 =
∑︁
𝑖≻ 𝑗

𝑣𝑖
𝜕𝜑𝑖

𝜕𝑣 𝑗
for 𝑗 = 1, . . . , 𝑁 (16.4)

is implemented with the outer loop over the vertices 𝑣𝑖 from 𝑖 = 𝑁, . . . , 1, and the (short) inner loop

over the few vertices 𝑣 𝑗 that vertex 𝑣𝑖 depends on. (Quiz 16.3: Why can’t the outer loop be over

𝑗 and the inner loop over 𝑖?) This loop ordering means that at the time vertex 𝑣𝑖 is visited in the
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forward mode reverse mode

𝐹 (𝑥) plus 𝐹 ′(𝑥) 𝛿𝑥 𝐹 (𝑥) plus 𝛿𝑦 𝐹 ′(𝑥)
computational effort (time) ≤ (1 + 1.5𝑝) effort(𝐹 (𝑥)) ≤ (1.5 + 2.5𝑞) effort(𝐹 (𝑥))
memory requirement ≤ (1 + 𝑝)memory(𝐹 (𝑥)) ≤ (1 + 𝑞)memory(𝐹 (𝑥))

Table 16.1: Computation effort and memory requirements for the (vector) forward and (vector) reverse

mode of AD, where 𝑝 denotes the number of columns in 𝛿𝑥 , and 𝑞 denotes the number of

rows in 𝛿𝑦 . See Griewank, Walther, 2008, Chapter 4 for details.

backward pass, the values 𝑣 𝑗 of all vertices 𝑣 𝑗 that vertex 𝑣𝑖 depends on are updated. At a later stage,

the value 𝑣 𝑗 may be updated again. (Quiz 16.4: When does it happen that a value 𝑣 𝑗 is updated

multiple times?) In Example 16.4, this happens only for vertex 𝑥 , whose adjoint 𝑥 is touched three

times, while all other adjoints such as 𝑒 , 𝑑 etc. are touched only once during the backward pass.

(𝑖𝑖𝑖) The vector reverse mode evaluates several vector-Jacobian products at once. All we have to do is

make 𝛿𝑦 a matrix with one row for each direction in the output space. Again, 𝛿𝑦 is called the seed
matrix for the reverse mode. When 𝛿𝑦 = Id, we will obtain the full Jacobian 𝑦 = 𝛿𝑦 𝐹 ′(𝑥) = 𝐹 ′(𝑥)
instead of a single vector-Jacobian product.

(𝑖𝑣) We emphasize again that the intermediate values 𝑣𝑖 as well as their tangents ¤𝑣𝑖 (forward mode)

or adjoints 𝑣𝑖 (reverse mode) need not necessarily be scalars (as they were in our Examples 16.1

and 16.4), but they can be vectors, matrices, or any other data type representing numerical values.

Let us briefly discuss the numerical effort incurred by the forward and the reverse mode of AD to see

in which case which variant is to be preferred. Table 16.1 summarizes the results in simplified form.

More details can be found in Griewank, Walther, 2008, Chapter 4.

It can be shown that the evaluation of 𝐹 (𝑥) plus a single Jacobian-vector product 𝐹 ′(𝑥) 𝛿𝑥 has an

effort which is a small multiple of the effort to evaluate 𝐹 (𝑥) alone. The effort grows linearly with

every additional Jacobian-vector product, i. e., every column of the seed matrix 𝛿𝑥 . Therefore, an

evaluation of the full Jacobian of a function 𝐹 : R𝑛 → R𝑚 via the forward mode has a time and memory

complexity proportional to the dimension 𝑛 of the input, relative to the complexity of evaluating 𝐹 (𝑥)
alone.

Similarly, the evaluation of 𝐹 (𝑥) plus a single vector-Jacobian product 𝛿𝑦 𝐹 ′(𝑥) also has an effort which
is a small multiple of the effort to evaluate 𝐹 (𝑥) alone. This time, however, the effort grows linearly

with every additional row of the seed matrix 𝛿𝑦 . Consequently, an evaluation of the full Jacobian of a

function 𝐹 : R𝑛 → R𝑚 via the reverse mode has a time and memory complexity proportional to the

dimension𝑚 of the output, relative to the complexity of evaluating 𝐹 (𝑥) alone.

For instance, the derivative of a scalar-valued function 𝑓 : R𝑛 → R (𝑚 = 1!) should clearly be obtained

using the reverse mode! By the way, the famous backpropagation in the training of neural networks

is nothing but the reverse mode of AD, applied to the scalar-valued loss (objective) function.

Algorithmic differentiation can be implemented via
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(1) source transformation, where the AD tool takes code realizing a function 𝐹 : R𝑛 → R𝑚 as

input and returns augmented code to evaluate 𝐹 (𝑥) plus 𝐹 ′(𝑥) 𝛿𝑥 (forward mode
2
), or 𝐹 (𝑥) plus

𝛿𝑦 𝐹 ′(𝑥) (reverse mode
3
) as output,

(2) or via operator overloading, where the AD tool overloads all algorithmic operations of the

programming language and augments them with derivative functionality.

There is much more to be said about algorithmic differentiation, its efficient implementation, floating

point error analysis, higher-order derivatives etc. Suffice it to mention that numerous stand-alone AD

tools exist for a range of programming languages, while other AD tools are included in libraries devoted,

for instance, to optimization and machine learning. A good source is https://autodiff.org.

End of Week 14

2
The code that implements the forward mode derivative is also known as tangent code or tangent model.
3
The code that implements the reverse mode derivative is also known as adjoint code or adjoint model.
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