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Chapter o Introduction

§ 1 ELEMENTARY NOTIONS

Mathematical optimization is about solving problems of the form

Minimize f(x) where x € Q (objective function)
subjectto gi(x) <0 fori=1,...,npeq (inequality constraints) (1.1)
and hj(x)=0 forj=1,...,nq. (equality constraints)

Q € R" is the basic set and x is the optimization variable or simply the variable of the problem.
We will assume that

+ the functions f, g;, hj: R” — R are sufficiently smooth (C? functions),

+ we have a finite number (possibly zero) of inequality and equality constraints, i. e., nipeq and neq
are in Nj.

We will assume Q = R”, i.e., we consider only continuous optimization problems and without
implicit constraints.

Definition 1.1 (Elementary notions).

(i) The set
F = {x € R”!g,-(x) <0 foralli=1,...,Nineq, hj(x) =0 forall j = 1,...,neq} (1.2)

associated with an optimization problem (1.1) is termed the feasible set. Any x € F is termed a
feasible point.

(ii) The inequality g;(x) < 0 is called active at a point x if g;(x) = 0 holds. It is called inactive in
case gi(x) < 0. It is called violated if g;(x) > 0 holds.

(iii) The value
f*=inf{f(x)|x € F}

is termed the infimal value of problem (1.1).

(iv) In case F = 0, the problem (1.1) is said to be infeasible. In that case, we have f* = +co. In case
f* = —oo, the problem is said to be unbounded.
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(v) A pointx* € F is a global minimizer or globally optimal solution of (1.1) if

f(x*) < f(x) forallx € F

holds. Equivalently, x* € F is a global minimizer if f(x*) = f* holds. In this case, the infimal
value f* is also referred to as the global minimum or globally optimal value of (1.1).

(vi) A global minimizer x* is strict in case
f(x*) < f(x) forallx € F, x # x".
vii) A point x* € F is a local minimizer or locally optimal solution of (1.1) if there exists a
(vii) * local minimi locall imal soluti (11) if th
neighborhood U (x*) such that
f(x*) < f(x) forallx e FNU(x")

holds. In this case, f(x*) is also referred to as a local minimum or a locally optimal value of

(1.2).
(viii) A local minimizer x* is strict in case
f(x*) < f(x) forallx e FNU(x"), x#x".

(ix) An optimization problem (1.1) is solvable if it has at least one global minimizer, i. e., if the optimal
value is attained at some point. Otherwise, the problem is unsolvable.

Definition 1.2 (Classification of optimization problems).

(i) An optimization problem (1.1) is said to be unconstrained in case Nineq = Neq = 0. Otherwise, it is
said to be equality constrained and/or inequality constrained.

(ii) Inequality constraints of the simple kind
t; < x; < uj, i=1...,n
with bounds ¢; € R U {—co} and u; € R U {0} are called bound constraints.

(iii) When f is a quadratic polynomial and g and h are affine linear functions, then (1.1) is called a
quadratic optimization problem or a quadratic program (QP).

(iv) In the general case, i.e., when (1.1) is not a quadratic program, we refer to (1.1) as a nonlinear
optimization problem or nonlinear program (NLP).

The emphasis in this class is on numerical techniques for unconstrained and constrained nonlinear
programs. We will see that fast algorithms take into account the optimality conditions of the respective
problem. Therefore we will also discuss optimality conditions.
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We will begin in Chapter 1 with algorithms for unconstrained optimization. Some of the content was
already part of the class Grundlagen der Optimierung (Herzog, 2022), but we will revisit the material
in more detail here. The theory for constrained problems is relatively involved and merits its own
chapter (Chapter 2). We will subsequently discuss major algorithmic ideas for constrained problems in
Chapter 3. Finally, we will review in Chapter 4 some computer-aided techniques to obtain derivatives
of functions, which the algorithms under consideration generally require.

Throughout the class, we will emphasize the connections between optimization and numerical linear
algebra.

§ 2 NOTATION AND BACKGROUND MATERIAL

In these lecture notes we use color codes for definitions and highlights. The natural numbers are
N ={1,2,...}, and we write Ny for NU {0}. We denote open intervals by (a, b) and closed intervals by
[a, b]. We usually use Latin capital letters for matrices, Latin lowercase letters for vectors and Greek or
Latin lowercase letters for scalars. We use Id for the identity matrix. We distinguish the vector space
R" of column vectors from the vector space R, of row vectors.

§ 2.1 VECTOR NORMS

Aninner product (-, -) on R” is a symmetric and positive definite bilinear form, i. e., amap R"xXR" — R
with the following properties:

(x, ) = (¥, x) (symmetry) (2.1a)
(x1+ a2 x2,y) = a1 (x1, y) + a2 (x2, y) (bilinearity part 1) (2.1b)
(x, pry1+ P2 y2) = Bi (x, y1) + P2 (x, y2) (bilinearity part 2) (2.1¢)
(x,x) 20 and x#0= (x,x)>0 (positive definiteness) (2.1d)

for all x, x1, x2, y, y1, y2 € R" and all ay, ap, f1, B2 € R.

Inner products on R" are in one-to-one correspondence with symmetric and positive definite (s. p.d.)
n X n matrices. That is, every s. p. d. matrix M € R"*" induces an inner product

(x, y)m = x"My,

and, on the other hand, every inner product (-, -) on R" is induced by an s. p. d. matrix M. For simplicity,
we will refer to M itself as the inner product it induces, or use the term “M-inner product”.

Every inner product (-, )y induces a norm' by way of

[|lx]lp == VX™M x. (2.2)

"We are only considering norms induced by inner products.
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In particular, the Euclidean inner product x"y corresponds to the identity matrix M = Id, and we denote
the associated norm by ||x||. We won’t be writing {(x, y) or x - y for the Euclidean inner product.

Notice that for vectors x, y € R", we have

a'b=aM'Mb
< |IM7'a||ml|bllp by the Cauchy-Schwarz inequality w.r.t. the M-inner product
= [lallp-1llbllm- (2.3)

§ 2.2 MATRIX NORMS

A matrix A € R™" represents a linear map by way of R 3 x - Ax € R™. When R" is equipped
with the M;-inner product and R™ is equipped with the M;-inner product, we define the matrix norm
or operator norm of A as

1A x ||,
Allpm,—p = max ——. 2.
” ”Mz M; 20 ||x||Ml ( 4)
We thus have
lAx|lm, < |AllMy—m, 1x|lag,  for all x € R™. (25)

When M; and M; are both the Euclidean inner products, ||A|[1g—1q or simply ||Al| is the largest singular
value of A. In the general case, ||A|| s, is the largest singular value of a suitably generalized singular
value decomposition.

There are matrix norm which are not operator norms. The most prominent one is induced by the inner
product

A:B = trace(A'B) = Z Z a;j bij. (2.6)

i=1 j=1

jate = (313 a) " ()

The associated norm

is termed the Frobenius norm of A.

§ 2.3 EIGENVALUES AND EIGENVECTORS

Every symmetric matrix A € R™" possesses an orthogonal transformation to a diagonal matrix,
known as eigen decomposition or spectral decomposition. That is, there exists an orthogonal
matrix V € R™" and a diagonal matrix A € R™*", such that

AV =VA, ie, A=VAV (2.8)

holds. The diagonal of A contains the eigenvalues A;, and the columns v; of V' are the corresponding
eigenvectors. This decomposition yields the complete solution to the eigenvalue problem

Av = Av. (2.9)
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We also work with the generalized eigenvalue problem
Av=AMvo (2.10)

for the particular case where A is still symmetric and the second matrix M € R™*" is s. p.d. There
exists an analogous generalized spectral decomposition

AV=MVA, ie, A=MVAV'M, (2.11)

where now V is orthogonal w.r.t. the M-inner product, i.e., VMV = Id holds. This implies VVT =
M~!. We also refer to the solutions of (2.10) as the eigenvalues/eigenvectors of A w.r.t. M or
eigenvalues/eigenvectors of the pair (A; M).

In view of the Courant-Fischer theorem for (generalized) eigenvalues of symmetric matrices, the
generalized Rayleigh quotient of A w.r.t. M satisfies

.
A

X AX < Amax(A; M) for all x # 0. (2.12)

x™M x

Amin (A§ M) <

The eigenvectors associated with the smallest and largest generalized eigenvalues Apnin(A; M) and
Amax (A; M) satisty the first respectively the second inequality with equality. Using (2.3) and (2.5), we
also have

il Axlly-r _ xTAx - [lxllallA X

. < < < [Allm-1em
1113 113 113

—lAllm-1em <

and thus
Amax(H; M) < | H||p1epy and = Agin(H; M) < |[H|| g1 - (2.13)

Notice that the generalized eigenvalue problems (2.10) and

Mo=AMA"Mo (2.14a)
as well as

AM 'Av=21Av (2.14b)

have the same eigenvalues and eigenvectors (provided #ease-ef{s=tta) that A is not only symmetric
but also invertible) since Mo = AMA Mo ©0v=1A""Mv e Av=AMvand AM Av=1Av &
M™'Av = Ao & Av = A Mo. Consequently, we obtain the following estimate for the generalized
Rayleigh quotients associated with (2.14):

x™M x

Amin(A; M) < ——mmme < Amax (A3 M) forallx # 0, (2.152)
TAMA
Mmin(AsM) < T2 28 <) (AsM) forall x # 0. (2.15b)
xTAx

Every s. p.d. matrix A € R™" possesses a unique s. p. d. matrix square root A2, When A = VAV"
is a spectral decomposition of A with orthogonal V, then

A2 = yAV2yT (2.16)

holds. Herein, A2 is the elementwise square root of the diagonal matrix A.

https://tinyurl.com/scoop-nlo 1


https://en.wikipedia.org/wiki/Min-max_theorem
https://en.wikipedia.org/wiki/Rayleigh_quotient
https://tinyurl.com/scoop-nlo

R. Herzog @O®S

§ 2.4 KANTOROVICH INEQUALITY

Suppose that A is an s.p.d. matrix. Let us denote the extremal eigenvalues by & = Apnin(A) and
B = Amax(A). Moreover, since A is s. p. d., it follows that its condition number is given by

K= —. (2.17)

Notice that a condition number always satisfies k > 1. From the Rayleigh quotient estimate (2.12) (with
M =1d), we have
x"Ax
llx[1?

Moreover, since the eigenvalues of A™! are the reciprocals of those of A, we have Ap.(A™) =
1/Anin(A) = 1/« and thus

<p.

XA lx 1
A
[l a

These inequalities hold for all x € R™ \ {0}, and they imply

(x"Ax) (x"A 1 x) - B
llxll* T a

This estimate, however, is not sharp in general. (Quiz 2.1: Can you explain why not?) The Kantorovich

inequality improves this estimate.

Lemma 2.1 (Kantorovich inequality). Suppose that A € R™" iss.p.d., & = Anin(A) and f = Anax(A)
are its extremal eigenvalues, and x = f/a is its condition number. Then

(x"Ax) (x"A™x) - (a+pB)? - B

1< 18
ST T T4ap o« (218
holds for all x € R™ \ {0}, or equivalently, in terms of the condition number x = f/a,
TA TA—l 1 2
AN AT (kDT (2.18b)

- [l * - 4k

Proof. The Cauchy-Schwarz inequality implies

xell2 = xTx = XAV A2 < A2 AV 2]
By squaring this, we obtain

llxll* < [JA™Y2x|? |AY%x|)? = (x"Ax) (x"A"'x)

and thus the lower bound in (2.18).

2Generally, the condition of an invertible matrix A is x = [|A|| [|A~1||. This is equal to omax (A)/Omin (A) with the extremal
singular values omax(A) and opin (A). Since A is symmetric, its singular values are just the absolute values of its
eigenvalues, and since A is also positive definite, we have omax(A) = Amax(A) = f and opin(A) = Anin(4) = a.
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From here on, the proof follows Anderson, 1971, as reproduced in the Master’s thesis Alpargu, 1996,

Section 1.2.2. Let Aj,...,4, > 0 be the eigenvalues of A (in any order), and let vy,...,v, be an
orthonormal set of associated eigenvectors. We represent x € R" \ {0} as x = )l y; v;. Suppose,
wlo.g., that [|x]|* = X1, y? = 1 holds. Inserting the representation of x yields

(xTAx) (x"A™x) g e 1,
HE = [Z;Ai)/i] I:Zl:/l_l}/l]
— —
—E(T) —E(1/T)

It is helpful to think about the two factors on the right-hand side as expected values of a “random
variable” T and 1/T, respectively. Here T takes the values A; € [a, f] with “probability” y;. For any
0 <a <T < B, we can estimate

0<s(f-T)(T-a)=(p+a-T)T-af,

and thus
1 a+p-T
=< .
T ap
Taking the expected value, this implies
- E(T
BT ET) < B(r) 2H2—ED
ap
(a+p? 1 1 2
=—"—-—|E(T) - -
oy R IEOREICRY))
_@+p?
dap
This shows that essential upper bound in (2.18). The remaining inequality follows directly from
0<ac<p. m]

Instead of the Euclidean norm, we can also use the norm induced by the M-inner product.

Corollary 2.2 (Generalized Kantorovich inequality). Suppose that A € R™" and M are both s. p. d.,
& = Amin(A; M) and f = Anax(A; M) are the extremal generalized eigenvalues of A w.r.t. M. Then

- (x"Ax) (x"M A™IM x) _(a +p)? B
a

1 - 4ap

< (2.19a)

holds for all x € R™ \ {0}, or equivalently, in terms of the generalized condition numberx = f/a,

WA (AT (k4P (2.19b)

(B4} - 4k

We do not give a proof of Corollary 2.2 here; see for instance Herzog, 2022, Folgerung 4.14.
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§25

FUNCTIONS AND DERIVATIVES

Given a function f: R” — R and x € R”, the derivative of the partial function t > f(x +te®)
at t = 0 is the i-th partial derivative of f at x, briefly: aixif(x). Here e!) = (0,...,0,1,0,...,0)7
is one of the standard basis vectors of R™. In other words,

fxrte®) - fx)

t

2 .
a—xif(x) = lim

More generally, the derivative of the function t — f(x + td) at t = 0 is the (two-sided)
directional derivative of f at x in the direction d € R", briefly:

flcttd) - fx)
t

0 )
oq/ ) = lim

The right-sided derivative of the function t  f(x+td) att = 0 is the (one-sided) directional
derivative of f at x in the direction d € R", briefly:

flrtd - f(
N t '

fxd) =1

A function f: R" — R is differentiable at x € R" if there exists a row vector v € R, such that

flx+d) - f(x)—od
Il

— 0 ford — 0.

In this case, the vector v is the (total) derivative of f at x, and it is denoted by f’(x).
When f: R" — R is differentiable at x € R”, then
P (22, -, 20 e,

The transposed vector (a column vector)

Vf(x) = =f'(x)" eR"

of (x)

is the gradient (w.r.t. the Euclidean inner product) of f at x.
When f: R" — R is differentiable at x € R”, then
/ a /
flad) = —5f(x) =f(x)d

holds for all d € R”. That is, the one-sided and two-sided directional derivatives of f at x agree,
and they can be evaluated by applying the derivative f’(x) to the direction d.
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« A function f: R" — R is continuously partially differentiable or briefly: C'(R", R), if all

af (x . . . . .
];; ), as functions of x, are continuous. C!'-functions are differentiable, and
1

the derivative f’ is continuous.

partial derivatives

+ A vector-valued function F: R® — R™ is differentiable at x € R" if all component func-
tion Fi, ..., F, are differentiable at x. In this case, the derivative F’(x) is given by the Jacobian
of F at x, i.e., by

9F(x) 9F(x)
oxq oxp
: € Rmx n .
9Fm(x) 9Fm (x)
oxy oxy,

« F is continuously partially differentiable if all entries of the Jacobian are continuous as
functions of x. C!-functions are differentiable, and the derivative F’ is continuous.

« A function f: R" — R is twice differentiable at x € R" if f is differentiable in a neighbor-
hood of x and the derivative x — f’(x) € R" is differentiable at x. In this case, the second
derivative f”'(x) is given by the Hessian of f at x, i. e., by the matrix of second-order partial

derivatives

Ff(x)  Ff(x) Ff(x)

Ix? ox19x;  9x19xn

Ff(x)  Ff(x) Ff(x)

(82f (x) )n _ | xom ox? T x,0%n

ax,' 8xj i, j=1 : : :
Ff(x)  Ff(x) Ff(x)
Oxpdx1  Oxpdxz  oxi

When f is twice differentiable at x, then the Hessian is symmetric by Schwarz’ theorem.3

« A function f: R" — R is twice continuously partially differentiable or briefly: C*(R", R), if
all entries of the Hessian are continuous as functions of x. C?-functions are twice differentiable.

§ 2.6 TAYLOR’S THEOREM
We are going to state Taylor’s theorem in two variants:

Theorem 2.3 (Taylor, see Cartan, 1971, Theorem 5.6.3). Suppose that G € R" open, k € Ny and
f: G — Rk times differentiable, and (k + 1) times differentable at x'*) € G. Then for all ¢ > 0, there
exists § > 0 such that

incasek=0: [f(x”+d) - f(x'?) - £ (x)d| < elldl],
incasek=1: |f(x® +d) - fx) = f'(x©)d - %de”(x(O))d| <eld|P.

forall ||d|] < 5.

3See for instance Cartan, 1971, Proposition 5.2.2
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Theorem 2.4 (Taylor, see Geiger, Kanzow, 1999, Satz A.2 or Heuser, 2002, Satz 168.1).

Suppose that G C R" is open, k € Ny and f: G — R (k + 1) times continuously partially differentiable,
briefly a C*'(G, R) function. Suppose that x'*) and x©) + d and the entire line segment between them lie
in G. Then there exists £ € (0,1) such that

incasek =0 : f(x(o) +d) = f(x(o)) +f'(x(0) +&d)d (mean value theorem),

1
incasek=1: f(x +d) = fFx) + F/(x?)d + Ede”(x(O) +&d)d.

§ 2.7 CONVERGENCE RATES

We denote (vector-valued) sequences N — R” by (x(k) ) and not (xx) etc., in order to avoid a conflict of
notation with the components of a vector x = (xi,...,x,)" € R". The subsequence of (x(k)) obtained

by the strictly increasing sequence N 3 £ > k©) € N is denoted by (x(km)).

We introduce various convergence rates for sequences in order to characterize the speed of convergence,
e.g., of iterates in an algorithm.

Definition 2.5 (Q-convergence rates?).
Suppose that (x®)) ¢ R" is a sequence and x* € R™. Moreover, let M be an inner product on R".

(i) (x(k)) converges to x* (at least) Q-linearly w.r.t. the M-norm if there exists ¢ € (0,1) such that

(k+1)

|ES — x|y < cllx® —x*|lp  forallk € N sufficiently large.

(i1) (x(k)) converges to x* (at least) Q-superlinearly w.r.t. the M-norm if there exists a null sequence
(e%)) such that

e =g < e®) x® < xllas - Sfor allk € 1.

(iii) Suppose that x*) — x*, (x(k)) converges to x* (at least) Q-quadratically w.r.t. the M-norm if
there exists C > 0 such that

x5 = x|l < Cllx® — x*||3, forallk € N.

Note: Q-superlinear and Q-quadratic convergence of a sequence are independent of the norm (inner
product) M. However, the property of Q-linear convergence can be lost when changing the norm.

Definition 2.6 (R-convergence rates>).
Suppose that (x(k)) C R" is a sequence and x* € R". Moreover, let M be an inner product on R".

4“Q” stands for “quotient”.
5“R” stands for “root”.
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(i) (x(k)) converges to x* (at least) R-linearly w.r.t. the M-norm if there exists a null sequence (s(k))
such that
Ix® —x*||p < e® forallk €N,

and (e(k)) converges to zero Q-linearly w.rt. | -|.

(i) (x(k>) converges to x* (at least) R-superlinearly w.r.t. the M-norm if there exists a null sequence
(e%)) such that
Ix® —x*||y < e® forallk €N,

and (e(k)) converges to zero Q-superlinearly w.rt. | -|.

(i) (x(k>) converges to x* (at least) R-quadratically w.r.t. the M-norm if there exists a null sequence
(E(k)) such that

Ix® —x*||y < e® forallk €N,

and (E(k)) converges to zero Q-quadratically w.r.t. | -|.

Note: The R-convergence modes are slightly weaker than the respective Q-convergence rates. Q-
convergence considers the decrease in the distance to the limit ||x¥) — x*||5; in every step of the
sequence. By contrast, R-convergence considers the decrease overall.

§ 2.8 CONVEXITY

Convexity plays a very important role in optimization in general. In this class, however, we will rely
on it only scarcely. We briefly recall here some elements of convexity. You may study Herzog,
2022, § 13 if you wish to have more background information.

Definition 2.7 (Convex set).
A set C C R" is termed convex if x,y € C and a € [0,1] implyax+ (1—a) y € C.

The condition in Definition 2.7 means that the entire line segment between x and y belongs to C.

Definition 2.8 (Convex function).
A function f: R" — R is termed

(i) convex in case
flax+(1-a)y) <af(x)+1-a)f(y) (2.20)
holds for allx, y € R" and a € [0,1].

(i) strictly convex in case

flax+(1=-a)y) <af(x)+1-a)f(y) (2.21)
holds for all x, y € R" and a € (0,1).
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(iii) p-strongly convex or strongly convex with parameter > 0 in case

flax+(1-a) y)+§0!(1—06)||x—yll2 <af(x)+1-a)f(y)

holds for allx,y € R" and « € [0,1].

(2.22)

(iv) concave (concave) or strictly concave or constrly concave if —f is convex or strictly convex or

strongly convex, respectively.

Theorem 2.9 (Characterization of convexity via first-order derivatives).
Suppose that f: R"™ — R is differentiable.

(a) The following are equivalent:
(i) f is convex.

(ii) Forallx,y € R",

fE-f =z f M-y (2.23)
holds.
(iii) Forallx,y € R",
(F) = fM)x=» =20 (2.24)
holds. Equation (2.24) means that f’ is a monotone operator.
(b) The following are equivalent:
(i) f ist strictly convex.
(ii) Forallx,y € R" such that x # v,
f&) =f) > fF(Nx-y) (2.25)
holds.
(iii) For allx,y € R" such thatx # y,
(f' () = f' () (x = ) > 0. (2.26)
Equation (2.26) means that f’ is a strictly monotone operator.
(c) The following are equivalent:
(i) f ist strongly convex.
(ii) There exists u > 0 such that for all x, y € R",
FG) = £ = /()= ) + 5 llx = P (227
holds.
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(iii) There exists u > 0 such that for all x, y € R",

(f) = f () (x—y) = pllx -yl (2.28)

Equation (2.28) means that f’ is a strongly monotone operator.

Theorem 2.10 (Characterization of convexity via second-order derivatives).
Suppose that f: R" — R is twice differentiable.

(a) The following are equivalent:

(i) f ist convex.

(ii) f"" is everywhere positive semidefinite (has only non-negative eigenvalues).
(b) When " is everywhere positive definite, then f is strictly convex.
(c) The following are equivalent:

(i) f is strongly convex with parameter j1 > 0.

(ii) The smallest eigenvalue of f" (x) satisfies Amin(f”'(x)) = p > 0 for all x € R™.

§ 2.9 HYPERPLANES AND HALF SPACES

Suppose that a € R", a # 0 and € R. Then the set
H(a p) = {x €R"|a'x = B} (2.20)
is termed a hyperplane in R” with normal vector a.

A hyperplane separates R" into two closed half spaces

H (a,B) = {x e R"|a'x < B} negative half space,

2.30
H"(a,B) = {x e R"|a'x > B} positive half space. (2:30)

§ 210 MISCELLANEA

We denote the interior of a set S € R” by int S and its closure by cl S.

Given ¢ > 0 and x € R",
BY(x) = {x e R"||lx = X|lm < ¢}
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denotes the open e-ball w.r.t. the M-norm about X (centered at x). Similarly, the closed ¢-ball is

clB]EVI(E) = {x € R"| [|x —x||pm < e}.

A neighborhood of a point X € R is a set containing some open ball centered at x. We often write
U (x) for such a neighborhood.

The ceiling function [x] returns the smallest integer > x.
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Chapter 1 Numerical Techniques for Unconstrained
Optimization Problems

We discuss in this chapter numerical methods for the unconstrained version of (1.1), i.e.,
Minimize f(x) where x € R". (up)

The reason for discussing the unconstrained problem first is that we can introduce the essential
algorithmic techniques without the difficulties of any constraints present.

Up front, we mention that we can only hope to find local minimizers. Determining global minimizers is
generally much harder and only possible under additional assumptions on the objective, and generally
only in relatively small dimensions n € N. A notable case of an additional assumption is that of a
convex objective f. In this case, every local minimizer is already a global minimizer. Morever, the first-
order optimality condition is already sufficient for optimality, and we do not require a second-order
condition.

§3 OpTIMALITY CONDITIONS

We suppose you have seen the following first- and second-order optimality conditions, so we only
briefly recall them; see Herzog, 2022, § 3 for more details.

Theorem 3.1 (First-order necessary optimality condition).
Suppose that x* is a local minimizer of (UP) and that f is differentiable at x*. Then f'(x*) = 0.

Proof. Suppose that d € R”" is arbitrary. We consider the curve y: (=6,5) — R”, y(t) := x* + ¢ d. For
sufficiently small § > 0, this curve runs within the neighborhood of local optimality of x*. This implies
that f o y has a local minimizer at ¢ = 0.

From this local optimality, we infer that the difference quotient satisfies

t t <0 fort<O.

F®) = F(r(0) _ flx"+td) - f(x") {z 0 fort>0,

On the other hand, this difference quotient converges to f’(x*) d as t — 0. Consequently, we must
have f’(x*)d = 0. Since d € R" was arbitrary, this means f’(x*) = 0. O
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A point x € R" with the property f’(x) = 0 is termed a stationary point of f.

Theorem 3.2 (Second-order necessary optimality condition).
Suppose that x* is a local minimizer of (UP) and that f is twice differentiable at x*. Then the Hessian
" (x*) is positive semidefinite."

Proof. Suppose that d € R” is arbitrary. Wie in Theorem 3.1 we define y(¢) = x* + t d and again
consider the objective along the curve, i.e., ¢ := f oy, which has a local minimizer at ¢ = 0. Since ¢ is
twice differentiable at t = 0, Theorem 2.3 implies the following: for all ¢ > 0 there exists § > 0 such
that

|o(1) = @(0) = ¢"(0) £ - %fp”(O) P < et?

holds for all |¢| < §. In view of Theorem 3.1, ¢’ (0) = 0, and the local optimality implies ¢(0) < ¢(t)
for all |¢| sufficiently small. We thus obtain

1 ’” 1 ’”
=500t < p(t) = p(0) = 29" (0) " < et

for all |¢| sufficiently small, whence
1
Eq)"(O) > —e.

Since ¢ > 0 was arbitrary, we conclude ¢” (0) = d" f”(x*) d > 0. And since d € R" was arbitrary, we
have shown f”’(x*) to be positive semidefinite. O

Theorem 3.3 (Second-order sufficient optimality condition).
Suppose that f is twice differentiable at x* and

(i) f'(x*)=0and
(ii) f"(x*) is positive definite’, with minimal eigenvalue y1 > 0.

Then for every € (0, 1), there exists a neighborhood U (x™) of x* such that
p

f(x) > f(x*)+ Ellx —x*||> forallx € U(x"). (3.1)

In particular, x* is a strict local minimizer of f.

Proof. Here we use Theorem 2.3 directly for f (not along a curve). For every ¢ > 0, there exists § > 0
such that

* * 4 * 1 44 *
[f(x" +d) = f(x") = f'(x")d - Ede (x")d| < e|ld||?
holds for all ||d|| < 8. According to the assumptions, f’(x*) = 0 holds. Therefore,

—e I < (4 d) - fG) = AT ()

Due to the symmetry of f”/(x*) this is equivalent to all eigenvalues of f’/(x*) being non-negative.
2Due to the symmetry of f”/(x*) this is equivalent to all eigenvalues of f”/(x*) being positive.
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holds for all ||d|| < §. This implies
1
O +d) 2 f() +dTf () d - e
for all ||d]| < 6.

From (2.12) (with M = Id), the values of the Rayleigh quotient associated with the symmetric matrix
f"”(x*) are bounded above and below by the extremal eigenvalues of f”’(x*). In particular, we have

df(x)d > p||d||® foralld e R™.

We can now finalize the proof: for f € (0, i), choose ¢ := (1 — )/2 > 0 and an appropriate value of
6 > 0. Then we have

F+d) > f(x') + %de"(x*) d— e
> f0e) + Elldll = e [l

=)+

for all [|d]] < 8. O

14112

Property (3.1) means that f has at least quadratic growth near x*. Equivalently, f is locally strongly
convex with parameter § € (0, y).

End of Week 1

§ 4 MiNIMIZATION OF QUADRATIC FUNCTIONS

In this section we consider the simplest reasonable class of unconstrained optimization problems,
namely the minimization of quadratic polynomials:

1
Minimize ¢(x) = ExTAx ~b'x+c wherex € R". (4.1)

The data of the problem is A € R™", b € R" and ¢ € R. We can assume w.L.o.g. that A is symmetric.
Quiz 4.1: Why?

If we knew a spectral decomposition of A = VAVT (which of course we usually don’t), we could
represent the objective as ¢(x) = 3x"V AV'x — b'V V'x + c. After a substitution of variables x = V'y,

this becomes 5( y) = %yT Ay —Db"Vy+c. Consequently, in these coordinates, the problem decomposes
into a sum of n independent quadratic minimization problems in the components y;.

Being able to solve (4.1) is an essential building block for subsequent tasks.

https://tinyurl.com/scoop-nlo 23


https://tinyurl.com/scoop-nlo

R. Herzog @O®S

Lemma 4.1 (Solvability and global solutions of (4.1)3). Suppose that A € R™" is symmetric, b € R"
and ¢ € R. Then the following holds:

(i) If A is positive semidefinite, then the objective in (4.1) is convex. In this case, the following are
equivalent:

(a) The problem (4.1) possess at least one (global) minimizer.
(b) The objective ¢ is bounded below.
(c) Ax =D is solvable.
The global minimizers of (4.1) are precisely the solutions of the linear system Ax = b.

(ii) In case A is not positive semidefinite?, the objective ¢ is not bounded below, thus problem (4.1) is
unbounded.

Proof. O

Corollary 4.2 (Unique solvability of (4.1)). Problem (4.1) possesses a unique (global) solution x* if and
only if A is s. p. d. In this case, x* = A~'b, and the optimal value is

, 1., 1, _ 1
(') =c— Il =~ SIIATDIG = e - SlIbI .

We will assume for the remainder of § 4 that A is symmetric and positive definite (s. p. d.). Hence, the
solution of (4.1) is equivalent to the solution of the linear system Ax = b. We denote that solution
by x* = A71b. Of course, we could be using a direct solver, such as Gaussian elimination, which
computes an LU decomposition of A, or rather its s. p. d. variant without pivoting, which computes the
Cholesky decomposition A = LLT with the lower triangular matrix L.5 However, when the problem
is high-dimensional (such as n > 10 000), then the generic ~ n® effort for solving the linear system
becomes prohibitive. Even when A is sparse, as is often the case for high-dimensional problems, and a
direct solver which exploits this is used®, this is no longer feasible for very high dimension n.

This is where iterative solvers for linear systems come into play. They do not solve the problem at
once, but rather generate a sequence (x(k)) which converges to the solution. Beyond the ability to
deal with very high-dimensional problems, iterative solvers have another advantage: Any iterate x(*)
of the method can be viewed as an approximate solution of Ax = b (or an approximate solution of
(4.1)), and we can stop the iteration as soon as the desired tolerance is reached, when the time budget
is used up, or when something unexpected happens, e. g., A turns out not to be positive definite after
all. Recall that direct solvers do not yield any usable approximate solutions of the system while they

3compare Nocedal, Wright, 2006, Lemma 4.7

4The matrix A possesses at least one negative eigenvalue.

5We assume you have seen these methods, e. g., in the class Einfiihrung in die Numerik.
%such as a sparse Cholesky decomposition
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are running; they have to carry through to the end, and only then return a solution, which is exact up
to the influence of floating-point error. Iterative solvers have the additional advantage that they do
not require access to the matrix A entry by entry. Rather they only require matrix-vector products,
i.e., a function which evaluates x — A x. Quiz 4.2: Can you think of an example where matrix-vector
products are available, but you typically don’t have access to the entries of the underlying matrix?

Our objective ¢ from (4.1) satisfies

XAx—b"x+c

1
$(x) =2
Vo(x)=Ax—-b=r.
We call r = V¢ (x) the residual of the linear system A x = b at x.” Independently of any method we

might be using to solve Ax = b (or minimize ¢), we have the following relation between the values of
the objective, the error x — x* at a point x, and the residual at x:

Lemma 4.3. We have

B0 = $(x) = 2l =<'l = Sl = S99 G (&)

Proof. Direct calculation shows
* 1 T T 1 #\T * T, .k
g{)(x)—gb(x):E Ax—bx+c—5(x)Ax +b'x"—c
1 1 .
= ExTAx - (x")TAx - E(x*)TA x*+ (x")TAx" since b= Ax"

1 1
= ExTAx - (x")"Ax+ E(x*)TA x*

1 *
= Jle-xI
1 \T 1 T -1 s *
=5(x—x)r=5rA r sincer = A (x —x")
1
= =l
2 A
1 2
= S IVPCO -1

We will discuss in the remainder of this section two different iterative methods for the solution of (4.1),
and equivalently the solution of the linear system A x = b, where A is s. p. d.® These methods are the
gradient descent method (also known as steepest descent method), and the conjugate gradient
method.

7Sometimes the residual is defined in the literature with opposite sign. We do not write r(x) to keep the notation concise.
It will be clear from the context which vector x the residual is associated with.

8You can learn more about iterative solvers for more general linear systems (not related to optimization) in the class
Numerische lineare Algebra.
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We begin with the gradient descent method, which is based on the following simple
Idea: from the current iterate x(¥), move a bit along the direction of steepest descent of the objective,
and take the point reached as the next iterate x ¥+

§ 4.1 DIRECTION OF STEEPEST DESCENT

We first need to clarify what descent directions and the directions of steepest descent of a function
f:R"™ — R at a point x are.

Definition 4.4 (Descent direction).
Suppose that f: R" — R is differentiable at x € R". A vectord € R" is termed a descent direction for f
at x if

f(x)d <o. (4-3)
holds.

By definition, the direction of steepest descent minimizes the directional derivative f”(x) d over all
vectors d € R" of constant length. What we mean by “length” is defined through the inner product M

in use:
Minimize f’(x)d whered € R"

subjectto  ||d||m =1. (4-4)
We note that we could be considering the equivalent problem
Minimize f’(x)d whered € R"
(4-5)

subjectto  ||d||m < 1.

The normalization to unit length is, by the way, arbitrary.

Problems (4.4), (4.5) are constrained problems, but we can solve them without an elaborated theory.
We rewrite the objective so that the directional derivative is expressed using the M-inner product?

F(x)d=Vf(x)'d=Vfx)' M Md=(M'Vf(x) Md,

where we used the symmetry of M (actually of M™!) in the last step. The Cauchy-Schwarz inequality
w.r.t. the M-inner product shows that this expression is minimal precisely when d is antiparallel to
MV f(x).

We summarize these findings:

Definition 4.5 (M-gradient, direction of steepest descent w.r.t. the M-inner product).
Suppose that f: R" — R is differentiable at x € R" and that f’(x) # 0 holds.

9In case this means something to you, we determine the Riesz representer of f’(x) w.r.t. the M-inner product.

26 https://tinyurl.com/scoop-nlo 2023-07-14


https://tinyurl.com/scoop-nlo

©O®S Nonlinear Optimization

(i) The vector
Vuf(x) = M7'Vf(x) (4.6)
is termed the gradient of f at x w.r.t. the M-inner product or briefly: the M-gradient.

(ii) The vector =V f (x) and all of its positive multiples are termed the directions of steepest descent
of f at x wr.t. the M-inner product.

We evaluate the negative M-gradient (direction of steepest descent) by solving the linear system

Md* = -Vf(x). (4.7)

When using the Euclidean inner product (M = Id), we continue to write Vf(x) instead of Vigf(x).
Sometimes, the use of Vy;f(x) instead of the Euclidean gradient direction Vf(x) is referred to as
preconditioning.

§ 4.2 GRADIENT DESCENT METHOD WITH CAUCHY STEP SIZES

The direction of steepest descent at x used by the gradient method is thus'®

d=-Vyp(x) =-M"r.

Now that the choice of direction is clear, let us analyze the choice of the step size. We have the
following expression for the difference of function values before and after a step:

1 1
d(x+ad)—d(x) = 5(x+(xd)TA(x+(xd) b (x+ad)+c— ExTAx+bTx—c

1
= E(dTAd) a*+(Ax-b)da

- %(dTA Ao+ (F'd)a. (4.8)

Note: This formula holds for arbitrary directions d and step sizes «.

When d # 0, then the one-dimensional quadratic polynomial @ — ¢(x + a d) is strongly convex. It is
therefore an obvious idea to choose @ such that ¢ (x + « d) is minimized. According to (4.8), we have

d

d—ng(x +ad)=(dAd)a+1r"d,
104

d2

F¢(x+ad) = dTAd > 0.
o

Due to the positivity of the second derivative, the second-order sufficient condition (Theorem 3.3) is
satisfied when %qﬂ(x + ad) = 0, which amounts to

. r'd
@ = (4.9)

OWe avoid iteration indices for now in order to avoid cluttered notation.
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This “optimal” step size is also known as the Cauchy step size. For this choice, the difference of
function values (4.8) before and after a step becomes

d(x+a*d) - d(x) = %(dTA d) (@) + (Fd) a*
1, . r'd \2 . rd
=5(dAd) (dTAd) - (rd) 7
L 1(7d)?
T2 dAd (4.10)

Note: This formula holds for arbitrary directions d # 0 but it uses the Cauchy step size a".

We can now state the steepest descent method w.r.t. the M-inner product and the Cauchy step size
(4.9) for the iterative solution of the unconstrained quadratic minimization problem (4.1) with s. p. d. A.
This method, with M = Id, was already published by Cauchy, 1847.

Algorithm 4.6 (Gradient descent method for (4.1) w.r.t. the M-inner product with Cauchy step size).
Input: initial guess x'*) € R"
Input: right-hand sideb € R"
Input: s.p.d. matrix A (or matrix-vector products with A)
Input: s.p.d. matrix M (or matrix-vector products with M™1)
Output: approximate solution of (4.1), i.e., of Ax =b
1 Setk =0
2 Setr(® = Ax(® —p
Setd® == —M~1(®)
Set 50 == —(r()7g(®
while stopping criterion not met do
Set q®) = 4d®)
Set 0K = (q(k))Td(k)

/ evaluate the initial residual
/ evaluate the initial negative M-gradient
/8O = 1V N3, = 1Ir O3

Set ak) = 5 /g(K)
Set x (k1) = x (k) 4 o (k) g (k)
10: Set r(k+1) = (k) 4 (k) g (k)
w Setd®) = —p1p (k)

12: Set Sk+1) .= —(r(k+1))Td(k+l)
13 Setk = k+1

14: end while

15: return x ()

The following can be said about Algorithm 4.6.

Remark 4.7 (on Algorithm 4.6).

/ evaluate the Cauchy step size

/ update the iterate

/ update the residual

/ evaluate the negative M-gradient
/85 = Vg (xED) I3, = [Ir D2

(i) Algorithm 4.6 is an iterative solver for the unconstrained quadratic minimization problem (4.1) with
s.p.d. A, and simultaneously an iterative solver for the linear system Ax = b.

(ii) We do not require access to the matrix A entry by entry, matrix-vector products with A are enough.
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(iii)

(iv)

(v)

(vi)

(vii)

(viii)

(ix)

The user gets to choose the inner product M. This is known as preconditioning, and therefore
Algorithm 4.6 is often termed a preconditioned gradient descent method. The case M = 1d
corresponds to the classical gradient descent method (without preconditioning).

We also do not require access to the inner product matrix M entry by entry, matrix-vector products
with M~ (i. e., solutions of linear systems with M) are enough.

Algorithm 4.6 requires the storage of four vectors, which are iteratively overwritten: iterates x*),
residuals r'®), negative gradient directions d'®), and vectors ¢ = Ad¥).

Every iteration requires one matrix-vector product with A and one application of the preconditioner,
i. e., one matrix-vector product with M~1,

In order to mitigate the accumulation of round-off error, it is advisable to evaluate the residual
every, say, 50 iterations according to r'®) := AxK) — b, rather than update it.

The Cauchy step sizes satisfy

1 (d®)Tad®
0 < Amin(AsM) S (X(k) - (d(k))TMd(k) S Al’l’laX(zﬁ,j\/I)’ (4'11)

as long as d'®) # 0 holds, i. ., as long as x'¥) # x*. Consequently, the Cauchy step sizes generated
can be used to obtain estimates on the eigenvalues of A w.r.t. M.

When Algorithm 4.6 is provided with the value of c, the following recursion can be added to the
algorithm to keep track of the value of the objective:

1
$(x) = ¢+ 5(,(@ —b)"(x\?) initialization (4.122)

1
¢(x(k+l)) — ¢(x(k)) _ 5 a® 5k update. (4.12b)

This does not incur noticeable computational overhead and does not require the storage of extra
vectors. Alternatively, the value of ¢(x?)) can be provided.

We now seek to estimate the speed of convergence of Algorithm 4.6. The function values at the iterates
satisfy

¢(x ) — p(x")

1
= Slr I by (42

1
= 5||,,(k) +a®Aqk) ”124*1

Lo (k)2 k) (o (k o Y oon2 gk k
= 5||,,( )||A-1+05( )(r( ))Td( )+§[a( )] (d( ))TAd( )
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This formula so far holds for any choice of step size «'¥) and any choice of direction d'¥). We now

insert the Cauchy step size a®) = —% and obtain
(k)T g (k) |2 (k)T g (k) |2
1 r 1|(r
— _||r(k)”2_1 _ [( ) ] +_[( ) ]
2 A (dFYTAdK) 2 (dF)TAJK)
[(r®)yTat®]?
=[1- (k)y _ *
(1 [(d®)TAd®] [(r0)y a1, ®)] (™) =¢(") by (42).
The directions d®) are still arbitrary. Inserting the relationship d®) = —M~1r®) = _v;6(x%))
characteristic for gradient descent, in the form r®) = _Md®, we obtain
dENTAL 4R ]2
- [1- o (B~ ),
[(dF)TAdW ] [(dF))TMA-IMdR)]

The fraction is precisely the type of expression estimated by the generalized Kantorovich inequality
(2.19). This yields

P ) = 6 (x")

< (1 - (;fﬁﬁ)z) (¢(x™) = p(x7))
p-a g (k) %
- (5r2) 6 - g0
= (’; ; i) (p(x®) = p(x")) since k = ff/a.

We have thus shown the following classical convergence result for Algorithm 4.6:

Theorem 4.8 (Convergence of Algorithm 4.6). Suppose that A € R™" and M are both s.p.d., a =
Amin (A; M) and f := Apax(A; M) are the extremal generalized eigenvalues of A w.r.t. M. Then for any
choice of the initial guess x'°), the gradient descent method with Cauchy step sizes converges to the unique
solution x* = A™'b of (4.1). In terms of the generalized condition number x = f/a, we have the estimates

_1\2
HxE) - g(x) < (KT;) (¢(x®) = p(x") (4132
k) — x4 < (’;—:) e = xLa (4:13b)

and consequently

2k

$(x)) = p(x") < ('ZJ) (¢(x ) = p(x") (4.13¢)
1\ k

lx®) —x*|la < (%) [ — x| a. (4.13d)

Moreover, the objective values ¢(x©)) and thus the norm of the error ||x*) — x*|| 4 are monotonically
decreasing.
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As an immediate consequence of this theorem, we can estimate the maximal number of iterations

required until the left-hand terms in (4.13c) and (4.13d) have been decreased relative to their initial
values.

Corollary 4.9 (Maximal number of iterations required in Algorithm 4.6). Given positive numbers &

and &, it takes
2k
K 1 . . (k-1
k <|—=In|—|| iterations until | —— < g,
4 K+1

&
K 1 . . L [k=1 k
k < |=1In|—|| iterations until < 6.
2 £ K+1

Proof. (1) We first show that

holds forall k > 1. Atk = g—fll, we have

We now show that

d 1 Kk—1 S d 2

—|=m > 2

dx K+1 dx x

holds for all ¥ > 1, which proves the claim. The derivative on the left is Wﬁlm)
derivative on the right is ;—22 In view of 0 < k% — 1 < k? for all k > 1, we conclude

, while the

2 220 forallk > 1
(k—D(k+1) oratie =L

(2) Taking the reciprocal of the inequality shown above, we obtain

<

N R

In (=2) *)

K+1

for all k > 1.

3) Given k > 1, we easily infer that (£ 2k < ¢ holds if and only if
y K+1 y

1 —lng 1 -1 1
k>- =— In{—].
e i n(gl) ()

K+1

K+1

In view of the inequality (+) shown above, we obtain that

k> [Eln(l) > Eln(l)
4 &1 4 €1

implies (+*), which proves the first claim.
The second claim follows similarly. O
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Remark 4.10 (on Theorem 4.8).

(i) (4.13b) shows the Q-linear convergence of (x(k)) to the solution x* in the A-norm.

(ii) The contraction factor is 0 < ;;_;11 < 1, i.e., the convergence estimate depends on the ratio K

between the largest and the smallest generalized eigenvalue of A w.r.t. M. It is the purpose of the
preconditioner/inner product M to keep this ratio small.

(iii) In the extreme case k = 1 we obtain convergence in one step. This happens precisely when M is a
multiple of A. However, we need a solve a linear system with M in every iteration. If we were able
to do that, we might as well solve Ax = b directly.

(iv) A good preconditioner is a compromise between a moderate generalized condition number k and
the effort in applying M~'. Finding a good preconditioner generally requires knowledge about the
problem at hand.

(v) It is natural to measure convergence of the method in the A-norm of the error because, due to (4.2),
that is the quantity being minimized.

(vi) The estimates of Theorem 4.8 are worst-case estimates since they do not depend on the initial guess
x() In fact, as can be seen in Figure 4.1c, the actual contraction factor for the objective values can
be significantly smaller for some initial guesses than the estimate (4.13c) suggests.

Figure 4.1 illustrates the convergence behavior of Algorithm 4.6 for a 2-dimensional example problem
from a number of different initial guesses x(*). We observe the typical “zig-zagging” behavior of the
iterates as they converge to the solution. This happens for any initial guess, except when x(®) — x*
happens to be a generalized eigenvector of A w.r.t. M, in which case convergence occurs in one step
due to x(V) = x*. (Such a case is not shown in Figure 4.1). Quiz 4.3: Suppose A, b and M are given and
you consider a random distribution of initial values x(°) in R, which has a probability density. What
is the probability of hitting an initial value such that convergence happens in one step?

The zig-zagging behavior of the iterates x(¥), as well as the non-monotone behavior of ||r(¥) ||,
have been analyzed in detail in the literature; see for instance Akaike, 1959; Forsythe, 1968; Nocedal,
Sartenaer, Zhu, 2002. Essentially what happens is that, asymptotically, the error x¥) — x* alternates
between elements of the eigenspaces belonging to the smallest and the largest eigenvalues of A w.r.t.
M. This is ultimately a consequence of the fact that gradient descent is a memoryless method.

It has also been shown that a necessary condition in order for the norm of the gradient ||r*)||,;-1 to
converge non-monotonically is that the condition number satisfy x > 3 + 2 V2 ~ 5.83.

It remains to discuss stopping criteria. Several quantities may be of interest in this respect:
(i) Are we happy with a point x*) which is almost stationary, i. e., where |7 ||, 1 is small?

(ii) Are we happy with a point x*¥) whose objective value is near the optimal value, i. e., where
¢ (x)) — $(x*) is small, or equivalently, where ||x*) — x*|| 4 is small?
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(a) Iterates (x(k)) of the method. Each color corresponds to a different initial guess x(%).

10°C

10»5 L

10-10 b
10 : .- : ‘ ‘ ‘ 105 : : : : : ‘
0 5 10 15 20 25 30 0 5 10 15 20 25 30
(b) The norm of the gradient V§*) = (c) The objective values ¢(x*)) — (x*) converge
IVamd(x )y = Ir® |y does not monotonically. The black line illustrates the

necessarily converge monotonically. bound (4.13¢).

Figure 4.1: [llustration of the convergence behavior of Algorithm 4.6 from a number of initial guesses
x(9) No preconditioning (M = Id) is used. The two eigenvalues of the matrix are & = 1 and
B =10 so the condition number is k = 10.
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(iii) Are we happy with a point x¥) whose distance from the minimizer is small in the preconditioner-
induced norm M, i. e., where ||x*) — x*|| is small?

The only of these three quantities which we can evaluate without knowing x* or ¢(x*) is §¢) =
|| ]2\4_1. Therefore, many implementations use one of the following combinations of a relative and

an absolute criterion based on ||r) || -

1 s < et 1P g, ie, 8 <, 51, (4.142)
1Py < eaps, ie, 6® < i, (4-14b)
P N agr < et Ir g + €abss e, (89 < g (82 + £aps, (4-140)
Ir® Nl < max{eca IF g, eavs}, e, 8% < max{el, 8, & }. (4.14d)

Let us see which consequences either of the implementable stopping criteria (4.14) has on the other
two quantities of interest:

Lemma 4.11 (Implications). The criteria from (4.14) imply, respectively,

I = x[la < Vic et [ = x"la (4.150)
4.15a
™ = x|l < K ret |12 = x|y
™ = x4 < (1/V) eabs (4.15b)
) 4.15
%) — x| |p < (1/a) eas
||x(k) —x"|la < VK &l ”x(O) —xla+ (1/\/5) €abs (4.15¢)
1) =l < i e [x® = [+ (1/@) e '
e = x4 < max{Vicera [x® = x"lla, (1/Var) eans} (4.15d)
] . 4.15
% = "Ly < max{ic &at 16 = x"|lag, (1/20) abs }
Proof. homework problem 2.3 .

§ 4.3 GRADIENT DESCENT METHOD WITH CONSTANT STEP SIZES

We can show that the gradient descent method continues to converge Q-linearly when, in place of
the Cauchy step sizes, we choose constant step sizes a'¥) = & within a certain range. We obtain as
above

¢ (xF) — p(x")
1 1
= 5||r(k)||i_1 +E(r(k))Td(k) + EaZ(d(k))TA 4%
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We leave @ open for now and insert the gradient descent relation %) = ~M d®) to obtain
1 1
= 5||r(l<) ||124_1 ~ 7 (%) Ma® 4+ §a2(d(k))TA PO
1 1
< IrOIE @@ ) Md® + @B (@) MdY  sinced’Ad < pdTMd

1 _(1_
= IV + (Eaﬁ ~1) (@®)ma®.

Here we need to convert the last term into d"M A™'M d, which is equal to r’A™!r, so that it can
be combined with the first term. We require that the coefficient o (%5 B - 1) is negative to obtain

convergence. Consequently, we use the first estimate in (2.15a):

1 1 1
IOl @ (Ea B-1)a @ ) MAa MY provided that @ (55 B-1) <0

IA

_(1_ 1
1427 (Eaﬁ— 1) (x] L

1427 (%aﬁ - 1) a] (¢(x®) = p(x*).

The condition that o (%5 B - 1) is negative amounts to @ € (0, %). It is precisely the midpoint @ = 1/
of this interval which minimizes this term and yields the optimal estimate, and the expression in [- - -]
becomes "T_l in this case.

Remark 4.12 (on the convergence of Algorithm 4.6 with constant step sizes).

(i) We have shown that Algorithm 4.6, where Line 8 is replaced by a'®) := @, still converges, provided
thata € (0, %).

(ii) From a practical perspective, we therefore need to know at least an upper bound for the largest
eigenvalue 8 of the generalized eigenvalue problem Ax = A M x. When we have < Pestimate and
choose a € (0, m), we also have a € (0, %).

(iii) The choice @ = % yields the optimal estimate. In this case, we obtain

p(x ) — g (x) < (K__l) ($G*) = (x").

K

, 112 _ : : : ;
Since for all k > 1, we have ('fc—&) < KTI, the contraction factor in the bound we obtained with
constant step sizes is worse than the one for the Cauchy step sizes; see (4.13a). Consequently, there
is no reason to prefer the gradient descent method with constant step sizes over the version with

Cauchy step sizes.

(iv) The Kantorovich inequality was not needed in the proof.

Figure 4.2 illustrates the convergence behavior of Algorithm 4.6 with constant step sizes for a 2-
dimensional example problem from a number of different initial guesses x(%).
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-

(a) Iterates (x*)) of the method.

>

(d) Iterates (x(k)) of the method.

N

4

() Iterates (x(K)) of the method.

0 5 10 15 20 25 30

(b) Gradient norm ||r ) || ;-1

0 5 10 15 20 25 30

(h) Gradient norm ||r || y-1.

10710

10715
0 5 10 15 20 25 30

(c) Objective ¢(x®)) — $(x*).

107

10715
[ 5 10 15 20 25 30

(f) Objective (]B(x(k)) - P(x¥).

10710

10
0 5 10 15 20 25 30

(i) Objective ¢(xF)) — p(x*).

Figure 4.2: lllustration of the convergence behavior of Algorithm 4.6 with various constant step sizes
instead of the Cauchy step size. The step sizes, from top to bottom, are & € {0.03, 0.10, 0.17}.
No preconditioning (M = Id) is used. The two eigenvalues of the matrix are @ = 1 and
B =10 so the admissible range of constant step sizes is & € (0, %) =(0,0.2).
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§ 4.4 GRADIENT DESCENT METHOD WITH OTHER STEP Si1ZE RULES

Step size rules other than the Cauchy step sizes and constant step sizes have been proposed and
analyzed in the literature with the goal of breaking the non-efficient zig-zaggging pattern; among
them Barzilai, Borwein, 1988; De Asmundis, di Serafino, Riccio, et al., 2013; De Asmundis, di Serafino,
Hager, et al., 2014; Gonzaga, Schneider, 2015. We do not go into the details here but mention one
remarkable result from Gonzaga, 2016, Theorem 1. Suppose that @ := Ayin(A; M) and f = Anax(4A; M)
are the extremal generalized eigenvalues of A w.r.t. M, and k := g is the generalized condition number.

Suppose that ¥ > 1.06 and that
2
= vim (2]
&

holds. Consider the set of mutually distinct, precomputed step sizes
o oe Lo 2 B (12 ) Bra
a)(])

2 2k 2
Then the gradient descent method Algorithm 4.6 with step sizes a¥), applied in any order, requires at
most

,j:QL“”k—4.

2k
. . L (k-1
k iterations until ( ) < &.
K+1

The interesting fact is that, compared to the estimate of Corollary 4.9 for the Cauchy step size, the
bound on the iteration numbers is proportional only to +/x, not to x. The result can be modified so that
it is not required to know the extremal eigenvalues exactly, but knowledge of an interval containing
them is sufficient.

We are going to obtain a similar complexity result for the conjgate gradient method in § 4.6.

§ 4.5 GRADIENT DESCENT METHOD AS DISCRETIZED GRADIENT FLOW

We conclude the discussion of the gradient descent method by interpreting it in another way. Consider
the differential equation

#(0) =~V f(x(), t20
x(0) = x(©, (416)

This is known as the gradient flow associated with f. Its stationary points are precisely the stationary
points of f. Due to

%f(X(t)) = f1(x (1) 2(t) = =f" (x(£)) M7V f(x(8)) = =1V (x() I3 = =1 Vaaf eIy (417)
the value of f is decreasing along the path x(t).

When we discretize (4.16) by the explicit (forward) Euler method with time step size At(X), we obtain

L (k+1) _ (k)

— _p! (k)
At(k) =-M Vf(x )’
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or equivalently,
x D = ) _ A M1y (xR, (4.18)

This is precisely a step of the gradient descent method with step size At(¥), Therefore, we can interpret
the gradient descent method as a discretization of the continuous gradient flow equation.

§ 4.6  CoNJUGATE GRADIENT METHOD

The typical inefficient zig-zaggging pattern of the directions d*) is a consequence of the fact that
gradient descent is a memoryless method. That is, we could restart the method at any iterate and it
would produce the same iterates, whether restarted or not. This is where the conjugate gradient
method (CG method, introduced in Hestenes, Stiefel, 1952) takes a different turn. It works with
search directions d'¥) which are pairwise A-orthogonal (also known as A-conjugate), and builds a
memory of previously visited directions.

Definition 4.13 (Conjugate directions). Suppose that A € R™" iss.p.d. A set of non-zero vectors
{dO,...,d®)} c R" is termed A-conjugate if

dNTAdY =0 foro<ij<k, i#].

In other words, A-conjugate vectors are pairwise orthogonal w.r.t. the A-inner product. In particular,
{d©,...,d®} is a linearly independent set. (Quiz 4.4: Can you prove that?)

The CG method is a member of the class of conjugate direction methods. We begin by describing
the properties of a generic conjugate direction method first before we particularize to the CG method.
A conjugate direction method chooses its search directions d(*),d, ... so that they are A-conjugate,
and the iterates satisfy

K+ (k) (k) g(k) (4.19)

The step size &%) is the Cauchy step size, which minimizes the one-dimensional quadratic polynomial
a— gb(x(k) +ad®).

That is, we have

a® = _M (4.20)
(dFNTAdE’
compare (4.9). As in the gradient descent method, the residuals satisfy the recursion
pUel) = ) 4 g (R) g gk (4.21)

Conjugate direction methods have the remarkable property that the sequence of one-dimensional
minimizations in the A-conjugate directions d(®),d™", ... is equivalent to the minimization over the
entire affine subspace x(*) + span{d(®),d", .. .}. This is shown in the following result.
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Lemma 4.14 (Properties of conjugate direction methods). Suppose that A € R™" is s. p. d. Given an
initial guess x(©) and a set {d(o), dW . .. dk-D }, k = 1 of A-conjugate search directions, suppose that the
iterates x0), ..., x %) are generated according to (4.19) with Cauchy step size (4.20). Then the following
holds.

(i)
r"NdD =0 foralli=0,1,... k-1 (4.22)

(ii) x*) minimizes ¢ over the affine subspace x'©) + span{d®,dV, ... d*V},

Proof. We can show Statement (i) via induction over k. For k =1,

(rTd® = (Ax® - b)Ta® by definition of the residual
= (AxY + 29440 —p)Td® by (4.19)
= (r(o))Td(O) +al® (d(o))TA d® by definition of the residual

=0 since a'®) is the Cauchy step size (4.20).
The induction step assumes (r(k_l))Td(i) =0foralli=0,1,...,k — 2 and proceeds as follows.

(r0NTak= = (k=) (k=D g g(k=)Tg(k=1 1y the residual recursion (4.21)

(k-1)

=0 since is the Cauchy step size (4.20).

For the remaining search directions d (D i=0,1,..., k-2 we have

(r®)ra® = (r(k_l) +aF VA d(k_l))Td(i) by the residual recursion (4.21)

— (r(k—l))Td(i) + %D (d(k—l))TA d®
G — —_———
=0 by assumption =0 due to A-conjugacy

=0.

For Statement (ii) we consider the function h: R — R

k-1
h(o) = ¢ (x<°> + Z o) d<f>) .
j=0

h is strongly convex (Quiz 4.5: Why? ), and the unique minimizer ¢* is characterized by

k-1
oh(a") _ ©) s\ ) g i
o =V (x +jz=(;0'jd )a® =0 i=0. . k-1 ()

However, we already know that it is the iterate

k-1
xF) = (O 4 Z aPdD e xO 4 span{d®,dV, ... a*Vy
=0
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which satisfies (), since
k-1 T
ng(x“’) + Z ) d(j)) 4D = Vg (x®)TgD = (r0)Tg — g
j=0

holds for alli = 0,...,k — 1, as shown in Statement (7). O

Corollary 4.15 (Properties of conjugate direction methods). Any iterative method (4.19) using A-
conjugate directions d®) and Cauchy step sizes (4.20) converges to the unique solution of (4.1) in at most
n steps.

Proof. The search directions d¥) are A-conjugate and thus linearly independent. Therefore,
span{d(o), dv, .. d("fl)}

is all of R”, so that x(™ minimizes ¢ over all of R” by Lemma 4.14. O

In practice, the statement of Corollary 4.15 is weakened by floating point error. Moreover, the result of
Corollary 4.15 is not really relevant for high-dimensional problems since performing n iterations is
prohibitively expensive. We will later see more practical converge estimates.

There are many possibilities to generate pairwise A-conjugate directions d¥), each of which leads to a
different conjugate direction method. The conjugate gradient method (CG method) determines the
current direction d*) as a linear combination of the previous direction d*~) and the current steepest
descent direction —M~1r(k).1

d® = _p1p0) fork =0,

d® = MR 4 g gD for ko> 1, (4:23)
The coefficient %) is determined in such a way that at least d'*) and d'*=V are A-conjugate:
()T A1 4 (k-1
0 . ()™ Adk=D o)

(d(k—l))TA dk-1) -~

Interestingly, the algorithm obtained in this way generates search directions which are fully A-
conjugate, as shown in the following result.

Lemma 4.16 (Properties of the iterates in the CG algorithm, see Nocedal, Wright, 2006, Theorem 5.3).
Suppose that x'°) € R" is given and that the search directions {d'?,dV, ..., d*®)} and the subsequent
iterates xV, ..., x%)  k > 1, are generated according to (4.19)~(4.20), (4.23)~(4.24), where a'®) # 0.2

span{r(o), r® L r®) = span{r(o), AM™ YO AM YOy, (4.25)
span{d(o), dV,. .., d®} = M span{r(o), AM™H O (AM YOy (4.26)
d*NTAdD =0 foralli=0,1,....k—1, (4.27)

r®YTpm 1@ = ¢ foralli=0,1,...,k—1. (4.28)

"With (k) = 0, we obtain again the steepest descent method (Algorithm 4.6).
124(k) = 0 would mean that x(K) is the unique solution x*. Due to the form of the Cauchy step (4.20), this is clear for k = 0,
as the nominator is ||r(k) [l pr-1- (4.22) shows that this is also true for k > 0.
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The subspace
KED(AM ™ r ) = span{r'®, (AM) rO, . (AMHF O} (4.29)

is termed the Krylov subspace (of order k + 1) of the matrix A M~! with initial vector r(*). Therefore,
the CG method is a representative of the class of Krylov subspace methods. The properties (4.25)
and (4.26) imply that the method creates, simultaneously, an expanding sequence of M~*-orthogonal
basis vectors of the spaces KK (A M1, (%)), as well as an expanding sequence of A-orthogonal basis
vectors of the spaces M KK (A M~ r(0)).

Proof. We first prove (4.25)-(4.27), by induction. For k = 0, statement (4.25) holds trivially. Statement
(4.26) holds since the CG method starts with d(®) = —M~1r(®)_ Statement (4.27) is void for k = 0.

Suppose now that (4.25) and (4.26) have been shown up to some k > 0. We need to show that they
also hold for k + 1. By hypothesis,

rk) e span{r(o), AM™YHrO . (AMHE O
d® e M span{r®, (AM™r® . (AM YOy
hence Ad® € AM™! span{r(o), (AM™H O (AM Yk Oy
= span{(AM™Y) r®  (AMHEL O
Due to the residual recursion (4.21), we therefore have
P41 Z () 4 () 4 g(k)
€ span{r(o), AM™H O (AM YOy 4 span{(AM™) rO L (AMTYHRH O
= span{r'®, (AM™ ) rO, . (AM k1O (¥)

Due to the induction hypothesis for (4.25), the same statement () holds when k + 1 is replaced by a
smaller index. Therefore, we have shown that

span{r® r® &Y C gpan(r @ (AMTY) F O (AMTHR0)
holds. Now for the reverse inequality. By the induction hypothesis for (4.26), we find
AM Y AM YO ¢ A span{d®,dD, ..., d®} = span{Ad®, AdWV, ..., AdP)}.

By the residual recursion (4.21), specifically

AdW = %(r(iﬂ) —rD) e span{r®, r+)}
a

fori=0,1,...,k, it follows that
AM Y AM YO ¢ span{r® O kD)
When combined with the induction hypothesis for (4.25), i. e.,

span{r(o), AM™YHrO L (AM YOy = span{r(o), r® ey
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we find the desired reverse inequality
span{r'® (AM™Y) rO  (AM Y rO) C span(r® O, DY
Thus the induction step for (4.25) is complete.

To see (4.26),

span{d®, ..., d® gDy

= span{d?,...,d"® M1y by (4.23)
=M span{r'®, (AM™) rO, . (AM kO p+y by (4.26)
=M span{r(o), r (R ey by (4.25)
=M span{r'®, (AM™) rO . (AMTHE O (AM YO by (4.25) for k +1

This concludes the induction step for (4.26).

Next we address the A-conjugacy of search directions, (4.27). By the induction hypothesis, the directions
d©, ..., d%) are pairwise A-conjugate. Consider

(d(k+1))TA d(l) — (_M—lr(k+1) + ﬁ(k+1) d(k))TA d(l) (**)
fori=0,...,k. In case i = k, we have
(d(k+1))TA d(k) =0

by construction of the search direction d**!, see (4.23) and (4.24). When i < k — 1, we argue as follows.
From (4.26), we obtain

MAdY e MT'AM™! span{r(o)} c span{d(o),d(l) 1
M7AdY € MTAM " span{r®, (AM1) r(O} c span{d®,d®, 4},

MAd* Y e MTAM  span{r®, ..., (AM™H) 1O} € span{d?,...,dP}.
We thus find that, for any i < k — 1, the term (r**D)"M~1A d® in (++) belongs to
(r(k+1))T span{d(o), o d(i+1)} — span{(r(k+l))Td(0), o (r(k+1))Td(i+l)}.
By (4.22), however, (r&*)7d() = 0 for j = 0, ..., k. Therefore, (++) reduces to
(d(k+1))TA d(l) — ,B(k+1) (d(k))TA d(l) (***)
By the induction hypothesis, this is equal to zero, which concludes the induction step for (4.27).

Finally, we consider the M~!-conjugacy of residuals, (4.28), for k > 1. We do not need an induction
argument for this. We consider two cases for (r*))TM~1r();
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(1) Incase i =k — 1, we have @)
(r& 0 4 g k=D A gR=D)T(_g(k=1) 4 glk=1) g(k=2))  for k > 2
(r*D 4 gk 4 gk=DyT (g (k=D)y for k =1

(r(k))TM—lr(k—l) — {

(@)
by the residual recursion (4.21) and the construction of search directions (4.23). Since the Cauchy
(d(k—l) )Tr(k—l)
consider the remaining terms when k > 2. We obtain

(r(k—l))Td(k—z) =0 due to (4.22),
(Ad*)T(d*=2) =0  owing to the A-conjugacy of search directions.

step size satisfies a(k~V) = the term (O) is equal to zero for all k > 1. Let us

Therefore we conclude that (r*))"AM~1r*-1 = 0 holds for all k > 1.

(2) incasei < k — 1, we have
[RS8 i
When expanding, we obtain terms of the types (note i < k — 1)
(r*=Tg® = 0 due to (4.22),
(Ad%*DYg®W =0 owing to the A-conjugacy of search directions,
(r*&=Tgl=b = o due to (4.22),
(Ad*Dyg=Y = 0 owing to the A-conjugacy of search directions.

Therefore we conclude that (r®)"M~1r() = 0 holds forall k > 1and 0 < i < k — 1. m|

Using the properties of the iterates shown above, the equations (4.20) for a®) as well as (4.24) for )
in the CG method can be equivalently formulated as follows:

o __ Oy by the Cauchy step size formul
a't) = W y the Cauchy step size formula (4.20)
(KN A1, (F) (k)T g(k=1)
= (zd(kg)Td:k) L Mw by the search direction recursion (4.23)
= W by (4.22) (4.20 )
and
(k+1) TM-1A d(k)
gD = ) by the orthogonalization coefficient (4.24)

(d©)TA d)
B (r(k+1))TM—1(r(k+1) _ r(k)) . .
= TN T (D — () by the residual recursion (4.21)
(dU)T( )
(r(k+1))TM—1(r(k+1) _ r(k))

= (_M‘lr(k) +ﬁ(k) d(k—l))T(r(kH) - r(k))

(r(k+1))TM—1r(k+1)

- (r())T M =17 (k) by (4.22) and (4.25). (4.24°)

by the construction of search directions (4.23)
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The relations (4.20°) and (4.24’) are also true for k = 0.

We have now obtained the common form of the CG method w.r.t. the M-inner product, commonly
referred to as the preconditioned conjugate gradient method.

Algorithm 4.17 (Conjugate gradient method for (4.1) w.r.t. the M-inner product).

Input: initial guess x(*) € R"

Input: right-hand sideb € R"

Input: s.p.d. matrix A (or matrix-vector products with A)
Input: s.p.d. matrix M (or matrix-vector products with M™1)
Output: approximate solution of (4.1), i.e., of Ax =b

1 Setk =0
2 Setr(® == Ax() —p / evaluate the initial residual
3 Setd® = —M~1r(0 / evaluate the initial negative M-gradient
g Set§©) = —(r(0)7q® 78O = IVup(x N3, = Ir O3
5: while stopping criterion not met do
o Setqh) = A
7: Set K = (q(k))Td(k)
8: Set a'k) = §F) /g(k) / evaluate the Cauchy step size
9: Set x K1) = x(0) 4 o (k) g(k) / update the iterate
10: Set r(k+1) = (k) 4 (k) g (k) / update the residual
w Setd®) = —p1p (k) / evaluate the negative M-gradient
12: Set 5(k+1) — _(r(k+1))Td(k+1) ) Sk+) = ||VM¢(x(k+l))||]2w — ”r(kﬂ)”?\/[*l
13: Set k) .= §k+1) /50Fk) / evaluate the A-orthogonalization coefficient
1 Setd+) = gl 4 plkst) g (k) / make d'**V A-orthogonal w.r.t. d'©
15: Setk =k+1

16: end while
17: return x (0

Remark 4.18 (on Algorithm 4.17).

()

(if)

(iii)

From Lemma 4.16 we know that the CG method generates pairwise A-orthogonal directions, although
it only needs to orthogonalize any new direction d**V) against the most recent one, d'*). This
phenomenon, known as short-term recurrence, is possible due to the symmetry of A.

The conjugate thus keeps a memory of previously visited directions, although this memory is mainly
implicit. As shown in Algorithm 4.17, we can implement the method with a constant amount of
storage.

The implementation of the CG method is very similar to the steepest descent method (Algorithm 4.6).
The only (but significant!) difference lies in the fact that we A-orthogonalize the steepest descent
direction against d%) before we use it as the new search direction d**V . The initial search di-
rection d'*) is the steepest descent direction for ¢ at x'*). Consequently, the iterate xV is the
same for the conjugate gradient method and the steepest descent method with Cauchy step size
(Algorithm 4.6).
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(iv) The name conjugate gradient method is a bit of a misnomer, since it is not the gradients which
are A-conjugate, but rather the search directions d (k)

v) Remark 4.7 remains valid for the conjugate gradient method as well, with minor modifications. We
gate g
need to store one additional vector since d*) and d**V) are needed simultaneously.

(vi) The stopping criteria (4.14) and their consequences (4.15) continue to hold since they depend on the
same computable quantity ||r®)||y1 as in the steepest descent method.

Our next goal is to establish a convergence result for the conjugate gradient method, and to compare
it to Theorem 4.8 for the steepest descent method with Cauchy step size. A major difference is that we
will not obtain a result about the reduction of the error from iteration to iteration, but rather a result
about the reduction of the error compared with its initial value.

Theorem 4.19 (Convergence of Algorithm 4.17, compare Theorem 4.8). Suppose that A € R™*" and
M are both s.p.d., & = Ain(A; M) and = Anax(A; M) are the extremal generalized eigenvalues of A
wr.t. M. Then for any choice of the initial guess x(°), the conjugate gradient method converges to the
unique solution x* = A™'b of (4.1). In terms of the generalized condition number k = f/a, we have the
estimates™

Vi —1
Vi +1

k
* \/E_l *
||x<’<>—x||Asz( e (@ = x*|| 4, (4.30b)

Moreover, the objective values ¢(x %)) and thus the norm of the error ||x*) — x*|| o are monotonically
decreasing.

2k
$(x) —p(x") < 2( ) ($(x ) = p(x")) (4.302)

Proof. Since the search directions, by (4.26), span Mgk (AM™, r(o)), we have
x® —xO e Mix® (A M r0),

In other words, we have
x(k) _ x(o) — q(k—l) (M—IA) M—lr(O)
for some polynomial ¢*=V) in the matrix M ™A of degree at most k — 1. Abbreviating %) := x(¥) — x*
and using Ae(® = Ax(® — Ax* = r(9), we can manipulate this equation into
e = ¢0) 4 gD (41 4) A1)
=0 4 q(k—l) (M_lA) M4 O
= [1d+q* Y (MTA) MT1A] €©

where now p*) is a polynomial of degree at most k satisfying p‘¥) (0) = 1.

Bcompare (4.13¢), (4.13d)
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By construction, the conjugate gradient method minimizes ||e¥)||4 in every iteration. We can now
express this in terms of a minimization over the vector space II; of polynomials of degree < k:

€)1 = min lp(M'4) @l p € T, p(0) =11, (439

We expand the initial error ¢(®) in terms of the basis of eigenvectors of A w.r.t. M; see (2.10), (2.11).
Suppose we denote the generalized eigenpairs by (1)), 0()), we can write

n
e(0) = Z y Do)
J=1

with some coefficients y/) determined by e(?). We can thus manipulate the objective in the minimiza-
tion problem above as follows:

(M) el = [p(M~14) (i o),
j=1

n
— ”Z },(J)p(M—lA) U(J)“A
7=1
In view of Ao) = A M o) and thus M~1A o) = AWy () this is
n
- ”Z Y9 p(20)) “(])”A'
=1

By pulling the maximal value of |p(1U))| out of the sum (Quiz 4.6: Can you fill in the details why this
is possible?), we can estimate this quantity further:

=l...,n

n
< max Ip(A0))] ”Z ymvu)HA
j=1

ax [p(A7)[[le ],

Jj=L...n

Combining this with (4.31), we see
le® 1 < min{ max [pAI)] e L4 |p € e, p(0) =1}
j=L...n
and since the eigenvalues lie in the interval [a, f],
e s < min{ max [p(2)]|p € T, p(0) =1} el (432)
z€[a,p]

, *)
We have thus estimated ||||Z(0> ”A
A

p(0) =1 can attain on the interval [a, §] spanning all generalized eigenvalues of A w.r.t. M.

by the smallest maximal absolute value any polynomial p € I with
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The question about the optimal polynomial in (4.32) can be answered by Chebyshev polynomials; we
refer you to Elman, Silvester, Wathen, 2014, Theorem 2.4 if you want to know more details. It turns
out that the optimal value

ming max z eIl, p(0) =1
1 {ZE[’]|P( )|‘P k p(0) }
depends only on k = f/a and it is given by

(\/_ 1)k (\/_ 1)k —
\/E—l \/E+1

2

From there, we finally obtain

ve-1\" o)
N lle*™ [ as

which is precisely (4.30b). Squaring both sides and dividing by 2, we also obtain (4.30a). ]

le®|l, < 2 (

Corollary 4.20 (Maximal number of iterations required in Algorithm 4.17, compare Corollary 4.9).
Given positive numbers ¢ and ¢,, it takes

2k
ﬂ In E iterations until 2 Ve -1 < ¢,
4 £ Ve +1
k
VK In (Eﬂ iterations until 2 (\/E —_ 1) < 6.
Ve +1

&2

k <

k <

Proof. The proof is similar to Corollary 4.9 and it uses that
-1 2
—In (\/E ) >—>0
Vi +1 VK

holds for all k > 1. O

Remark 4.21 (on Theorem 4.19).

(i) The estimates (4.30a) and (4.30b) establish the R-linear convergence of the respective quantities to
zero.

(ii) Compared to the estimates (4.13c) and (4.13d) for the gradient descent method, we obtain the
k
reduction factor (%) in place of (’fc—;ll)k which is generally much better.
(iii) The superiority of the CG method compared to the gradient descent method is also reflected in
the estimates for the maximal iteration numbers to achieve a certain reduction in the quantities
Pp(x ) — p(x*) and ||x*) — x*|| o, respectively. The bounds for the maximal iteration numbers are

proportional to \/k for the CG method, not proportional to k.
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(a) Iterates (x(k)) of the method. Each color corresponds to a different initial guess x(%).

10
10
10°
D
10t ¢
10°
102
107
104 100 b
10°F J
10°® : : : ’ ; ' 10718 : - ; ; ; !
0 5 10 15 20 25 30 0 5 10 15 20 25 30
(b) The norm of the gradient V§®*) = (c) The objective values ¢(x*)) — $(x*) converge
IVad(x Ny = [Ir® ]y does not monotonically. The black line illustrates the
necessarily converge monotonically. bound (4.30a).

Figure 4.3: [llustration of the convergence behavior of Algorithm 4.17 from a number of initial guesses
x(®) . No preconditioning (M = Id) is used. The two eigenvalues of the matrix are = 1 and
B =10 so the condition number is x = 10.
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101 E o

100 L

10-1 L

102 ¢

10° ¢

10—10 b

10-6 1 1 1 L L | 10-15 L 1 1 1 L |
0 5 10 15 20 25 30 0 5 10 15 20 25 30

(@) The norm of the gradient V§®) = (b) The objective values ¢(x*)) — ¢(x*) converge
IVmd(x ND)ae = Ir% Iy does not monotonically. The black line illustrates the
necessarily converge monotonically. bound (4.30a).

Figure 4.4: Illustration of the convergence behavior of Algorithm 4.17 from a number of initial guesses
x(®) No preconditioning (M = Id) is used. Here A is a random matrix of dimension 100X 100
with eigenvalues in the interval [, f] = [1,100] so that the condition number is x = 100.

(iv) As was the case for Theorem 4.8, the estimates of Theorem 4.19 are worst-case estimates since they
do not depend on the initial guess x°). In fact, as can be seen in Figure 4.3c and Figure 4.4b, the
actual contraction factor for the objective values can be significantly smaller for some initial guesses
than the estimate (4.30a) suggests.

(v) Other informative error bounds than (4.30) and (4.30b) and convergence results can be obtained by
proceeding as in the proof of Theorem 4.19 and choosing other polynomials to bound the error with.

The iterates of the conjugate gradient method have a further remarkable property, which we will
exploit later on:

Lemma 4.22 (Growth of the distance from the initial guess'). Consider the iterates x*) of the conjugate
gradient method (Algorithm 4.17). As long as x%) # x* holds, the sequence ||x®) — x(©)||5; is strictly
increasing.

Note: The steepest descent method does not have this property.

Proof. Statement (i) in Lemma 4.14 implies that

k-1
)T ® —x) = 3 a; (r9)dD =0 forall k > o. (*)
i=0 ~—

=0

'4]n the literature, we find this result often only for the case x(® = 0, see for instance Nocedal, Wright, 2006, Theorem 7.3.
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We now show by induction that (x*) — x(®)"A1d®) > 0 holds for k > 1. Initially, for k = 1,
Statement (i) in Lemma 4.14 once again yields

=0

(x® = OV A dD = ¢© (GO AL (—A 1D 4 OO
O ONPIONIYPIO)

—_———— ———
>0 >0 >0

> 0.
We now proceed with the step from index k to k + 1:
(x(k+1) _ x(O))TMd(k+1) — (x(k+1) _ X(O))TM (_M—lr(k+1) +ﬂ(k+1) d(k))
— ﬁ(k+1) (x(k+1) _ x(O))TMd(k) by (*)
— B () 4 (0 g (k) _ Oy pp (k)
= BUHD (5 (B) _ 5 ONTpr (k) 4 (k) glktt) (g (RIyTpp g (k)
> 0. (%)

Due to the induction hypothesis as well as a'*) > 0, &1 > 0 and (d©)"™Md*) > 0, the entire
expression is positive.

The desired result now easily follows from

[|xcF+D) — x(0)||12v1 =[x 4+ aF gtk x(0)||]2w

— ||x(k) — x(0 ||§/[ +2 a(k)(x(k) _ x(O))TM d® 4 (a(k))Z ”d(k) ||%/I ) (s5%)
— ————
>0 >0 >0
O

The relations (x*) and (s*x) allow us to compute the informative quantities

0 = ||Ix® _x(o)”]zw (4-332)
'f(k) — (x(k) _ x(O))TM d® (4.33b)
y® = 1d® 013, (4-330)

on the side without any noticeable effort. This can be achieved by inserting, at the appropriate positions
in Algorithm 4.17 (Quiz 4.7: Where?), the relations

w® =0, w*D = () 4o a® k) 4 (aF))? y o see () (4-342)
£ =0, R e (AR see (+x) (4:34b)
y© =60, y & = s (pler)y2 ) (F) (confirm for yourself). (4.34¢)

The remarkable fact about this is the possibility to keep track of (4.33) without requiring access to the
matrix M, or even matrix-vector products with M. Notice that we usually do not have the latter since
we only need matrix-vector products with M~! in Algorithm 4.17.
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§ 5 LINE SEARCH METHODS FOR NONLINEAR UNCONSTRAINED PROBLEMS

We consider in this section a large class of methods to solve general, nonlinear unconstrained prob-
lems
Minimize f(x) where x € R". (UP)

The methods we consider are so-called line search methods. In every iteration, a line search method
first determines a search direction and subsequently finds a step size (or step length) «®), that

leads to the next iterate via
k) = (k) o (R) g ()

Assumption 5.1. Throughout § 5 we are assuming that f: R" — R is a C! function.

Most line search methods, in particular the ones we consider, require that d‘¥) is a descent direction
for the objective f at the current iterate x%), i. e, that

f(x®yd® <o (5.1)

holds, see Definition 4.4. This implies that we have descent at least for sufficiently small positive step
sizes (x(k),
f(x(k“)) = f(x(k) +a® gy < f(x(k))

and it motivates the term descent method.

Most methods' we are discussing in § 5 determine the search direction d'*) by considering a local
quadratic model of the objective:

q® (@) = Fx®y 4+ Fr(x®)d + %dTH(k)d. (5.2)

This model uses the data f(x®)) and f’(x(*)) at the iterate x¥) and it agrees with f regarding that
data at d = 0:
" (0) = f(x)
and  (¢)"(0) = /(=)

The matrix H®) is the Hessian of the model, briefly: the model Hessian. In case H*) = " (x(¥)),
the model ¢'¥) is the second-order Taylor polynomial of f at x*). However, in general, the model
Hessian is chosen to be any symmetric and possibly positive definite matrix. In fact, different line
search methods differ w.r.t. their choice of the model Hessians H¥), and thus with respect to the
search directions they use.

The search direction d¥) is obtained by minimizing (possibly only to a certain accuracy) the quadratic
polynomial ¢*:
Minimize ¢ (d), deR" (5.3)

As we know from Lemma 4.1, the following cases can occur:

Swith the exception of nonlinear conjugate gradient methods in § 5.8
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(i) When H® is s.p.d., then the unique solution of (5.3) is given by the unique solution of the
linear system
HP 4" = -vf (). (5.4)

(ii) When H®) is symmetric and only positive semidefinite, then (5.3) is either unbounded, or else
has infinitely many minimizers. In any case, the minimizers of (5.3) are precisely the solutions
of the linear system (5.4)."°

(iii) When H®) is symmetric but not positive semidefinite (i. e., at least one eigenvalue of H*) is
negative), then (5.3) is an unbounded problem. However, the linear system (5.4) may still be
uniquely solvable, or solvable with multiple solutions, or not solvable. The solutions of the linear
systems (if any) are either all saddle points'? of ¢'¥, or they are all global maximizers. (Quiz 5.1:
Is this statement clear?)

To solve (5.3) and (5.4), respectively, we can employ the conjugate gradient (CG) method from § 4.6.
However, it would be useful to enhance it so that it checks and reacts to the potential occurrence of
non-positive eigenvalues in the model Hessian H*). We will see more details on that later.

§ 5.1 A GENERIC DESCENT METHOD

We begin by considering the following model algorithm of a generic line-search descent method:

Algorithm 5.2 (Generic line-search descent method).
Input: initial guess x'*) € R"

Input: routine to evaluate f and f’ (or Vf)

Output: approximately stationary point of (UP)

1 Setk =0

2: while stopping criterion not met do

3: Determine a search direction d'*) such that f'(x*)) d®) < 0o / descent direction
& Choose a step size a'®) > 0 such that f(x® + a®d*)) < £(xk)) / obtain descent
5 Set x (k1) .= x (k) 4 (k) g(k) / take the step
6: Setk =k+1

7: end while

8: return x<k)

In order to analyze the convergence properties of this generic algorithm and to determine further
requirements for the descent directions and step sizes, we ignore the stopping criterion for now, so that
Algorithm 5.2 produces infinite sequences of iterates x(¥), search directions d¥) and step sizes a(¥).
In practice, of course, we will use a stopping criterion to be discussed later.

16The solution set of the linear system (5.4) is either the empty set or an affine subspace of R” whose dimension agrees with
the dimension of ker H).

'7A stationary point x of f is called a saddle point of f if the Hessian f”’(x) is indefinite, i. e., has at least one positive and
at least one negative eigenvalue.
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We will see that, in general, we cannot expect the iterates x¥) to converge overall, but there may be
convergent subsequences with different limit points (although this rarely occurs in practice). We recall

that the limit points of convergent subsequences (x(k({))) are precisely the accumulation points of
(x®)
x").

We would like the accumulation points of the sequence of iterates{x %)} to be “special” points. There-
fore, it would be desirable to have the following property:

When x* is an accumulation of (x(k)), then f’(x*) = 0, 1i.e., x" is stationary. (5.5)

The relatively weak property (5.5) is often referred to as the global convergence of an algorithm.
In particular, global convergence does not mean that one obtains a global minimizer. By contrast, it
means that one obtains a convergence result (5.5) that is valid for arbitrary initial guesses x(*). Notice
that (5.5) does not assert that an accumulation point even exists.’® Tt turns out that, in general, we
cannot expect more. Under additional assumptions on f, one may be able to show stronger results,
for instance

||Vf(x(k)) || has an accumulation point at 0. (5.6a)
The entire sequence ||Vf(x(k)) || converges to 0. (5.6b)
Accumulation points of (x¥)) are stationary. (5.6¢)
The entire sequence (x(k)) converges to a stationary point. (5.6d)
The entire sequence (x(k)) converges to a local miminizer. (5.6€)

We will now investigate the minimal requirements on the search directions d‘¥) and step sizes a*)
in Algorithm 5.2 that ensure global convergence in the sense of (5.5). To this end, two properties are
essential:

(1) The search directions d¥) are “good descent directions”.

(2) The step sizes a'*) are chosen so that the achievable descent along the search direction d*) is
“sufficiently exploited”.

We use the user-defined M-inner product in the space of optimization variables and search directions R".
Since all norms in R” are equivalent, all concepts and properties of algorithms in the remainder of § 5
are qualitatively independent of the choice of M. However, the choice of M is still important through
its impact on the convergence properties and stopping criteria.

REQUIREMENTS ON THE DESCENT DIRECTIONS

Definition 5.3 (Admissible search directions). Suppose that x*) and d®) the sequences of iterates and
search (descent) directions generated by an algorithm of type Algorithm 5.2. The sequence d'®) of search

BIndeed, an example such as f(x) = x for x € R shows that any algorithm with the global convergence property (5.5)
couldn’t produce an accumulation point, since f has no stationary point.
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directions is termed admissible in case

' (x®)yqdto

-0 = '(x(k)) — 0. (5.7)
EGIY U

Note: The admissibility is a property that the sequence of search directions generated by a particular
algorithm, applied to a particular problem (objective), started from a particular initial guess may or
may not possess. One is, of course, interested in designing algorithms which generate admissible
search directions for arbitrary objectives f and initial guesses x?).

f (x®)y g(k)
ld®) [[m
Therefore, we can interpret the condition (5.7) as follows: when the directional derivatives in the

normalized search directions converge to zero, then it is due to the derivatives converging to zero
and not due to the search directions becoming inefficient (which would be the case if they become
essentially M-orthogonal to the steepest descent direction —V ;). This reflects our first goal (item (1)
above) that the search directions are “good descent directions”. (Quiz 5.2: Which search directions are
admissible for functions f: R — R?)

The expression is the directional derivative of f at x¥) in the direction d*) normalized.

Condition (5.7) is purely qualitative. By contrast, the angle condition

chosen search direction
— _ (k)y g(k) £ (x&)y gk)
cos £(~Vy f(x8),d0) = (Vmf™),d™)m f(x*®))d - 58)
_— IVarf x®)ar 1d® a7 %) [ pg1 1R || an

steepest descent direction

with some 1 € (0,1) is a stronger, quantitative condition, which is moreover easy to verify. It means
that the angles (as measured in the M-inner product) between the chosen search directions d*) and
the directions of steepest descent —V; f(x¥)) are uniformly bounded away from 90°.

Lemma 5.4 (Angle condition implies admissibility). Suppose that x') and d'*) are the sequences of
iterates and search (descent) directions generated by an algorithm of type Algorithm 5.2. If the angle
condition (5.8) holds with some 1 € (0,1), then the sequence d'*) of search directions is admissible.

Proof. We have
f’(x(k))d(k) = (Vf(x(k)),d(k)) = (VMf(x(k)),d(k))M.

The angle condition (5.8) implies

(x5 ) gt

i 2 01V f Dl = 11 )T = 0.
140 |

When the left-hand term goes to zero, then f’(x*)) must go to zero as well. O

As we already mentioned, almost all of the algorithms we will discuss in detail determine their search
directions from the solutions of linear systems

H®G®) = _y (k) (5.4)
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with a symmetric and possibly positive definite matrix H*), the model Hessian. In the s. p. d. case, in
view of

Fx®yd® = —f O [(HIDV )] = -V )T HI)TVFER) <0, (5.9)

d®) is a descent direction as long as f"(x*)) # 0 holds. However, when H*¥) is not positive definite,
then d*) may fail to be a descent direction.

In the s. p. d. case, we can show that as long as the sequence of model Hessians remains “well behaved”,
the sequence of search directions satisfies the angle condition (5.8) and thus is admissible as well.

Lemma 5.5 (Bounded condition numbers imply the angle condition®). Suppose that x'*) and d'*) are
the sequences of iterates and search (descent) directions generated by an algorithm of type Algorithm 5.2.
Suppose that the search directions are obtained from (5.4), where HK) € R™" is a sequence of s. p. d.
model Hessians. Suppose, moreover, that the generalized condition numbers of H¥) w.r.t. M satisfy

Amax (H®); M
K(H(k),M) = % <K.
Amin(H ;M)

Then the sequence of search directions d*) satisfies the angle condition (5.8) with

_2vk 1

n==72—=

K+1 Wk

Proof. We perform a couple of equivalent reformulations of the claim to obtain

2k
VA 2 2V )y 0

2
e @*HTH®E > T‘/_’i||M—1H<’<)d<k>||M 11531 since HK) @) = v £(x*))
K
AR At gR |2 a2
(k +1)2 M M
((d"NTHO MTHE gy ((dT)TALdk) - (k +1)2
((dF)THK®) g(k))2 = 4k

AN ((d(k))TH(k)d(k))Z >

The statement in the previous line, however, is true due to the generalized Kantorovich inequality
(Corollary 2.2). O

We summarize our findings on search directions:

the model Hessians H*) have bounded condition numbers
= the angle condition (5.8) holds

= the search directions are admissible (5.7).

1n the literature, one often finds this result only in the case M = Id, and with the non-optimal bound 5 = %; see for
instance Ulbrich, Ulbrich, 2012, p.32 or Nocedal, Wright, 2006, eq.(3.19).
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REQUIREMENTS ON THE STEP SIZES

We now address the step sizes a*). The following example shows that the mere requirement
f(x(k) +a® gy < f(x(k))

is not sufficient to obtain a reasonable convergence behavior.

Example 5.6 (Too small step sizes>®). Consider the objective f: R — R, f(x) = x?, initial guess x(*) = 1,
search directions d©) = —1 and the Euclidean inner product M = 1. With step sizes a'¥) = (%)Hz, we
obtain the sequences of iterates according to

k
x D) = () g (B) (1) = 5@ Z(%)HZ =5+ (%)Hz‘
i=0

This implies x ¥V < x &) and f(x*+D) < f(x®)). However, x’¥) — x* = 1/2, which is not a stationary
point of f.

The step sizes in the previous example are too small and thus they violate our second goal (item (2)
above) since they do not exploit the achievable descent sufficiently well. We therefore introduce the
following qualitative condition on the step sizes.

Definition 5.7 (Admissible step sizes). Suppose that x'*) and d'¥) are the sequences of iterates and
search (descent) directions generated by an algorithm of type Algorithm 5.2. The sequence a'®) of step
sizes is termed admissible in case

Fx® 4+ a®g®y < £(x®))  forallk e Ny, (5.100)

7 (x (k)Y g(k)
Fx® 4@ gy — rx0) 50 = frm)d™ — 0. (5.10b)
lld® |y

We can interpret (5.10b) as follows: when the progress in the objective values converges to zero, then
it is due to the normalized directional derivatives converging to zero and not due to the step sizes
becoming too small. In other words, admissible step sizes do make sufficient use of the descent available
in the direction d®).

Condition (5.10) is purely qualitative. By contrast, the condition that the step sizes be efficient, i.e.,
there exists 8 > 0 such that

(5.12)

F® +a®d®) < () — 6 (M)Z

lld® NI

for all k € Ny is a stronger, quantitative condition, which is moreover easy to verify.

2°from Alt, 2002, Beispiel 4.4.1
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Lemma 5.8 (Efficiency implies admissibility). Suppose that x*) and d*) are the sequences of iterates
and search (descent) directions generated by an algorithm of type Algorithm 5.2. If the sequence of step

sizes a'K) is efficient, then it is also admissible.

Proof. Suppose that ¥ is efficient, i. e.,

(xR (k)
0< Q(M

2
< (x(k)) _ (x(k) + a(k)d(k))
ld® || ) f /

Therefore (5.10a) is clear. To show (5.10b), suppose
f(x(k) + a(k)d(k)) —f(x(k)) 0.
Since 6 is strictly positive, this implies

f(x®)ydto

— 0,
1d%) ||

which confirms (5.10b).

Using the assumptions of admissible search directions and admissible step sizes, we will obtain a
theorem (see Theorem 5.9 below) on the global convergence of Algorithm 5.2. However, in view of
the expected convergence result (5.5), we will have to work with accumulation points (limits of subse-
quences) of the iterates. This means that we should refine the notion of admissible search directions
(5.7), the notions of admissible step sizes (5.10) as well as efficient step sizes (5.11) to subsequences.

We denote such subsequences here with (x(k)) ek

where K C Nj is an infinite subset of the index

set No. (Quiz 5.3: How does this notation relate to the notation for subsequences (x(k([))) introduced

in § 2.7?)

In detail, the refined conditions on subsequences read as follows:

admissible search directions:

F(x®)d® ek
lld &) || a1

0 = fhy S

angle condition:

—f (x®)) g0
IVarf (") lla [1dR |

admissible step sizes:

>n forallk e K

F(x® +a®g®y < £(x®) forall k € I,
Fr(x®)ad® ek

f(x(k) +0((k)d(k)) —f(x(k)) keN, 0
lld®) |y

(5.7°)

(5:8)

(5.102)

(5.10b%)
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efficient step sizes:

f(x®)y gt

(x® 4+ o® gty < £y - 9(
/ / lld llm

2
) forall k € K. (5.17)

The statements of Lemma 5.4 and Lemma 5.5 continue to hold when restricted to subsequences. For
the analog of Lemma 5.8, we have to make (5.10a’) an assumption rather than a conclusion.

We now show a global convergence theorem for the model Algorithm 5.2.

Theorem 5.9 (Global convergence of model Algorithm 5.2). Suppose that Algorithm 5.2 generates an
infinite sequence of iterates x%), search directions d®) # 0 and step sizes a'¥). Suppose that x* is an
accumulation point of x'*) and that (x(k))keK is a subsequence converging to x*. Finally, suppose that
the subsequences (d(k))keK and (a(k))keK of search directions and step sizes are both admissible. Then

Fx) =0,

Note: In other words, when a generic descent algorithm (Algorithm 5.2) produces admissible search
directions and admissible step sizes, then any accumulation point of the iterates is stationary.

Quiz 5.4: What goes wrong in Example 5.67

k
Proof. Due to the continuity of f, we have f(x¥)) LN f(x*). Moreover, by admissibility of the step
sizes (5.10a’), the entire sequence f(x¥)) is monotone decreasing. Therefore, the entire sequence in
fact converges: f(x*)) — f(x*). Consequently, we also have

FEED) = fx ) = fe +aWd®) - () — 0.
The admissibility of step sizes along the subsequence, (5.10b’), implies

F(x®)d® ek
1]

Since the search directions along the subsequence are in turn admissible, (5.7°), we can conclude
keK
Fx®) —o.

On the other hand, since f is of class C!, we also have

keK

f1x®) = f(x").
This shows f’(x*) = 0. |

§ 5.2 STEP SIZE STRATEGIES

In this section we will see how efficient step sizes (5.11) or at least admissible step sizes (5.10) can be
found in general.
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ARMIJO BACKTRACKING LINE SEARCH

The Armijo backtracking line search is the simplest step size strategy and it is sufficient in many
situations. Suppose that d¥) is a descent direction for f at x(¥). In order to obtain sufficient decrease,
the Armijo condition requires that the step size « satisfy

Fx® +ad®) < f(x®) +oaf (x®)a® (512)

holds. Here o € (0,1) is the given Armijo parameter. Using the auxiliary function (line search
function)
o) = f(x® +ad®)

to simplify notation, we can write the Armijo condition (5.12) equivalently in the form
¢(a) < ¢(0) +oag’(0). (512)

Step sizes a > 0 which satify (5.12) are termed Armijo step sizes. Condition (5.12) requires that the
step size « realizes at least the o-fraction of the first-order descent suggested by the tangent of ¢ at
a=0.

Notice that due to the chain rule, ¢ inherits the C' property of f, and we have

¢ (@) = £ (x® +ad®)a® (5.132)
and, in particular, ¢’(0) = f’(x¥))d® . (5.13b)

o

Figure 5.1: Illustration of step sizes o > 0 satisfying the Armijo condition (5.12) (blue). As an example,
the Armijo parameter is chosen as ¢ = 0.07.

We will now answer the question whether Armijo step sizes exist, and how to find them.

Lemma 5.10 (Existence of Armijo step sizes). Suppose that d is a descent direction for f at x, and that
the Armijo parameter satisfies o € (0,1). Then there exists @ > 0 such that (5.12) holds for all ¢ € [0, «].
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Proof. ¢’ is continuous at 0, which implies that there exists @ > 0 such that
¢’ (a) < o¢’(0) holdsforall a € [0,a].
From Taylor’s theorem 2.4 we obtain that there exists & € [0, a] such that

p(a) = ¢(0) +a ¢’ (&)
< @(0)+oa¢’(0).

Therefore, the Armijo condition (5.12) holds for all ¢ € [0, «]. O

We have seen that the Armijo condition is always satisfied in an interval starting at @ = 0. However,
we need to select a step size which is not too small, as demonstrated by Example 5.6. This can be
achieved by a backtracking strategy: run through a sequence of trial step sizes from large to small
until the Armijo conditon (5.12) is satisfied for the first time.

Algorithm 5.11 (Armijo backtracking line search).
Input: initial trial step size a

Input: routine to evaluate ¢

Input: pre-computed function values ¢(0) and ¢’ (0)
Input: Armijo parameter o € (0,1)

Input: backtracking parameter € (0,1)

Output: step size a satisfying the Armijo condition (5.12)

1 Setf =0

2: while Armijo condition (5.12) does not hold for & do

3 Seta = fa / new trial step size
4 Sett =¢+1

5: end while

6: returna

Remark 5.12 (on Algorithm 5.11).

(i) In Algorithm 5.11, we did not number the trial step sizes a® gD by an index in order to avoid
confusion with the step size a®) which eventually gets used in the k-th iteration of the outer
algorithm (Algorithm 5.2).

(ii) Every trial step size that fails to satisfy the Armijo condition “costs” one additional evaluation of ¢,
i e., one additional evaluation of f.

(iii) The Armijo parameter is often chosen to be small, e. g., o = 1072 or even o = 10~*. A typical value
for the backtracking parameter is f = 1/2.

(iv) It follows from Lemma 5.10 that Algorithm 5.11 terminates successfully after finitely many iterations
with a step size o that satisfies « > o . Here @ > 0 is the upper bound of any interval [0, «|
containing only Armijo step sizes.
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(v) In a practical implementation, one often adds further checks and stopping criteria to Algorithm 5.11.
For instance, we need to safeguard against ¢’(0) > 0 (d is not a descent direction) and against too
many unsuccessful trial steps.

Suitable values for the initial trial step size @ in Algorithm 5.11 depend on how the search directions
d) are generated in the outer method. We will see more on that when we discuss concrete instances
of Algorithm 5.2. Since the backtracking strategy only shortens the initial trial step size, we need to
ensure that the initial trial step size is sufficiently large in order to obtain admissible step sizes that
exploit the achievable descent sufficiently well. This is what the following result is about.

Lemma 5.13 (Armijo backtracking line search produces admissible step sizes). Suppose that Algo-
rithm 5.2 generates an infinite sequence of iterates x*) and search (descent) directions d*) # 0. Suppose
moreover that the step sizes «X) are obtained by the Armijo backtracking line search (Algorithm 5.11)
with initial trial step size %%, Assume that K C Ny is an infinite index set such that the subsequence
(x(k))keK is bounded. Finally, suppose that {/: [0, 00 — [0, ) is any monotone increasing function and
that the initial trial step sizes satisfy

_ff(x(k)) d)

(k,0) 11 7(F)
B0 [y 2y
14

) forallk € K. (5.14)

Then the step sizes (a(k>)keK are admissible.

Proof. We need to show (5.10a°) and (5.10b°). The first condition is a direct consequence of the Armijo
condition holding at a®) > 0

f(x(k) +a® gy < f(x(k)) +oa® f’(x(k)) d®).
———
<0

the fact that d%) is a descent direction and that o is positive. It remains to verify (5.10b").

By assumption, the sequence (x(k)) ek is bounded. Therefore, it has a convergent subsequence with
index set K’. By continuity of f, (f (x(k))) rex: converges. Due to the Armijo condition (5.12), the
sequence f(xK)) is monotone decreasing, so that in fact the entire sequence f(x¥)) converges. From
there and the Armijo condition (5.12) we conclude

f(x(k+1)) —f(x(k)) = f(x(k) +aF) gtk —f(x(k)) < aa(k)f'(x(k)) 45 < 0.
The left-hand side converges to 0, therefore we must have
a® (xR g - o, (+)
In order to verify (5.10b’), we need to show

f(x®)d® ek
14 [ ag
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In the remainder of the proof, we distinguish indices k € K according to the following cases:
ac(k)f’(x(k)) 4%
a®|d ™

we use the assumption (5.14) in case a®) = ¢(k0)

is small.

When a®(]d® || is “large”, then

When a®|d®)|| is “small”, then B o ] f P
we use the Armijo condition (5.12) in case a®) < (60,

By assumption, the sequence (x(k)) ek is bounded, hence the continuous function f” is uniformly
continuous “near the (x(k)) rek - More precisely, suppose that R > 0 is any fixed number, then f” is

uniformly continuous on the compact set

Ag = cl U BM (x50,
keK

(Quiz 5.5: Why is this set compact?) Now suppose that ¢ > 0 is given. Then there exists § > 0 such
that

1f' () = f'(@Dlur < (1-0)e
holds for all y,z € Ag such that ||y — z||y < 8. Possibly by making & smaller, we can assume & < R.
Thus, in particular, we obtain

||f’(x(k> +e) —f’(x(k))“M,1 <(1-0)e forallk €K, ||y < 9. (x%)
€AR €AR

We now set 3 :
6= min{5ﬁ, ¢(£)} € (0,9).

Due to the convergence in (x), there exists an index ky € N such that

a®|f (x*)d™| < e5 holds for all k > k. (%)

From now on, let k € K, k > ko, be arbitrary. We are going to show that

f(x®)y gt
[1d

holds, which proves (5.10b”). We distinguish the following cases, as anticipated above:

Case 1: a0 ||d) || > 6
In this case we immediately conclude

— (xR g0
< % since d*) is a descent direction
a5 || p
=W (x0) g0
— a®)d® Iy
19
< % by (+#x) and the assumption in case 1
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Case 2: a0 ||d®) ||y < § and a'®) = o(k0)

We obtain
—f (x®)) k) .
w(f”d(k—)”) < aro ld® |l by assumption (5.14)
M
< by the assumption in case 2
< y(e) by the choice of §.

Since ¢ is monotone increasing, we conclude

—F (&) gk)
)
14 1

Case 3: ™ || d®) ||y < § and a®) < (k0

The assumption a*) < @6 means that the initial trial step size (and possibly some of the subsequent
trial step sizes) did not satisfy the Armijo condition. Since a¥) was the first trial step size to satisfy
the Armijo condition (5.12), the previous trial step size, f~'a'F), violated it:

aﬂ_la(k)f'(x(k))d(k) < f(x(k) +ﬂ_1a(k)d(k)) —f(x(k)).
By Taylor’s theorem 2.4, there exists £*) € (0,1) such that

oo™ f (x*)g® < g1k f'(x(k) +p o™ §(k)d(k)) d®
and thus

af'(x(k)) 4%
< f’(x(k) +[3—1a(k) §(k)d(k)) d®
= f'(x(k)) d® + [f’ (x(k) +,8_10((k) §(k)d(k)) —f'(x(k))]d(k)
< f/®)d® || (x® + p7a® ERAD) — £ Oy 14PN by (2.3).

—————
)
The vector e(¥) satisfies
el = p71a 91O |y
<p7's by the assumption in case 3 and since £¥) € (0,1)
<65 by the choice of §.

We may thus apply estimate (x*) to the inequality above to obtain
o f' (x)d® < f(x*)d® + (1= 0) e [ldV || .
Sorting terms and dividing by ||d¥) ||y finally yields

7 (x00) g)
1) | m
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Remark 5.14 (Armijo backtracking line search produces efficient step sizes). When we choosey(z) = cz

with some ¢ > 0, i. e, when we use initial trial step sizes satisfying

—f'(x®)y dto)
ld® Ny

and if f” is Lipschitz continuous on the sublevel set Mf(x(o)) = {x € R"| f(x) < f(x())}, then one
can show that Algorithm 5.11 produces not only admissible, but efficient step sizes.

aro 149 In 2 ¢ (5.15)

To conclude the presentation of Armijo backtracking strategies, we consider a modification of Algo-
rithm 5.1 which often produces trial step sizes more effectively than simple backtracking & ~» S« in
case the Armijo condition fails on the initial trial step size.

The modification is based on the fact that we have available the data of the line search function ¢
¢(0), ¢'(0)<0 and ¢(a)
for the current trial step size a. Using this data, we can fit a quadratic polynomial
pla)=a+ba+ca’.

The conditions® p(0) = ¢(0), p’(0) = ¢’(0) and p(a) = ¢(«) uniquely define the coefficients

a=90), b= (0, = —(p(@-90) -0 a). (510

Naturally, this quadratic model of ¢ will be used only when the Armijo condition (5.12) failed at the
trial step size «, i. e., in case

@(a) —9(0) — ' (0)a > p(a) — p(0) —c ¢’ (0)a >0

holds, which implies ¢ > 0. This in turn means that the unique global minimizer a* = —% of p
satisfies
oo —¢'(0) &
2 (p(a) = 9(0) = ¢'(0) @)
We then choose a* as the next trial step size a*, but in order to avoid drastic changes or even an
increase from a to a*, we clip a* to the interval [f a, f ] according to

éa, ifa* < /_30:,
at = min{max{a*,/_fa},ﬁa} =qa, iffa<a" < ,Ba,
E(x, ifa* > Ea,

where 0 < f < B < 1are the clipping parameters.?* This modified Armijo backtracking line search
maintains the essential properties of the simple Armijo backtracking line search. In particular, the
admissibility (and potentially efficiency) of the accepted step sizes (see Lemma 5.13 and Remark 5.14)
continue to hold.

For completeness, we present the modified Armijo backtracking line search procedure in Algo-
rithm 5.15.

2'Fitting a polynomial using function values and derivatives is known as Hermite interpolation. Using function values
only is known as Lagrange interpolation.
22Using f = B = f we get back our previous simple backtracking strategy where a* = f a.
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Algorithm 5.15 (Modified Armijo backtracking line search with interpolation).
Input: initial trial step size o

Input: routine to evaluate ¢

Input: pre-computed function values ¢(0) and ¢’(0)

Input: Armijo parameter o € (0,1)

Input: backtracking parameters 0 < f§ < ,B <1

Output: step size a satisfying the Armijo condition (5.12)

1 Settf =0
2: while Armijo condition (5.12) does not hold for a do
’ 2
3 Seta* = mAOL / minimizer of quadratic polynomial
2 (¢(a) = ¢(0) — ¢(0) @)
& Set o = min{max{a*, Bal, E(x} / clip it and use as new trial step size
5 Setzet =€ +1 B
6: end while
7: return o

WOLFE-POWELL LINE SEARCH

Recall from Lemma 5.10 that the Armijo condition
Fx® +ad®) < fx®) +oaf (x®)d® or p(a) < p(0)+oae’(0) (5.12)

always holds in some interval [0, &]. Therefore, we combined the Armijo condition with backtracking,
where we generate trial step sizes from large to small, in order to avoid overly small step sizes.

Alternatively, we could require, in addition to (5.12), the curvature condition
F(x® +ad®)yd® > (xF)ag®  or @' (a) > 7¢'(0) (5.17)
or even the strong curvature condition
If (x® +ad®)d™| <z f/(x®)d® or ¢’ (a)] < -1’ (0) (5.18)

to hold, where 7 € (0,1) is the curvature parameter. The curvature condition (5.17) demands that
the derivative of ¢ at « is not too negative, namely that it is larger (has less descent) than at @ = 0.
However, it would be fine for ¢ to increase near «; see Figure 5.2. This curvature condition already
avoids too small step sizes a near 0.

The strong curvature condition (5.18) demands that, in addition, the derivative of ¢ at « it not too
positive either. The condition can be interpreted as the requirement that ¢ be an approximately
stationary point of ¢. Note: When « is a local minimizer of ¢, then (5.18) holds even for 7 = 0.

The Armijo condition (5.12) and the curvature condition (5.17) together are referred to as the Wolfe-
Powell conditions. The Armijo condition (5.12) and the strong curvature condition (5.18) together are
referred to as the strong Wolfe-Powell conditions. Consequently, step sizes & > 0 which satisfy the
above conditions are referred to as Wolfe-Powell step sizes and strong Wolfe-Powell step sizes,
respectively.

https://tinyurl.com/scoop-nlo 65


https://tinyurl.com/scoop-nlo

R. Herzog @O®S

o

Figure 5.2: Illustration of step sizes a > 0 satisfying the curvature condition (5.17) (red) and the strong
curvature condition (5.18) (teal). As an example, the curvature parameter is chosen as
7=0.2.

A simple example such as ¢ () = —a shows that the curvature condition may not be satisfiable without
further assumptions on f. The following result gives a sufficient condition for strong Wolfe-Powell
step sizes to exist.

Lemma 5.16 (Existence of (strong) Wolfe-Powell step sizes). Suppose that d is a descent direction for
f at x and that the Armijo and curvature parameters satisfy 0 < ¢ < t < 1. Suppose, moreover, that f
is bounded below on the ray {x + ad | @ > 0}. Then there exists a step size az > 0 such that the strong
Wolfe-Powell conditions (5.12) and (5.18) (and thus also the regular Wolfe-Powell conditions (5.12) and
(5.17)) hold in a neighborhood of a;.

Proof. We abbreviate as usual ¢(a) = f(x + a d). Since by assumption, ¢ is bounded below on Ry, ¢
intersects the Armijo line
a > ¢(0)+0 ¢'(0) a,
<0
which is unbounded below, in at least one positive point. Suppose that ¢; is the smallest positive point

of intersection (Quiz 5.6: Why does o; exist?). Then we have

¢(a1) = ¢(0) + ¢’ (0) 1.

In view of ¢’ (0) < 0, the Armijo condition (5.12) holds for all « € [0, a1], i. e., the Armijo line lies below
¢ on this interval. From the mean value theorem 2.4, we infer the existence of a; € (0, a1) such that

) 2@ =0(0)

g

¢’ (az a¢’(0).

And thus we obtain the strong curvature condition (5.18) at a,:

l¢"(a2)| = =0 ¢"(0) < =7 ¢’(0).
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o

Figure 5.3: Illustration of step sizes ¢ > 0 satisfying both the Armijo condition (5.12) (blue), the
curvature condition (5.17) (red) and the strong curvature condition (5.18) (teal). As an
example, the Armijo parameter is chosen as o = 0.07 and the curvature parameter is chosen
as7=0.2.

Due to the continuity of ¢’, the strong curvature condition (5.18) and thus also the regular curvature
condition (5.17) continue to hold for all « in a neighborhood of ;. O

We now address an algorithm to find a Wolfe-Powell step size. To simplify notation, we introduce the
auxiliary function

y(a) = ¢(a) - ¢(0) —0 ¢’ (0) a,

which measures the signed gap between the function values of the one dimensional line search function
¢ and its o-relaxed linearization at the origin, so that we can write

the Armijo condition (5.12) < ¥(a) <0, (5.12°)

the curvature condition (5.17) < —(r—-0)|¢’(0)| < ¥ (), (5.17)

the strong curvature condition (5.18) < —(r—-0)|¢’(0)| <V (a) < (t+0) ¢’ (0)]. (5.18)
>0

We restrict the discussion to the regular Wolfe-Powell condition, i. e., (5.12) and (5.17). See for instance
Geiger, Kanzow, 1999, Kapitel 6.3 for the strong Wolfe-Powell condition.

Lemma 5.17 (Inclusion of Wolfe-Powell step sizes, see Geiger, Kanzow, 1999, Lemma 6.1). Suppose
that 0 < a < b are chosen such the conditions

Y(a) <0 and Y'(a) <0 (5.192)
aswellas Y(b) =0 (5.19b)
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hold; see Figure 5.4. Then there exists a* € (a, b) such that
Y(a) <0 and yY'(a")=0

holds. In particular, the Wolfe-Powell conditions (5.12°) and (5.17°) hold in a neighborhood of o*.

Proof. Let us denote by a* a global minimizer of
Minimize /() on the compact interval [a, b].

The assumptions on a and b imply that o belongs to the open interval (a, b). Consequently, " is
also a local minimizer of the unconstrained problem “Minimize (@) where @ € R”, and thus we have
V¥ (") = 0. From ¢/ (a) < 0 and ¢’ (a) < 0 we infer (") < 0. Since both (5.12°) and (5.17°) hold with
strict inequalities at @*, continuity implies that they hold in a neighborhood of a*. O

(@)

Figure 5.4: lllustration of the condition (5.19) and the statement of Lemma 5.17.

Note: The condition (5.19a) is readily seen to hold at a = 0. This motivates the strategy to first find a
right boundary b so that (5.19b) holds as well, and then to approximate a* by nesting intervals.

Algorithm 5.18 (Wolfe-Powell line search).

Input: initial trial step size

Input: routine to evaluate ¢ and ¢’

Input: pre-computed function values ¢(0) and ¢’ (0)

Input: Armijo and curvature parameters0 < o < 7 <1

Input: expansion parametery > 1

Input: nesting parametersy,y € (0,1/2]

Output: step size a satisfying the Wolfe-Powell conditions (5.12) and (5.17)
1 Seta:=0andb =«
2: Sett =0
3: while p(b) < ¢(0) + 0 ¢’ (0) b and ¢’(b) < ¢’ (0) do  / phase 1 repeatedly expands [0, b] until

(5.19) holds
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4 Setb :=yb / expand the right boundary b
5 Setl=f+1

6: end while / now we have (5.19)
7: Seta := b

8: while Armijo condition (5.12) or curvature condition (5.17) is violated at @ do / phase 2 repeatedly

shrinks [a, b] until (5.12) and (5.17) hold

9: Choosex € [a+y (b—a),b—y (b - a)] / for instance, choose the midpoint
10 ifp(a) = ¢(0) + 0 ¢’ (0) a then / Armijo condition is violated at
11 Seth =« / reduce the right boundary b
12: else

13 Seta =« / increase the left boundary a
14 end if

15: Sett =f+1
16: end while
17: return o

Remark 5.19 (on Algorithm 5.18, compare Remark 5.12).

(i) The Armijo parameter is often chosen to be small, e.g., o = 1072 or even ¢ = 10~*. Depending
on the characteristics of the outer method (which determines the search directions), the curvature
parameter T > o should be chosen “small” as well, e. g., T = 0.1, or otherwise “large”, e.g., T = 0.9.

(ii) Each iteration of phase 1 “costs” one additional evaluation of ¢ and ¢’, i. e., one additional evaluation
of f and f’, or rather the directional derivative of f in the direction of the current search direction;
compare (5.13). Each iteration of phase z “costs” one additional evaluation of ¢.

(iii) Using Lemma 5.17, it is not difficult to see that Algorithm 5.18 terminates after finitely many steps
under the conditions of Lemma 5.16:

o The while loop beginning at Line 3 terminates, since for b sufficiently large, the Armijo
condition (5.12) is violated. For such b, we have {/(b) > 0, i. e., (5.19b) holds.

o At the first iteration of the while loop beginning at Line 8, the conditions (5.19) of Lemma 5.17
are satisfied. Consequently, they continue to hold also in all subsequent iterations.

« The length of the intervals [a, b] in phase z goes to zero if infinitely many iterations of the
while loop beginning at Line 8 were performed. However, as shown in Lemma 5.17, there
is an open set of points which satisfy both the Armijo condition (5.12) and the curvature
condition (5.17) inside any of the intervals [a, b] considered in phase 2. Therefore, phase 2
must terminate.

(iv) The step size accepted by Algorithm 5.18 may be larger or smaller than the initial trial step size
provided by the user.

(v) As was already noted for the Armijo backtracking line search (Algorithm 5.11) in Remark 5.12, in
a practical implementation, one often adds further checks and stopping criteria to Algorithm 5.11.
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For instance, we need to safeguard against ¢’(0) > 0 (d is not a descent direction) and against too
many unsuccessful trial steps.

(vi) An algorithm for the strong Wolfe-Powell line search can be found in Geiger, Kanzow, 1999, Kapi-
tel 6.3.

The admissibility of step sizes generated by the Wolfe-Powell line search algorithm is shown in the
following result. Clearly, this result also applies to step sizes satisfying the strong Wolfe-Powell
conditions.

Lemma 5.20 (Wolfe-Powell line search produces admissible step sizes). Suppose that Algorithm 5.2
generates an infinite sequence of iterates x'*) and search (descent) directions d'*) # 0. Suppose moreover
that the step sizes a) are chosen so that they satisfy the Wolfe-Powell conditions (5.12) and (5.17) (for
instance by Algorithm 5.18).>3 Assume that K C N is an infinite index set such that the subsequence
(x(k))keK is bounded. Then the step sizes (a(k))keK are admissible.

Proof. As in the proof of Lemma 5.13 we obtain the result
—a® £ (x®ya® — o, (x)

It remains to show
F(x®yd®) ek
ld®|

To this end, let € > 0.

Just like in the proof of Lemma 5.13, we can argue that the boundedness of (x(k)) ek €ntails that the

2

continuous function f” is uniformly continuous “near the (x(k)) rek - More precisely, there exists
d > 0 such that

||f'(x(k) +e) —f’(x(k))”M,1 <(1-1)e forallk € K, |le|lm <.
Because of (), there exists an index ko € N such that

a®|f (x®)d®| < e85 forall k > k. ()

From now on, let k € K, k > ko, be arbitrary. Similarly as in the proof of Lemma 5.13, we consider the
following cases:

Case 1: a0 ||d) || > &

23Notice that, in contrast to condition (5.14) in Lemma 5.13, there is no lower bound on the initial trial step size necessary to
be observed.
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Precisely as in the proof of Lemma 5.13, we obtain

_ £ (500 g0
0 % since d®) is a descent direction
[l ||
_ —a(k)f’(x(k)) d®)
o a®d® Iy
)
< % by (%) and the assumption in case 1
=e¢.

Case 2: a®||d® ||y < §
In this we argue with the satisfaction of the curvature conditon (5.17) for a*):

Tf'(x(k)) d® < f’(x(k) + a(k)d(k)) d®
The addition of [f"(x®)) d®)| = —f"(x*)) d®) on both sides yields

(1-71) If'(x(k)) d(k)| < f’(x(k) + a(k)d(k)) 4% _ f’(x(k)) 4%
< ’f’ (x(k) + a(k)d(k)) d® —f'(x(k)) d(k)|
< |IF (™ +a®d®) = £ S| l1d® flar.

Invoking now the uniform continuity, we obtain
1= If ") d® < 10 elldWlm,

and hence
—f’(x(k)) d®)

T d®ly

Analogously as with the Armijo backtracking line search (Remark 5.14), one can also show the efficiency
of step sizes when f” is Lipschitz continuous on the sublevel set M (x©) = {x e R"| f(x) < f(xD)}.
The proof is part of homework problem 4.2.

In concluding, we also remark that Line 9 in phase 2 of Algorithm 5.18 leaves some freedom in the
choice of the next trial step size a. The available data ¢(a), ¢’ (a), ¢(b) and ¢’ () lends itself to a cubic
Hermite interpolation, using the model

pla)y=a+ba+ca’+da’.

Provided that a unique local minimizuer a* of p exists, we can calculate it explicitly and subsequently
clip it to the interval [a, b]:
a ‘= max{a, min{b, a"}}.

One needs to pay attention to the fact that not all of the data ¢’(a) and ¢’ (b) is necessarily available
in the current iteration of Algorithm 5.18. In this case one may proceed with a quadratic polynomial as
in the modified Armijo backtracking line search method.
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Remark 5.21 (Scaling invariance of the Armijo and curvature conditions). The Armijo and curvature
conditions (5.12), (5.17) and (5.18) are invariant w.r.t. affine scaling in the domain and codomain spaces.
Suppose that we consider, besides the objective f, another objective g related via

f(x) ~ g(x)=yf(Ax+Db)+3,

where A € R™" is non-singular, b € R", y > 0 and § € R.

Then the following holds: a step size a that satisfies any of the conditions (5.12), (5.17) or (5.18) for g at x
with search direction d, satisfies the same conditions for f at Ax + b with the search direction Ad. Since
the scaling of an optimization problem is often arbitrary, this is a desirable property.

The proof is part of homework problem 4.3.

§ 5.3 GRADIENT DESCENT METHOD

In the remainder of § 5 we consider different concrete realizations of the generic descent method
Algorithm 5.2. The methods differ w.r.t. the way the search directions d¥) are generated and w.r.t.
the choice of the line search method (Armijo or Wolfe-Powell) to determine the step sizes a(*). As
was already mentioned, the methods discussed here obtain the search drection at an iterate x*) by
minimizing a quadratic model of the objective

q® ) = Fx®y + f(x®yd + % dTH® . (5.2)

When the model Hessian H®) is s.p. d., this is equivalent to the solution of the linear system

H®d® = —vf(x®). (5.4)

The gradient descent method (also known as steepest descent method) for our generic uncon-
strained linear problem
Minimize f(x) wherex e R" (UP)

generates its search directions in the same way we already know from § 4.2, when f was a quadratic
polynomial. That is, we use

Md® = VFx®) or d® = —MIVF(xH) =~V f(x®). (5.20)
This corresponds to using a constant model Hessian H*) = M in the model (5.2):
q® (@) = Fx®) + f(x®)d+ % d'Md.
The choice of the inner product M is due to the user. As was already mentioned in Remark 4.7,

one refers to the case M = Id as the classical gradient descent method without preconditioning.
Otherwise one speaks of a preconditioned gradient descent method with preconditioner M.
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The particular choice of d*) in the gradient descent method clearly implies the angle condition (5.8)
with the maximal possible value, § = 1. In particular, the search direction d'¥) is a descent direction
for f at x(K), as long as f”(x¥)) # 0 holds.

A simple strategy is sufficient to determine admissible step sizes (5.10). One typically employs the
Armijo backtracking line search (Algorithm 5.11) or the version with interpolation (Algorithm 5.15).

The efficiency condition (5.15) requires that the initial trial step size satisfy

—_ £ (xF)y gk)
250 > f'(x™)d
1d®13,
—(VMf(x(k)),d(k))M
a3,
Clld(")ll,zw
ld®1%,

since d'®) =~V f(x®)
=c

with some constant ¢ > 0. This simply suggests to impose a lower bound on the initial trial step sizes
in gradient descent methods. We will re-label ¢ as « in Algorithm 5.22 below.

In addition to observing this bound, it is useful to construct initial trial step sizes using information
from past iterations. Assuming that the descent achievable in the current step is equal (to first order)
to the descent in the previous step (when the accepted step size was a¥~1), we obtain the following
proposal for an initial trial step size (%) at iteration k > 1:

&0 f'(x(k)) d®) = a(k_l)f'(x(k_l)) dk-1

(k1) f/ (X(k_l)) d(k—l)

(k0) _
- “ « F1(x0) 4R

Plugging in the descent directions used in the gradient descent method, this becomes

(k,0) _ (k-1) ”VMf(x(k_l))“jz\/f _ (k-1 ”d(k_l)“jz\/[
(24 = BNE = —(k) 5 -
IVarf (xU)54 ldY 3,

Alternatively, we could use the actual descent achieved in the previous step instead of its linearization,

which would result in

50 — FEED) - FE9) - FEEY) - F®)
IVanf (x )11, 1d 13, '

We state the full gradient descent method in Algorithm 5.22, using the above considerations for the
initial trial step size. As was the case for our methods in § 4 addressing the minimization of quadratic
polynomials, we refer to the value of the derivative of f at an iterate x(¥) as the residual r*).

The global convergence of Algorithm 5.22, in the sense that every accumulation point of the sequence
of iterates x (%) is a stationary point, follows directly from the global convergence theorem 5.9.
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Algorithm 5.22 (Gradient descent method for (UP) w.r.t. the M-inner product and Armijo backtracking
line search).

Input: initial guess x'*) € R"

Input: routine to evaluate f and f’ (or Vf)

Input: s.p.d. matrix M (or matrix-vector products with M™")

Input: Armijo parameter o € (0,1) / to be passed through to the Armijo backtracking line search
Input: backtracking parameter € (0,1) / to be passed through to the Armijo backtracking line search
Input: lower bound a > 0 for the initial trial step sizes

Output: approximately stationary point of (UP)

1 Setk =0

2 Set (O = f(x(0)) / evaluate the initial objective value

3 Setr(® = £ (xO) = V£ (x(?) / evaluate the initial residual

4 Setd©® = —pM1(©

5 Set 81 = —(r(0)7d(©) /8 = IV f (x5, = 14113,

6: while stopping criterion not met do

7 ifk =0 then

8 Set a0 = o / no information from previous iteration available

9: else ,

10: Set a(k0) = max{g, %}

11 end if

12: Determine a step size®) > 0 from an Armijo backtracking line search procedure (Algorithm 5.11),
applied to p(a) = f(x® + ad®)), with initial trial step size a'**), Armijo parameter o and
backtracking parameter f 7 ¢(0) = £ and ¢’ (0) = (r'®)Td®) = —5%) are already known

130 Set xk+D) .= x (k) 4 o (k) g(k)

14 Set fk+1) = F(x(k+D)) / can be returned by the Armijo backtracking line search routine

15: Setr(k+1) — f/(x(k+1))T — Vf(x(k+1))

6 Setd*H) = —p1p (k)

17 Set 5 = —(r(kHD)Tg(k+D) /8D = |[Vprf (x D)5, = [1dFD 3,
18: Setk =k+1

19: end while

z0: return x(K)

In Line 12, we could also invoke the modified Armijo backtracking method (Algorithm 5.15), with the
backtracking parameter f§ replaced by the pair of parameters 0 < f < f < 1.

As a stopping criterion, we can choose again any of the conditions from (4.14), i. e., stop on the relative
or absolute magnitude of the derivative or gradient

I g = 1L N g = 1V f e ) lag = 145 (| = (852,

These quantities are already available in the algorithm. A limited interpretation in the sense of
Lemma 4.1 is also possible. In case the sequence x¥) converges to a local minimizer that satisfies the
second-order sufficient optimality condition (Theorem 3.3), then we have: for all £ > 0, there exists
d > 0 such that

1
I ® =2l <5 and F GOy <ews = I =l < (= +e) a
[24

——
~l/a
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where a = Apin (f”(x*); M) is the smallest eigenvalue of the Hessian at the solution w.r.t. M. In
other words, when we are sufficiently close to a local minimizer satisfying the second-order sufficient
optimality condition, then the norm of the derivative (or the gradient) is — up to the factor 1/a — a
useful measure of the distance to the solution.

Other often used stopping criteria are

k k-1 k 0
™ =%y < ey ey 1) = x Oy,

FGO) = fE] <y + ey 1F D) = FO)

These are triggered by slow progress in the iterates or the objective values, respectively. One typically
- 2

sets é{el = ()"

It is remarkable that it is possible to monitor the quantities [|x®) — x*=D|,; and [|x®) — x(© ||,

although the matrix M (or matrix-vector products with M) may not be available. Matrix-vector

products with M~! are sufficient. The following quantities are useful for this purpose and can be

recursively updated, compare (4.33):

w® = |]x® _x(0)||j2w (5.212)
£ 2 () _ O T g) 2 () _ 07,0 (5.21b)
sk .— ||d(k)||§/1 (5.21¢)

The details are left as an exercise.

End of Week 4

§5.4 NEWTON’S METHOD

Newton’s method is known as a method to solve a (nonlinear) equation F(x) = 0, where F: R” — R" is
a C! function. For optimization purposes, we apply it to the first-order necessary optimality condition,
i.e., we have F(x) = Vf(x) = 0, and thus f is assumed to be of class C.

The idea of Newton’s method to find a zero (root) of F is as follows. Suppose x(%) is an initial guess.
We replace F by its linear Taylor model at x(°) and determine the zero of this model instead. This

results in
Fx+F(xMx-xD) =0 o x=x©—F(xO)1Fx®),

provided that the Jacobian F’(x(%)) is non-singular. This zero of the linear model is used as the next
iterate x1, etc. This procedure is known as the (local) Newton’s method.

Algorithm 5.23 (Local Newton’s method for F(x) = 0).
Input: initial guess x(*) € R"
Input: routine to evaluate F and F’
Output: approximate zero of F
1 Setk =0
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N

while stopping criterion not met do
3: Determine the Newton direction by solving

F'(x(k)) 4% = —F(x(k))

Set x4 = x (k) 4 g(k)
Setk = k+1

end while

return x %)

N @

AUXILIARY RESULTS

We recall some auxiliary results, which you may know from Grundlagen der Optimierung (Herzog,
2022) or other classes. As usual, we equip R” with the M-inner product. Recall from § 2.2 that the
operator norm of a matrix K € R™*" that represents a map K: R" — R" is defined by

s o= max It
x#0 |lxllm
Although in finite dimensions all norms are equivalent, the above norm is not always the most
appropriate choice: some matrices A € R™" actually represent maps A: R" — (R")*, where (R")*
is the dual space of R". The appropriate inner product in the dual space is the M~!-inner product,
leading to

1A x| p-1
Al m-1pm = max ————
x#0 |lxllm
Consequently, we would use
A~ rllm

Al 1 1= max
A" | preepr X

for the inverse of A. We also need the case B: (R")* — R".

Lemma 5.24 (Banach’ lemma).

(i) Suppose that K € R™*" is a matrix |K||pe—m < 1. Then1d — K is non-singular, and we have the
following estimate on the norm of its inverse:

1
1(1d = K) " llmem < :
1=Kl me—m

(ii) Suppose that A, B € R™" are such that ||Id — BA||p—m < 1. Then A and B are both non-singular,
and we have

lIBll st
1-|lId - BA|lmem

Allm-1m
1-|lId - BAl|mem

und  ||A " pemr <

-1
1B~ || p1eeps <

Note: Statement (i) states that “small” perturbations of the identity matrix are still invertible. State-
ment (ii) states that [d— BA “small”,i.e., B ~ A™!, entails that A and B are both necessarily invertible.
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Proof. Statement (i): For x € R”, we have

1(Id = K) xllm = llx — Kx|lm

> ||x|lp = IKx||m by the triangle inequality
> (1= [IKllsem) lIxllar  since [Kxlly < K llaenm x| m-
———
>0

This implies (Id — K) x # 0 for x # 0, ie, Id — K is injective and thus non-singular.

Now let y € R" be arbitrary and x := (Id — K) 'y. Then the above estimate shows

I¥llm = (1= [IKllmean) |(0d = K) "' yllm

Id-K)™! 1
10 = K)oy = max LY .
R TV B

Statement (ii): We set K := Id — BA, whence ||K||p—m < 1holds. Due to Statement (i), we find that
Id — K =1d — (Id — BA) = BA is non-singular, i. e., A and B are both non-singular. Moreover,

(Id-K)'=BA)'=A"B"!

= B'=A(Id-K)!
= B mrem < AlIy-1cmll0d = K) 7 Hlven
Allp-1
< MAllvrem by Statement (i)
1—|IKllmem
_ Al em
1—||Id - BAl|mem
The remaining inequality follows similarly. m]

Lemma 5.25 (Implications of the invertibility of the Jacobian). Suppose that F: R — R" is a C!
function and that x* € R" is arbitrary with non-singular Jacobian F’ (x*).

(i) Then there exists a neighborhood Bgf (x*) and a constant ¢ > 0 such that F’'(x) is invertible for all
X € Bg/[(x*). Moreover,

IF’ (x) Mpem— < ¢ holds forall x € Bg’f(x*). (5.22)

(ii) Suppose now in addition that F(x*) = 0 holds. Then there exist a neighborhood Bg/f(x*) and a
constant § > 0 such that

llx = x"llm < BIFCG)llp+ - for all x € B (x7). (5.23)

B can be chosen as 2 ||F' (x*) ™| yreps-

Note: Statement (i) is an instance of the fact from functional analysis that the set of boundedly
invertible linear operators between two Banach spaces is open. Statement (ii) allows us to estimate
the norm of the error ||x — x*||» from the norm of the residual ||F(x)]||ps-1.
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Proof. Statement (i): Since F’ is continuous at x™, there exists § > 0 such that

1
IF" (x*) = F' ()|l -1 < € 3= "
2|1F (x*) "l mepar

holds for all x € Bg/l (x*). Consequently,

I1d — F' (x*) "' F'(x) lmem = [IF' (x*) 7 (F'(x*) = F'(x)) | menm
IF" (x*) Ml pepa [IF (x*) = F () |1

1
<-=-<1
2

IA

By Statement (ii) of Lemma 5.24 [with A = F/(x) and B = F’(x*) '], we can conclude that F’(x) is
non-singular for all x € Bg’f (x*) with

IF’ (x*) Ml psem-1

< 2|1F (") Y yen-1 = c.
T = F ) F (Ol ~ 2O e

IF () llpemr <

Statement (ii): Since F is differentiable in x*, there exists — for the same ¢ > 0 as above —a § > 0
such that

IF(x) = F(x*) = F'(x*) (x = x*) [ < ellx —x*||m forall x € By (x).

Therefore, for all x € BQ’I (x*),

I1E GO p-1 -

——

> ||F (™) (x = x")||p-1 = [|F(x) = F(x*) = F/(x*)(x — x")||;-1 by the triangle inequality.

In view of [|x — x*|lyr = [IF’ (x*) 7'F' (x*) (x = x*) st < [1F" (") Ml ppem— [1F (x7) (x = %) [|pg1, We can
estimate this by

I1E o) |-
1

= 1
I (x*) M| preps

=¢||lx —x"||m by the definition of ¢,

llx = x" Il — e llx = x"llm

and the claim follows with = ¢~1.

Lemma 5.26 (Auxiliary estimate). Suppose that F: R" — R" is a C! function and x* € R". For all
e > 0, there exists § > 0 such that

IF(x) = F(x™) = F'(x)(x = x") Iy < llx = x"||lm

holds for all x € Bg’f(x*).z4

24Briefly, we can also denote this result as ||[F(x) — F(x*) — F/(x) (x = x*)||pm € o (llx — x*[|m)-
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Proof. Take ¢ > 0. The triangle inequality implies

IF(x) = F(x") = F'(x) (x = x7) [l -
SNEF(x) = F(x") = F'(x") (x = x)lyg-2 + 1F (7)) = F' () -1 mllx = x|l

Since by assumption, F is differentiable in x*, there exists § > 0 uch that
* * * £ %
IF(x) = F(x") = F'(x") (x = x") |1 < 3 [l = x*(|m

holds for all x € Bg’f (x*). On the other hand, F’ is continuous in x*, which implies the existence of
89 > 0 such that

’ * ’ €
IF" () = F ()l < 5

holds for all x € Bg;’ (x*). The conclusion follows with § := min{d;, > }. m|

LocAL NEWTON’s METHOD FOR F(x) =0

We are now in a position to prove a convergence theorem for local Newton’s method.

Theorem 5.27 (Convergence of local Newton’s method). Suppose that F: R" — R" is a C! function
and that x* € R" is a point where F(x*) = 0 and F’(x*) is non-singular. Then there exists a neighborhood
Bg’f(x*) such that

(i) x* is the unique zero of F in ng(x*).

(ii) For any initial guess x(*) € Bg/f(x*), the local Newton’s method is well-defined, and it generates a
sequence x'K) which converges to x*.

(iii) (x(k)) converges to x* Q-superlinearly w.r.t. the M-norm.

(iv) IfF’ is Lipschitz continuous in Bg’f(x*), then this convergence is even Q-quadratic.

Proof. Statement (i): By Statement (ii) of Lemma s5.25, there exists §y > 0 such that x* is the only zero
of Fin ng(x*).

Statement (ii): By Statement (i) of Lemma 5.25, there exist §; > 0 and ¢ > 0 such that F'(x) is
non-singular for all x € Bgf (x*) and

IF" () Hlgem—r < €= 2IIFG) ™ e pt. (*)
By Lemma 5.26, given ¢ = 1/(2c), there exists J, > 0 such that

IF(x) = F(x") = F'(x) (x = x")llyg+ < z—lcllx — X" |lm
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holds for all x € Bg;[(x*). Now set § := min{&y, 8;, 8,} and choose x(*) € Bg’f (x*) arbitrarily. Then the

next iterate x(M = x(©) — F/(x(9)~1F(x(9)) is well-defined, and we have
@ = x*[lp = Ix' = x* = F' (x ) ' F(x )| =0
= IF ) [P () —x) — F(x©) 4 F )l
< IF (x) e IF (1) = F(x*) = F/(x ) (x = x) [y

1 *
<c—[x@ - x*|lm
2¢

and thus x!) again belongs to Bg’l (x*). By induction, x*) is well-defined, it belongs to Bg’f (x*), and
x®) - x* Q-linearly w.r.t. the M-norm.

Statement (iii): We begin by setting up an equation for the error:
x(k+1) _x* — x(k) _x* _ F/(x(k))—l(F(x(k)) _ F(x*))
= F'(x(k))_l[F'(x(k))(x(k) —-x") - (F(x(k)) — F(x*))]

1
= F'(x®))~! [F'(x(k))(x(k) —x") - / F'(x® 1 (x* = x50 (x® — x*) dt
0
1
= F' ()7 / F(x®) = /(x4 1 (6 = x9) at] (B = x7).
0
This gives us the following fundamental estimate:

||x(k+l) - x"lm =D®) ()

1
< |F RN |y / [F/ 8 = F/ (x4 (" = xON)||oryy ™ = x[lar. ()
0

=](k)

Due to x*) — x*, we infer that x) + ¢ (x* — x®¥)) — x* uniformly for t € [0,1]. Moreover, F’ is
continuous, and thus for any ¢ > 0, there exists an index ky € N such that

ID® () ||p-1eps < & forall k > ko and all ¢ € [0,1].
This implies
0<I® = /1||D(k)(t)||M-1<_M dt <e forall k > k.
0
This in turn gives I*) — 0. But now () and (+*) give us
e ®+D = [l < eI 1% = x" Iy < e fle® = x|l

for all k > ko, which is the Q-superlinear convergence.

Statement (iv): Since x*) and x®) + ¢ (x* — x(¥)) belong to ng(x*) for all t € [0,1], we can estimate
the integral in a better way, using the stronger assumptions:

1 1
L
1 = / IF' ) = F (8t (7 = x| eay dt < / Ltlle" = x®lly de = ZJx® =
0 0
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From (**) we now obtain

(k+1)

L 2
[l = x*|[p < Czllx( ) —x* 13,

Remark 5.28 (on local Newton’s method (Algorithm 5.23)).

(i) Local Newton’s method (Algorithm 5.23) may break down since F'(x'¥)) is not guaranteed to be

invertible, in case the initial guess x°) lies outside the unknown neighborhood of local convergence
Bg’f (x").

(ii) The simplified Newton’s method, which uses the fixed matrix F'(x'?)) (assumed to be invertible)
instead of F' (x*)), still converges Q-linearly w.r.t. the M-norm.

LocAL NEWTON’S METHOD IN OPTIMIZATION

Newton’s method in optimization can be motivated in one of two ways:

(i) The first-order necessary optimality condition for (UP) reads

Vi(x) =0,

see Theorem 3.1. When we employ Newton’s method to solve this (generally nonlinear) equation
F(x) = Vf(x) with Jacobian F’(x) = f”'(x), we obtain the iteration

) = O = 1 )TV (), (5:24)

(ii) At the current iterate x¥), we replace (UP) by the minimization of the quadratic model
, 1
g% (@) = f) + f(xD)d+ - dTHPd (5:2)
where the model Hessian is the symmetric matrix H®) = £ (x%)). That is, (5.2) becomes the

second-order Taylor polynomial. If H®) is positive definite, then the unique solution of (5.2) is
characterized by the linear system

fx®)d® = —vf®).
When one uses the fixed step size a¥) = 1 and sets

X&) o 0 4 R g(k) () 4 (k)

we obtain again the iteration (5.24).

Remark 5.29 (on local Newton’s method for (UP)).
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()

(if)

(iii)

(iv)

Theorem 5.27 proves the local Q-superlinear (or local Q-quadratic) of local Newton’s method towards
a stationary point x* of f, provided that f”’(x*) is non-singular. The point x* may be a local
minimizer, a local maximizer, or a saddle point of f, unless we make an assumption or have
knowledge about the definiteness of " (x*).

If f” (x\®)) is 5. p. d., then the Newton direction d®) obtained from the Newton system
fr®)d® = =vf ") (5.25)
is a descent direction for f at x©, as long as f'(x®)) £ 0; compare (5.9):
£ d® = ) OV F(E) <o,

Due to the fixed step size a®) = 1 (instead of line search), descent from iterate to iterate, i.e.,
FxFDY) < £(x*)), is not guaranteed when x'¥) is still “far” from the local minimizer x*.

Local Newton’s method is invariant w.r.t. affine scaling (see homework problem 5.1). This is in
contrast to the steepest descent method.

f"(x) is a bilinear form accepting two directions and returning a number. Consequently, when we
specify only a single direction, the resulting object becomes a linear form. It is thus appropriate to
view the Hessian "' (x) as a map R" — (R™)* and to use the associated operator norm.

A GLOBALIZED NEWTON’S METHOD IN OPTIMIZATION

We now seek to globalize the local Newton’s method. In order to be able to apply the global convergence
theorem 5.9, we require the search directions and the step sizes to be admissible. We will realize these
requirements via a (generalized) angle condition and an Armijo backtracking line search. In addition,
we pay attention not to disturb the local Q-superlinear convergence.

Algorithm 5.30 (Globalized Newton method for (UP)).

Input: initial guess x'*) € R"

Input: routine to evaluate f and f’ (or Vf)

Input: routine to evaluate f”' (or matrix-vector products with f"’)

Input: s.p.d. matrix M (or matrix-vector products with M™?1)

Input: globalization parametersn € (0,1), p > 0 and exponent p > 0

Input: Armijo parameter o € (0,1/2)  / to be passed through to the Armijo backtracking line search
Input: backtracking parameter € (0,1) / to be passed through to the Armijo backtracking line search
Output: approximately stationary point of (UP)

1 Setk =0

2 Set £ = f(x(©) / evaluate the initial objective value
3 Setr(® = (x0T = Vf(x(©) / evaluate the initial residual
4: Set déo) =M1 / evaluate the negative M-gradient
5 Set6© = —(r©)Ta /8O = [Vaf (x O, = 1S 12,
6: while stopping criterion not met do
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7 Attempt to solve the Newton system

f”(x(k)) dj(\f) =—r® (5.26)
8 if the Newton system is not solvable or not uniquely solvable then
9: Setd¥) = dék) / use the steepest descent direction as fallback
10: else / Newton direction dl(\f) available
11 Evaluate the generalized angle condition for the Newton direction
’ k . k k k
f @) dy < ~minfn. plldg” 13} 14 a1yl (5:27)
12: if true then
13: Set d%) = dl(\f) / use the Newton direction
14: else
15 Set %) = d(Gk) / use the steepest descent direction as fallback
16: end l_f
17: end if
18: Determine a step size@® > 0 from an Armijo backtracking line search procedure (Algorithm 5.11),

applied to () = f(x'®) + ad®), with initial trial step size «'**) = 1, Armijo parameter o and
backtracking parameter B/ ¢(0) = &) and ¢’ (0) = (r)7d%) = -5 in case of dF) = dék), or
@' (0) = f' (x5 d](\f) in case of d'¥) = d](\f), are already known

9 Setx KD = xF) 4 oK) g(k)

20: Set fU+) = £(x (k1)) / can be returned by the Armijo backtracking line search routine

21 Set kD) .= f’(x(k“))T = Vf(x(k“))

22: Set dékm = ML) / evaluate the negative M-gradient
k k

23 Set §k+1) .= _(r(k+1))Tdé +1) ) 5k+) = ”VMf(x(kH))”]zw _ Hdé +1)||]2\/I

24: Setk =k+1
25: end while
26: return x¥)

So the basic idea of Algorithm 5.30 is to use the negative M-gradient dék) in case the Newton direc-
tion d I(\;c ) is either not available, or in case it is not a good descent direction. To decide the latter, we verify

its angle with the direction of steepest descent. We know that the steepest descent direction d = d(Gk)
satisfies the angle condition (5.8), i.e.,

Oy d <= 19 f N ag = =1 1S 1 aa 11w

with the maximal possible value, = 1. In (5.27), we require qualitatively the same condition for the
Newton direction, but with some smaller value n € (0,1). Moreover, as the norm of the gradient
||dék) lp becomes smaller, i. e., as we get closer to being stationary, we wish to encourage the Newton
direction to be used in order to enable fast local convergence. In that phase, it is no longer necessary
and, in fact, disadvantageous, to limit the angle between the Newton direction and the steepest descent
direction. To be concrete, we use the term p ||dék) ||‘§4 to determine whether we are in that phase. This
explains the condition

%y d < —min{n, p ld 12 1A% I ldllm

https://tinyurl.com/scoop-nlo 83


https://tinyurl.com/scoop-nlo

R. Herzog @O®S

that we employ the check the descent quality of the Newton direction d](\f ) in (5.27). A range of
similar conditions achieving the same goal is also conceivable; see for instance Geiger, Kanzow, 1999,
Kapitel 9.2 or Ulbrich, Ulbrich, 2012, p.49.

Remark 5.31 (on globalized Newton’s method (Algorithm 5.30)).

(i) The parameters p and p are often chosen relatively small, e. g.,

p=10"° and p=107".

(ii) As in our previous algorithms, we may have available the preconditioner only in the form of
matrix-vector products with M. In order to evaluate (5.27), however, we need to be able to compute
||d1(\f) llpm as well, which appears to be unavailable.

There is, however, an elegant way out. If we solve the Newton system (5.24) using the CG method
(Algorithm 4.17) with preconditioner M and initial guess 0, we have available by (4.33)—(4.34) the
M-norm of the iterates and thus also the M-norm of the solution dj(\f).

Moreover, the CG method can be easily modified to accommodate the situation that the Newton
system is not solvable, or not uniquely solvable. This is the case when a direction of non-positive
curvature is encountered during the CG iterations, i. e., when the quantity 0 in Algorithm 4.17
becomes < 0. We describe these modifications below (Algorithm 5.41) in the context of inexact
Newton methods, where we also take advantage of the fact that it may not be necessary to solve

(5.24) exactly.

(iii) The approach to globalization taken in Algorithm 5.30 is to reject the Newton direction if it does not
exist or does not offer a sufficiently negative directional derivative, and to replace it by the steepest
descent direction. There are other approaches that modify the Newton direction so that it always
exists and offers sufficient descent. One can, for instance, add a multiple of the identity matrix (or
rather a multiple of the preconditioner) to f” (x'*)) when the latter is found not to be “sufficiently
positive definite”. The modified Newton system then reads

[F7(x®) + M| d® = -V f(x®)

with some t > 0; see for instance Geiger, Kanzow, 1999, p.93 and Nocedal, Wright, 2006, p.51.
We now proceed to show the global convergence of Algorithm 5.30.

Theorem 5.32 (Convergence of globalized Newton’s method). Suppose that f is of class C2. Suppose
that x* is an accumulation point of x'*) and that (x(k))keK is a subsequence converging to x*. Then the

search directions (d(k))keK and step sizes (a(k))keK are admissible. Consequently, we have f’(x*) = 0.

Proof. We verify the prerequisites of the global convergence theorem 5.9, which then implies /' (x*) = 0.
To this end, we set

Ky ={keK:d® = dl(\f)} (index set of Newton steps)
Kg = K\ Ky (index set of gradient steps).
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Step (1)

Step (2)

Wir first show the admissibility of the search directions. That is, we have to show that

F(x®)d® ek
lld &) ||

For indices k € Kg we have d*) = ~M™'V£(x(®)) and thus

xRy d®  Vaf ()3,
1d5 || IVarf (x5 || ar

0 implies f'(x(k))kE—K>0. (5.7)

= IV f (x®) ||t

k
The left-hand side of (5.7°) thus implies ||V £ (x %)) || a1 kKo, 0, which is equivalent to f” (x¥)) kKo,

0.

For the complementary indices k € Ky, the generalized angle condition (5.27) reads

(x5 gt
145 |1y

. k k
> min{n, p 45" 15} Idg " llm > 0.

The left-hand side of (5.7°) thus implies IIdék) v = 1Varf (x50 || 2, 0, which is the same as

frx) 22 0,

The convergence of (x(k)) rex and the C2-property of the objective imply that the subsequence of
Hessians £ (x(K)) converges as well, and consequently the subsequence f”’(x¥)) is bounded (in
any norm we might impose on the space of n-by-n matrices), so that we have || " (x %)) || yr1p1 <
C for k € K. For the Newton steps, we recall f”(x) d = —Vf(x), which we can also write as
~M71f"(x)d = Vpf(x). By the definition of matrix norms, see (2.5), we find

1 1
dO |y > v Ny = =11V (k) for k € Ky,
ld") | m ||f"(x<’<>)||M—IHM” mf (") Im CII mf(x" Ny for N

and clearly
14y = 11V af )l for k € K,

so overall we have

—_Fr(xK)y g(K)
} —f () d (5.28)

1 1
d® > min{—, 1} \Y x ) > min{—, 1
14 s > min{ =, 1} 1900 ) g TS

C
for all k € K. In view of the initial Armijo trial step size being a(**) = 1, we satisfy condition
(5.14) of Lemma 5.13 with ¢/(t) = min{¢, t/C}, which in turn implies the admissibility of the step
sizes along the subsequence.

Next we show that, under appropriate assumptions, Algorithm 5.30 eventually becomes identical to
the local Newton’s method, which means that

d® =d® and a® =1 (5.29)

holds for all k sufficiently large. Consequently, the local convergence theorem 5.27 applies, which
yields the fast (at least Q-superlinear) convergence of the entire sequence of iterates, as soon as it is
sufficiently close to a local minimizer satisfying second-order sufficient optimality condition.
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Theorem 5.33 (Transition to fast local convergence in Algorithm 5.30, see Ulbrich, Ulbrich, 2012,
Satz 10.14). Suppose that f is of class C2. Suppose that x* is an accumulation point of x*) and that
(x(k))keK is a subsequence converging to x*. Assume, moreover, that the Hessian "' (x™) is s. p. d. Then
the following holds:

(i) f'(x*) =0 holds, i.e., x* satisfies the second-order sufficient optimality condition.

(ii) The entire sequence x'*) converges to x*.

(iii) There exists an index ko € Ny such that (5.29) holds for all k > ko. Consequently, x'¥) converges to
x* Q-superlinearly w.r.t. the M-norm.

(iv) Iff” is Lipschitz continuous in a neighorbood of x*, then the convergence is Q-quadratic.

Proof. We do not provide the proof but refer the interested reader to Ulbrich, Ulbrich, 2012, Satz 10.14
for the time being. O

§ 5.5 NEWTON-LIKE METHODS

From the point of convergence analysis, the globalized Newton’s method (Algorithm 5.30) is superior
to the steepest descent method (Algorithm 5.22) since it offers a Q-superlinear convergence phase.
However, Newton’s method has a number of drawbacks as well:

(1) The Hessian f”/(x) may be expensive to evaluate, and it is needed in addition to the first-order
derivative f”(x) of the objective.

(2) The solution of the Newton systems
£/ (x®)d® = -y p(®) (5.25)
is often more expensive compared to the evaluation of the gradient direction
Md® = v fd®).

After all, M is constant and can be factorized using the Cholesky decomposition when the
number of optimization variables is moderate.

We will address both issues simultaneously. To this end, we consider methods which allow us to
(1) replace the Hessian f” (x¥)) by a (s. p. d.) model Hessian H*) and

(2) solve the linear system
H®d® = —vf(x®) (5:30)

iteratively, and possibly only inexactly.
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The latter means that effectively we are solving a linear system
H®dW = —vf(x®) + 0 (531

with an implicitly defined residual {®). To this end, we will typically specify a tolerance of the form
1 ® g1 < e®.

As a starting point, we consider a generic local Newton-like method with no line search.

Algorithm 5.34 (Generic Newton-like method for (UP)).
Input: initial guess x(*) € R"
Input: routine to evaluate f and f’ (or Vf)
Input: initial symmetric model Hessian H(®) € R™" (possibly s. p. d.)
Input: routine to determine the symmetric model Hessians H*) (possibly s. p. d.)
Input: s.p.d. matrix M (or matrix-vector products with M)
Output: approximately stationary point of (UP)
1 Setk =0
2: while stopping criterion not met do
Determine a search direction d'%) by (inexactly) solving HK) d®) = —V £ (x (%))
JHFA®) = v £(x*)) + 50 with some residual { %)
Set x4 = x (k) 4 g(k)
Determine the next model Hessian H*+V
7: Setk = k+1
8: end while
9: return x ()

AN U

The following questions arise:

(1) What are the requirements for H*) and (%) in order to obtain fast (“Newton-like”, i.e., Q-
superlinear) convergence?

(2) What practical approaches exist to choose the matrices H*) and to impose a bound for residual
norm {®), with an eye to reducing the numerical effort?

As we did for Newton’s method (§ 5.4), we begin by considering an analog of Algorithm 5.34 to
find a zero of a C! function F: R® — R”. In place of the exact Jacobians F’(x(k)), we use model
Jacobians H®)| which are supposed to be non-singular but not necessarily symmetric or positive
definite.

Algorithm 5.35 (Generic Newton-like method for F(x) = 0).
Input: initial guess x(*) € R"

Input: routine to evaluate F

Input: routine to determine the non-singular model Jacobians H®)
Input: s.p.d. matrix M (or matrix-vector products with M™1)
Output: approximate zero of F

https://tinyurl.com/scoop-nlo 87


https://tinyurl.com/scoop-nlo

R. Herzog @O®S

1 Setk =0
while stopping criterion not met do

N

3: Determine a search direction d'*) by (inexactly) solving H®) d®) = —F(x(¥))

4 JH® @K = _F(x®)) + £ &) with some residual { %)
50 SetxFt) = () 4 g(k)

6: Setk =k+1

7: end while

8:

return x<k)

In a nutshell, the sequence generated by Algorithm 5.35 is governed by

H©OGE = _p(x*)) 4 g(k)
(k) _ o (R) 4 gk (532)

The following lemma shows that the fast local convergence of any sequence x¥) converging to a zero

of F is related to the question how well the elements of that sequence satisfy the true Newton systems
F(x®) 4+ F (x)) (x(+) — x()y = ¢

Lemma 5.36 (Characterization of fast local convergence). Suppose that F: R" — R" is a C! function
and that x© is any sequence in R" converging to x* with non-singular Jacobian F'(x*). Then the
following are equivalent:

(i) x®) converges Q-superlinearly w.r.t. the M-norm, and we have F(x*) = 0.

(ii) For any e > 0 there exists an index kg € Ny such that®

IF(x®) + F (x ) (x*+D) = x®)m < e [lx® = x® |0 forallk > k. (5.332)

(iii) For any e > 0 there exists an index ko € Ny such that*

IF(x®) + F (@) (xF) = x®| e < e|x® = x|y forallk > k. (5.33b)

iv) For any e > 0 there exists an index ky € N such tha
(iv) Fi y h dexky € N h that””

IF(x®) + F () (x % = x®) [y < e lx® = x Oy for allk > ko (5.33¢)
Proof. We begin with some preliminary estimates. Since F is of class C' and F’(x*) is non-singular, there

exists a neighborhood Bg’f(x*) and constants ¢, C > 0 such that ||F’(x)||s-1p and [|F” (x) " preps—
hold for all x € Bg” (x*); compare Lemma 5.25. The mean value theorem 2.4 gives us

F(x(k+1)) _ F(X*) —F (x* + g(k) (x(k+1) _ x*)) (x(k+1) _ x*)

2briefly: [|F(x®)) + F/ (x(F)) (x &) — KNy |1 o[l kD — xR
26briefly: [|F(x®)) + F (x()) (x K+ — xRy || i€ o(]lx ) = x*||pr)
*Tbriefly: [|F(x)) + F’ (x*) (x®&*) — x(®))||, 1 € o[ *HD) — xF)|00)
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with some £%) € (0,1). We thus conclude
e[l = x*llar < IF(e®D) = F(x) g1 < C ™ = x7|| (%)

for sufficiently large k € N,.

Another application of the mean value theorem 2.4 yields

F(x®) — F(x™®)
=F(x® + £R) (k) ) (x* — x®))  where g5 e (0,1)
= P8 (e 58 [P (x84 B0 (kD) 8)) ()] (ko) _ B0y

and thus
IFGE) = Fx®) = P () (B4 = x 0
< NIF (% + & (cF* = ) — F B g1 [l = By

As in the proof of Lemma 5.20 we can now exploit the uniform continuity of F” “near the (x(k) )”. This
entails that, for any ¢ > 0, there exists an index ky € Ny such that

IF ) = F(x®) = F/(x5) (e = @) g < e [l = <Oy ()

holds for all k > k.

Statement (i) = Statement (ii) and Statement (iii): The triangle inequality and the Q-superlinear
convergence imply that, for sufficiently large k, we have

* ¥ 1 *
e T L R e e e sl P Py

and thus
[lc®) = x*|lar < 2l = x| (%)

On the other hand, the triangle inequality and the Q-superlinear convergence also imply that
e = Oy < e = gl = x g < 1S = g+ e = P g
holds for sufficiently large k, whence
[ = O g < 211 ® = %"l (rxx%)

In other words, the quantities [|x**)) — x(®)||,; and ||x*) — x* || “control each other” for k sufficiently
large.

Let € > 0 be arbitrary. We can estimate

IE ™) + F (x®) e = x®) Iy
< IFGR) = Fe™) = F/ () (D = O pgor + IFGeEY) = PG [l

——
<l —x® |y + |[F(x**V) = F(x) Iy by () =0
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for k sufficiently large. We need to address the second term in the previous inequality:
IE(x® D) = F(x*)llyr < ClIx™™ ="l by ()
< Cllx™ = x*||m by the Q-superlinear convergence.

for k sufficiently large. Plugging tihs estimate into the previous inequality is Statement (ii).

Moreover, as we demonstrated in (s##x), ||x®) — x*||3s and ||x**) — x(K)|| s are different by at most a
constant factor, we also have proved Statement (iii).

Statement (ii) or Statement (iii) = Statement (i): We estimate
IIF (D) [ g1

IFGx® ) = F(x®) = F/ (x®) (x® D — x®) ||yt + |F(x®) + F (8 e F) = xRy ||
e llx® D = x® N+ IF®) + F (x®) (x D — x B ||y by ().

IA

IA

By Statement (ii) or Statement (iii), the second term can be bounded by & ||x**) — x| 1 or ¢ ||x*) —
x*||m, respectively. In any case, we have

IE D) Iy < e[l = O+ 26 O = x B 1y = 3 [ = Oy

for sufficiently large k. In view of x*) — x*, we find F(x**!) — 0 and thus F(x*) = 0.

It remains to show the Q-superlinear convergence of x(¥). For any ¢ € (0, ¢), we have

¢ [lc®™ — x|y < [F(x**V)] g by ()
<3¢ [ - x @y
(k+1)

<6¢llx - x*|\m by (),

and thus 6
* E E3
I =y < 25 )y

for sufficiently large k. This shows the Q-superlinear convergence of x*) to x* w.r.t. the M-norm.

Statement (ii) & Statement (iv): The difference of the terms inside the norms on the left hand sides
in (5.332) and (5.33¢) is [F/(x%)) — F/(x*)] (x**1) — x))_ Its norm can be estimated as follows:
ITF" (x ™) = F ()] (x*D = x®) [y
< IF () = F )l 15 = 29 g

(k+1) _

<ellx x®|lp by the continuity of F’

for sufficiently large k. The triangle inequality, either in the form

IE(x®) + F (™) (% = x®) 1
S NPGR) +F/ () R = O [l + ITF (6N = F/ ()] (e = x®) 1y

< ”F(x(k)) +F(x) (x(k+1) _ x(k))”M_1 te ||x(k+1) _ x(k)”M
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or in the form

IF(x®) + F (") (x* = x|y
< NP + P/ (™) (5 — Oy + [T () = P (x)] (x5 = %0y

< IFx®) + F (x®) e ® D — xE) | r+ e [ ED — xO,

each for sufficiently large k, now shows the equivalence of Statement (ii) and Statement (iv). O

We now apply this lemma to Algorithm 5.34, where the sequence of iterates x %) is generated via (5.32).
The residual these iterates leave in the true Newton systems can be expressed as

F(x®) + F/ (x5 (x*+D) — 5 (k)
= F(x®) + F (x0)) g N
= F(x®) + F/(x®) d® — p(x®)) - g g(k) 4 (k)
= [F’(x(k)) - H(k)] d® 4 7,

We thus obtain from Lemma 5.36 the following corollary.

Corollary 5.37 (Characterization of fast local convergence). Suppose that F: R" — R" is a C' function
and that x*) is a sequence generated by (5.32) that converges to x* with non-singular Jacobian F’(x*).
Then the following are equivalent:

(i) x®) converges Q-superlinearly w.r.t. the M-norm, and we have F(x*) = 0.

(if) For any e > 0 there exists an index ko € Ny such that

||[F'(x(k)) —H(k)] d®) + gv(k)HM_l < e lx® = xF || forallk > k. (5.34a)

(iii) For any e > 0 there exists an index ko € Ny such that

|[F'(x®) —H®]d® + B, < ellx® —x*|ly for allk > ko. (5.34b)

(iv) For any ¢ > 0 there exists an index ko € Nq such that

H[F'(x*) - H(k)] d® 4+ gv(k)”M_l <e¢ ||x(k+1) - x(k)||M forallk > k. (5.34¢)

This set of equivalent of conditions that are necessary and sufficient for the local Q-superlinear
convergence are known as Dennis-Moré conditions, introduced in Dennis, Moré, 1974. They exhibit
that two requisites are sufficient to ensure fast convergence:

(1) The residual in the linear system, ||{¥)|| ,s-1, goes to zero faster than ||x**) — x (&) ||,
(2) The difference between the Jacobian F’(x*)) and the model Jacobian H¥), evaluated in the

direction of d%), goes to zero faster than ||x**1) — x(¥)||,;. Note: It is not necessary for H*) to
approximate the Jacobian F’(x(¥)) in its entirety!
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We will discuss in the following two classes of methods that are specializations of Algorithm 5.34. The
first class of methods are inexact Newton methods (§ 5.6), which use H®) = F’(x(®)). The second
class of methods are quasi-Newton algorithms (§ 5.7), which feature ¢ (k) =0,

§ 5.6 INEXACT NEWTON METHODS

Inexact Newton methods use the true Jacobian H*) = F’(x(%)) in the linear systems (5.31), but they
solve them only inexactly, leaving a residual ¢ %)

F/(x(k)) d(k) — —F(x(k)) + é’(k) (5-35)

We measure the norm of the residual in the linear system (5.35) relative to the norm of the outer
residual F(x(K)) associated with the current iterate x(¥). We require

1E g = NF (x®) a9+ PGS [y < p @ IF ) g (5.36)
with some 7% € (0,1). The sequence (iy(k)) is known as a forcing sequence.

Note that F(x¥)) is the residual associated with the zero vector, and hence

||lresidual associated with d ]| -1 _ 1% | pgs )

[residual associated with Ofly—  [|FG)[yrs (537)
Thus we can interpret the forcing sequence as the relative reduction of the residual required in the
linear system F’(x(K)) d*) = —F(x(®)), compared to a zero initial guess. It is evident that we should
demand n®) < 1. Otherwise, d¥) = 0 would constitute a sufficiently accurate solution.

We refer to Algorithm 5.34 as an inexact local Newton’s method in case H®) = F’(x(%)). For
completeness, we state the algorithm as

Algorithm 5.38 (local inexact Newton’s method for F(x) = 0).
Input: initial guess x'*) € R"
Input: routine to evaluate F and F’
Input: spd Matrix M (oder Matrix-Vektor-Produkte mit M~!)
Input: routine to determine the forcing sequence <)
Output: approximate zero of F
1 Setk =0
2: while stopping criterion not met do
3: Determine a search direction d'®) by (inexactly) solving F'(x¥)) d®) = —F(x®)) so that the
residual { %) := F'(x%)) d®) 4+ F(x®)) satisfies the condition

1 ®pr < ™ IF(x®) ][ (5.36)

4: Setx(k”) = x(k) + d(k)
5 Setk = k+1
6: end while
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7: return x(0)

Note: With 7¥) = 0, we obtain again the exact local Newton’s method.

We can now specify a local convergence theorem for Algorithm 5.38.

Theorem 5.39 (Convergence of Algorithm 5.38; compare Theorem 5.27). Suppose that F: R* — R" is
a C' function and that x* € R™ is a point where F(x*) = 0 and F’(x*) is non-singular. Suppose that x¥)
is a sequence generated by Algorithm 5.38, where the elements of the forcing sequence satisfy n'*) <7 <1
for all k € Ny. Then there exists a neighborhood Bg’f (x*) such that

(i) x* is the unique zero of F in ng(x*).

(ii) For any initial guess x*) € Bg’f(x*), the local inexact Newton’s method is well-defined, and it
generates a sequence x*) which converges to x*.

(iii) (x(k)) converges to x* Q-linearly w.r.t. the M-norm.
(iv) If, in addition, n'*) ™\, 0 holds, then the convergence is Q-superlinear.

(v) IfF’ isLipschitz continuous in Bg/I(x*), and if, in addition ton™® \ 0, werequiren®) < C||F(x))|| 1y
with some constant C > 0, then this convergence is even Q-quadratic.

Proof. We only give a sketch of the proof. Statement (i) can be shown as Theorem 5.27. A guide
to proving Statement (ii) and Statement (iii) can be found in Geiger, Kanzow, 1999, Satz 10.3. For
Statement (iv), we use the characterization of Q-superlinear convergence by Corollary 5.37. We have

I(F (x®) = HEYd® 4 7By = |70 ][
N’
< n® NFE®) [y by (5.36).

As in the proof of Lemma 5.36, see (+), we have [|F(x%))|| ;-1 < C[lx®) — x*|| 1 for sufficiently large
indices k and thus

I(F () = HE) d® 4 ¢ Oy < g Cllx® = x|
Since %) \, 0, we satisfy (5.34b).
Statement (v) follows similarly as in Theorem 5.27. O

A possible rule for the choice of the forcing sequence 7%) that guarantees the local Q-superlinear
convergence is

n® = min{y, IFG")N5, ) (5.38)
with some 77 < 1and 0 € (0,1], for instance 7 = 1/2 and 0 = 0.5.2

28 More precisely, we even obtain the Q-superlinear convergence with rate 1+ 6 with this choice.
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In the remainder of § 5.6 we consider a practical approach to the inexact solution of the Newton systems,
while simultaneously globalizing the inexact local Newton’s method (Algorithm 5.38). Since in this
class we are discussing globalization for Newton-like methods only in the context of optimization
(and not for general root-finding), we switch back to the optimization context now. That is, we have
F(x) = Vf(x) and F'(x) = f"(x).

We need to take into account the following:

(1) The Newton system f”(x*)) d = =V f(x¥)) is to be solved iteratively*. In this way, we can
take advantage of the fact that an inexact solution is sufficient and we can stop once the residual
norm for the linear system falls below the threshold dictated by the forcing sequence; see (5.36).
We refer to the inexact Newton direction as dj(\f ).

(2) The inexact Newton direction dl(\f ) is required to be, at the very least, a descent direction for the
objective f at the current outer iterate x(¥).

(3) As we did in the globalized exact Newton’s method (Algorithm 5.30), we need to verify whether
the inexact Newton direction d](\f ) offers sufficient descent. If not, then we fall back to taking a
step in the steepest descent direction.

It turns out that we can reach the first and the second goal simultaneously by a clever use of the
conjugate gradient method (Algorithm 4.17), applied to the symmetric linear system A d = b, where

A=f"(x®) and b=-Vf(x®).

As a stopping criterion, we employ the relative criterion (4.14a) with e, = 7'¥), and the zero vector
serves as initial guess. In case the CG algorithm finishes “without an incidence”, then — due to (5.37)
— the solution returned is an inexact solution of the Newton system with sufficiently small residual
norm in the sense of (5.36).

Remark 5.40 (inner and outer iterations). In what follows we will sometimes use the terms inner
iterations and outer iterations. The outer iterations of those of the outer optimization method, which
is the inexact Newton’s method in this subsection. The quantities used in the outer iterations are the
iterates x\%), search directions d'®), step sizes a®) etc.

On the other hand, every search direction d'*) will now be found in an iterative way, which refer to as
inner iterations. In order to help avoid confusion, we will denote the inner iteration index by £. Also, the
iterates of the inner solver for the linear system Ad = b will be termed d*) instead of x\©). The search
directions in the inner solver will be p'*) instead of d*). The residuals in the inner solver will be {*)
instead of r(©).

What could be the incidences that might occur in the CG algorithm in the present context? On the one
hand, we might reach the maximum number of iterations before reaching the relative tolerance. On

*9rather than using a direct solver such as Gaussian elimination
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the other hand, the symmetric matrix A might not be positive definite. This means that the function
1 T T
¢(z) = 32 Az-Db'z

has a least one direction p € R", p # 0, of non-positive curvature; i.e., p’Ap < 0 holds. A lack of
positive definiteness does not mean that a search direction of non-positive curvature will actually
be encountered during the inner iterations. On the one hand, the required tolerance may be reached
beforehand. But even for exact solutions (&) = 0), not all right hand sides b actually invoke directions
of non-positive curvature.

In any case, if a direction p(*) with () := (p¥)TAp(® < 0 is encountered, a reaction is required
since otherwise,

« in case 89 = 0, a division by zero would occur in Line 8 of the CG algorithm (Algorithm 4.17),

« in case Y < 0, the CG algorithm could be continued; however, we might lose the property
that the iterates d'*) are descent directions for f at x¥). This can be confirmed by examples.
As long as all search directions p'©) are directions of positive curvature (9(“) > 0), the descent
property remains intact; see Lemma 5.42.

For the reasons above, it is customary to employ a variant of the CG method known as truncated
conjugate gradient method (truncated CG method) as inner solver in a globalized inexact Newton
method. Starting from a zero initial guess, iterate until either the relative stopping criterion (4.14a) is
verified, or a search direction of non-positive curvature is encountered. In that case, the most recent
iterate d) is returned as inexact solution.

For completeness, we state below the truncated CG algorithm. Notice that we chose the specific
stopping criterion (5.37) instead of a general criterion.

Algorithm 5.41 (Truncated conjugate gradient method for symmetric systems Ad = b w.r.t. the
M-inner product; compare Algorithm 4.17).

Input: right-hand side b € R"

Input: symmetric matrix A (or matrix-vector products with A)

Input: s.p.d. matrix M (or matrix-vector products with M™)

Input: relative residual e

Output: approximate solution of Ad = b

1 Sett =0

2 Setd® =0 / zero initial guess
3 Set {0 = b / evaluate the initial residual
s Setp® = —M~17(0)

5 Set 8O = —(L(©)Tp(© 780 = IZO2
6: while 5 > 33615(0) do / check stopping criterion (5.37)
7 Setql?) = Ap®

g Setf® = (¢q))p®)

9: if ) > 0 then

10: Set a®) = 5 /9©
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11 Set d(V) = g0 4 a(")p(")

12: Set §(¢’+1) =0 4 a(f)q(t’)

13 Setp({’ﬂ) — _M—lg(t’ﬂ)

14: Set 5(t’+1) — —(§(f+1))Tp(f+1) //5(t’+1) — ||év(£’+1)||]2vr1
15: Set ﬁ(l’+1) = 5(£’+1)/5(€)

> Set p(tH) 1= p(E+1) 4 41 (0)

17: Sett =¢+1

18: else

19: Abort the while loop

20 end if

21: end while
22: returnd®)

It still remains to be proved that the approximate solution d*) that the truncated CG method generates
and that is to be used as inexact Newton direction d](\f ), is indeed a descent direction for the objective f

at the current outer iterate x(¥). This means that we need to show f’(x*)) d(©) < 0 or equivalently,
b'd® > 0.

Lemma 5.42 (The truncated CG method generates descent directions). Suppose that b # 0 and that
d©, ..., d® have been generated by Algorithm 5.41 for some £ > 1. Then the following holds.

(i) MDD =0 forj=1,...,¢t.

(i) bTpW) = ||{WD)2 , forj=0,...,¢.

-1
(iii) b"d®) = Z al) ||§(j) “?vrl is positive and strictly monotonically increasing in £.
j=0
Proof. Statement (i): Since we use the zero vector as initial guess, we have {(*) = A0 — b = —b for the

initial residual. Therefore,
bMY) = —(OYTMD) =0 forj>1

according to (4.28).

Statement (ii): The initial search direction is p(®) = —M~'¢(®) and hence we have
bp @ = ()M = IEO
By induction, we find for j > 0:

pr(j+1) — bT(_M—léf(jH) +ﬁ(j+1) p(j))

=0+ Ut pTpth) by Statement (i)
Tl

=M pTpl) by (4.24)
K2, Y

= [jg U+ 1% by the induction hypothesis.
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Statement (iii): Since Algorithm 5.41 generated the iterates dO . ... d?O, the numbers 8),.. . 041
are all strictly positive. Consequently, a'/) = §()/0U) > 0 is also positive for j = 0,...,¢ — 1. We
consider the expression

-1 -1
bTdO = pT Z o) p) = Z o)) ”éV(j)”szI
=0 =0

with the last equality due to Statement (ii). The residuals (%), ..., 7"V are all # 0, otherwise the
stopping criterion in Algorithm 5.41 would have been triggered. Therefore, the above expression is
strictly increasing w.r.t. £. O

Remark 5.43 (on Algorithm 5.41).

(i) The first search direction is p(®) = M~'b, which is equal to the steepest descent direction —M 'V f (x %))
in the optimization context. When p'®) is a direction of positive curvature (if 0©) > 0), then dV is
the same as though we had applied the steepest descent method with Cauchy step size (Algorithm 4.6).

(ii) By contrast, when p'®) is a direction of non-positive curvature, Algorithm 5.41 stops and returns
d©® = 0. This is, of course, not a useful descent direction for the outer, inexact Newton method, as
will be detected by a quality test for the inexact Newton direction, and a fallback to a gradient step
will be the consequence.

(iii) The strictly increasing monotonicity of b'd'?) = —f'(x¥)) d©) w.r.t. the iteration counter £ means
that the descent properties of the iterates d'*) progressively improve, as long as the search direc-
tions p'©) remain directions of positive curvature for A. Therefore, it is reasonable to continue
performing CG iterations until either the desired tolerance is reached, or a direction of non-positive
curvature is encountered. This is the strategy Algorithm 5.41 is following.

As we already mentioned, the globalization of the inexact Newton method can be done along the same
lines as in Algorithm 5.30. This leads to the following algorithm.

Algorithm 5.44 (Globalized inexact Newton method for (UP); compare Algorithm 5.30).

Input: initial guess x(*) € R"

Input: routine to evaluate f and f’ (or Vf)

Input: routine to evaluate f” (or matrix-vector products with ")

Input: s.p.d. matrix M (or matrix-vector products with M™1)

Input: routine to determine the forcing sequence <)

Input: globalization parametersn € (0,1), p > 0 and exponent p > 0

Input: Armijo parameter o € (0,1/2)  / to be passed through to the Armijo backtracking line search
Input: backtracking parameter § € (0,1) / to be passed through to the Armijo backtracking line search
Output: approximately stationary point of (UP)

1 Setk =0

2 Set f(O = f(x(0) / evaluate the initial objective value
3 Setr(® = f/(xO) = V£ (x(©) / evaluate the initial residual
4: Set déo) =M1 / evaluate the negative M-gradient
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5 Set 8 = ~(r(*)'dy) /80 =1V f ()l = lldg 134
6: while stopping criterion not met do

7 Determine the inexact Newton direction dl(f) using Algorithm 5.41 with A = f""(x®)), b = —r(®),
preconditioner M and relative residual e, = n®

8 Evaluate the generalized angle condition for the Newton direction
’ k . k k k

F&®)dg” < —min{n, p 157 I5 G v lldy Il (5:27)
9: if true then
10: Setd®) = dz(\f) / use the inexact Newton direction
1 else
12: Setd¥) = dék) / use the steepest descent direction as fallback
13: end if
14 Determine a step sizea® > 0 from an Armijo backtracking line search procedure (Algorithm 5.11),

applied to p(a) = f(x® + ad®)), with initial trial step size «'*°) = 1, Armijo parameter o and
backtracking parameter B/ ¢(0) = £ and ¢’ (0) = (r')7d®) = 5K in case of A = dék), or

@' (0) = f/(xK)) d® in case of dF) = dj(\f), are already known
5 Setx(kH) = x% +a g

16: Set ) = f(x(k+D)) / can be returned by the Armijo backtracking line search routine

17: Setr(kﬂ) — f/(x(k+1))T — Vf(x(k“))

18: Set d((;kﬂ) = M) / evaluate the negative M-gradient
k k

19: Set §(k+D) .— _(r(k+1))Td(G +1) ) §k+D) — ||VMf(x(k+1))||i4 _ Hd((; +1)||12\/I

20: Setk =k+1
21: end while
22: return x(k)

Remark 5.45 (on Algorithm 5.44).
(i) See Remark 5.31 on choosing the globalization parameters p and p.

(ii) The quantity ||d1(§) |lp required to evaluate the generalized angle condition (5.27) can be returned
at negligible additional cost by the truncated CG algorithm (Algorithm 5.41), as described in (4.33)—

(4.34).

The global convergence of Algorithm 5.44 can be verified very similarly as in Theorem 5.32. In fact,
Step (1) in the proof (admissibility of search directions) remains exactly the same since the generalized
angle condition and the fallback to steepest descent directions remains the same as in Algorithm 5.30.
In Step (2) (admissibility of step sizes), we need to take into account the fact that the inexact Newton
direction satisfies the Newton system only with a residual. We end up replacing the estimate (5.28)

by

—p® 1-® 7 (xR go)
, (5-39)

1
(k) i (k) i
1% g > minf——2—, 1} Va1 f (x©)las > min{— o
for all k € K, and we have to modify the function ¢ accordingly. (Quiz 5.7: Can you fill in the
details?)
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The transition to fast local convergence can be shown similarly as in Theorem 5.33. We can verify
again that
k
d® =dP and a® =1 (5.29)

holds for sufficiently large indices k. Consequently, the convergence mode (Q-linear, Q-superlinear or
even Q-quadratic) follows depending on the choice of forcing sequence, using Theorem 5.39; see also
Geiger, Kanzow, 1999, Satz 10.8.

The combination of the inexact Newton method as outer algorithm with the truncated CG algorithm as
inner solver is often referred to as truncated Newton CG method. Since we do not necessarily need
to set up the full Hessian matrix £’ (x¥)), but matrix-vector products with f”’ (x(¥)) are sufficient, one
also speaks of a Hessian-free optimization. Matrix-vector products with f”/(x(*)) can be realized,
e. g., using algorithmic diffentiation techniques (Chapter 4).

End of Week 5

§ 5.7 QuUASI-NEWTON METHODS

In contrast to inexact Newton methods (§ 5.6), quasi-Newton methods make use of the freedom
Newton-like methods offer in a different way. We discuss quasi-Newton methods only in the con-
text of optimization. A quasi-Newton method determines symmetric (and often positive definite)
approximations H¥) of the Hessians f”(x¥)) but then solves the systems

H® k) = _g (5 (5.40)

exactly before taking a step in the direction d‘*). Quasi-Newton methods are also known as variable
metric methods since, in contrast to gradient methods which maintain H (k) = M constant, the model
Hessian H*) changes from iteration to iteration.

The model Hessian H**) is constructed based on information gained in the k-th step. A consis-
tent requirement in all quasi-Newton methods is the so-called secant condition or quasi-Newton

condition,
HED (x4 _ () = 7 £ (kD)) _ 7 (), (5.41)

This condition can be motivated in several ways:
(1) It follows from the fundamental theorem of calculus3® that
1
Vilx+d) =Vf(x)+f"(x+d)d+ / [f"(x+td)— f"(x+d)] ddt (5.42)
0

holds for all x, d € R™. For the integral term, we have the following estimate, which uses the C?
property of f: for any ¢ > 0, there exists § > 0 such that

< elldllm
M1

Vl [F"(x+td) - f"(x +d)] ddt
0

3°The function t > Vf(x+t d) is the integral of its derivative { +> f’”/(x+t d) d, and thus /01 [ (x+td)ddt = Vf(x+t d)|z) =
Vi(x+d) = Vf(x)
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holds for all ||d|[y < 8.3

Omitting this integral term from (5.42), plugging in x¥) for x and x **)) —x(¥) for d, and replacing
the true Hessian f”’(x + d) by its approximation H**!) we obtain

Vf(x(k+1)) — Vf(x(k)) +H(k+1) (x(k+1) _ X(k)),

which is the secant condition (5.41). Hence the secant condition approximately mimics the
property (5.42) of the true Hessian.

(2) Let us consider the two quadratic models3* at the consecutive iterates x®) and x(k+)

() = )+ ) -x®) e EP ), )

, 1
m(k+1) (X) — f(x(k+1)) +f (x(k+1))(x _ x(k+1)) + E(x _ x(k+1))TH(k+1) (x _ X(kﬂ)). (543b)

By construction, the derivative of the old model m®) agrees with the derivative of f at x(K).
Also, the derivative of the new model m %+ agrees with the derivative of f at x(**)), We require
now, in addition, that the derivative of the new model agrees with the derivative of f also at the
old iterate x'®) i.e.,

(m(k+1))/(x(k)) =f/(x(k))
o VmkD (x(k)) - Vf(x(k))
Vi Ry 4 gD () k)Y — 7 £ (x ) since H**Y is symmetric

secant condition (5.41).

)

)

Using the Dennis-Moré conditions (Corollary 5.37) for Newton-like methods, we can now characterize
the fast (Q-superlinear) local convergence (without line search) of quasi-Newton methods.

Theorem 5.46 (Fast local convergence of quasi-Newton methods). Suppose that f: R" — R is a C*
function. Suppose that the sequence x©) is generated using the Newton-like method Algorithm 5.34 with
model Hessians H*) which are symmetric and satisfy the secant condition (5.41), and with zero residuals
%) = 0. Suppose that x%) converges to x*, where f(x*) is non-singular. Finally, suppose that for any
e > 0, there exists 6 > 0 such that

I(EED — gEY g® < e )[d Py (544)

holds for all ||d®||y; < 8.33. Then the conditions of Corollary 5.37 hold, and therefore x*) converges to
x* Q-superlinearly w.r.t. the M-norm, and f’(x*) = 0 holds.

3'We could likewise say that the left-hand side belongs to o(||d||r)-

32In contrast to (5.2), we write the model here in terms of x, not in terms of the direction d, which is notationally more
convenient. That is, we write m(¥) (x) rather than q(k) (d).

33In other words, ||(H**1) — HK)) g®) ||, 1 € o(|d®) || pr)
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Proof. We can estimate

(7 (x®) = HE) d B[ p
< I(F" (x®y = HEDY g® )+ |[(HED — HEY g | by the triangle inequality.

By assumption, the second term is bounded by ¢ ||d¥)|| s, provided that ||d®) || < &:
< If" () d® - VFEEED) VT |y +€1d® Nl by the secant condition.

Using the uniform continuity of f” “near the (x¥))” (as in the proof of Lemma 5.13), we can bound
the first term by ¢ [|x**) — x|, provided that [|x*+) — x|,/ is sufficiently small:

S R e

=2¢[|xFD) — B,

We have shown that condition (5.34a) of Corollary 5.37 holds, which implies the Q-superlinear conver-
gence and the stationarity of x*. O

In view of
ICEED = HE) d Oy < JHED = HO g 14D L,

the convergence H (k+1) _ g(K) 5 0 is sufficient to ensure the prerequisite (5.44) of Theorem 5.46.

Let us now discuss how to construct quasi-Newton matrices H*) in practice. From now on, we also
include a step size a'*) > 0 in the update of the iterates

L) () () g(R)

To simplify notation, we introduce
s = D) () = g0 gk and ) = vFEED) — v (xR, (5.45)

One important class of quasi-Newton methods constructs H**! as a function of the previous ma-
trix H*) and the two vectors s*) and y¥):

H*D = o(H®), ) (R, (5.46)
Due to the dependence of H**1) on H*), we also speak of a quasi-Newton update formula.

For reference purposes, we state a generic line-search quasi-Newton method in Algorithm 5.47.

Algorithm 5.47 (Generic globalized quasi-Newton method for (UP)).
Input: initial guess x(*) € R"

Input: routine to evaluate f and f’ (or Vf)

Input: initial symmetric model Hessian H'®) € R™" (possibly s. p. d.)
Input: routine that implements the quasi-Newton update ®

Input: s.p.d. matrix M (or matrix-vector products with M™1)
Output: approximately stationary point of (UP)
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1 Setk =0

2 Set f(O) = £(x(0) / evaluate the initial objective value
3 Setr(® = £ (xO) = Vf(x(?) / evaluate the initial residual
4: Set déo) =M1 / evaluate the negative M-gradient
5 Set 80 = —(r®)Tdy) /8 = IVaf (e )IE, = 1451
6: while stopping criterion not met do

7 Determine the quasi-Newton direction d©) by solving

gk gk — _ (k) (5.40)

8: Determine a step size «'*) > 0 from a line search procedure with preferred step size a'®) =1

9: Set s(K) = ok g(k)
10: Set x (k1) = x (k) 4 (k)
o Set fRFD = f(x(k+D))
12: Set r(k+) .— f/(x(k+1))T — Vf(x(k+1))
13 Set dékﬂ) = —M kD) / evaluate the negative M-gradient
” Set §(k+1) .= _(r(k+1))ng<+l) J 5K+ = ”VMf(x(kH))Hﬁ/I _ Hdékﬂ)”‘lzw
5o Set yF) = pU+) (k)
16: Determine the quasi-Newton matrix H<*V := @(H(k), sk, y(k))
17: Setk =k+1
18: end while
19: return x (0

We recall the following desirable properties:
(1) H**) must be symmetric (provided that H*) is symmetric).
(2) H**) must satisfy the secant condition (5.41), now written in the form
HDs 0 = 50, (5-47)

(3) H** should be close to H*) in the sense that ||(H*+) — H&)) )|, € o(]|s®)||pr) in order
to satisfy the condition (5.44) for fast local convergence.
(4) Ideally, the matrix H**! should be positive definite (provided that H*) is positive definite).

Notice that condition (4) guarantees that d (k), and thus s¥) = ¢(® d(®) is a descent direction.

A necessary condition for the positive definiteness of H**)) is obtained by multiplying the secant
condition (5.41) by s(*):

0 < (s)THEDE = ()T k) = (g7 (e ke)y _ 7 (o (RDy) (et _  (R)y (5.48)
——————

evaluation of the bilinear form H*+1)
in the particular direction s(¥)

For strictly convex functions, (5.48) is always satisfied in view of Theorem 2.9; see (2.26). Otherwise,
we need a line search procedure to guarantee (5.48). The Wolfe-Powell line search lends itself for this
purpose.
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Lemma 5.48 (Wolfe-Powell line search ensures (5.48)). Suppose that d*) is a descent direction for f at
x5, Ifa(k) > 0 satisfies the curvature condition (5.17) for some © < 1, then the necessary condition (5.48)
for positive definiteness of H**V is satisfied.

Proof. We can estimate

f(x®0y g®) > 7 7 (x®)) g®) by the curvature condition (5.17)

> f’ (x)) gk since d®) is a descent condition.

This can be rewritten as
(Y9 > o,

and since s} = ¢®)d%) holds with positive step size a¥), (5.48) follows. O

There are infinitely many possibilities (in case n > 1) to satisfy the secant condition (5.47). (Quiz 5.8:
Why?) We are now describing some of the most prominent quasi-Newton update formulas of the
form

HED = g(HP) 5K, 5 ®)), (5-46)

+ SR1 (Symmetric rank-1) update:
There is only one symmetric rank-1 update formula that satisfies the secant condition (Nocedal,
Wright, 2006, Chapter 6.2), and it is given by

(y-Hs)(y—Hs)'
(y—Hs)'s

Qspi(H, s, y) = H+ (5-49)

which requires that H®)s(k) £ (k) holds throughout the iterations. That, however, is problem-
atic. Suppose that we have taken a full step (¢®) = 1), i.e., s*®) = d%) holds. Suppose, moreover,
that the step size a'¥) = 1 gave us an almost stationary point of the line search function ¢. Then

(y®) = {0 5))Tg(k)
— (y(k) _ H(k)d(k))Td(k) due to s = g
— (Vf(x(kH}) _ Vf(x(k)) _ H(k>d(k))Td(k) since y(k) — Vf(x(k+1)) _ Vf(x(k))
=f (kD)) g (o) due to the quasi-Newton system (5.40)
=¢'(a®),

which is almost zero.

Moreover, the positive definiteness of HS(II;H) cannot be guaranteed, even if H*) was positive
definite, since the denominator in (5.49) may be negative. (Still, the SR1 has its purpose, in
particular in the context of trust-region methods.)

+ PSB (Powell-symmetric-Broyden) update:
Condition (3) from our list of desirable properties suggests to keep H**! close to H¥). To this
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end, we consider the auxiliary problem

sym

1
Minimize =[|H** — H®|2 " where H** ¢ R
2 (5.50)
subject to the secant condition (5.47).

Here ||-||r is the Frobenius norm, see (2.7). Problem (5.50) can be shown to have a unique
solution®*, which is given in terms of the update formula

Opsp(H,s,y) =H +

(y—Hs)s"+s(y—Hs)" ss'
Ts

= ~(y—-Hs)'s ) (5:51)

This formula is said to be a rank-2 update since the rank of H**) — HK) js at most 2. To see
this, consider that ®pgg is of the form

T

Opsp(H,s,y) =H+0s" +s0" +yss’ witho=(y—Hs)/||s||*and y = TE
s

=H+y(s—-y o) (s—y o) =y o,
————
symmetric, rank 1 symmetric, rank 1

Like SR1, the PSB update formula also cannot guarantee the positive definiteness.

« DFP (Davidon-Fletcher-Powell) update:
The DFP update considers an auxiliary problem

sym

1
Minimize §||W‘T(H(k+1) ~H®YW)2,  where H*) e R7X"
subject to the secant condition (5.47),
where W is any non-singular matrix with the property WTWs®*) = () Using (2.6) and the

property trace(ABC) = trace(BCA) for products of matrices, and setting M := W'W (which is
s.p. d.), we can rewrite this problem as

1
Minimize - trace (M7Y(H®D — O MY (HED — gR))) - where HF € R

sym

(5.52)
subject to the secant condition (5.47)

with data M sK) = (%) 35

It can be shown that the unique solution of problem (5.52) is independent of M and it is given by

®prp(H,s,y) =(Id—pys)H(Id—psy)+pyy’

(5:53)
=H+p(y—Hs)y +py(y—Hs) = p*(y—Hs)'syy,

where p = 1/(y's). This update formula can be seen to also be of rank 2. This time, positive
definiteness can be guaranteed; see Lemma 5.49.

34see for instance Ulbrich, Ulbrich, 2012, p.76
35The average Hessian fol F7"(x%) + £ s()) dt is one possible matrix M, provided it is positive definite.
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+ BFGS (Broyden-Fletcher-Goldfarb-Shanno) update:
The BFGS formula starts from the optimization problem

sym

1
Minimize §||W[(H(k+1))‘1—(H(k>)‘1]WT||12,, Hk+D g grxn

subject to the secant condition (5.47),

where W is again any non-singular matrix with the property W™Ws®*) = y(*_Similarly as in
(5.52), we can rewrite this problem as

sym

1
Minimize Etrace(M[(H(k“))_l—(H(k))_l]M[(H(k”))_l—(H(k))_l]), Hk+D g grxn

subject to the secant condition (5.47)

(5:54)
with data M sK) = (k)

The solution of this problem — once again independent of W — results in the rank-2 update

formula
Hss'H

sTH's

where p =1/(y"s). Also here, Lemma 5.49 will ensure the positive definiteness.

Dprgs(H, s, y) =H —

+pyy (5.55)

« Broyden class update:
The update formulas of the Broyden class are the affine combinations of the DFP and BFGS
formulas. For any parameter A € R, we obtain

‘ngyden (H,s,y) = (1-A) ®prcs(H, s, y) + A Pprp(H, s, y). (5.56)

The formulas obtained by restricting A € [0, 1] are known as the convex Broyden class.

In (5.48) we had identified y's > 0 as a necessary condition for any quasi-Newton update formula
satisfying the secant condition to be positive definite. Indeed, this condition is already sufficient in
case of the DFP and BFGS updates. Consequently, the positive definiteness can be ensured using a
Wolfe-Powell line search as we proved in Lemma 5.48.

Lemma 5.49 (Positive definiteness of the DFP and BFGS updates). Suppose that H is symmetric and
positive definite and that y's > 0 holds. Then Hi o = ®prcs(H, s, y) and Hz, = ®prp(H,s, y) are
symmetric and positive definite as well.

Note: One can show this result even for all members of the non-negative Broyden class (1 > 0); see
Ulbrich, Ulbrich, 2012, Satz 13.4.

Proof. The symmetry of H}

+ : n
FGS and Hfpp are obvious. For any v € R", v # 0, we have

VHfpo=(0"—p(@"y)sHH@-ps(@'y) +p (0 y)* > 0.
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Equality in this inequality can hold only if both summands are zero. The first summand is zero precisely
when v is a certain multiple of s, but in that case the second summand will be strictly positive due to

p=1/(ys) > 0.
As for BFGS, we have

(s"Ho)?

+ T, \2
s p(y'o)

0 Hipggv =0 Ho -
By the Cauchy-Schwarz inequality w.r.t. the H-inner product, we can estimate this as

(s"Hs) (vHo)  (y'0)’
sTHs y's

Tyt T
0 Hppogo 20 Ho —

_(Y')?
=
> 0.

If this expression were equal to zero, then both inequalities would need to be equalities. In the first
inequality, this implies that v is a (non-zero) multiple of s. But then the second inequality is strict since
y's > 0 holds. m]

While quasi-Newton methods avoid the evaluation of second-order derivatives of the objective f, we
still need to solve a linear system (5.40) in every iteration. This brings up the question whether we
could perhaps work with the inverse matrix3® B() = (H())~! and avoid the solution of linear systems
altogether, by evaluating

d® = —B(k)Vf(x(k)) instead of solving H®g® = —Vf(x(k)). (5.57)

This is indeed possible, and we can find update formulas for the inverse matrices. The fact that
common update formulas for H*) are of low rank can be exploited, and it leads to low-rank update
formulas for B(X). This is a consequence of the following key result, which has applications far beyond
quasi-Newton methods.

Lemma 5.50 (Sherman-Morrison-Woodbury formula). Suppose that A € R™" and C € R™" are
non-singular matrices and that U € R™", V € R"™" are arbitrary. Then A+ U CV is non-singular if and
only if C"'+ VA™U is non-singular. In this case,

(A+Ucv)yt=al-Alu(Cct+vAalU) VAL (5.58)

The significance of this lemma is the following. Typically we have r < n. Knowing the inverse A™!,
we can evaluate the inverse of the perturbed matrix A + U CV with little effort, since the matrix
C~'+ VAU on the right hand side, which is to be inverted, is only of size r X r. In particular, the
Sherman-Morrison-Woodbury lemma 5.50 states that the inverse of a rank-r update is a rank-r update
of the inverse.

36We are pointing out that in part of the literature, notably in Nocedal, Wright, 2006, the notations for B and H are reversed.
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Proof. Suppose first that C™! + VAU is non-singular. Then it can be checked straightforwardly that
the inverse of A + U CV is given by the right-hand side in (5.58). For the converse statement, we can
reverse the roles as follows:

AwmsCL Com AL VenU, UV,

Dropping indices, the update formulas we discussed in (5.46) are of the form
H" =®(H,s, ).

We will obtain update formulas for the inverse of the form
B =¥(B,s,y)

with the property that B = H™! implies B* = (H*) . Since ®ppp and ®ppgs are expressed in terms of
rank-2 updates of the input H, the Sherman-Morrison-Woodbury lemma 5.50 allows us to express also
Yprp and Yprgs in terms of rank-2 update formulas. Indeed, we can obtain the

« inverse DFP quasi-Newton update:
The Sherman-Morrison-Woodbury formula applied to the DFP update formula (5.53) yields

T

Byy'B
y'By

¥prp(B,s, y) = B — +pss' (5-59)

where, again, p = 1/(y"s).

« inverse BFGS quasi-Newton update:
Similarly, we can obtain

Wprcs(B,s,y) = (Id—psy )B(Id—p ys') +pss’ (5.60)
.60
=B+p(s—By)s +ps(s=By) = p’(s=By)yss, >

cf. homework problem 6.4. Interestingly, it turns out that the DFP and BFGS updates are inverse to
each other. More precisely, we have

Yorp (-, 8, ¥) = Peras(- y,s) and  Wrgs(- s, ¥) = Ppre(s ¥, ). (5.61)

Using an inverse quasi-Newton formula and obtaining the quasi-Newton direction from (5.57) solves
both issues with Newton’s method identified in the beginning of § 5.5. In the literature, the BFGS update
is reported to be generally the most efficient among the quasi-Newton updates. For completeness, we
therefore now state a globalized algorithm using the inverse BFGS update.

Algorithm 5.51 (Globalized quasi-Newton method with inverse BFGS update for (UP)).
Input: initial guess x'*) € R"
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Input: routine to evaluate f and f’ (or Vf)

Input: routine that implements the inverse BFGS update ¥ppgs

Input: s.p.d. matrix M (or matrix-vector products with M™")

Input: Armijo and curvature parameters 0 < o < t < 1 with o € (0,1/2) / to be passed through to the
Wolfe-Powell line search

Input: expansion parametery > 1 / to be passed through to the Wolfe-Powell line search
Input: nesting parametersy,y € (0,1/2] / to be passed through to the Wolfe-Powell line search
Output: approximately stationary point of (UP)

1 Setzek =0

: Setze f(0) := f(x(0)
3 Setzer® = f'(x(0) = V£ (x(?)
4: Setze déo) = —M"1r(0)

N

5 Setze 50 = ~(r©)'dg) 78 = [V f ) = 1ldg” I
Input: Set Bl(g%)GS =M / initial model Hessian equals the user-defined base metric

6: while stopping criterion not met do

7 Determine the quasi-Newton direction d'©) from

d® = —Bk) v (x®)

8: Determine a step size a®) > 0 from a Wolfe-Powell line search procedure (Algorithm 5.18),
applied to () := f(x%) + ad®), with initial trial step size «'*°), Armijo parameter o, curvature
parameter , expansion parameter y and nesting parametersy,y / ¢(0) = f%) is already known and
¢’ (0) = (r’®)Td®) is easily evaluated

9: Set s(K) = gk g(k)

10: Set x(k+1) 1= x (k) 4 (k)
11: Setf(kﬂ) = f(x(k”))
12: Setr(kﬂ) = f/(x(k+1))T — Vf(x(k+l))

13 Set dékﬂ) = Mk / evaluate the negative M-gradient
14 Set §(k+1) .= _(r(k+1))Tdék+l) //5(k+1) — HVMf(x(kH))”]ZVI — ||d(Gk+1)||]2V[
15: Set yK) = p(k+l) _ (k)

k k
16: Evaluate BlgFJélS) = \IIBFGS(BI(%F)GS’ s(k), y(k))

17: Setk = k+1
18: end while
19: return x50

Remark 5.52 (on Algorithm 5.51).

(i) The choice BI(S(I):)GS = M™! lends itself as the inverse of the initial model Hessian. In this way, the
user-defined base metric M serves as the initial model Hessian, as in gradient descent methods.
However, in contrast to gradient descent methods, the metric then evolves according to the data sk
and y®) acquired throughout the iterations.

(ii) Unfortunately, the convergence results for Algorithm 5.51 are not as rich as for other methods.

« One can show the local Q-superlinear convergence of x*) to a point x* satisfying the second-
order sufficient optimality condition (see Theorem 3.3), provided that x'*) is sufficiently close
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to x*, the step sizes are fixed to a'¥) = 1, and the initial Hessian M is sufficiently close to

fll (x*).

« Global convergence can be proved under the assumption that the generalized condition numbers

(k)
Bgras

generalized condition numbers of the (non-inverse) BFGS matrices Hélgés w.r.t. M remaining
bounded. (Quiz 5.9: Can you see why this is equivalent?)

of the inverse BFGS matrices w.r.t. M~ remains bounded. This is equivalent to the

Under this assumption, Lemma 5.5 ensures that the angle condition holds, and thus the search
directions are admissible (Lemma 5.4). Moreover, under the assumption that the sublevel set
Mf(x(o)) = {x e R"| f(x) < f(x(©)} is compact, the Wolfe-Powell step sizes can be shown
to be admissible (Ulbrich, Ulbrich, zo1z, Satz 9.5). The global convergence, in the sense that
every accumulation point of the sequence of iterates xX) is a stationary point, then follows
from the global convergence theorem 5.9. See Ulbrich, Ulbrich, zo12, Satz 13.11 for details.

« Unfortunately, the boundedness of the (inverse) BFGS matrices’ generalized condition numbers
cannot be guaranteed a priori. One possible remedy is to introduce a generalized angle
condition such as

’ . k k
£y d® < —minfn, p a3 110} 1S L 1d® |11 (5.27)
into Algorithm 5.51. Due to the estimate

Pz 2V O g

for alld € R" that we have from Lemma 5.5, a violation of condition (5.27) either means
that the residual norm ||dék) lar = " (x5 || s has already become small (so that further
convergence can be entrusted to the local convergence result), or it otherwise indicates run-away
generalized condition numbers of H®) w.r.t. M.37

When (5.27) is violated, we might reset the matrix to Bé’;)GS = B](E.%)GS’ discard and re-evaluate
the current direction d'¥), effectively resorting to a steepest descent step. Under these modifi-
cations of Algorithm 5.51, the a priori assumption on the boundedness of the (inverse) BFGS
matrices can be dropped in the proof of global convergence. For further details, see Geiger,
Kanzow, 1999, p.167 and the reference Kosmol, 1989, Kapitel 11.5 they are citing.

(iii) In practice, Algorithm 5.51 often exhibits Q-superlinear convergence. This is remarkable since only
first-order derivatives of f are being used.

LimITED-MEMORY BFGS METHOD

While the quasi-Newton methods we discussed so far successfully avoid second-order derivatives of
the objective and replace the solutions of linear systems by matrix-vector products to obtain the search

37Notice that x — %IE is monotone decreasing and it goes to 0 if and only if x — oo.
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directions, one disadvantage remains. That issue is the high memory requirement to store the inverse
quasi-Newton matrices B%) (or their non-inverted counterparts H¥)) when the problem dimension n
is not small. For instance, a problem of the (still moderate) dimension n = 10 000 already requires

n(n+1) .
—————— 8B =~ 381 MiB

storage for one double precision number

of storage, while a problem of size n = 100 000 requires about 37 GiB.3"!

Typically (but not always), the true Hessian f”’ is sparse for large-scale problems. By contrast, the quasi-
Newton matrices H®) and their inverses BX) are always fully populated, although their difference to
their initial values H*) and B¥) is at most of rank 2k.

Two ideas can be used to solve the storage issue.

(1) Instead of storing the matrices B*) entry by entry, we only store the pairs of vectors
(y(O)’ 3(0)), (y(l), s(l)), o

As we will see, this is sufficient to evalulate the matrix-vector products By

(2) The above modification still requires us to store two additional vectors of length n per iteration.
We can, however, limit the storage by keeping only the most recent m pairs of vectors and
dropping the previous.

The combination of these ideas leads to limited-memory quasi-Newton methods. While the limited-
memory idea is generally applicable to all low-rank quasi-Newton update formulas, we concentrate
here on the inverse BFGS update. We start by reviewing the respective update formula (5.60), which
leads to the recursion

k k
B = (v ()T yk) 4 5050 (50T

where p*) = 1/(y*®))Ts®) and V*) = 1d — p¥) &) (s(K))T Working out the first few elements of
this sequence, we obtain

Bl(alp)cs = (V(O))TBI(B(I):)GSV(O) + p 050 (5T
Bl(s?cs = (V(l))TBI(;F)GSV(l) + pM s (YT

— (V(l))T(V(O))TBl(;;)GSV(O)V(l) +p(O)(V(l))TS(O)(s(O))TV(l) +p(1)s(1)(s(1))T
etc. We only need to evaluate matrix-vector products such as

BI?GSF = (V(l))T(V(O))TB](S(]):)GSV(O)V(l)l’ + p O (VYT (sONTy M 4 1) g (DT,

which can be realized efficiently as follows.

Algorithm 5.53 (Recursive evaluation of Bé’;)GS r).

38A Mebibyte (MiB) are 220 bytes, a Gibibyte (GiB) are 23 bytes. The prefixes “mebi” and gibi replace the former “mega”
und “giga”, which should however be reserved to mean 10° and 10°, respectively.
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Input: initial matrix Bl(z.%)cs (or matrix-vector products with Bl(s(l):)cs )

Input: pairs of vectors (y), s and scalars p = 1/(yD)'s fori=0,...,k -1
Input: vectorr € R"
Output: B](;;z}s r
i fori=k-1,k-2,...,0do
2 Set oD = p) (s()Ty
Setr :=r—a®yd
end for /1~ VOO .yl
: Setd = Bl(;l):)GSr
: fori=0,1,...,k—1do
Set 1) = p(i)(y(i))Td
Setd :=d+ (aV — p1)) s
end for
10: returnd /d= Bg;gsr

LY AR w

Remark 5.54 (on Algorithm 5.53).

(0)

(i) We do not need BY ¢ as a matrix since only matrix-vector products with By,

BEG ¢ are required.
ii) Using Algorithm 5.53, it is even possible to change the inverse base metric BY) . during the run o
g Alg p g BFGS g

the quasi-Newton algorithm. This is impossible when the update formula (5.60) is used to explicitly

B0

form the matrices By .

We now come back to the second idea of limiting the storage of the pairs of vectors (y,s()) to the
m most recent ones.3? This idea is easily incorporated into Algorithm 5.53. The resulting update rule is
called the inverse limited-memory BFGS update rule or briefly, the (inverse) L-BFGS or (inverse)
LM-BFGS rule.

Algorithm 5.55 (Recursive evaluation of B](ﬁ_BFGS r).

Input: initial matrix BY (or matrix-vector products with B(O)GS)
Input: pairs of vectors (y, s and scalars p = 1/(yD)'s® fori=k —m,... . k-1
Input: vectorr e R"
Output: Bl(z.’;)cs r
i fori=k-1,k-2,....k—mdo
2 Set D = p) (s()Ty
Setr :=r—a®yld)

3.’

4: end for I~ Vk=m)yk=m=-1) (k-1
50 Setd = Bl(a(})r)csr

6: fori =k—-mk-m-1...,k—1do

7: Set ) := p® (y(yTg

g  Setd :=d+(a¥) - p1))s®

o: end for

10: returnd /d= Bl(a]}:)GSr

39We do not relabel the vectors.
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We conclude with some remarks on limited-memory quasi-Newton methods.

Remark 5.56 (on limited-memory quasi-Newton methods).

(i) During the first iterations, the number of vectors pairs is gradually increased until the desired
size Mmax Of the storage window is reached. That is, we use m = min{k, Mmp,x}. Typically, 3 <
Mmax < 10 holds.

(ii) The modifications in Algorithm 5.51 in order to use the inverse limited-memory BFGS update rather
than the full (unlimited) inverse BFGS update are minor. In Line 7, we obtain the quasi-Newton

direction by evaluating

4% — _g®

k
vsrGs VS (X ®)

(k+1)

Lv-BFGs n Line 16 is

using Algorithm 5.55. The evaluation of the next inverse model Hessian B
replaced by adding the most recent vector pair (y*), s() to the storage.

(iii) We cannot expect a limited-memory quasi-Newton method to converge Q-superlinearly in general.

§ 5.8 NONLINEAR CONJUGATE GRADIENT METHODS

Let us recap the contents of § 5 up to here. After introducing the general framework of line search
methods, we discussed a first example, the gradient descent method, in § 5.3. This makes do with
first-order derivatives but does not yield Q-superlinear convergence in general. This led us to consider
(inexact) Newton methods (§ 5.4, § 5.6), which achieve Q-superlinear or even Q-quadratic convergence
but are more expensive due to the use of second-order derivatives and solving (albeit only inexactly) a
linear systems with f””(x(*)) in each iteration. As a compromise, we then introduced quasi-Newton
methods (§ 5.7), which make do with first-order derivatives and are capable of achieving Q-superlinear
convergence.

An alternative class of methods which also works with first-order derivatives only is based on the
extension of the conjugate gradient (CG) method (§ 4.6) to nonlinear objective functions. These
methods are known as nonlinear conjugate gradient methods.
The essential characteristics of the CG method for quadratic objectives were:
(1) Every new search direction d**!) was obtained from the current search direction d'¥) and the
direction of steepest descent, by forming a linear combination such that d') and d**") became

A-orthogonal. The A-orthogonality with all previous search directions was automatic.

(2) The Cauchy step size (exact minimizing step size) was taken along every search direction. This
was possible due to the objective being a quadratic polynomial.

For nonlinear CG methods, we need to observe the following in comparison.

(1) The Cauchy step size is no longer available. Instead, a line search procedure is used, which is
often a strong Wolfe-Powell line search.
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(2) We continue to denote the residual as &) := Vf(x*)).

(3) Since the Hessian of the objective is no longer a constant, s.p.d. matrix A, the requirement

of A-conjugate (A-orthogonal) search directions does not make sense anymore. However, one
maintains the construction principle that every new search direction d¥*!) is obtained from a
linear combination of the current search direction d¥) and the direction of steepest descent:

d© = —p10 for k =0,

d® = MR 4 pR) gD for ke > 1, (a23)

The coefficients f are obtained using any of the formulas in (4.24’), which are no longer equivalent
for nonlinear CG methods but yield distinct methods; see Table 5.1.

Algorithm 5.57 (Generic nonlinear conjugate gradient method; compare Algorithm 4.17).

Input: initial guess x(*) € R"
Input: right-hand side b € R"
Input: s.p.d. matrix M (or matrix-vector products with M™*)

Ou
1

2:

LR Y @R

10:
11
12:
13:
14:
15:
16:
17:

tput: approximately stationary point of (UP)
Setk =0
Set r(®) := V£(x(0)) / evaluate the initial residual
Setd® = —M~1r(0) / evaluate the initial negative M-gradient
Set §(0) = —(r(0)7q(®) /8O = ||V f (x@)12,
while stopping criterion not met do
Determine a step size a®) >0 from an appropriate line search procedure
/ the details depend on the type of method (rule for choosing f3)
Set x (K1) = x (k) 4 (k) g(k)
Set rk+) = ¥ f(x(k+1)) / updating the residual is not possible
Set d**) == —M 1, / evaluate the negative M-gradient
Set Sgsy = —(rgar)'d /8T = ||V f )13, = 1Ir 1
Set yk) = plk+) _ (k) / some nonlinear CG methods use this
Determine <+ / different nonlinear CG methods differ here
Set dUk+1) = g(k+1) 4 p(k+1) g(k) / obtain the new search direction
Setk =k+1
end while

return x(k)

Different nonlinear CG methods differ with respect to the rule for choosing S+, Altogether, we had
seen in (4.24’) the two expressions

(PO _ pUONT AL (k) g (DT =1 (k) (5.62)

for the numerator and the three expressions

(r(k+l) _ r(k))T d(k), _(r(k))T d®  and (r(k))T ML) (5.63)
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for the denominator.4® All six combinations (as well as additional variants) appear in the literature
and yield meaningful methods. Some prominent choices are summarized in Table 5.1. Some formulas
use the abbreviation y*) = V£ (x* 1) — V£(x(*)) = p(k+) _ (0 a5 in quasi-Newton methods.

The line search procedure should yield an approximately stationary point of the line search function
o(a) = f(x® 1+ ad®)). Typically, the strong Wolfe-Powell conditions are required for this purpose
with a small curvature parameter such as 7 = 107! or 7 = 1072, In the (theoretical) case of an
exact line search, yielding an exactly stationary step size a¥) of the line search function, we have
(r+Tg() = 7 (x (k1)) g(6) = 7 ((k)) = 0. Moreover, we also have (r©))Tdk=) = 0 from the
previous iteration, and therefore

(rt) T gk = (T g(k) = (T (g1 (k) /g(k) d*Dy = (pUNT pp=1 (k)
In this case, we see that the three different expressions in (5.63) for the denominator of 5 (k+1) coincide.

Convergence proofs for nonlinear CG methods are siginificantly more technical than for other methods,
and we do not go into the details. It can be generally stated that the methods using ()™M 1) as
numerator admit better convergence theories but that the methods using (r®) — r(x=D)TA1=1 () are
often faster in practice.

As a stopping criterion we can use again a relative and/or absolute criterion involving r¥) = V£ (x(%)),
see (4.14).

4°The expression —(r(K))T d (k) was not explicitly given but can be derived immediately from (4.22), which implies (rtesD)

PR g(k) = _(p ()T (k)
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Name

Choice of ptk+D)

Remark

Hestenes—Stiefel (1952)

(ks (YEN)TM (ke

HS (yEn)TdR)
(k+1) |12
QA+HV __w.. __\S\H g
Fletcher-Reeves (1964) fry = = AT strong Wolfe-Powell conditions (5.12), (5.18)
[Ea [y with 0 < 0 <7 <1/2

(ks _ ()Mt et (k+1)
Polak-Ribiere (1969) R = TEGIE no descent guaranteed, therefore often fyp. =
r —~
M Emiou m%mtv , where .&MH: = 0 = gradient descent step
Powell (1985) Mﬂ: = ENGLOv .mmmwiv refinement of the strong Wolfe-Powell conditions, see
Gilbert, Nocedal, 1992, eq.(4.1) and section 6
Fletcher (1987) ey _ PV
etcher (1987 P 0y ®
(ONT Af—1 . (k+1)
. ks) _ (Y M™r
Liu-Storey (1991) s = BRI
(k+1) . o(k+1) (k+1)
Per >l <P
Gilbert-Nocedal (1992) Mmf: = mmtv. if' | m%mtv_ < metv strong Wolfe-Powell conditions (5.12), (5.18)
mmivn Rmmmtv > glk+D) with0 <o <7<1/2
Daituan g9y g <
ai-Yuan (1999 S NI
H Zhang (2005) (k+1) _ | 3 r=1 (k) _ o g(k) 1715 e Wolfe-Powell conditions (5.12), (5.17)
ager—-Zhang (2005 by = y G | (5w olfe-Powell conditions (5.12), (5.17
with0 <o <r<1
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Table 5.1: Some common nonlinear conjugate gradient methods.
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§ 6 TRuUST-REGION METHODS FOR NONLINEAR UNCONSTRAINED PROBLEMS

The line search methods from § 5 proceed by first determining a search direction d®, by (inexactly)
minimizing a quadratic model of the objective

g¥(d) = ) 4 £ W) dw o dHO (52)
or by (inexactly) solving the linear system
HO4® = v f(x0). (5.4)
Subsequently, a suitable step size @¥) > 0 is determined and the iterate is updated according to
L) () () k)
T

Trust-region methods, by contrast, determine the direction and the step size simultaneously. They
generate the combined step s*) as a (usually inexact) solution of the trust-region subproblem

1
Minimize q(k)(s) = f(x(k)) +f'(x(k)) s+ 5 sTH®s,  where s € R” (6.1)
1

subject to  ||s]ly < A%,

As for line search methods, H®) is the model Hessian, which we require to be symmetric but not
necessarily positive definite. The quantity A%) > 0 is the trust-region radius governing the trust
region

{s eR"|lIsllm < AP}

attached to the quadratic model.

Note: At s = 0, the value of the model ¢'¥) as well as its derivative agree with those of s > f(x(®) +75).
In case of the Newton model (H®) = f”(x(¥))), the second derivatives agree as well. Either way,
for small values of ||s||5, the model ¢ will be in good agreement with s — f(x*) +5) by Taylor’s
theorem 2.3.

Since the trust region is a compact set and the objective is continuous (in fact, infinitely smooth),
problem (6.1) always has a global minimizer even when H*) is not positive definite.

Analogously as in line search methods, trust-region algorithms need to monitor the quality of the
step 55, in order to obtain sufficient descent. In fact, we should rather speak of the step proposal s(¥)
because trust-region methods may reject the proposal. The basis of evaluation of the quality of a
tentative step s(¥) at the point x(¥) is the comparison of the actual reduction in objective values

ared(x®); s = f(x(k)) - f(x(k) +s)) (6.2)
to the predicted reduction based on the model ¢(*) associated with the iterate x*)
pred(x(k);s(k)) = q(k)(O) _ q(k) (s(k))
- f(x(k)) _ q(k)(s(k))

, 1
=—f (x(k)) sk _ > (s(k))TH(k)s(k). (6.3)
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This comparison is achieved in terms of the ratio of these two quantities,

(k), s(k)) — ared(x(k); S(k))

x —_—. 6.
p( pred(x(k);s(k)) ( 4)
In our algorithms, we are going to produce only proposals satisfying
pred(x®;s®)) > o, (6.5)

i.e., for which the model predicts a decrease. The actural decrease (6.2), however, can take either
sign.

Suppose now that s¥) is an (inexact) solution of the trust-region subproblem (6.1). Based on the value
of p(x®); s(K)) two decisions need to be taken:

« whether to accept or reject the step proposal s*),
+ how to choose the next the next trust-region radius.

These decisions usually depend on two algorithmic parameters 0 < 1, <1, < 1:

(1) In case p(x*);sK)) < py, the step proposal s'¥) is considered unsatisfactory. The reason for this
must be that the model ¢'¥) does not coincide well with the true objective function f within the
current trust region. In other words, the current trust region is too large.

We therefore reject and discard the step by setting x(¥*!) := x(¥), We label this iterate unsuc-
cessful.4' We also choose a new trust-region radius A*+) < A% In fact, the new trust-region
radius should even satisfy Ac*) < ||s(%)|| s in order to avoid computing the same unsuccessful
step proposal again in the subsequent iteration.

(2) In case p(x®);s(9)) > p; the step proposal s*) is considered satisfactory and we accept it by
setting x(K*1) := x(&) 4 s(K) The step is labeled successful. The trust region radius A<*V for the
subsequent step is chosen as follows.

(a) In case p(x¥);5(K)) > p,, the coincidence between the predicted and actual reductions is
considered exceptionally good. We can therefore allow the trust region for the next step to
grow. However, this is sensible only if the current step s(¥) actually did lie on the boundary
of the trust region, i. e., when ||s®) |3y = A®) holds.

(b) Otherwise we keep the trust-region radius: A%+ = A0

We may call ; the acceptance threshold and 7, the quality threshold.

The above guidelines lead to the following generic trust-region method (Algorithm 6.1).

Algorithm 6.1 (Generic trust-region method).
Input: initial guess x(*) € R"

41We still count this as an iterate since essentially the same amount of work has been carried out as in a successful iterate.
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Input: routine to evaluate f and f’ (or Vf)

Input: routine to construct the model Hessians H*)

Input: s.p.d. matrix M (or matrix-vector products with M™")
Input: initial trust-region radius A > 0

Input: trust-region step quality parameters 0 < n; < nz <1
Input: trust-region growth parameters 0 < y; <1<y,
Output: approximately stationary point of (UP)

1 Setk =0

2 Set (O = f(x(0)) / evaluate the initial objective value
3: while stopping criterion not met do

4 Determine a step proposal s') by an inexact solution of the trust-region subproblem (6.1)

5 Evaluate the ratio p(x%); s(%)) according to (6.4)

6 if p(x®);5)) >y then / satisfactory step proposal
7 Set x4 = x(k) 4 (k) / accept the step proposal
3 Set f(k+1) — f(x(k+1))

9 if p(x® ;50 > p,y and ||s® ||y = A then
10: / exceptionally good step proposal and trust region too small
1 Set A1) =y, A(K) / grow the trust region
12: else / satisfactory but not exceptionally good step, or trust region sufficiently large
13: Set Ak+1) .= A(K) / keep the trust region
14: end lf

15 else / unsatisfactory step proposal
16: Set x(k+1) = x (k) / reject the step proposal
17: Set f(k"'l) = f0)
18: Set AK+D =y ||sT) || o / shrink the trust region
19: end lf

20: Setk =k+1
21: end while
22: return x(k)

Remark 6.2 (on Algorithm 6.1). The evaluation of the ratio p(x*);sK)) requires

« one function evaluation f(x®) +s®)) and
« one model evaluation g*) (s = f(x0)) + f/(x*)) s*) 4 %(s(k))TH(")s(k)

per iteration. If the step proposal is accepted, then f(x®) +s5)) becomes f(x**V)), so that really only one

evaluation of the objective f is required per iteration. The evaluation of ¢®) (s®)) is usually a by-product
of the computation of the (inexact) solution of the trust-region subproblem (6.1).

In the remainder of this section we will consider the following questions.
(1) Which requirements do we have to impose on Algorithm 6.1, in particular concerning the choice
of model Hessians H®) and the inexactness of the trust-region subproblem solves, in order to

obtain global convergence? (§ 6.1)

(2) How can we obtain fast local convergence? (§ 6.2)
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(3) What is a good algorithmic approach to solving the trust-region subproblems (6.1) with adjustable
accuracy? (§ 6.3)

Assumption 6.3. Throughout § 6 we are assuming that f: R" — R is a C! function.

§ 6.1 GLoBAL CONVERGENCE

In line search methods, we used the angle condition to compare candidate search directions, such
as the Newton direction in Algorithm 5.30 or the inexact Newton direction in Algorithm 5.44, to a
reference direction. The steepest descent direction d ék) served as that reference and simultaneously as
the fallback search direction. This was essential in establishing the global convergence.

A similar idea for trust-region methods uses as reference the Cauchy point or Cauchy step sc. The
Cauchy point is defined as the unique solution of the trust-region subproblem (6.1), but restricted to
the subspace generated by the steepest descent direction. Dropping the iteration index for the time
being, the Cauchy point problem reads

1
Minimize q(s) = f(x) + f'(x)s + 3 s'Hs, whereseR",7€R

subject to  ||s|jy < A% (6.6)

and s=-17Vyf(x).
We assume f’(x) # 0. (Quiz 6.1: Why?) Abbreviating
9= Vuf(x)

and reducing the problem to the variable 7 by plugging in the constraint s = —7 V;f(x), we obtain
the reduced Cauchy point problem

2
Minimize gq(-79) =f(x) -1 ”9”12\/1 + %gTHg, where 7 € R
(6.7)

subjectto |7] < i
llgllm

This is the minimization of a univariate quadratic polynomial over a compact interval that is symmetric
about 0. The solution of this problem is given in the following lemma.

Lemma 6.4 (Evaluation of the Cauchy point). Suppose that g # 0 and A > 0 hold. Then the unique
solution sc = —1¢ g of (6.6), respectively the unique solution tc of the reduced problem (6.7), is given by

2
A

min{—“Tg”M, —}, ifg'Hg > 0,
e = AgHgHﬂM (6.8)
—_— otherwise.

llgllm
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Therefore, the decrease predicted by the model at the Cauchy point sc satisfies

pred(x; sc) = f (x) = q(sc)

1 ” yy min {A lgll3, }
=7 19llm " max{0,g"H g}
1 llgllas
- A, } 6.
2 Mol i e () o
where we interpret — ”g”M and W as +oo.
Proof. We denote the objective in (6.7), which is a univariate quadratic polynomial, by
, T o
o(1) = f(x) —rllgly+ 5 9 Hg.
For any 7 € R and s = —7 g, we have
, T
pred(x;s) = f(x) —q(=19) = f(x) —¢(1) = 7llglly — — 9 Hy. ()

We need to distinguish two cases to find the optimal value for 7.

Case 1: g'Hg > 0 (¢ is strongly convex)
The derivative of ¢ is equal to zero precisely at

2
el

gHyg
In case this value is feasible, it is the unique solution of (6.7). Otherwise, due to ¢’(0) =

-7 ||g||§/[ < 0, ¢’ is negative on the entire interval [0 ], and therefore ¢ is decreasing on

_A
> Nlglla
this interval. Consequently, the maximal feasible value 7 = m is the unique solution of (6.7).
To summarize this case:

c

- min {IIQIIM A }
9Hg llgllm

In order to evaluate pred(x; sc), we obtain from (x):

2

pred(x;sc) = ¢ glly — 5 9'Hg
2
1 lgly _ 1 lgl13, o llglly A
_ 2¢g'Hyg 2”g”Mmax{0,gTHg} tc gTHg - “g”M
. A 9l
e |lgllyy = [ | 97H 9| ifre= oo <
90 =2 Mgl | 979 gl = gHg'
In the first case, (6.9) is satisfied since clearly
Lol gl “ | {A gl }
max{O "H g} Z 7 lglu m " max{0,g"H g}
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holds. Moreover, due to (2.12), we have Ay (H; M) > ﬁ;ﬁf > 0 and therefore
M

llgllae }

C>
B maX{O, AmaX(HQ M)}

lgllar minA,

N | =

In the second case, we have

- (Il
e [lol = | 7H19] = e 1ot 5| G | 7]
1
= > wcllgliiy
= 2 Al
=5 Allgllv
) lgll3,
> - injA, —}
gl min{a,
| . lglla
1 A !
2 llgllm mm{ max{0, Amax (H; M) }

so0 (6.9) also holds here.

Case 2: g"Hg < 0 (¢ is concave)
Since ¢ is now concave, the solution 7¢ of (6.7) must lie on the boundary of the feasible interval.

In view of ¢’ (0) = —7 ”9”12\/1 < 0, we have

A
Tc=+—.
llgllm

Therefore, we obtain

1 A 2
pred(x;sc) = Allgllm + = [——] 1g"Hg]
2 gllm

2 Allgllm

1” ” min{A lgll3, }
2 " max{0,¢"H g}

v

N|[—= NP =

= llgllm min{A, oo}

=5 llgllm A

=

llglla }

in{A
gl min{A, s

s0 (6.9) holds again. O

In order to formulate a condition on the step proposals s(¥) that ensures the global convergence of the
general trust-region method (Algorithm 6.1), we compare

« the decrease in the current model pred(x¥); s(¢)) obtained by the proposed step s*)
« with the decrease in the model pred(x¥); sék) ) obtained by the Cauchy step sék) .
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We require that s%) realizes at least a fixed fraction of the decrease obtained by s((:k). In fact, it will be
sufficient that s realizes a fixed fraction of the lower bound (6.9).

Definition 6.5 (Fraction of Cauchy decrease condition).
Consider the trust-region subproblem

1
Minimize q(s) = f(x)+ f'(x)s+—=s"Hs, wheres € R"
2 (6.10)

subject to  ||s||lp < A

with f’(x) # 0 and thus also g := Vpf(x) # 0. The Cauchy step for (6.10) is denoted by sc.

i) A vectors € R" satisfies the fraction of Cauchy decrease condition for (6.10) if there exists a
y
constant C € (0,1] such that
pred(x;s) = C pred(x;sc) (6.11)

holds.

(ii) A vector s € R" satisfies the weak fraction of Cauchy decrease condition for (6.10) if there
exists a constant C € (0, 1] such that

llgllae }

1
d(x;s) > C - i {A,
pred(x;s) = C 2 Igllas min max{0, Amax(H; M)}

(6.12)

holds.

Note: By (6.9), the fraction of Cauchy decrease condition (6.11) implies the weak fraction of Cauchy
decrease condition (6.12). Moreover, the weak fraction of Cauchy decrease condition (6.12) implies that
an accepted step size proposal satisfies

f(x) — f(x+s) = ared(x;s)
= p(x;s) pred(x;s) by definition of the ratio p(-;-)
> 1 pred(x;s) since the step proposal was accepted
>0 by (6.12).

In particular, any trust-region method that falls into the framework of Algorithm 6.1 is a descent
method.

Our proof of global convergence requires (roughly) the following auxiliary results to be shown:

(1) The weak fraction of Cauchy decrease condition implies that Algorithm 6.1 cannot get stuck in
an infinite sequence of consecutively rejected steps (Lemma 6.6 and Corollary 6.7).

(2) If the sequence of function values f(x(¥) is bounded below, then any subsequence of successful
steps, whose associated trust-region radii A) sum up to oo, is a sequence of vanishing gradients
(Lemma 6.8).

122 https://tinyurl.com/scoop-nlo 2023-07-14


https://tinyurl.com/scoop-nlo

©O®S Nonlinear Optimization

We now show that for sufficiently small trust-region radius, step proposals satisfying the (weak)
fraction of Cauchy decrease condition will always be successful. This result even holds uniformly for
an entire class of trust-region subproblems.

Lemma 6.6 (Any acceptance threshold is achievable for small trust-region radius). Suppose that
x € R" is a point satisfying f'(x) # 0. Suppose, moreover, that g, € (0,1) and C > 0 and H > 0 are
given. Then there exist § > 0 and A > 0 such that the following holds: for any trust-region subproblem

1
Minimize f(x)+ f'(x)s+ 2 s'Hs, wheres € R"

subject to |||y < A

with data x € Bg’f(f) and A € (0,A] and H symmetric with |H|| ;-1 < H, any step proposal s that is
feasible and satisfies the weak fraction of Cauchy decrease condition

llgllm }

1
d(x:s) > C - '{A,
pred(xis) > € 7llglly minfa, — I

(6.12)

achieves a ratio p(x;s) > 1.

Proof. The ratio under consideration satisfies

ared(x;s) 1 pred(x;s) — ared(x;s)

px;s) = pred(x;s) pred(x;s)

In order to show that it is > 1; we need to estimate the numerator of the fraction from above and the
denominator from below.

We begin with the denominator. Since f” is continuous, we can find § > 0 such that

Ngllar = IVarf ) llar > w .

holds for all x € Bg/f (¥). We now set A := ¢/H and consider a trust-region problem with data as
specified in the statement of the lemma. Then we have

_ Vaf @l _ IVaf (Ol _ flglle

i Amax (H9M) ’
H 2H H H

00 in case Apax(H; M) < 0.

A<A=

{M in case Amax (H; M) > 0

Notice that we have used (2.13) to infer Apay (H; M) < ||[H||p-1p < H in the last inequality. By the
weak fraction of Cauchy decrease condition, we therefore conclude

1 . llgll
d(x;s) > C - {A, }
1
> C~lgllm mm{A, @} (6.132)
c; =
1
=C—llgllm A. (6.13b)

2
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For the numerator, we can estimate

pred(x;s) — ared(x;s)
=—f'(x)s—%sTHs— [f(x) = f(x+5)] see (6.3)
=—f"(x)s - % sSHs+ f'(x+&s)s by Taylor’s theorem 2.4
<Nf e+ &s) = f1m sl - %Amin(H; M) sl by (2.3) and (2.12)
< IfCer £9) = /() g Ak 5 FA2 by (213) and [lslly < A.
Notice that x + £s and x are both close to X, namely
Ix+Es—%|lm <S+A<S+A and |x—X|um <.

Using the continuity of f” and reducing § and A if necessary, we can thus achieve

If Gt 8e9) = /@l + 5 FIA <~ =) Ce
This allows us to continue the estimate above as follows,
pred(x:s) - ared(x:5) < If(x + Es) = f ()l A+ - A2
< (-m)Cen
< S@=m)Cllgllu A

Combining this with the estimate (6.13) of the denominator, we conclude

pred(x;s) — ared(x;s) o1 s(1=n) Cllgllm A

plx;s) =1-— >
pred(x; ) CllglmA

=M. O

The result of Lemma 6.6 immediately implies that Algorithm 6.1 produces infinitely many successful
step proposals, provided that it does not stop with f’(x*)) = 0 and that the model Hessians remain
bounded.

Corollary 6.7 (Infinitely many successful step proposals). Suppose that the iterates x'K) of Algorithm 6.1
satisfy f'(x©)) £ 0 and that the model Hessians H*) are symmetric with |[H®)|| ;-1 < H. Moverover,
suppose that the step proposals s'%) are feasible and satisfy the weak fraction of Cauchy decrease condition
(6.12). Then there exist infinitely many indices k satisfying p(x©);s%)) > n, i. e, the step proposal will
be accepted.

Note: In particular, a successful step can only be followed by finitely many unsuccessful steps.
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Proof. We proceed by way of contradiction. Suppose the opposite, i. e., that p(x*);s¥)) < n; holds
for all k > k. This means that from a certain iterate onwards, all step proposals will be rejected. By
the logic of Algorithm 6.1, see Line 18, this implies

AR =y Is© |l < AP

for all k > kq and thus A®) — 0. Moreover, the iterates x*) and model Hessians H¥) remain constant
for k > k. In particular, the entire sequence (H (k)) is bounded. The subproblems (6.1) thus satisfy the
prerequisites of Lemma 6.6.4> This entails that, no matter how close the acceptance threshold 7; is to 1,
as soon as the trust-region radius A*) has become sufficiently small, we will have p(x*);s®*)) > p,
and the step proposal will be accepted. This is in contradiction with our assumption. O

We proceed to show Statement (2).

Lemma 6.8. Suppose that the iterates x%) of Algorithm 6.1 satisfy f’(x'¥)) # 0 and that the model Hes-
sians H®) are symmetric with ||H®) || yy-1p < H. Assume that the sequence of objective values f(x*))
is bounded below by f. Moverover, suppose that the step proposals s\¥) satisfy the weak fraction of Cauchy
decrease condition (6.12). If K C Ny is any (finite or infinite) index set of successful steps such that
lg™ || = & > 0 holds, then the associated trust-region radii are summable:

Z AR < o

keK

Proof. For any index k € K we have by assumption p(x®);s()) > p; and thus

FG9) = ) = ared (x ;™))
>y pred(x®);s®)

1 .
> 11 C 5 llg™® llu min]

(k)
AP, M} as in (6.13a)
H

1
>mC I min{A(k), é} by assumption.
H

Since the function values f(x¥)) are monotone decreasing and, by assumption, bounded below, we
must have

1
Z rylggs min{A(k), é} < 0o,
keK

]

42WWe can use X = x*0) and we do not need the variation in x.
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More precisely, let kyin be the smallest index in K, then we have

1
Smcoe min{A(k), é}
2 H

keK
< > F®) - fxkm)

keK
< Z f (x®)y - f (x**1)  all summands are > 0 and a superset of the above
k:kmin
(kmin)y _ ; (k)
< f(x )—f since f(x'*’) > f forall k € N

< 00,

This implies the claim. O

With Statements (1) and (2) in place, we can now prove a global convergence theorem for Algo-
rithm 6.1.

Theorem 6.9 (Global convergence of model Algorithm 6.1). Suppose that the model Hessians H*) in Al-
gorithm 6.1 are symmetric with ||[H®) || yi-1p < H. Assume that the sequence of objective values f(x*))
is bounded below by f. Moverover, suppose that the step proposals s are feasible and satisfy the weak
fraction of Cauchy decrease condition (6.12). Then the following holds.

(1) Algorithm 6.1 either terminates after finitely many iterations due to f'(x*)) = 0, or else we have*

lim inf| £ (x®) ||y = 0. (6.14)

(2) Suppose in addition that f’ is uniformly continuous on the set of iterates {x®) | k € No}.#¢ Then
Algorithm 6.1 either terminates after finitely many iterations due to f’(xK)) = 0, or else we have

klim f(x%®) =o. (6.15)

Note: Statement (6.15) implies that all accumulation points of (x(k)) are stationary points. Quiz 6.2:
Details?

Proof. Statement (1): Assume that Algorithm 6.1 does not terminate, i.e., we have f’(xK)) # 0
for all iterates. Suppose that (6.14) does not hold. This means that there exists & > 0 such that
g = Vi f(x ) satisfies ||g) ||y > & for all k > ko. Let S € Ny denote the index set of successful
step proposals. This index set is infinite by Corollary 6.7. From Lemma 6.8, we further obtain

ZA(k) < oo, (%)

keS

keK
43Statement (6.14) means that there exists a subsequence (x(k) )keK such that f’ (x(k)) o

44Unlike in the proof of, e. g., Lemma 5.13, we cannot deduce the uniform continuity since the sequence x (k) is not necessarily
bounded.
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keS

This implies in particular A®) — 0.

Step (1)

Step (2)

We show that x(¥) is a Cauchy sequence.
Let k > ¢ > 0 be any two indices. Then

k-1

[lx®) — xO | < les(j) lls  unsuccessful steps do not move x
=t
]J'eS
WCEDWIED)
j=t j=t j€s
Jj€ES JjeS
The last sum is finite by (*). Therefore, the tails of this series (“Reihenreste”) Z AD converge
to 0 as £ — co. This shows that x(¥) is a Cauchy sequence. j=§
S

We show that (A%)), _, is bounded away from 0.

x(®) has been shown to be a Cauchy sequence, hence it converges to some x. The continuity of
£’ and ||g'®||p > & for all k > ko imply || Varf’ (%) |lm > e1. We now apply Lemma 6.6 with 7,
(the quality threshold) in place of 5 (the acceptance threshold). It shows that there exists A and
an index L € Ny such that p(x®);s()) > p, holds for all indices k > L (such that x*) is close
enough to ¥) satisfying A%} < A.

We now show, by way of induction, that
AR > min{A®), A} forallk > L ()

holds, so that indeed the trust-region radii are bounded away from 0. Claim (%) holds trivially
for k = L. As induction hypothesis, suppose that (xx) is true for some k > L. In the induction
step, we distinguish two cases. In case A% < A, we have p(x®);5%) > 5, as noted above.
Therefore,

AR = ) AR 5 AR > min{A(L), yi A},

In the opposite case AX) > A, the step might not have been successful and the trust-region
radius might have been reduced, but we can estimate it as

AR >y AR > 1 A > min{A®), y A}
To summarize, we have shown (sx) for k + 1 and the induction is complete.

We now have reached the contradiction that A%%) is bounded away from zero for k > L and

kes
simultaneously, the subsequence A %) =%, 0; see above Step (1).

Statement (2): Suppose now that f” is uniformly continuous on the set of iterates {x*) | k € Ny}, i.e.,
for every ¢ > 0, there exists § > 0 such that [|x*) — x(]|y; < & implies || (x*)) = £/ (x(O) ||y < .
We proceed again by contradiction and assume that (6.15) does not hold. That is, there exists ¢, > 0
such that the index set

Ky, = {k €Ny | 1f (x5 > 26}
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is infinite. The uniform continuity of f” implies the existence of § > 0 such that

I G g 2 1 G g = 1 9 = £ )l 2 & (5%

holds for all x(©) with the property [|x(©) — x(®)||,; < & for some k € Ky,

Consider now also the index set

Ko, = {k € No | I (")l 2 &2,

which is infinite as well due to K3,, € K,,. Recall that S C N, denotes the index set of successful step
proposals. The set S N K,, may be finite or infinite. In any case, Lemma 6.8 implies

3 A0 <o

keSNK,,

Therefore, there exists kg € S N K, such that the remainder of this series (“Reihenrest”) that comes
after ko is small. More precisely,

Z AY) < 6. (kk)

J=ko
JESNK,,

In fact, by making k larger, if necessary, ko can be chosen to lie in ko € K3,,. (Quiz 6.3: Why?)

We now show by induction that ||x(©) — x*)||,; < & holds for all £ > k. The claim holds trivially for
¢ = ko. As induction hypothesis, suppose that there exists £ > ky such that ||x/) — xk0) ||y < § is true
for j = ko, ..., £. We can invoke (+#x) to see that || f*(x)) ||+ > & holds for all j = kq, ..., £. In other

words, all indices j = ky, ..., £ belong to K,,. We can therefore estimate
¢
[l 4D — x ko), < Z AY) unsuccessful steps do not move x
J=ko
jeSs

¢
= Z AV all indices j = ko, ..., ¢ belong to K,

J=ko
JESNK,,

(o)

< Z AY) summands are positive
J=ko

JESNK,,

<4 by (s:).

This concludes the induction step and we have shown that indeed ||x(©) — x()||,; < & holds for
all £ > ko. Invoking again (x#x), we infer that ||f’(x“))||;;=+ > ¢ holds for all £ > ko, which is in

contradiction to (6.14). |

Remark 6.10 (on the global convergence theorem 6.9). For the global convergence theorem 6.9 to hold,
it is not strictly necessary that the step proposal satisfy ||s* ||y < A®). A relaxed constraint of the form
Is® |y < BAK) is enough and allows us to gain some more flexibility in a practical algorithm; see for
instance Ulbrich, Ulbrich, zo12, Satz 14.10 and eq.(14.50). However, in this class we are not going to exploit
this algorithmically.
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§ 6.2 FAsT LocAL CONVERGENCE

In this section we show that the generic trust-region method Algorithm 6.1 will transition to a local,
inexact Newton method. This means that the trust-region constraint ||s®) ||y < A% will be inactive
from a certain interation index onwards. If one then solves the trust-region subproblems to sufficient
accuracy (compare the forcing sequence in inexact Newton methods in § 5.6), one can obtain Q-
superlinear or even Q-quadratic convergence of the iterates.

We restrict the discussion here to trust region Newton methods, which are defined by the choice
H® = f(x%)). However, model Hessians based on quasi-Newton updates are very important in
practice as well.45.

Theorem 6.11 (Transition to fast local convergence in Algorithm 6.1). Suppose that f is of class C* and
that the model Hessians H®) in Algorithm 6.1 are the exact Hessians f” (xK)). Assume that the sequence
of objective values f(x%)) is bounded below by f. Moverover, suppose that the step proposals s'*) are
feasible and satisfy the weak fraction of Cauchy decrease condition (6.12). Suppose further that the sublevel
set Mp(x(0) = {x e R"| f(x) < f(x'?)} is compact.

(i) Suppose that x* is an accumulation point of x\K) and that f”’ (x*) is positive semidefinite. Then the
entire sequence convergences to x*, i. e., x* is indeed the unique limit point of x%).

(ii) There exists an index kg € N, such that

(@) p(x®); s > n, holds for all k > ky, i. e., the step proposal will be accepted.
AK)
(b) (x5 is positive semidefinite and || f”' (x ¥V F(xF)) ||y < — holds for all k > k.

(iii) If, in addition, the step proposals s'¥) satisfy
17 ) s+ VDl < 19 F ) g (6.16)

with a forcing sequence &) "\, 0, then x¥) converges to x* Q-superlinearly w.r.t. the M-norm.

Statement (b) means that from a certain index ko onwards, full exact Newton steps would be useful
step proposals that are not only feasible w.r.t. the constraint ||s®)||3; < A% but lie well inside the
trust region.

Condition (6.16) requires that the step proposal s*) will eventually be close to the full exact Newton
step in the sense that the relative residual norm is bounded by the forcing sequence n*); compare the
condition (5.36) for inexact Newton methods for root finding.

45In contrast to the quasi-Newton line search methods from § 5.7, the positive definiteness of H () is no longer required. A
further distinction is that one works with quasi-Newton update formulas for the model Hessian H (%) and not for the
inverse B(X)  since the inexact iterative solution of the trust-region subproblems (6.1) is based on matrix-vector products
with H().
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§ 6.3 SOLUTION OF THE TRUST-REGION SUBPROBLEM

We now address options for the inexact numerical solution of the trust-region subproblem (6.1), i.e.,
with a problem of the form

1
Minimize q(s) =f—-b's+-s'Hs, wheres€R"
2 (6.17)
subject to ||s]|ym < A.

The data of the problem are the model offset g(0) = f € R, (negative) model derivative —¢’ (0) = b € R",
symmetric model Hessian H € R™*" and trust-region radius A > 0.

Although the Cauchy point is a sufficiently accurate solution of the trust-region subproblem in order
to achieve global convergence (Theorem 6.9), and fast local convergence can only take effect as soon
as the trust-region constraint ||s|[5s < A is inactive and no longer plays a role (Theorem 6.11), we will
characterize the exact global solution(s) of (6.17) first.

Note: Due to the possibility of negative eigenvalues in H, problem (6.17) is not convex in general.

Theorem 6.12 (Characterization of global solutions of the trust-region subproblem (6.17)).

(i) Suppose thats € R" is a global minimizer of (6.17). Then there exists u € R such that the following

holds:
p20, lsllu—-A<0 p(lsly—A)=0 (6.18)
(H+pM)s=b (6.18b)
H + u M is positive semidefinite. (6.18¢)

The number y is uniquely determined.

(ii) Now suppose that (s, 1) € R" X R is such that (6.18) is satisfied. Then s is a global minimizer of
(6.17).

(iii) If (s, p) € R® X R is such that (6.18) is satisfied and in addition, H + p M is positive definite, then s

is the unique global minimizer of (6.17).

Proof. Statement (i): Suppose that s is a global minimizer of (6.17). Then ||s||s < A is obvious.

Case 1: ||s||y < A holds.
Then s is also a local minimizer of the unconstrained problem

Minimize q(s), wheres e R".
Consequently, the necessary optimality condition of first order (Theorem 3.1) holds, i. e.,

Vq(s) =Hs—-b =0,
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Case 2:

as well as the necessary optimality condition of second order (Theorem 3.2), i.e., H is positive
semidefinite. This shows that (6.18) holds for the choice yu = 0.4

Owing to the complementarity in (6.18a), u = 0 is the only possible choice.

Isllar = A holds, and in particular, s # 0.
We first show that there exists p > 0 such that (H+p M) s = b holds. We proceed by contradiction
and therefore suppose that for all y > 0, we have (H + uM) s # b.

The choice p = 0 implies y := Vq(s) = Hs — b # 0. The choices p > 0 imply that the vectors y
and M s cannot be anti-parallel. Therefore, M~!y and s cannot be anti-parallel either. Concerning
the angle a (w.r.t. the M-inner product) between these two vectors, we thus have
M—l TM T
oS = (_1 Ms __y's
M~ yllae stz ylla- (sl

Let v be a vector in the direction of the angle bisector between —M ™'y and —s, e. g.,
M1y s

yllm-r llsllae

Then we have

M1y s
Iylla- lsllm
Vs Iyl
lIsllar [Ty llag-1
= {1yl (1+ cosa)

< 0.

yTU: yT _

= =llyllm-r =

Hence we conclude ¢’ (s) v = y"v < 0 and therefore v is a descent direction for g at s. Due to

d1
——||s+tv||]2w] =0'Ms
[dtz o

T

B ( Mty s
U Il sl
_ s islim
Iyl lslla
= —||s|lm(cos a +1)

— lIslla

<0

we have ||s + to||p < ||s||m = A for small enough ¢t > 0. Hence we can obtain a feasible point
with a strictly smaller objective value than s, which is in contradiction to the optimality of s.

Consequently, it must be possible to satisfy the conditions (6.18a) and (6.18b) with some p > 0.
It is not difficult to see that, in fact, 4 must be unique. Indeed, the assumption Hs + yy Ms = b =
Hs + pis M s leads to (p — pi2) M's = 0, which is only possible for p; = pp due to s # 0 and the
invertibility of M.

46Tn this case q is convex, and thus s is also a a global minimizer of the unconstrained problem.

https://tinyurl.com/scoop-nlo 131


https://tinyurl.com/scoop-nlo

R. Herzog @O®S

It remains to show that H + p M is positive semidefinite, i. e., (6.18c). To this end, we consider a
direction d € R" with the property d'Ms < 0. We need to show

d'(H+puM)d > 0.

—2d™M
Let us define ¢t = —ed s > 0. Then

lldll3
s +td|l3 = |Isll5, +2td" Ms+ 2 ||d|13, = |Is]|5, < A®.
The global optimality of s implies

0<q(s+td)—q(s)
1
=q'(s) (td) + E(td)TH(td)
12
=ty'd+ EdTHd
12
=—tpusMd+ EdTHd duetoy=Hs—b=-uMs
t2 , P b T
= Sulldly +d'Hd  dueto - [ldl}, = —d"Ms
12
= ?dT(H +/1M) d.
Thus we have confirmed that d"(H + pM)d > 0 holds for all directions d € R”" satisfying

d"Ms < 0. Since the sign of d is irrelevant, the same result likewise holds for directions
d"M s > 0. The remaining case of directions d"M s = 0 follows by continuity.

Statement (ii): Suppose that (s, z) € R" X R is such that (6.18) is satisfied. Let s € R" with ||s]|3 < A
be an arbitrary comparison point, d := s — s and y := Vq(s) = Hs — b as above. We estimate

q(s) —q(s)

1
y'd+ d'Hd

1
—psTMd + EdTHd dueto y=Hs —b=—uMs by (6.18b)

\

_usT™Md - %y IdI2, by (6.18¢)
“Eas™d+ld)Z)
(Ild + slI3, = lIslI3,)

(II5113 = 1sI13)

NIE NN

> 0.

The previous inequality requires a comment. It holds trivially in case y = 0. For y > 0, (6.18a) implies
lIsll3, = A%, and by assumption we have ||s||3, < A?. This shows the final inequality and thus the global
optimality of s for (6.17).
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Statement (iii): If H + u M is even positive definite, then the estimate above can be sharpened for s # s,
iLe,d#0:

1
q(3) —q(s) = —pus'Md + EdTHd
1
> = psT™d = Sl
=~ L1515, = lsli3)
> 0.
This shows that s is even the unique global minimizer of (6.17). O

Remark 6.13 (on the characterization of global minimizers).

(i) The remarkable fact about Theorem 6.12 is that the optimality condition (6.18) is simultaneously
necessary and sufficient, even though problem (6.17) is generally non-convex.

(ii) As an alternative to the proof in Theorem 6.12 we might use an optimality condition of Karush-
Kuhn-Tucker type (see Chapter z) to prove that (6.18a) and (6.18b) are necessary conditions for any
local minimizer and, in particular, for global minimizers of (6.17). In this way, we will see that the
number y1 can be viewed as the unique Lagrange multiplier pertaining to the constraint

1
(sl = 4%) <.

which is of course equivalent to ||s|[p < A. As we can see easily, the linear independence constraint
qualification (LICQ) always holds.*” Proceeding in this way, however, we will not find the condition
(6.18c) that is — as we saw in the proof — characteristic for global minimizers of (6.17).

(iii) It was proved in Martinez, 1994 that (6.17) can have, besides its global minimizers, at most one
additional local minimizer which is not a global minimizer.

Based on the characterization (6.18), one can devise methods to find an exact global minimizer of
the trust-region subproblem (6.17). The most prominent method utilizes a one-dimensional Newton
method for the equation

1 1

——_ =0
I(H+pM)7bllm - A

to determine the value of y, unless y = 0 and s = H ~1p already solve (6.18); see Nocedal, Wright, 2006,
Chapter 4.3 for details if you are interested.

In the remainder of this section we discuss a practical method to find an inexact solution s to the
trust-region subproblem (6.17). Our goal is to satisfy

47See Definition 8.16 for the definition of LICQ. In case ||s|[31 < A, the only constraint present is inactive, sothe LICQ holds.
Otherwise we have ||s||ps = A > 0 and thus s # 0. This implies that the gradient of the only active constraint, M, is
non-zero and thus linearly independent, so the LICQ holds also in this case.
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i) the conditions for global convergence imposed in Theorem 6.9, i. e., the trust-region constraint
g g p g
Islla < A and the (weak) fraction of Cauchy decrease condition (6.11),

(ii) the conditions for fast local convergence imposed in Theorem 6.11.

It will turn out that a clever modification of the conjugate gradient method — the Steihaug(-Toint)
conjugate gradient method*® — is capable of satisfying these requirements.4’

This variant of the CG method will be applied to the linear system H s = b. In case that H is s. p. d., this
system constitutes the necessary and sufficient optimality condition for an unconstrained trust-region
subproblem, i. e., (6.17) with A = co. The Steihaug-Toint variant of the CG algorithm has two significant
modifications compared to the base version (Algorithm 4.17).>°

(1) Similarly as in the truncated conjugate method (Algorithm 5.41), we start the method with
s = 0 and we detect the occurrence of a search direction p(*) with non-positive curvature
(P)THp® < 0. In constrat to the truncated CG method, where we would stop immediately,
we proceed with the current step and produce sV = s() + o*p(®) where a* is not the usual
Cauchy step size but is chosen such that s(“*! lies on the boundary of the trust region. We then
stop the method.

(2) In case that the current step would leave the trust region, i.e., in case ||s©) + a(® p(O |y > A,
we do not utilize the full step size a'*) but, again, proceed only to the boundary of the trust
region and then stop the algorithm.

If none of these two situations occur, then the Steihaug-Toint CG method stops as soon as an approx-
imate solution to Hs = —b has been found with sufficiently small residual norm. With regards to
Theorem 6.11 we utilize the relative residual norm and a tolerance given by a suitable forcing sequence,

compare (5.37),

||lresidual associated with () || -1 _ 1O pg1 _IH s — b]| pp-1

= <n. 6.1
||residual associated with 0]| y-1 16]1 pr-1 ||&]| p-1 7 (6.19)

In case the outer iterate x(¥) is already close to a point x* satisfying the second-order sufficient
optimality condition, one can guarantee that the Steihaug-Toint CG method will not stop for any of
the two reasons above but it stops as soon as (6.19) holds. Therefore, the condition (6.16) concerning
the accuracy of the step proposal is satisfied, and Theorem 6.11 yields the Q-superlinear convergence,
provided that the further requisites of that theorem hold.

The Steihaug-Toint CG algorithm for the inexact solution of (6.17) is given in Algorithm 6.14.

Algorithm 6.14 (Steihaug-Toint conjugate gradient method for the trust-region subproblem (6.17)).
Input: negative model derivative —q’(0) = b € R"

48after Steihaug, 1983 and Toint, 1981

490ther, slighly more elaborate approaches, can be found in the literature, e.g., the dogleg method and the two-
dimensional subspace minimization approach; see Nocedal, Wright, 2006, Chapter 4.1 if you are interested.

59As we did with the truncated conjugate method (Algorithm 5.41) in the context of inexact Newton methods, we switch to
problem adapted variable names. That is, we use iterates s(), search directions p(” and residuals ¢ (®),
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Input:
Input:
Input:
Input:

symmetric matrix H (or matrix-vector products with H)
s. p. d. matrix M (or matrix-vector products with M™!)
relative residual €.

trust-region radius A > 0

Output: approximate solution of the trust-region subproblem (6.17)
1 Sett =0
2 Sets(® =0 / zero initial guess

LY R @

10:
118
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:

Set {(0)
Set p© == —p~17©)

Set 5 = —(£()Tp(0) 780 = |I7@)2
while 5 > &2 5 do / check stopping criterion (6.19)

-b / evaluate the initial residual

Setq'©) = Hp®
Set ) = (q(t’))Tp(f)
if 0 > 0 then
Set a®) = 5 /9©
Set st = 5O 4 o () p(O)

if Is“V|pr > A then / iterate would leave the trust region
Determine a* as the positive solution of ||s*) + a p© ||y = A
Set s = 5O 4 o p©) / go to the boundary of the trust region
Sett =+4+1
Abort the while loop

else

Setp(t’+1) — _M—lé"(t’ﬂ)

Set §(E+) = _(§(€+1))Tp(£’+l) ) S+ — ||§(t’+1)||]2vr1
Setﬁ({’ﬂ) = S+ /5(€)

Setp([ﬂ) — p(t’+1) +ﬁ(f+1)p(f)

Sett =£+1
end if
else
Determine a* as the positive solution of ||s©) + a p© ||y = A
Set sV = 5O 4 o p0) / go to the boundary of the trust region
Sett =¢+1
Abort the while loop
end if

31: end while
32: return s

Remark 6.15 (on Algorithm 6.14).

(i) The first iterate sV is the Cauchy point of problem (6.17).

(if) We consider three cases which may occur in an iteration.

(a) In case of a “usual” CG step (identical to what the plain CG algorithm 4.17 would produce),
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then
g(s() = g(s10) - % 2O 50
>0 >0

holds, see (4.12).

(b) If0“) > 0 holds (the current search direction p'*) is a direction of positive curvature) but
the full Cauchy step s'© + a'© p©) lands outside the trust region, then it is useful follow the
convex function

a a) = f+b(sO +ap?)+ %(s(f) +apO)YH (5O +ap®)

in the direction o > 0 to the boundary of the trust region in order to obtain the largest possible
descent, since

q0/(0) — pr(f) + (s(f))THp({’) — (é/(t’))Tp([) — _5€ — _”év({')”]zw_l <0

ist.

(c) If, by contrast, 0) < 0 holds (the current search direction p\*) is a direction of non-positive
curvature), then the function ¢ is concave. This suggests, again, to proceed to the boundary of
the trust region in the direction a > 0.

(iii) The considerations above show: in case the Steihaug-Toint CG algorithm does not stop with sV
but continues, the further iterates continue to reduce the objective ¢ monotonically. Therefore, the
inexact solution s*) returned by Algorithm 6.14 always satisfies the fraction of Cauchy decrease
condition (6.11) with C = 1.

(iv) The reason for terminating the algorithm when an iterate s'"*V) is about to leave the trust region
is the following. As we know from Lemma 4.22, the sequence of norms ||s'©) — 0||u is strictly
monotonically increasing. If we would let the algorithm continue, we would never return into the
trust region.

(v) Concerning the recursive update of the quantity ||s'* ||y without using the matrix M, we can refer
t0 (4.33)—(4.34) to obtain the formulas

w® =, w®D = R 4 g g (R k) 4 (g (k))2 (k) (6.20a)
5(0) =0, ér(k+1) = ﬁ(k+1) (sz(k) + a(k)),(k)) (6.20b)
YO = 50 P4 (kD) (a2 () (6.200)

for the quantities

o =I5 =0l £ = 5 =0 Mp!, D = p G,

(vi) Using these quantities, we can evaluate the step size &* required to reach the boundary by solving
the quadratic equation

s +ap® 3, = 0O +a &0 a2y ® = A%,
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Due to w®) = ||s(©) 12, < A, this equation has exactly one positive solution, which is

. Sr(t’) g(f’) ( @ ¢ (0 ) )1/2
at = 2y(")+2y(") 1-4y" (w A% .

End of Week 7
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Chapter 2 Theory for Constrained Optimization
Problems

§ 7 INTRODUCTION

In this chapter we come back to the generic constrained nonlinear optimization problem (nonlinear
program or NLP) with basic set R” from (1.1),

Minimize f(x) where x € R"
subject to  g;(x) <0 fori=1,...,Nineq (7.2)
and hj(x) =0 forj=1,...,ncq.

We have finitely many (possibly zero) inequality constraints g;: R” — R and equality constraints
hj: R" — R, i.e., Nineq> Meq € No. The set

F = {x eR" |gl~(x) <Oforalli=1,...,1Npneq hj(x)=0forall j=1,.. .,neq} (7.2)
associated with problem (7.1) is termed the feasible set. Any x € F is termed a feasible point.

Our goal is to derive optimality conditions for (7.1) which are verifiable numerically and which will
serve as the basis for numerical algorithms.

Assumption 7.1. Throughout Chapter z we are assuming that f: R* — R, g;: R = Randh;: R" - R
are all C' functions, i = 1,..., Nineq and j = 1,..., Neq.

The derivation of a first-order optimality condition for problem (7.1) is significantly more complex than
the derivation for the unconstrained problem (UP) achieved in Theorem 3.1. Recall that the proof was
based on considering curves y(t) = x* + t d which run through the local minimizer x*. Since problem
(UP) was unconstrained, we were free to choose any direction d and we obtained f’(x*) d = 0 for all
d € R". In the present situation, however, y(t) may not be feasible even for arbitrarily small ¢ > 0.
Therefore, we will need to restrict the directions d.

It will turn out that the appropriate set of directions is the tangent cone.
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§ 7.1 THE TANGENT CONE

Definition 7.2 (Tangent cone). Suppose that M C R" is an arbitrary set and x € M. Then

*) _ 5

Tm(x) = {d € R" | there exist sequences x® e M and t® N, 0 such thatd = klim xtT} (7.3)

is termed the tangent cone of M at x. A vectord € Tp(x) is termed a tangent direction of M at x. We
also define Ty (x) = 0 forx ¢ M.

Note: The sequence x*) in (7.3) necessarily converges to x.

The tangent cone is also known as contingent cone or Bouligand cone in the literature. By the way,
aset K € R" is termed a cone if x € K and > 0 imply that fx € K holds.

Lemma 7.3 (Properties of the tangent cone). Suppose that M C R" is an arbitrary set. Then Ty(x) is a
closed cone.

Proof. We can assume x € M since otherwise 731(x) = 0 holds, which is a closed cone.

We first show the cone property. Suppose that d € Ty(x) and f > 0. That is, there exist sequences
x®) e Mand t* N 0 such that d = limy_,, x(tk(% Replacing t ) by f~1¢t(¥) | the limit becomes f d.
This shows fd € Ty (x).

It remains to show the closeness of 73 (x). To this end, let d*) € 73;(x) be a sequence which converges
to some d € R". We need to show d € Ty(x).

For each ¢ € N, there exist sequences (x([’k))k € M and (t([’k))k satisfying

xR _x

3 —d? ask - .

x(6k) X, £ (&) N, 0 and

This implies that for each ¢ € N, there exists an index k(*) such that

1

(0K _
x x
KD Zxll <=, 0 <K < .

and “ (k@)

1 d(f)H < 1
4 R4

~

We now consider the “diagonal” sequences

O = KD g TO = GED)

These satisfy X*) — x and 79 \ 0 as well as

=(0) _ =0 _ 1
== -d| < |57 - a9+ 100 - dll < - +1d9 - all > o,
() $(0) 4
which shows that d belongs to 731(x). O
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We can now formulate and prove a first version of the first-order necessary optimality condition for
local minimizers of (7.1).

Theorem 7.4 (First-order necessary optimality condition).
Suppose that x* is a local minimizer of (7.1). Then
f'(x")d >0 foralld € Tp(x"). (7.4)

This theorem states that in a local minimizer, f is growing to first order in any direction tangent to
the feasible set.

Proof. Suppose that d € 75 (x*). Then there exist sequences xK) € F and t*) \ 0 such that

koo k)

holds. Since f is continuously differentiable, the mean value theorem 2.4 implies that there exist
numbers £%) € (0,1) such that

FEO) = Fa) +f (0 + €0 (0 =) (O - 2.
Using the local optimality of x* and the fact that x*) — x* we obtain

0 < f(x®) - f(x*)
=f (x* + Sr(k) (x(k) _ x*))(x(k) —x").

Division by tK) leaves us with

(k) _
0 < f(x* +E® (x® — x*))(xt(_k)x)
—x* —
—d

Using again the C'-property of f, we infer that the expression on the right converges, so we conclude

0< f(x)d. O

In analogy to § 3, we refer to points x € F satisfying (7.4) as stationary points.

There are two obstacles that make the first-order necessary optimality condition (7.4) generally difficult
to use in practice:

(1) (7.4) comes in the form of a variational inequality. Even when a candidate point x™ is given, it may
be difficult to verify (7.4) due to the generally infinite number of tangent directions d € 7r(x™).
Finding a candidate point x* on the basis of (7.4) is even more difficult.

140 https://tinyurl.com/scoop-nlo 2023-07-14


https://tinyurl.com/scoop-nlo

©O®S Nonlinear Optimization

(2) The tangent cone’s implicit definition can render its explicit characterization difficult. After all,
Tr(x) only refers to the feasible set F itself but it does not depend on the description (7.2) of F
in terms of the inequality and equality constraints g; and h;.

Therefore we now seek to replace the tangent cone 7r(x) by a cone which is simpler to handle

algorithmically. More precisely, we will try and replace an analytical/geometrical object (the tangent
cone) by an algebraic object (the linearizing cone).

§ 7.2 THE LINEARIZING CONE

Definition 7.5 (Linearizing cone).
Consider the feasible set F as in (7.2).

(i) Forx € F, we define
Ax) ={i € {L,..., Nineq} | gi(x) = 0} the set of active indices at x,

I(x)={i€{l,...,nineq} | gi(x) < 0} the set of inactive indices at x.

(ii) Forx € F, the set

Tp " (x) = {d eR" (7:5)

gi(x)d <0 forallie A(x) }
Ri(x)d=0 forallj=1,...,ne

is termed the linearizing cone or cone of first-order feasible directions to the feasible set at x.
We set 7;1‘n(x) =0 whenx ¢ F.

Note: Inactive inequalities do not play a role in the definition of the linearizing cone.

Remark 7.6 (on the linearizing cone).

(i) Consider the closed convex polyhedral set’

Flin(x) — {y c Rn

gi(x) +gi(x) (y—x) <0 foralli=1,...,nineq
hj(x) +h(x) (y—x) =0 forallj=1,...,ne

for a given point x € F. One can show that the linearizing cone is also the tangent cone to F™(x)
at the point x € F N Flin(x) e,

Ti™ (x) = Tpin () ().

(ii) 7;1in(x) is a closed convex cone.

A convex polyhedral set is the intersection of finitely many half spaces.
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iii) In contrast to the tangent cone Tr(x), the linearizing cone T2 (x) does depend on the description
g g F P P
of the feasible set F in terms of the inequality and equality constraints.

The details of this remark are worked out in homework problem 8.3 and homework problem 8.4.

Lemma 7.7 (Relation between the cones).
Consider the feasible set F as in (7.2) and x € F. Then Tp(x) C 7}““(3().

Proof. Suppose that d € 75(x). Then there exist sequences x*) € F and ) \ 0 such that

T ke )

We prove that g;(x) d < 0 holds for all i € A(x). Let us fix i € A(x). The mean value theorem 2.4
implies

0> gi(x®) since x¥) is feasible

= gi(x) +gj(x+ D (x® —x)) (x® - x)

——

=0

with some £) € (0,1). Division by t*) and passage to the limit k — co yields 0 > gi(x)d.

Analogously we can show h;. (x)d=0forall j=1,...,nq, and thus we obtain d € 71',hn(x). |

§ 7.3 PoLAR CONEs

The formulation of optimality conditions in an algebraic form amenable to solution algorithms is going
to require the introduction of a dual description of the linearizing cone ﬁli“(x). We now introduce
such a dual description for arbitrary sets.

Definition 7.8 (Polar cone). Suppose that M C R" is an arbitrary set. The polar cone to M is defined as

M° = {s e R"|s"x < 0 forall x € M}. (7.6)

Note: The polar cone consists of the normal vectors s € R" of hyperplanes through the origin such
that M is entirely contained in the negative half space H™ (s,0) = {y € R"|s"y < 0}. One also says
that the hyperplane s"y = 0 separates 0 and M.

Lemma 7.9 (Properties of the polar cone). Suppose that M, My, M, € R" are arbitrary sets.

(i) M° is a closed convex cone.
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2 | \_—

Figure 7.1: Illustration of two sets M which have the same polar cone M°.

(i) My € M, implies M; C M.
Proof. The proof is part of homework problem 8.2. O

Example 7.10 (Polar cones).

(i) Suppose that A is an affine subspace of R™, i.e., A = U+{x} whereU is a subspace of R" andx € R".
Then A° = {x}° N U* (the intersection of the polar cone of {x} with the orthogonal complement of
U w.r.t. the Euclidean inner product).

(ii) In the absence of inequality constraints (njneq = 0), the polar of the linearizing cone has the
representation

‘7}““(x)° = {s € R" | s is some linear combination ofh;- (), j=1...,neq}

= range b’ (x)"
forx eF.

(iii) Let N = (Rx¢)" denote the non-negative orthant in R". Then N° = (R<()" is the non-positive
orthant.

(iv) For0 € R"™, we have {0}° = R" and (R")° = {0}.

The proof is part of homework problem 8.2.
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§ 7.4 THE FARKAS LEMMA AND THE REPRESENTATION OF 7;“”(x)°

We recall that our plan is to understand the dual description 7;1““ (x)° of the linearizing cone 7;““ (x).
In the absence of inequality constraints, this polar has already been characterized in Statement (ii) of
Example 7.10. For the general case, we require the Farkas lemma.

Lemma 7.11 (Farkas lemma (1902)).
Suppose that B € R™ " and ¢ € R". Then the following are equivalent.

(i) The linear system B'¢ = ¢ has a non-negative solution £ > 0.

(ii) All elements of {d € R" | Bd > 0} satisfy c'd > 0.

Statement (i) means that ¢ belongs to the closed convex cone”
K :={B'¢|EeR™ &> 0}.
In order to understand Statement (ii), we reason as follows:

Bd>0 & §Bd>0 forallf >0 (byStatement (iii) of Example 7.10)
& d'(B) 20 forallé >0
& K is a subset of the half space H*(d,0) = {x € R"|d"x > 0}.
We can thus read Statement (ii) as follows. Any half space H*(d, 0) that contains the cone K also
contains the point c. Therefore, the negation of Statement (ii) means that there exists a vector d such

that K is contained in H*(d, 0) but the point c is not. In this case, we say that the hyperplane H(d, 0)
separates separates K and c.

H(d, 0) H(d,0)

Figure 7.2: lllustration of both cases in the Farkas lemma 7.11. Left: Statements (i) and (ii) are both
true. Right: Statements (i) and (ii) are both false.

Proof of Lemma 7.1. We first show Statement (i) = Statement (ii): Suppose that & > 0 satisfies
B'¢ = ¢. Moreover, let d € R" be such that Bd > 0. Then we obtain

¢'d = (B')'d = &' (Bd) > 0.

2Tt is very easy to check that K is a convex cone. We do not prove here that it is closed. Please see Herzog, 2022,
Lemma 6.10 if you are interested in the proof.
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In order to prove Statement (ii) = Statement (i), we consider the contraposition, i.e., = State-
ment (i) = - Statement (ii). Thus we assume ¢ ¢ K. Due to 0 € K we must have ¢ # 0. Let cl B,(c) be
the closed ball with radius R = ||c||. We consider the orthogonal projection of ¢ onto K N cl Bi(c), i.e.,

Minimize ||x —¢|, where x € R"
subjectto  x € K NclBg(c).

(*)

Since K is closed and cl By (c) is compact, K N cl By(c) is compact as well. By the Weierstraf3” extreme
value theorems3, problem (*) has a global minimizer w. The point w is also a global minimizer of the
relaxed problem

Minimize ||x —c||, wherex € R"

()

subjectto x €K,

since points outside of cl By(c) are definitely not global minimizers of (+x). (Quiz 7.1: Why is it that
points outside of cl B, (c) cannot be global minimizers of (x)?)

We now prove that d = w — ¢ serves as the normal vector of a hyperplane which separates K from the
point c. The construction is illustrated in Figure 7.3. Notice that we have d # 0 dueto K > w # ¢ ¢ K.

Suppose that y is an arbitrary point in K. All points on the line segment between y and w, i.e.,
ay+ (1-a)wfor a € [0,1], also belong to K due to convexity. We obtain

lw=cl* <llay+(1—a)w—c|* since w is optimal for (+x)

= lla (y = w) + (w=o)*

=a’ly - wl*+2a(y —w) (w—c) +[lw—c|”
This implies

2(y=-w)(w-c) 2 —aly-w|’
——
=d
for all @ € [0,1]. Passage to the limit & Y\, 0 implies
(y—w)'d>0forall y € K. (x5%)

Inserting y = 2w and y = 0 (both belong to K), we conclude w'd > 0 and simultaneously w'd < 0,
hence

w'd = 0. (%)
Moreover,
c'd = (C - W)Td +w'd= —||W - C||2 +w'd <0. (*****)
—— ——
=d#0 =0

Overall we obtain

y'd > w'd by (xxx)
=0 by ()
>c'd by (wxrxx)
for all y € K. This shows that K € H*(d, 0) but ¢ ¢ H"(d, 0). In other words, we obtain that indeed,

d = w — ¢ serves as the normal vector of a hyperplane which separates K from the point c. That is,
Statement (ii) does not hold, which was to be proved. O
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Figure 7.3: lllustration of the construction of the normal vector d = w — ¢ of the separating hyperplane
(red) in the proof of the Farkas-Lemmas 7.11.

Remark 7.12. Statement (i) of the Farkas-Lemmas 7.11 can be verified numerically by checking whether
or not the linear optimization problem
Minimize 0'&  where & € R™
subectto BT¢é=c
and £>0

has a feasible point, e. g., using phase I of the simplex method; see for instance Herzog, 2022, § 7.2.

Lemma 7.13 (Representation of 7}““ (%)°).
Consider the feasible set F as in (7.2) and x € F. Then the polar 7;1in(x)° of the linearizing cone (7.5) has
the representation

neq .
o i =0 forie A(x)
T =1 > wVgi(x)+ Y A4Vhix) [ ,
i€ A(x) j=1 /1] €R forj=1,..., Neq
Mineq Neq Hi > 0 fOI’i = 1, P nineq
=4 > mVai(x) + D 4 Vhi(x) =0 forie I(x) . (7.7)
= /= AjeR forj=1,...,neq

Proof. We first show that the set on the right-hand side is a subset of 7;-““ (x)°. To this end, let y be a
vector from the right-hand side of (7.7) and let d € ﬁlin(x) be arbitrary, i. e., we have g;(x) d < 0 for
alli € A(x) and h;. (x)d=0forall j =1,...,neq. Weneed to show y'd < 0. This follows immediately
from

Meq
Yd= Y mgixd + Y Ah(x)d
ieﬂ(x)t’(: ~ Jj=1 —

=0
<0+0.

It remains to show that, conversely, 7;1i“(x)° is also a subset of the set on the right-hand side. Here we

will use the Farkas lemma 7.11 and set

= 9; () |icax)
B = —h;.(x)|j:1 ..... Neg | -

3A continuous function attains its global minimum (and its global maximum) on any compact set.
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This choice implies
deTi(x) o Bdxo.

Now let y € ‘7;11“(3()", hence
y'd <0 foralld € R" satisfying Bd > 0.

We need to show that y has a representation as the elements in the right-hand side of (7.7). Using the
Farkas lemma 7.1 with ¢ = —y yields that the system

B'¢ = —y has a solution & > 0.

We split £ according to

lli|ieﬂ(x)
E=| A lj=tnq | andset A:=A"—-A".
Aj_lj—l ..... Tegq

Hence we can write B'é = —y or —B"¢ = y as
Neq
D0 mVgi(x)+ D A4 Vhi(x) =y,

ieA(x) j=1

which confirms that y has indeed a representation as in (7.7). O

§ 8 FIRST-ORDER NECESSARY OPTIMALITY CONDITIONS

We are now in the position to revisit first-order optimality conditions for (7.1). We already know from
Theorem 7.4 that we have

f'(x*)d >0 foralld € Tp(x") (7.4)

at a local minimizer x*. Equivalently, we could write
=Vf(x") € Tr(x™)". (8.1)
However, the tangent cone 7r(x*) and its polar 7r(x*)° are generally difficult to characterize. By

contrast, the linearizing cone 7;1“‘ (x*) and its polar 7'1;1“‘ (x*)° have an explicit description in terms of
the constraint functions’ derivatives and are much easier to handle.

We have the relation 77 (x) C 7;““(x) and thus, by Lemma 7.9, 7;1111 (x)° € Tr(x)°. This means that,
unfortunately, 7;hn(x)° may be “too small” and we cannot expect, in general,

—VF(x") € T (x)°. (8.2)

Before we address this gap and how to overcome it, let us see what (8.2) means explicitly.
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Definition 8.1 (Lagrange function). The function

LOopwA) = FG)+ D pigi(x)+ D Ay hy(x)
i=1 j=1

= f(x) + p'g(x) + ATh(x) (8.3)

is termed the Lagrange function or Lagrangian associated with problem (7.1).
One says that the constraints g and h are adjoined to the objective f.

Definition 8.2 (KKT conditions, Lagrange multipliers).
(i) The conditions

Mineq Neq
VEG) + D piVgi(x) + Y A Vhy(x)
VoeL(xp ) = = =0, (8.42)

Vi) + g + Hx)'A
h(x) = 0, (8.4b)
p=0, g(x) <0, pg(x)=0 (8.4¢)

are termed the Karush-Kuhn-Tucker conditions or KKT conditions? associated with problem

(7.2).

(ii) Given a point x € F, any vectors u and A satisfying (8.4) are called Lagrange multipliers
associated with the inequality and equality constraints, respectively, at x.

(iii) We denote the set of all Lagrange multipliers at x € F by

Ax) = {(y, ) (8.5)

p=0, pg(x)=0

g )R (X)) = —Vf(x)}

We set A(x) := 0 forx ¢ F.

(iv) A pointx is called a KKT point for problem (7.1) if A(x) # 0, i. e, if there exist Lagrange multipliers
(p, A) such that (x, p, A) satisfy the KKT conditions (8.4).

Remark 8.3 (on the KKT conditions).

(i) Condition (8.4c) is known as a complementarity condition.® It can be written equivalently as

i 20, gi(x) <0, pigi(x)=0 foralli=1,...,Njpeq,

4Karush, 1939; Kuhn, Tucker, 1951
5A complementarity system is any system of inequalities and equalities in the form a = 0, b 2 0 and a"b = 0.
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i.e., for every i, at least one of the two numbers y; and g;(x) is equal to 0. (This explains the name
complementarity.)

In particular, a Lagrange multiplier yi; associated with an inactive inequality constraint g;(x) < 0
must be equal to 0. Sometimes, one writes (8.4¢) in the form

0<p L g(x)<o.

(ii) Given x € F, the conditions (8.5) on the Lagrange multipliers are linear equations and inequalities.
Therefore, the set A(x) is a polyhedron. Whether or not A(x) is empty can be verified numerically
by checking whether or not the linear optimization problem

Minimize 0" +0'1

subject to g’ (x)"+h (x)"A = =Vf(x) (©6)
and >0
and ["g(x) =0

has a feasible point, e. g., using phase I of the simplex method; see for instance Herzog, 2022, § 7.2.
The associated dual problem reads

Minimize f’(x)d, whered € R"
subject to  gi(x)d <0 forie A(x) (8.7)
and h(x)d=0 forj=1,...,neq

That is, the dual problem considers the minimization of the linearized objective on the linearizing
cone 7;-1“‘ (x).

The primal problem (8.6) cannot be unbounded. The dual problem (8.7) always has the feasible
point d = 0. Therefore, only the following two situations can occur:

(1) Both problems (8.6) and (8.7) are solvable.
This means that Lagrange multipliers exist, i. e., A(x) # 0.

(2) The primal problem (8.6) is infeasible, and the dual problem (8.7) is unbounded.
No Lagrange multipliers exist, i. e., A(x) = 0.

Situation (2) means that there exists a descent direction for the objective f at x, which belongs to the

linearizing cone. By contrast, in situation (1), all directions in the linearizing cone as non-descent
directions.

We will now see that the KKT conditions are just an explicit way of writing (8.2).

Lemma 8.4 (Significance of the KKT conditions).
Consider the optimization problem (7.1). The following statements are equivalent.
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(i) x is a KKT point.
That is, there exist Lagrange multipliers (i, A) such that the KKT conditions (8.4) hold.

(ii) x is a feasible point that satisfies (8.2).
That is, -V f(x) € ‘7;““(x)°.

Proof. Equation (8.4a) of the KKT conditions state that

~Vf(x) = > i Vgi(x) + > A Vhy(x) (+)
i=1 j=1

holds with scalars A; and p;, for which (8.4c) implies: y; > 0 for alli =1, ..., nineq and even p; = 0 for
i € I (x). Owing to the representation (7.7) of the polar 71':11“(x)° of the linearizing cone, (*) together
with the conditions on y is equivalent to -V f(x) € 7;1i“(x)°. Moreover, the conditions (8.4b) and
(8.4¢) ensure the feasibility of x. O

The KKT conditions (8.4) associate with an optimization problem (7.1) a (generally nonlinear) system of
equations and inequalities. (Quiz 8.1: In which case are the KKT conditions affine conditions?) They
are the basis of most numerical constrained optimization solvers. Unfortunately, the KKT conditions are
not, in general, necessary optimality conditions, since they express the condition —Vf(x) € ﬁlin(x)C’
instead of -V f(x) € 7r(x)°. The following example shows that this may actually be an issue in
practice.

Example 8.5 (ﬁli“(x) C Tr(x)). Consider the optimization problem

Minimize — x;
subjectto xp+x; <0 (8.8)
and —x, <0.

The feasible set has the following shape:
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Obviously, x* = (0,0)" is the unique global minimizer of (8.8), and there are no further local minimizers.
The inequalities g; and g, are both active in x*, and we find

2

Vo= (7] = Vae ()
Vga(x) = (_01) = Volx) = (_01).

We evaluate
Tr(x*) ={d € R*|d; <0, dy = 0} = R X {0},

TAn(x*) = {d e R?| gi(x")d <0, i =1,2}
:{deR2|d2:0}:RX{O},

so that we infer ﬁli“(x*) < Tr(x").
The optimality condition (7.4) is satisfied as expected from Theorem 7.4:
f'(x)d=(-1 0)d>0 forallde Tp(x*) =R<o % {0}.

The same variational inequality is not satisfied with the larger cone ‘E,hn(x*). Consequently, —V f(x*)
belongs to Tr(x*)° but it does not belong to 7;1in(x*)°:

~VF(x*) € Tr(x*)° = {s € R*|s; > 0} =Rso X R,
~VF(x") ¢ Tin(x")° = {s e R*|s, = 0} = {0} x R.

Consequently, the KKT conditions cannot be satisfied at x*. Here they boil down to

(o) ) ()= )

and they cannot be satisfied for any u € R?, u > 0.

We are going to bridge the gap between —Vf(x) € 7}',““(x)° and —Vf(x) € 7r(x)° by means of
constraint qualifications (CQs).

§ 8.1 FIRST-ORDER NECESSARY OPTIMALITY CONDITIONS UNDER THE ABADIE AND GUIGNARD CQ

Definition 8.6 (Abadie CQ and Guignard CQ°).

(i) A feasible point x € F satisfies the Abadie constraint qualification (ACQ) in case 7;hn(x) =
Tr(x).”

(ii) A feasible point x € F satisfies the Guignard constraint qualification (GCQ) in case 71',1i“(x)° =
Tr(x)°.

%see Guignard, 1969 and Flegel, Kanzow, 2005, Corollary 3.8
7Some authors also speak of a quasiregular point; see Bertsekas, 1999, p.345-349.
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Note: The ACQ implies the GCQ.

Theorem 8.7 (KKT conditions are necessary optimality conditions under the Abadie CQ and the
Guignard CQ).

Suppose that x* is a local minimizer of (7.1) which satisfies the Abadie CQ or the Guignard CQ. Then
A(x*) # 0, i. e, there exist Lagrange multipliers yu* and A* (not necessarily unique) such that the KKT
conditions (8.4) are satisfied.

Proof. As alocal minimizer of (7.1), x* is feasible of course. From Theorem 7.4 and the ACQ or GCQ
we infer
_Vf(x*) E (];‘hn(x*)o — ﬁ(x*)o.

Lemma 8.4 confirms that this is equivalent to the KKT conditions. O

Remark 8.8 (on the significance of constraint qualifications).

(i) Constraint qualifications (CQs) render the KK T conditions necessary optimality conditions. Therefore,
the KKT conditions (8.4) are sometimes called a qualified optimality system.

(i) Ifthe GCQ does not hold at a local minimizer x*, then Lagrange multipliers may fail to exist, as we
saw in Example 8.5. It is also possible that they do exist, but it depends on the objective.

(iii) CQs tell us whether the tangent cone to the feasible set admits an algebraic description in terms of
the linearizing cone. The latter depends on our description of the feasible set F in terms of inequality
and equality constraints. Two different descriptions of the same feasible set may differ w.r.t. the
CQs they satisfy.

(iv) A general weakness of CQs is that they need to be checked at the point x*, which is usually a priori
unknown. Algorithms searching for KKT points may miss minimizers which fail to satisfy a CQ.

(v) The verification of the ACQ or GCQ is often cumbersome. Therefore, we will later introduce stronger
CQs which are easier to handle and which imply the ACQ.

(vi) In the absence of CQs, one arrives at Fritz-John conditions (FJ conditions)® Note: Was bedeuten
denn die F}-Bedingungen wirklich, vor allem natiirlich fiir den Fall piy = 0? Das wird eine Aussage
iiber den Linearisierungskegel sein.

1V (x) +g ()T ()2 =0, (8.92)
h(x) = 0, (8.9b)

p=0, g(x)<0, pg(x)=0, (8.9¢)
1o > 0. (8.9d)

A point x is termed a Fritz-John point for problem (7.1) if there exist (u, p1, A) which are not all
zero, such that (x, po, p1, A) satisfy the F} conditions (8.9).

87ohn, 1948

152 https://tinyurl.com/scoop-nlo 2023-07-14


https://tinyurl.com/scoop-nlo

©O®S Nonlinear Optimization

One calls (8.9) an unqualified optimality system since one can show—without assuming any
CQ—that any local minimizer of (7.1) is an F} point; see for instance Geiger, Kanzow, 2002, p.72. In
case we happen to have iy > 0, we can re-normalize the vector (o, i, A) so that g = 1 holds, and
we have indeed a KKT point.

§ 8.2 FIRST-ORDER NECESSARY OPTIMALITY CONDITIONS UNDER AFFINE CONSTRAINTS

We consider a special case of problem (7.1) which has only affine (“linear”) constraints.

Minimize f(x), where x € R"
subject to  Ajneq X < bineq (8.10)
and  Aeqx = beq

with Ajpeq € R™Mnea*” and Aeq € R™9*" as well as bineq € R™™4 and beq € R™4. The KKT conditions
associated with (8.10) read

Vf(x)+ AiTneq p+ Ay A=0, (8.112)
AeqX —beq =0, (8.11b)
[ =0, AineqX — bineg <0, p1' (Aineq X — bineq) = 0. (8.11¢)

Theorem 8.9 (KKT conditions are necessary optimality conditions under affine constraints).
Suppose that x* is a local minimizer of (8.10). Then A(x™) # 0, i. e, there exist Lagrange multipliers pi*
and A* (not necessarily unique) such that the KKT conditions (8.11) are satisfied.

Proof. When the feasible set F is described exclusively in terms of affine constraints, one can show
that the Abadie CQ holds at every feasible point; see homework problem 8.4. O

The observation that affine constraints imply the ACQ everywhere is the reason why one does not
explicitly require CQs in linear optimization; compare Herzog, 2022, § 8.

End of Week 8

§ 8.3 FIRST-ORDER NECESSARY OPTIMALITY CONDITIONS UNDER MFCQ

Definition 8.10 (Mangasarian-Fromovitz Constraint Qualification).
A feasible point x € F satisfies the Mangasarian-Fromovitz constraint qualification (MFCQ) if the
following conditions hold:

(i) The gradients {th (x)};iql are linearly independent. In other words, the Jacobian W’ (x) has full
row rank (is surjective).

https://tinyurl.com/scoop-nlo 153


https://tinyurl.com/scoop-nlo

R. Herzog @O®S

(ii) There exists a vector d € R" such that

gi(x)d <0 forallie A(x),

, : (8.12)
Ri(x)d=0 forallj=1,...,ne

The vector d from (8.12) is sometimes called an MFCQ vector. Notice that condition (i) implies
0 < neq < n,1i.e, there cannot be too many equality constraints.

Lemma 8.11 (alternative formulation of condition (ii)). Suppose that x is a feasible point for (7.1). Then
the following are equivalent to condition (ii):

(iii) There exists a vector d € R" such that

g9(x) +g'(x)d <0,

8.
h(x) + 1 (x)d = 0. (8.13)
(iv) There exists a vector d € R™ such that
gi(x)d < -1 foralli € A(x), (8.14)
’ . .14
hi(x)d =0 forallj=1,..., ne.
Proof. |

Remark 8.12 (on the Mangasarian-Fromovitz CQs). We can numerically verify the MFCQ at a feasible
point x as follow.

(i) We determine the row rank of b’ (x), e. g., by computing its singular values.

(ii) We verify whether or not the linear optimization problem with zero objective and constraints as in
(8.14) is feasible.!

Lemma 8.13 (MFCQ implies existence of a feasible curve).
Suppose that x is a feasible point for (7.1) which satisfies the MFCQ with the MFCQ vector d. Then there
exist ¢ > 0 and a curve y: (—¢, &) — R" with the following properties:

(i) y is of class C* on (—¢,¢).

h(y(H) =0 fort e (&),
(ii) y satisfies {g(y(t)) <0 fort € [0,¢),
g(y(t)) <0 forte (0,¢).

9Further reading: Burke, 2014, Ch.7.2, p.76, who also discusses the dual of this LP.
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(iii) y(0) =x andy(0) =d.

Proof. In the absence of equality constraints, we simply set y(¢) := x + t d on some interval (—&, &);
then y(0) = x and y(0) = d hold. Otherwise, we will apply the implicit function theorem to show the
existence of the curve y with the desired properties. The curve will be constructed using only the
equality constraints. However, we cannot apply the implicit function theorem directly to h(y(t)) =0
since the number of equality constraints nq is generally smaller than the dimension n. As a remedy,
we consider the function

H(y,t) =h(x+td+h(x)7y). (¥)

This function is of class C! and it satisfies H(0,0) = h(x) = 0. The partial Jacobian w.r.t. y is
Hy(y,t) =h (x+td+h (x)"y) h (x)".

In particular,

Hy(0,0) = B (x) I (x)T

holds, which is an s. p. d. matrix in R"a*"«q_(Quiz 8.2: Can you argue why?)

We now apply the implicit function theorem to H(y,t) = 0. There exists g, > 0 and a C'-curve
&: (—eo, £9) — R such that

H(&(t),t) =0 holds fort € (—¢p,69) and £(0) = 0.
The derivative of ¢ can be obtained from the linear system
Hy (E(0),1) (1) = —H, (E(1),1) = =h' (x + td + B (x)"E(t)) d.
In particular, at t = 0, we obtain
H,(0,0) £(0) = —H,(0,0) = =k’ (x) d = 0,
which shows £(0) = 0. Using &, we now define the C!-curve
y(t) =x+td+h (x)E(t) fort e (—e, &).
This function has the properties
y(0) =x+0d+h (x)"E(0) =x+h'(x)"0=x
and j(t) = d + h'(x)"E(t) and thus
y(0) =d+H (x)"E(0) =d + H (x)70 = d,
as desired. Moreover, by construction, we have

h(y(t)) = H(é(t),t) =0 forall t € (—é, &).

It remains to show g(y(t)) < 0 for t € [0,¢y) and the strict inequality when t € (0,&). When
i € {1,...,nineq} is an inactive index at x, i.e., g;(x) < 0, then by continuity, there exists & > 0 such
that

gi(y(t)) <0 forallt e (—¢;,¢).
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By contrast, when i is an active index at x, i.e., g;(x) = 0, let us abbreviate ¢(t) = g;(y(¢)). By the
chain rule, this function is of class C'. Then ¢(0) = g;(y(0)) = g;(x) = 0 holds as well as

o) = gi(y(1) y (1)
and thus ¢(0) = g;(y(0)) 7(0)
= gi(x)d < 0.

The properties ¢(0) = 0 and ¢(0) < 0 and the continuity of ¢ imply that there exists ¢; > 0 such that
@(t) < 0 holds for all t € [0, ¢;) and even ¢(t) < 0 for all t € (0, ;).

Choosing ¢ := min{eg, €1, . . ., €n,,, } yields Statement (ii). m]

Corollary 8.14 (MFCQ implies ACQ).
Suppose that x is a feasible point for (7.1) which satisfies the MFCQ. Then the ACQ holds at x.

Proof. We need to show 7;h“(x) = 9r(x). The inclusion T¢(x) C 7;1“1 (x) follows from Lemma 7.7. We
only need to show the reverse inclusion ‘7}11“(36) C Tr(x).

To this end, let dj € 7;-““ (x) be arbitrary and let d be an MFCQ vector, i. e., we have

gi(x)dyp < 0and g;(x)d <0 forallie A(x),
Wi(x)dy=0and h(x)d =0 forall j=1,...,ne.

We set d(7) := dy + 7d for 7 > 0. Then

gi(x)d(r) <0 for all i € A(x),
hi(x)d(z) =0 forall j =1,...,neq.

That is, d(7) is also an MFCQ vector.

We show d(7) € Tr(x) for any fixed r > 0. Lemma 8.13 implies the existence of a curve y: (—¢,¢) — R”
such that y(t) € F holds for ¢ € [0, ¢) and y(0) = x as well as y(0) = d(r). To show that d(7) € Tr(x)
holds, let t*) € (0, ¢) be any sequence with ) \ 0 and x*) := y(+(*)) € F.

Then we have x*) — y(0) = x and

i g YD) (o) xR

5

which confirms d(r) € Tr(x) for any ¢ > 0. Since 7r(x) is closed by Lemma 7.3, the limit point
dy = li{n d(r) belongs to 7r(x) as well. |
7\,0

Theorem 8.15 (KKT conditions are necessary optimality conditions under the MFCQ).

Suppose that x* is a local minimizer of (7.1) which satisfies the MFCQ. Then A(x™) # 0, i. e., there exist
Lagrange multipliers " and A* (not necessarily unique) such that the KKT conditions (8.4) are satisfied.
The set of Lagrange multipliers A(x™) is compact.
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Proof. The existence of Lagrange multipliers follows directly from the combination of Corollary 8.14
and Theorem 8.7. We do not give a proof of compactness here. m|

§ 8.4 FIRST-ORDER NECESSARY OPTIMALITY CONDITIONS UNDER LICQ

Definition 8.16 (Linear Independence Constraint Qualification).
A feasible point x € F satisfies the linear independence constraint qualification (LICQ) if the

gradients {th (x)}?:i v {Vgi(x)}ieﬂ(x) are linearly independent.’”®

Notice that the LICQ implies 0 < neq + [A(x)| < n, i.e., there cannot be too many equality plus active
inequality constraints.

Lemma 8.17 (LICQ implies MFCQ).
Suppose that x is a feasible point for (7.1) which satisfies the LICQ. Then the MFCQ holds at x.

Proof. The LICQ directly implies condition (i) in Definition 8.10 since any subset of linearly independent
vectors is linearly independent as well. Define

A= [gi(x)lie“q(x) } and b= (-1...,-1,0,...,0)".

— —
[ A (x0) | Teq

The rows of A are linearly independent, hence A is surjective so that Ad = b has a solution d € R".
This vector d satisfies (8.14) and thus it also satisfies condition (ii) of Definition 8.10. O

Theorem 8.18 (KKT conditions are necessary optimality conditions under the LICQ).
Suppose that x* is a local minimizer of (7.1) which satisfies the LICQ. Then A(x™) is a singleton, i. e., there
exist uniquely defined Lagrange multipliers yu* and A* such that the KKT conditions (8.4) are satisfied.

Proof. By Lemma 8.17, the MFCQ holds at x*, so that the set A(x*) of Lagrange multipliers is non-empty
(and compact) by Theorem 8.15. It remains to show the uniqueness. Due to the complementarity system
(8.4¢), the components of y* corresponding to inactive constraints must be 0. These components can
therefore be removed from the linear system, and (8.5) reduces to

[9§(x)lieﬂ(x) ]T (ﬂfheﬂ(x) )

B0 oty

=-Vf(x).

Aj |j:1,...,neq

The LICQ states that the matrix (without the transpose sign) has full row rank and hence the system
matrix (including the transpose sign) has full column rank. This implies that p* and A* must be
unique. O

°Some authors also speak of a regular point; see Bertsekas, 1999, p.349.
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We summarize the relations between the various constraint qualifications:

Lemma 8.1 Corollary 8.1 Definition 8.
LICQ =7 MFCQ % ACQ t=86 GCQ (8.15)

The reverse relations do not hold in general. However, we can note that for problems without inequality
constraints, LICQ and MFCQ are identical (and d = 0 is an MFCQ vector).

All CQs ensure that the KKT conditions are necessary optimality conditions for local minimizers, i. e.,
CQ ensure the existence of Lagrange multipliers. Under the MFCQ, the set of multipliers is compact,
and the multipliers are unique under the LICQ.

§ 8.5 FIRST-ORDER SUFFICIENT OPTIMALITY CONDITIONS FOR CONVEX PROBLEMS

The KKT conditions so far were shown to be necessary optimality conditions of first order, provided
that some constraint qualification was satisfied. There is one important class of problems where the
KKT conditions also serve as sufficient optimality conditions.

Minimize f(x) where x € R"
subjectto  g;(x) <0 (8.16)
and Ax=0b.

For problem (8.16) we assume that
(1) fis of class C! and convex on R”",
(2) g; is of class C! and convex on R”,
(3) A€ R™*"and b € R,

Note: Under these conditions, the feasible set F is convex. We refer to this type of problem as a
convex nonlinear optimization problem or convex nonlinear program (convex NLP). To be
more precise, we can speak of a convex description of a convex NLP.

Problems such as (8.16), which seek to minimize a convex objective over a convex feasible set have
the remarkable property that every local minimizer is already a global minimizer; see for instance
Herzog, 2022, Satz 14.2.

There are customized constraint qualifications which apply only to convex NLPs. They are known as
Slater constraint qualifications and they can be shown to imply the ACQ, but we do not discuss
them here. However, we do point out that the KKT conditions are sufficient optimality conditions for
convex NLPs.

Theorem 8.19 (KKT conditions are sufficient optimality conditions for convex problems).
Suppose that x* is a KKT point for problem (8.16). Then x* is a global minimizer of (8.16).
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Proof. Let (", A*) € A(x") be any Lagrange multiplier for (8.16) at x*, and let x € R" be an arbitrary
feasible point. We estimate

f(x) = f(x)+ f(x") (x = x%) by Statement (a) of Theorem 2.9

= f(x") = (1)"g (x") (x = x*) = (A*)TA(x —x*) by the KKT condition (8.4a)
Mineq —_

=) = D g =ty T
i=1
Nineq

> f(x") - Z T ( gi(x) - gi(x*) ) again by Statement (a) of Theorem 2.9
N — —

=0on 7 (x*) <O0onIZ(x*) <Oon(x*)
>0 on A(x*) <0on A(x*) =0on A(x*)

z f(x),

which shows that x™ is indeed a global minimizer. O

Theorem 8.19 implies that convex problems do not require second-order optimality conditions. For
non-convex problems, however, second-order conditions bring additional information. Moreover,
Theorem 5.33 We address them in the following section.

§ 9 SECOND-ORDER OPTIMALITY CONDITIONS

We begin by motivating which directions d € 7;““ (x) should play a role in second-order optimality
conditions. Suppose that x is a KKT point for (7.1) with multipliers (g, 1) and d € 7;-1“‘ (x). We have

0=[VF(x)+g (x)pu+h (x)T/l]T d by the KKT condition (8.4a)
Teq

=f/(x)d+ Y i gi(x)d+ ) A kj(x)d by (8.4c) and the definition of 7™ (x)

ieA(x) >0

< f'(x)d.

j=1 —_——

<0 =0

Directions d € 7,"(x) satisfying V£ (x)'d > 0 do not require second-order information in a second-
order sufficient condition, nor do they contribute information in a second-order necessary condition.
The remaining directions

deT™(x) with f'(x)d=0 (9.1)

are termed critical directions since second-order derivatives do matter in those directions.
By our calculation above, the following two conditions are equivalent for d € 71',““(3().

(@) f/(x)d=o0.

(2) g;(x)d =0foralli € A(x) with y; > 0.

This motivates the following definition.
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Definition 9.1 (strongly and weakly active inequalities, critical cone).
Suppose that x is a KKT point for (7.1) with multipliers (y, A).

(i) We further distinguish the indices in the active set as follows:

Ao(x, 1) = {i e A(x) |y =0} the set of weakly active indices at x,
As(x,p) ={i e A(x) | > 0} the set of strongly active indices at x.

(ii) The set

Terical(x) = {d € T7™(x) | f/(x) d = 0}
= {d € 7}““(3() |glf(x) d=0 forallie A (x, ,u)}
gi(x)d=0 foralli e A (x,p)
deR" |gi(x)d<0 forallie Ay(x,p) (9.2)
Ri(x)d=0 forallj=1,...,neq

is termed the critical cone to the problem (7.1) at x. When x is not a KKT point, then we set

Trrtical (x) 1= 0.

Remark 9.2 (on the critical cone ‘7§Lr§ical(x)).

(i) The critical cone is a closed convex cone. Just like the linearizing cone, it has an algebraic description
in terms of the constraint (and objective) gradients.

(ii) The multipliers (p, A) for a KKT point may not be unique. The weakly and strongly active indices at x
depend on the inequality constraint multiplier u and thus they may differ for different multipliers at
the same KKT point x. Nevertheless, the critical cone K?gical(x) does not depend on the multipliers.
(Quiz 9.1: Can you explain how this is possible?)

(iii) Unlike the tangent cone and the linearizing cone, the critical cone does not only depend on the
feasible set (or its description in terms of the constraints) but in fact depends also on the objective f.
We therefore do not say “critical cone to F” but instead “critical cone to the problem”.

(iv) For any specific choice of the multipliers (p, A), 7;ICLrIi)ti°al(x) can also be viewed as the usual linearizing

cone for a modified problem, that is obtained by replacing inequalities which are active at x by
equations.

§ 9.1 SECOND-ORDER NECESSARY OPTIMALITY CONDITIONS

We only consider second-order necessary optimality conditions for local minimizers satisfying the

LICQ.

Theorem 9.3 (Second-order necessary optimality condition under the LICQ).
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Suppose that f, g and h are C* functions. Suppose that x* is a local minimizer of (7.1) which satisfies the
LICQ. Let (u*, A*) be the associated unique Lagrange multipliers; see Theorem 8.18. Then

A" Lo (x", 15, 27)d > 0 foralld € Fmtical (57, (9.3)

Note: Besides second derivatives of the objective, the second-order optimality conditions also involve
the second derivatives of all constraints except those where y; = 0.

Proof. Let d be any fixed element of %ﬁfgical(x*), d # 0. The proof is based on constructing a curve y
which satisfies y(0) = x* and y(0) = d, and along which we are going to run through the Lagrangian.
The construction of the curve will be based on Lemma 8.13, which requires the MFCQ to be satisfied.
We will therefore define an auxiliary feasible set with slightly tightened constraints compared to (7.1),
so that d becomes an MFCQ vector for the auxiliary set. More precisely, we will have to treat some of

the active inequality constraints as equality constraints.

To define the modified constraints, we decompose the weakly active indices according to

AF (1t d) = {i € Ap(x", 1) | g)(x7) d < 0},
Ay (", p1*d) = {i € Ap(x", 1) | g;(x*) d = 0}.
Clearly, the inequalities g; with i € A (x*, y*, d) have to become equalities in order for d to be

an MFCQ vector. In addition, we also convert the inequalities which are strongly active at x™ into
equalities. Hence we define the modified constraints as

G(x) = 9i(X)lier(x" the corresponding inactive set at x* is 7 (x*) = I (x*)
A 9i(X)|iesz (x 7)) the corresponding active set at x* is A(x*) = A (x*, y*, d)
_ hj(x)ljzl ,,,,, Neq

h(x) = gi(x)|i€ﬂ> (x*,1")

9i (%) |ie A= (x* )

The new feasible set 3
F:={x eR"|g(x) <0, h(x) =0}

satisfies F C F (Quiz 9.2: Why?), and x* € F holds.

We now verify that the chosen vector d € 71'\]“Lrli,tical(x*) indeed satisfies the MFCQ at x* for the modified

problem. Following Definition 8.10, we show:

(i) The gradients {VE j (x*)}j are linearly independent.
This is true since we assumed the LICQ. (We could even have included the gradients {Vg;(x*) }ie 7 (x*)
of all active inequalities, not only those in A (x*, y*, d).)

(ii) The given vector d is an MFCQ vector.

Indeed, it satisfies .
g:(x")d <0 forallie A(x"),

H(x*)d=0 forall j.
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The first statement is true by {_(7; (x%) d}ieﬁ(x*) = {g;c (x*) d}k€ﬂ< (v rt.d) and the definition of
o e,

Ay (x*, p*,d). The second statement holds since the constraints collected in h are composed
of former equality constraints and some of the former active inequality constraints. Since d
belongs to the critical cone and thus, in particular, to the linearizing cone 7;““ (x™), all directional
derivatives are zero.

Since the MFCQ holds, we can apply Lemma 8.13. We infer that there exists ¢ > 0 and a curve
v: (=& €) — R™ with the following properties:

(i) yis of class C? on (—¢, €).
(ii) y(t) € Ffort € [0,¢) and even g(y(t)) < 0 for t € (0, ¢).
(iii) y(0) =x" and y(0) =

The C%-property of y is easy to see when we revisit the proof of Lemma 8.13. Since H(y,t) = h(x +
td+h (x)"y) is now of class C%, the implicit function theorem implies that £ and thus y are C* curves
as well.

We finally define the function to run through the Lagrangian along y as

o(t) = L(y(1), ", 17).
Then ¢ is also of class C? on (—¢, ¢) and has the following derivatives:

¢(t) =7 () Ve Ly(t), p", 1%)
¢(1) = 7O Ve Ly (), 1", A7) + 7 (1) Lax (y (1), 17, A7) 7(2).

In particular, for t = 0 we obtain

@(0) = 7(0) Vo L(x*, y*,1") =0 by the KKT conditions
@(0) = 7(0) Vo L(x™, f*, 1) +7(0)" Lix (x™, ", A7) y(0)
=0+d Ly (x*, 1, 1) d.

Furthermore, for t € [0, ¢), we have

p(t) = Ly, 5" 1") = F(y(1) + Z 1; gi(y(D) + Y A hy(r(1)
j=1
>0 =0, since y(t)EF =0 =0 Meq ? =0, since y(t)eF
= F®) + i ar(®) + > ar(®) + > ai(y() + Z 2 hy(y(1)
ieAs (x*) i€ Ayp(x") i€l (x*)

= f(y(®)).

By assumption, y(0) = x* is a (global) minimizer of f, restricted to a neighborhood U(x") and
intersected with F. If necessary, we make ¢ > 0 smaller so that y(t) € U(x") N F C U(x*) N F holds
for all t € [0, ¢). It follows that ¢t = 0 is a (global) minimizer of the C?-function ¢, restricted to [0, ¢).
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We already know ¢(0) = 0. If we had ¢(0) < 0, then by continuity, ¢§ would be negative on an
entire interval [0,¢’) with 0 < ¢ < &. Therefore, ¢ would be negative on (0, ¢"). This would be a
contradiction to ¢t = 0 being a minimizer of ¢ on [0, ¢). Therefore, we must have

#(0) =d" Lo (x*, ", 1*)d > 0. m|

Remark 9.4 (on Theorem 9.3).

(i) Theorem 9.3 states that, at a local minimizer that satisfies the LICQ, the Hessian of the Lagrangian

is necessarily positive semidefinite on the critical cone. Since 7&“{;}”"‘1(3(*) has a simple algebraic

description, this condition can be verified numerically. (Quiz 9.3: How could this be done?)

(ii) Since the critical cone %ﬁfgical(x*) is in general not a subspace, eigenvalues of L (x*, u*,A*) do

not provide a precise representation of (9.3) in general.

(iii) The critical cone is a subspace in case all inequality constraints (if any) are either inactive or strongly
active. This situation is called strict complementarity.” In this case, (9.3) is equivalent to the
positive semidefiniteness of the Hessian L. (x*, u*, A*) projected to that subspace. (Quiz 9.4: Is

there another case when (9.3) is characterized by eigenvalues?)

(iv) In the absence of any constraints, Theorem 9.3 reduces to the second-order necessary optimality
condition of Theorem 3.2. (Quiz 9.5: Can you provide the details?)

§ 9.2 SECOND-ORDER SUFFICIENT OPTIMALITY CONDITIONS

We would like to obtain a second-order sufficient optimality condition which are as close a possible to
the second-order necessary condition from Theorem 9.3.

Theorem 9.5 (Second-order sufficient optimality condition).

Suppose that f, g and h are C? functions. Suppose that x* is a KKT point for problem (7.1)."> Moreover,
assume that there exists « > 0 such that"

d" L (x A", 1*)d > a||d||*  holds for all d € TEmeal (x™). (9-4)
Then for every f € (0, ), there exists a neighborhood U(x™) of x* such that
f(x) = f(x*)+ §||x —x*|I* forallx e U(x*)NF. (9.5)

In particular, x* is a strict local minimizer of f.

"In other words, for all components i, either y = 0 or g;(x*) = 0 holds but not both.
?We do not require a constraint qualification to be satisfied at x*, but we still need Lagrange multipliers to exist.
13That is, the Hessian of the Lagrangian is positive definite on the critical cone mi}f‘cal(x*).
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Proof. We assume the contrary, i. e, there exists § € (0, a) and a sequence x¥) C F with the properties
xB) = x* x5 2 5" and F(xF)) < f(x*) + gllx(k) — x*||2. From this, we are going to construct a

direction d* € %fff‘cal(x*) which violates (9.4).

To this end we define
w0 o xP-x

e ® =

Due to ||d¥)|| = 1, we can find a convergent subsequence

d*®”) 5 d*ast — oo with some d* € R" and ||d"]| = 1.

Step (1) We begin by confirming d* € ﬁlin(x*)'
By construction, we have d* € 7¢(x*), and by Lemma 7.7, we have Tr(x*) C T, (x*).

Step (2) We show f’(x*)d* < 0and d* € 71-\;:&}1(:&1( ).
We can estimate

fey+ 2

KO) _ 2 > f(x(k“’))) by assumption

= f(x") + f'(x" + f(km) (x(k(t’)) ~x") (x(k(l)) —xY)

by the mean value theorem 2.4. This further implies

[l

B ® . - ® ® . ® «
E”x(k V= x* 2> e+ EFT) R~y (o) — 1),

We divide by [|x*) — x*|:

®
x7) — x

B ko) . oy 2 (KO) (KO s
EHX x> f(x"+¢& (x —x))m-

Passing to the limit yields

0> f'(x*)d". (9.6)

Moreover, the KKT conditions imply -V f(x*) € 7;Jin(x*)°, hence f’(x*)d > 0 for all d €
7}““(3(*) and in particular for d* by the result of Step (1). Together with (9.6), we obtain
f’(x*)d = 0. By definition (9.2), this means d* € 7;%}“1(36*).

Step (3) We show that d* violates (9.4).
We estimate

£y + Dt e

> f(x®)) by assumption

Mineq
> fx®)+ > gix®) +Z’“‘ hj(x®))
= >0 <0 =0
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By Taylor’s theorem 2.4, we find n*) € (0,1) such that

= .[,(x*, ,ll*’ A*) + VX.E(X*,/J*,A*)T(X(]C) _ X*)

=f(x*) = 0 by the KKT conditions

1 * * * % % *
+ E(x(k) = x") Lyx(x + 70 (®) —x*), i, 2 )(x(k) -x7).

The division by [|x*) — x*||? and passage to the limit on the subsequence k*) yields
(@) Lox (X5, 15, 1) d* < Blld*|)2 < a||d*||* since B € (0, ).

We have thus reached a contradiction to (9.4). O

Note: In the absence of any constraints, Theorem 9.5 reduces to the second-order sufficient optimality
condition of Theorem 3.3.

End of Week ¢
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Chapter 3 Numerical Techniques for Constrained
Optimization Problems

§ 10 INTRODUCTION

We will discuss in this chapter numerical algorithms for the solution of nonlinear programs (7.1).
Similarly as in Chapter 1, where we considered algorithms that generally went after stationary points,
we will now aim to find KKT points and associated Lagrange multipliers.

The class of methods we discuss are akin to those of § 5, which build a sequence of quadratic models
of the objective. In the constrained case, these models are obtained by formulating a quadratic model
of the Lagrangian and by linearizing the constraints about the current iterate (x*), y®), 2(6)) This
leads to the following type of subproblems:

1
Minimize L(x(k),,u(k),)t(k)) +£x(x(k),p(k),/1(k)) d+ > dH® 4  where d € R"

constant
subjectto  g(x®)+ g (x*)d <0
and h(x" ) + R (xF)d = o.

(10.1)

The solution d'%) of (10.1) (provided it exists and is ideally unique) then serves to update the iterate

according to
k) . (k) a(k)d(k),

where the step size a¥) is determined by a line search in an effort to globalize the method. Moreover,
the Lagrange multipliers need to be updated as well.

Since (10.1) is a quadratic program (QP), the ensuing class of methods is known as sequential
quadratic programming method (SQP method). The symmetric Hessian H¥) of the subproblem’s
objective can be taken to be equal to L, (x®), u® 1K)} but in view of the effort generally expected
in evaluating this matrix (or its matrix-vector products), it is more customary in practice to resort to a
substitute as we did with quasi-Newton methods in § 5.5. It is worthwhile noticing that SQP methods
are infeasible methods, i. e., they allow the iterates x® to violate the constraints and only obtain
feasibility in the limit.

An important property for QPs such as (10.1) is the following result. It states that a QP already has a
solution when it is neither infeasible nor unbounded." The result was originally stated for convex QPs

'The special case of LPs was considered in Herzog, 2022, Satz 6.9.
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in Frank, Wolfe, 1956. A direct proof which includes the non-convex case was given in Blum, Oettli,
1972.

Lemma 10.1 (Frank-Wolfe lemma). A QP has a global minimizer if and only if the feasible set is
nonempty and the objective is bounded below on the feasible set.

§ 11 LocAL SQP As LocAL NEWTON’S METHOD

We saw in § 5.4 that the sequential minimization of second-order Taylor models of the objective in
unconstrained problems agrees with Newton’s method applied to the first-order optimality condition;
see around (5.24). A similar observation holds here. To make this more precise, we first consider in
§ 11.1 a problem (7.1) with no inequality constraints before returning to the general case in § 11.2.

§ 1.1 EQuALITY CONSTRAINED PROBLEMS

Consider a problem (7.1) with no inequality constraints. Consequently, we also omit the Lagrange
multipliers y. At a point (x, A1), the QP (10.1) with exact second-order Taylor polynomial reads

_ _ 1 _

Minimize L£(x, 1)+ L,(x,A)d+ 2 d"Ly(x,A)d, whered € R" (1)
111

subject to  h(x) + h'(x)d = 0.

Since the constraints in any QP are linear, the Abadie CQ holds everywhere, and the associated KKT
conditions become first-order necessary optimality conditions for the QP. In case of (11.1), the KKT
conditions read

VLG ) + LX) d+H (X)) =0,
h(x) +H (%) d =0,

or written more compactly,

Lo(x ) K E)
(%) 0

d\ _ (VeL(FE )
(A)‘_( h(®) ) (12)

An equality constrained QP has a very similar characterization of solvability as an unconstrained
quadratic problem. First we notice that every local minimizer is already a global minimizer.

Lemma 11.1. Suppose that d* is a local minimizer of the equality constrained QP (11.1). Then d* is already
a global minimizer of (11.1).

Note: Simple examples show that this statement is not true for the case of QPs with inequality
constraints!

https://tinyurl.com/scoop-nlo 167


https://tinyurl.com/scoop-nlo

R. Herzog @O®S

Proof. Let d be any feasible point for (11.1) in the neighborhood of optimality of d*. Let us denote the
objective in (11.1) by q(d). We obtain

0 < q(d) —q(d)
= LX) +Le(x ) d + % I LX) d = [LED) +Le (XA d + % AT L (%) d"]

S—— ——
cancel cancel
C L EN A+ LT LGN d+ (0 (B + 1 (3) d)
2 —

=0

— [LexZ D d + % A7 Lex(® ) d" + (1) (h(x) + H () d") |
S e
=0

= LEDd+ 5 d L@ d+ 0K ) d
LGN+ % & L E ) d + OH @) 4.

Since (d*, 1*) satisfies the KKT system (11.2), we can reduce the term inside the bracket:

LGN d+ % F L) d+ ()R (%) d + [é I LG 4.
We complete the square:

= LEDd+ (VK@ d+ 5 (@ -V Lae®D) (d—d) 4 d T LoD
Using the KKT system (11.2) for (d*, 1*) again, we can simplify this to

0% 4(d) = g(d") = 3 (A= &V LT D) (@ =), g

By varying d in the feasible neighborhood of d*, d — d* ranges over ker h’(x) intersected with a
neighborhood of 0. Since the right-hand term in (x) is invariant to scaling, i. e., it continues to hold
when d — d* is multiplied by a scalar, we indeed get (x) for all d such that d — d* € ker A’ (X). Due to
the linearity of the constraints, this means that (x) indeed holds for all d which are feasible for (11.1).
Consequently, d* is a global minimizer. O

Without additional assumptions, the equality constrained QP (11.1) may be infeasible or unbounded. To
discuss its solvability, it is going to be helpful to consider the reduced QP. To this end, suppose that
h’(x) has rank r, where 0 < r < min{n, n.q}.> The rank of a matrix coincides with the dimension of its
range. By the dimension formula n = dimker A’ (X) + dimrange h’ (x), we must have dimker #’(x) =
n — r, which has values in {max{n — neq,0},...,n}.

Let us denote by Z € R™("~") a matrix whose columns constitute a basis of ker &’ (¥).3 We can thus
express any vector d satisfying the linear system h(X) + h’(x) d = 0 in the form d = dhom + dpart, Where
dpart is any fixed (“particular”) solution of A(X) + h’(X) d = 0 and dhom € ker A’ (X). Using the basis Z,

2When the LICQ holds, then r = Neqs but we do not require this in general.
3In case of r = n, we have a matrix of zero width, which does not cause a problem.
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we can thus express any vector d solving the linear system in the form d = Zy + d,,5t with unique
coefficient vector y € R"7". Plugging this representation into (11.1), we can express it equivalently as
the reduced QP

_ 7 _ = 1 —
Minimize L(X,1) + L(x, A1) (Zy + dpart) + > (Zy+ dpart)T.Lxx(x, M (Zy + dpart)
Dropping all constant terms in the objective, we obtain the equivalent form
— — 1 —
Minimize [Ly(%, 1) + Aot Locx (%, M zy+ 2 V'Z" Lo (X,A) Zy, where y € R"". (11.3)

We refer to the matrix Z7 L. (X, 1) Z as the reduced Hessian. The first-order necessary optimality
conditions for (11.3) are

T LxEN) Zy = =ZT [V L (X 2) + Lo (%, 4) dpart]- (11.4)
We are now in a position to discuss the solvability of (11.1).

Lemma 11.2 (Solvability and global solutions of the equality constrained QP (11.1); compare Lemma 4.1).

(i) Suppose that the linear system h(x) + h’(x) d = 0 is solvable, and that dpay is some particular

solution. Suppose, moreover, that the reduced Hessian Z" L (X, I) Z is positive semidefinite. Then
the objective in the reduced QP (11.3) is convex. In this case, the following are equivalent:

(a) The QP (11.1) possesses at least one (global) minimizer.

(b) The QP (11.1) is neither unbounded nor infeasible.

(¢) The KKT conditions (11.2) are solvable.

(d) The reduced QP (11.3) possesses at least one (global) minimizer.

(e) The reduced QP (11.3) is not unbounded.

(f) The first-order optimality condition (11.4) is solvable.

The global minimizers of (11.1) are precisely the KKT points, i. e., the d-components of solutions
(d,A) to the KKT system (11.2).

ii) Suppose that the linear system h(x) + h'(x)d = 0 is solvable, and that d,. is some particular
(it) Supp 22 P p

solution. Suppose now that the reduced Hessian Z" Ly (X, A) Z is not positive semidefinite. Then
the QP (11.1) and the reduced QP (11.3) are unbounded.

(iii) Suppose that the linear system h(x) + h’(x) d = 0 is not solvable. Then the QP (11.1) is infeasible
and the reduced QP cannot be formulated for lack of a particular solution dyay.
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Proof. The proof is part of homework problem 10.1. O

Note: In the situation of Statement (ii), the KKT system may still be solvable, but clearly a KKT point
is not a (local or global) minimizer. (Quiz 11.1: Can you explain this?)

As a consequence of Lemma 11.2, we can characterize the unique solvability of equality constrained
QPs now.

Corollary 11.3 (Unique solvability of the equality constrained QP (11.1)). The following are equivalent:
(i) The QP (11.1) possesses a unique (global) minimizer.
(ii) The reduced QP (11.3) possesses a unique (global) minimizer.

(iii) The linear system h(x) + h’(x) d = 0 is solvable, and the reduced Hessian Z" L (X, N Z is positive
definite.

If the above hold, let x* denote the unique global minimizer of (11.1). Then the following are equivalent:
(i) K (x) has full row rank, i. e, the LICQ is satisfied at x™.

(ii) A(x™) is a singleton, i. e., there is a unique multiplier A* corresponding to x™.

Let us now see how, in the absence of inequalities, the local SQP method is equivalent to local
Newton’s method applied to the KKT conditions. To be precise, by the local SQP method for an
equality constrained NLP (7.1) we mean the following iteration. Given an iterate (x¢), (%)), consider

the QP

1
Minimize L(x®, A%+ £ (x® 10Yd+ = d" L, (xF 1%)d where d € R
—_— 2
constant (11'5)

subjectto  h(x®) + H' (xF)d = 0.

under the assumption that L (x®), 1)) is positive definite on ker &’ (x¥)), so that (11.5) is uniquely
solvable. Suppose moreover, that ' (x*)) has full row rank (i. e., the LICQ holds), then the unique
solution of (11.5) is characterized by the KKT conditions

[Lxx(x(k),A(k)) h’(x(k>)T] (d) _ (ng(x(k),;[(lo))

K (x(k)) 0 A h(x®) (11.6)

with unique Lagrange multiplier. We then set
5 (k+1) x (k) d
)= o)+ )

170 https://tinyurl.com/scoop-nlo 2023-07-14



https://tinyurl.com/scoop-nlo

©O®S Nonlinear Optimization

On the other hand, the KKT conditions for an equality constrained NLP (7.1) read
VoL(x,A) =0,
h(x) = 0.

This is a (nonlinear) system of equations for the unknowns (x, 1). A step of local Newton’s method at
an iterate (x®), 1(K)) is given by

Lo (x® A0y g7 (x N (g B VL 1Ry
W (0 0 (/1 ‘_( h(x®) (11.6)

S (k+1) x®\ (4
o) = )+ )

This is exactly the same iteration as above. Therefore, the SQP method is sometimes also called the
Lagrange Newton method.

followed by

In practice, the QP (11.5) is usually formulated equivalently as

1
Minimize f(x"™)+f"(x®))d + 5 d" Ly (x® 10)d where d € R

constant (11'7)
subject to  A(x®) + 1 (x*F)d =0
whose KKT conditions are
Lo (x® 20w ()T (d Vaf(x*)
W (x0)) 0 ] (/Wm)) = —( h(x®)) ) (11.8)

Note: When we use the Lagrange multiplier associated with (11.7) as the next iterate (as indicated in
(11.8)), then the iteration is again the same as above. (Quiz 11.2: Can you show this?)

§ 11.2  PROBLEMS WITH GENERAL CONSTRAINTS

We now address the relation of the local SQP method and Newton’s method for general NLPs (7.1).
The formulation of the sequence of QPs (compare (10.1))

1
Minimize L(x(k), ,u(k), A(k)) +.£x(x(k),p(k), A(k)) d+ 2 dT.Exx(x(k),,u(k), /I(k)) d, whered e R"

constant
subjectto  g(x®)+ ¢ (x®)d <0
and h(x") + R (x®)d =0,

(11.9)
the associated KKT system
Vo L(x® 1 200y 4 £ (x® 1® 10y g4 g (TN 4 b (x0T = o, (11.10a)
120, gx®)+g(x®)d <o, 1(gx®)+g (x®)d) =0, (11.10b)
h(x )+ K (x®)d = o, (11.10C)
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and the update
T NS I
IGON BN IR I
A (k1) 1K) A

are straightforward.

The characterization of solvability and unique solvability of QPs with inequality constraints, however,
is more intricate than in Lemma 11.2. We do not attempt such a characterization here. Moreover, a QP
with inequality constraints may have local minimizers which are not global minimizers.

Finally, it is not obvious how to interpret this scheme as a Newton method for the KKT conditions
(8.4) of (7.1),1.e.,

VoL (x, 11, A) =0, (11.110)
p=0, g(x)<0, pug(x)=0, (11.11b)
h(x) = 0. (11.11€)

To this end, we rewrite the complementarity condition (11.11b) in the equivalent form

peK and ¢g(x)'(v—p) <0 forallvek (11.12)

Nineq

with the closed convex cone K := R

(the non-negative orthant).

Lemma 11.4 (Complementarity is equivalent to variational inequality).
(11.11b) and (11.12) are equivalent.

Proof. The proof is part of homework problem 10.3. O

Definition 11.5 (Normal cone). Suppose that M C R" is an arbitrary set and x € M. The set
Nu(x) = {s € R"|s"(y —x) <0 forall y € M} (11.13)

is termed the normal cone of M at x. A vector s € Ny (x) is termed a normal direction of M at x. We
set Npyr(x) := 0 forx ¢ M.

Lemma 11.6 (Properties of the normal cone). Suppose that M € R" is a set and x € M. Then the
following holds.

(i) The normal cone is a closed convex cone.

(i) Nym(x) = (M = {x})° holds.

Proof. The proof is part of homework problem 10.4. O
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Figure 11.1: Normal cone Njys(x) (blue) of a (convex) set M at a point x. We are showing the shifted
cone {x} + Ny (x).

Using the notion of normal cone, we can express the variational inequality (11.12) and thus the comple-
mentarity condition (11.11b) in the equivalent form

g(x) € Nk (p). (11.14)

Finally, we see that the entire KKT system (11.11) takes the form

+Voe L(x, 1, A)
0¢€ —g(x) + Ngnygxrres (x, 1, A) . (11.15)
—h(x)
=N (x,p,A)
=F(x,,A)

Due to the Cartesian structure, the set Ngnygxrred (X, f1, A) is simply

0
Nrnygxrrea (%, 1, A) = 1| s ||s € Nk (p)
0

Equation (11.15) is known as a generalized equation, for which an extension of the classical Newton
method exists.

§ 1.3 LocAL CONVERGENCE OF A GENERALIZED NEWTON METHOD

In this section, we discuss the local convergence of a generalized form of Newton’s method, applied to
the generalized equation
0 € F(z) + N(2), (11.16)

where F: R” — R" is a function of class C' and N: R" =3 R" is a set-valued map.# Apparently
Newton’s method for generalized equations, referred to as generalized Newton method or Josephy-
Newton method, was introduced in the Ph.D. dissertation Josephy, 1979b, supervised by Stephen

4In other words, N is a function mapping R" into $(R"), the power set of R”.
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M. Robinson. At an iterate z(¥), the (local) generalized Newton method produces its next iterate as a
solution of
0 € F(z0) + F/ (250 (2D — 200y 1 N (). (11.17)

This iteration coincides with the usual Newton method in case of N(z) = {0}. The local convergence
analysis of the classical Newton method (Theorem 5.27) is based on the assumption of invertibility of
the Jacobian F’(z") at a root z* of F. This condition is not quite the correct one for the generalized
Newton method. We notice, however, that the invertibility condition for the classical Newton method
is equivalent to the map

A + unique solution z of A = F(z*) + F'(z") (z — z7)

being affine and thus Lipschitz continuous (with Lipschitz constant equal to the operator norm of the
inverse of F’(z")). This Lipschitz continuity turns out to be the condition applicable to generalized
equations as well.

Note: Here and throughout the remainder of § 11.3 we will frequently need (generalized) equations
with parameters, which we highlight in this color. By contrast, unknowns will be highlighted in this
color. Also notice that we carry out our analysis w.r.t. a general inner product M. The results, however,
are qualitatively independent of the specific choice of M.

Definition 11.7 (Strong regularity, introduced in Robinson, 1980). Suppose that z* is a solution of the
generalized equation
0 € F(z) + N(2). (11.16)

That generalized equation is said to be strongly regular at z* if there exist open balls Bg’rl(o) and
BM(z*) such that

(i) foreveryA e Bg/rl(o), the linearized and perturbed generalized equation
A€F(Z)+F (z") (w—-2")+ N(w) (11.18)

has a solution w(A) € BM(z*),
(ii) there is no other solution in BM(z*),

(iii) the map Bg’rl(o) > A w(A) € BM(z*) is Lipschitz continuous, i. e.,
[w(A) = w(A)lIm < LA = A"y (11.19)

holds for all A, \” € Bg“(o) with some Lipschitz constant L > 0.

Just like the invertibility of F” extends from a point into an entire neighborhood (Lemma 5.25), strong
regularity at a point z* implies that it holds in an entire neighborhood U (z*). Although the Lipschitz
constant may grow, we can allow the ball Bg/rl (0) containing the perturbation A to be uniform.

Theorem 11.8 (Strong regularity extends to a neighborhood). Suppose that z* is a solution of the
generalized equation (11.16) and that (11.16) is strongly regular at z* with Lipschitz constant L in (11.19).
Then there exist open balls Bg[(z*), BRM_1 (0) and BM(z*) such that the following holds:
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(i) foreveryze BQ/I(Z*) and every A € Bﬁ’rl (0), the linearized and perturbed generalized equation
A € F(z)+F (2) (w—2z)+N(w) (11.20)
has a solution w(A) € BM(z*),

(ii) there is no other solution in BM(z*),

(iii) the map Bﬁ‘{f’l(o) > A — w(A) € BM(z*) — which now depends on z — is Lipschitz continuous,
ie,
[w(A) = w(A)llm < L(2) |A = Ay (11.21)

holds for all A, \" € Bﬁ’rl (0), with Lipschitz constant®

L _ L
@ = TP = F e e

Proof. The result and its proof are given in Robinson, 1980, Theorem 2.4 and Josephy, 1979a, Corollary 1.
O

We can now prove a local convergence result for the generalized Newton method.

Theorem 11.9 (Local convergence of the generalized Newton method; compare Josephy, 1979a;
Izmailov, Kurennoy, Solodov, 2012 and Theorem 5.27). Suppose that F: R" — R" is a C* function.
Suppose, moreover, that z* is a solution of the generalized equation (11.16) and that (11.16) is strongly
regular at z*. Then there exists a neighborhood BM(z*) such that

(i) z* is the unique solution of 0 € F(-) + N(-) in BM(z*).

(ii) For any initial guess z'®) € BM(z*), the generalized Newton method is well-defined, and it generates
a sequence z©) which converges to z*.

(iii) (z(k)) converges to z* Q-superlinearly w.r.t. the M-norm.

(iv) IfF’ is Lipschitz continuous in BM(z*), then this convergence is even Q-quadratic.

Proof. Let L denote the Lipschitz constant associated with the strong regularity of (11.16) at z*; see
(11.19). Owing to the continuity of F’, we can find, for any & > 0, a radius r;(¢&) > 0 such that

|F'(z) = F'(z")||ps-1ep < € holds for all z € BY_(z"). (%)

ri(e)

5Compare this to the statement

F (x* -1 _ F (x* -1 _
1P M gy < o Lo o W) e
= F G Olem 1 IF GO PG - F @,

in the proof of Lemma 5.25.
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Moreover, due to the continuity of F’ we can show (Quiz 11.3: Can you do it?) that, for any &, > 0,
there exists a radius r,(&3) > 0 such that

IF(z) + F'(z)(z" —2z) = F(z")||y < & ||z — 2°||lm holds forall z € Bff(gz)(z*). (+%)

Let R, r and p denote the radii from Theorem 11.8. We require that the initial guess z(®) belongs to
BM(z*) with & := min{p, r, rl(i), rz(ﬁ), 4L R}

Step (1) Local uniqueness of z*:
Since we can write 0 € F(z*) + N(z*) also as

0€ F(z)+F (z)(z" - z") + N(z"),

condition (ii) of Theorem 11.8 shows that z* is the only solution in BM(z*). This proves State-
ment (i).

Step (2) Well-posedness of the Newton iteration (11.17):
We proceed by induction. Since z(?) € BQ/I (z¥) holds, the initial Newton step

0€ F(z) + F ()" =2 + Nz (%)

has a unique solution z") € B¥(z*) by Theorem 11.8. We need to estimate |z = z*||p. To this
end, we regard z* as the unique solution in BY(z*) of a perturbed version of (x+*), namely

A e Fz)+ F'(z)(z* = 2'9) + N(z"). (%)
with A = F(2(©) + F/(2(9)(z* — 2(9) — F(z*). The norm of A(*) can be estimated by (++) as
1A s < = 120 — 2l < — < R

4L 4L

We can therefore invoke Theorem 11.8 to obtain

127 = 2"y = [w(0) = w(A)lIm

L

< 0=AQ| - by (11.21

T LIFGO) P @l o by 2

L 1
o 12 =2l

1-Ls;

1
= 2% =2

The induction step merely requires a repetition of this argument so we do not expand on it. We
only note that

. 1
125 = 2l < 5 1A e (v

holds for all k € Ny. This concludes Statement (ii), and in fact we have shown the Q-linear
convergence of z(F) — z*.
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Step (3) We now verify that the sequence indeed converges Q-superlinearly. To this end, we infer from

(+x) that, for any &, > 0, we have
IA® 1 = [[F(z®) + F (2%) (2% = 2®)) = F(2) |[p1 < &2 120 = 2% ||

for k € Ny sufficiently large. Plugging this into (s###x) proves Statement (iii).

Step (4) In case F’ is Lipschitz in BM(z*) with Lipschitz constant K, then we can obtain

IAF g = 1 GH) + F (8 (2" = 2)  Fz") e
1
[ [ TP - 60 - s -0
0
1
< / IF () = F' (2" 45 2% = 2))[ygapg 12" = 2w
0

1
SQ/'stMV*—z“W;
0

1 (k) w2
ZEK“Z -z ||y

From there, the Q-quadratic convergence follows using (x#=+x), and Statement (iv) is proved. O

End of Week 10

§ 11.4 LocAL CONVERGENCE OoF THE SQP METHOD

In this section we establish the local fast convergence of the SQP method under appropriate assumptions.

We begin by confirming that the Josephy-Newton method (11.17) applied to the KKT system in the
form of the generalized equation

Ve L(x,p A)
0¢€ —g(x) + Nenscgoxrrea (X, 1, A) (11.15)
—h(x)
=N (x,p,A)
=F(x,pu,A)

is identical to the local SQP method described in (11.10). One step of the Josephy-Newton method (11.17)
applied to (11.15) at iterate zX) = (xK), ;(K) 1(K)) reads

Vx.ﬁ(x(k),,u(k),/l(k)) + Lxx(x(k),ﬂ(k),ﬂ(k)) d +g'(x(k))T,u + h'(x(k))T)L =0,
g(x®) + g (x®) d e Nic(p) = N riea (1)
h(x® ) + 1 (x*)) d = 0.
By Lemma 11.4, we can rewrite the inclusion as

p=0, gx™)+g(x®yd<o, 1M(gx®)+g (x*)d) =o.
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A comparison with (11.10) shows that, indeed, the local SQP method is the Josephy-Newton method
applied to (11.15).

The natural next questions are:
(1) What does the strong regularity of the KKT system (11.15) mean when spelled out?

(2) Under which conditions is the KKT system (11.15) strongly regular at a given KKT triplet
(x*, g, A%)?

To address question (1), we consider the linearized and perturbed generalized equation A € F(z%) +
F'(z") (z — z¥) + N(z) specifically for the case (11.15). We obtain

Al VxL(x*,H*,A*) Lxx(x*,ll*,/l*) g/(x*)T h/(x*)T ¥ — x* + {0}
Ay € —g(x*) + —g'(x*) 0 0 =+ N (1) (11.22)
As —h(x") —h(x*) 0 o [\1-21*) +{o}.

This can be verified to be the KKT conditions for the QP

1
Minimize E(X =X Lo (5 15 A7) (6 = x*) + [ (x*) = A]](x = x*), where x € R"

subjectto  g(x*) +g'(x™) (x —x")+ A, <0

and A(x")+h' (x*) (x —x") + A3 =0,
and (p, A) are the Lagrange multipliers. If we wanted to study the strong regularity of the KKT system
(11.15) “by hand”, we would need to show — under appropriate assumptions — that the linearized
and perturbed KKT conditions (11.22) have a unique solution near (x*, p*, *) when (A4, Ay, As) is

sufficiently small. It is, however, more convenient to resort to the answer of question (2), which is
given in the following theorem.

Theorem 11.10 (Strong regularity of the KKT conditions, see Dontchev, Rockafellar, 1996, Theorem 5).
Suppose that f, g and h are C* functions. Moreover, suppose that x* is a KKT point for problem (7.1) with
associated Lagrange multipliers ui* and A*. Then the following are equivalent:

(i) The KKT system (11.15) is strongly regular at (x*, pu*, A¥).

(ii) The LICQ holds at x*, and for each partition of the weakly active set Ay(x", ") into A (x*, y*),
A (x*, 5*) and A (x*, i), and the associated cone’

gi(x)d=0 forallie A.(x",p") UA;(x", p")
K:=3deR"|gi(x)d <0 forallie AJ(x* u*) ,
Ri(x)d=0 forallj=1,...,ngq
we have
[Lax (" 4" A K] NK = {0},

®Note that K is similar to the critical cone (9.2). However, the weakly active constraints in ﬂa (x*, y*) are treated as

strongly active ones, those in flg (x*, u*) continue to be treated as weakly active, while those in A (x*, y*) are treated
as inactive.
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Admittedly, this characterization of strong regularity of a KKT system is not particularly handy, not
even in the presence of strict complementarity (when the set Ay (x*, p*) of weakly active constraints
is empty).

The characterization would become more tractable if some sort of second-order sufficient optimality
condition could be used. The following example due to Robinson, 1980, Section 4, however, shows that
the standard second-order sufficient optimality condition (Theorem 9.5) is not sufficient to establish
the strong regularity.

Example 11.11 (The standard second-order sufficient optimality condition is not sufficient for strong
regularity).

1
Minimize E(XIZ —x2) —Ayx;, wherex € R?
subjectto —x1+2x3 <0
and —x1—-2x3 <0.

Here A, € R represents a perturbation.” The KKT conditions associated with this QP read

AV 1 0 -1 -1|(x

0 0 -1 2 -2||x .
S + s .

0 1 -2 0 O )ul NRZXRZZO(X ll )

0 1 2 0 0]|\m

(The problem is chosen deliberately as a QP so that the linearization of the KKT conditions does not change
them.) The unperturbed problem (A, = 0) has a unique global minimizer at x* = (0,0)", which is also the
only local minimizer. The LICQ holds at any point, and the unique Lagrange multipliers at x* are given
by u* = (0,0)". Therefore, according to (9.2), the critical cone is ﬂ%gical(x*) = ﬁlin(x*) = Ry X {0}.
The second-order sufficient optimality condition (Theorem 9.5) holds since we have

! [(1) —01] d>0 foralld € Ty (x") =R<o x {0}, d # 0.

Let us now consider the perturbed problem with arbitrary A; > 0. Then the problem under consideration
has three KKT points:

(i) x* = (A, 0)" with unique multiplier u* = (0,0)".
This is a saddle point of the problem. Both constraints are inactive (so the problem is locally
unconstrained) and the Hessian has eigenvalues of either sign.

(ii) x* = %(2 Ay, Ay)" with unique multiplier y* = %(1, 0)".
This is a local minimizer since the second-order sufficient optimality condition holds. (Quiz 11.4:
Can you check this?)

(iii) x* = %(2 A1, —A1)" with unique multiplier p* = %(0, .
This is another local minimizer for the same reason.

7We do not need to consider the most general perturbations A; € R? and A, € R? here to show that strong regularity fails
to hold.
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Taking Ay > 0 arbitrarily close to 0, the existence of these three solutions of the KKT conditions imply that
the KKT system does not have a solution which is unique in a neighborhood of x* = (0, 0)". Therefore, the
KKT system cannot be strongly regular at (x*, u*).

As a remedy to the situation, Robinson, 1980 considered the strong second-order sufficient condi-
tion.

Definition 11.12 (Strong second-order sufficient condition). Suppose that f, g and h are C* functions.
Suppose that x* is a KKT point for problem (7.1) with associated Lagrange multipliers p* and A*. Define
the subspace

(11.23)

7;,Stmng(x*,y*) :={d e R"

g/(x)d=0 forallie A (x*,,u*)}
Ri(x")d=0 forallj=1,...,ne '

We say that the strong second-order sufficient optimality condition holds at x*, provided that there
exists a > 0 such that

A" Lox(x", 7, A7) d > a||d|I>  holds for all d € T8 (x", ). (11.24)

Remark 11.13 (on the strong second-order sufficient optimality condition).

(i) Since ﬁStrong(x*,p*) is a subspace, the verification of (11.24) can be performed by verifying the
positivity of the smallest eigenvalue of the Hessian L (x*, p*, A*), reduced to this subspace.

(ii) The subspace ﬁStrong(x*, u*) is larger than the critical cone mfgical(x*), see (9.2). Therefore, the
strong second-order sufficient optimality condition implies the (standard) second-order sufficient
optimality condition (9.4).

(iii) The subspace ‘7;Stmng(x*, 1") is not necessarily contained in the linearizing cone ﬁli“(x*).

(iv) In the absence of weakly active constraints, the strong and the standard second-order sufficient
conditions agree.

We have the following result.

Theorem 11.14 (Strong regularity of the KKT conditions under strong second-order optimality
conditions and LICQ, see Robinson, 1980, Theorem 4.1). Suppose that f, g and h are C? functions.
Moreover, suppose that x* is a KKT point for problem (7.1) with associated Lagrange multipliers u* and A*.
If the LICQ and the strong second-order sufficient optimality condition holds at x*, then the KKT system
(11.15) is strongly regular at (x*, p*, A*).

Moreover, it can be shown under the assumptions of the previous theorem, that the solution x(A) of
the linearized and perturbed KKT conditions (11.22) are indeed local minimizers of the QP (11.22) and
that the LICQ continues to hold for this QP, so that the multipliers (y, 1) are unique. This addition is
relatively easy to show since the LICQ and the strong second-order sufficient optimality condition are
stable in a neighborhood of (x*, u*, A*); see also Dontchev, Rockafellar, 1996, Theorem 6.
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Corollary 11.15 (Local convergence of the local SQP method). Suppose that the assumptions of
Theorem 11.14 hold. Consider the local SQP method described in the beginning of § 11.2. More precisely,
suppose that the iterates (x®), p A(%)) are defined by choosing the solution to the linearized KKT
conditions (11.10) with d having minimal norm ||d||p. Then there exists a neighborhood B, (x", yi*, A*)
(w.r.t. the M-norm in R" and the Euclidean norms in R™4 and R" ) such that the following holds:

(i) The local SQP method is well-defined in the sense that the solution d having minimal norm ||d||y
is unique. Moreover, the LICQ holds for all QPs, so that the Lagrange multipliers (j, ) in (11.10)
associated with d are unique.

(ii) In every iteration, the unknown d is in fact a local minimizer of the QP (11.9).
(iii) The convergence (x®), y®) A0 — (x*, y*, A*) is Q-superlinear.
g H H p

(iv) If the second derivatives of f, g; and hj are Lipschitz continuous in a neighborhood of x*, then the
convergence is Q-quadratic.

§ 12 REFORMULATION USING SLACK VARIABLES

In the remainder of Chapter 3, we will be discussing practical aspects of the solution of NLPs (7.1) by
SQP methods.

As we saw in the previous sections, the presence of inequality constraints renders the theory of NLPs,
but also numerical algorithms, more difficult. It is therefore customary to convert the inequality
constraints into simpler bound constraints using slack variables s € R"na. Using slacks, we can
reformulate (7.1) equivalently as

Minimize f(x), where x € R"?, s € R"n«
subjectto g(x)+s=0
and h(x)=0

aswellas s> 0.

(12.1)

The only inequality constraints are now simple sign constraints on some of the optimization variables,
which are somewhat easier to handle algorithmically than general inequality constraints. It is important
to note that this conversion is usually carried out internally by the solution algorithm and need not be
done by the user.

It should be clear that there is a bijective relation between the feasible points x of (7.1) and the feasible
points (x, s) of (12.1). Moreover, one can show that the slack reformulation (12.1) does not alter the
satisfaction of the GCQ, ACQ, MFCQ, or LICQ. More precisely, the GCQ for (7.1) at x implies the GCQ
for (12.1) at (x,s). Moreover, the ACQ, MFCQ, LICQ hold for (7.1) at x if and only if the respective
condition holds for (12.1) at (x, s). See homework problem 9.3.

Owing to the reformulation (12.1), we can assume from now on that problem (7.1) is of the simplified
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form
Minimize f(x), where x € R"
subjectto  h(x) =0 (12.2)
and x >{.

The lower bound ¢ has values in [R U {—oo}] " where —co means that the bound is effectively not
present for the respective component. The Lagrangian for (12.2) is

L(x, 1, A) = f(x) +p" (£ —x) + ATh(x)
and the QP associated with (12.2), in the form following (11.7), reads

1
Minimize f'(x*)d + > d"H®d, whered e R"

subjectto  h(x®) + K’ (x*)d =0 (12.3)

and x® +d>¢

§ 13 NUMERICAL SoLuTION OF QPs

In this section we discuss numerical approaches to solve equality and inequality constrained QPs. Due
to the possibility to use slack variables, we can assume inequality constrained QPs to be of the form

(13.6).

§ 13.1  SorLuTioN oF EQuUALITY CONSTRAINED QPs

We begin with QPs with equality constraints only. These are of the form

1
Minimize -d'Ad —b"d
2 (13.1)
subjectto Bd=c¢

where A € R™" is symmetric, B € R™", b € R" and ¢ € R™.® We already know from Lemma 11.1 that
all minimizers of (13.1) (if any exist) are global. The KKT conditions associated with problem (13.1) are

given by the linear system
A B (d b
5 ollil =\ (13.2)

Assumption 13.1. For simplicity we assume that B has full row rank, i. e., the LICQ holds.

Lemma 11.2 suggests the following strategy for a possible algorithm to solve (13.1).

8The roles are A = Ly (x®), y®) 200 B = o/ (x50 b = v, £(x®), ;1) 1K)y or b = —Vf(x*)), see (11.7), and
c= —h(x®).
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1) Determine a particular solution dy,t of Bd = ¢.°
p P

(2) Determine any matrix Z € R™("") whose columns form a basis of ker B. Then consider the
reduced problem

1
Minimize ~[-b+d},A| Zy + 5 y'Z'AZy, wherey€eR", (13.3)

whose first-order necessary optimality conditions are
Z'AZy =Z"|b" - Adpan]. (13.4)

Provided that A is positive definite on the kernel of B, i. e., the reduced Hessian Z'A Z is s.p.d.,
a unique minimizer exists for (13.3). In this case, the unique minimizer of (13.1) is d = dpart + Z,
which is also the unique d-component of any solution (d, 4) to (13.2).

(3) Recover the unique Lagrange multiplier 1 as any solution of B'"A = b — Ad.

We recall from § 4 the conjugate gradient Algorithm 4.17 as our preferred solver for s. p. d. systems
such as (13.4). Using the CG method to solve (13.3) has several advantages:

(i) We can take advantage of the possibility to solve the QP only inexactly by using a relative
stopping criterion.

(ii) We can equip the CG method with a detector for search directions of non-positive curvature,
which previously led to the truncated conjugate gradient Algorithm 5.41.

Interestingly, Gould, Hribar, Nocedal, 2001 discovered that the CG algorithm (w.r.t. the M-inner
product) for the reduced problem (13.4) can actually be formulated in the “full space” and without
making explicit reference to a null space basis matrix Z. The main idea is to apply the CG method
directly to (13.2) and to employ a preconditioner of the form

B 0 (13.5)

M BT}

where M is still a user-defined inner product on R”. This is known as a constraint preconditioner.'®
Although neither the system matrix in (13.2) nor the preconditioner are positive definite, one can show
that the CG method is still well-defined, as it is equivalent to the CG method for the reduced problem.
One refers to the CG algorithm applied to a symmetric saddle-point system (13.2) as the subspace CG
method or projected CG method. In fact, the solution of a linear system governed by the matrix
(13.5) can be viewed as an orthogonal projection problem w.r.t. the norm induced by M onto ker B.

More precisely, since M is s.p.d.,
M B|(p) _ (¢
B of\A) \o

9This is always possible under our assumption of full row rank, i. e., surjectivity of B. In general, when B is not surjective,
then the constraints B d = ¢ may be impossible to satisfy. In that case, we would declare the problem infeasible and stop.

19The name derives from the fact that the preconditioner exactly replicates the constraint block B and the block BT for the
associated Lagrange multiplier.
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holds if and only if p solves the problem

1
Minimize Ellp - (=M%,

subjectto Bp =0.

We refer to the unique solution as p = erojk’VIer g(—M ~17), the M-orthogonal projection of — M~ to
ker B.

For completeness, we provide the projected CG algorithm, equipped with a detector of non-positive
curvature, i. e., failure of positive definiteness of A on ker B.

Algorithm 13.2 (Truncated projected conjugate gradient method for symmetric systems (13.2) w.r.t.
the constraint preconditioner defined by the M-inner product; compare Algorithm 5.41).

Input: right-hand sideb € R"

Input: particular solution dyart of Bdpart = ¢

Input: symmetric matrix A (or matrix-vector products with A)

Input: s.p.d. matrix M and matrix B € R™" of full row rank (or matrix-vector products with | ¥ %T ] - )
Input: relative residual e,

Output: approximate solution of (13.2)

1 Setf =0
2 Setd® = part / partial solution as initial guess
3 Set{(© = Ad©® —p / evaluate the initial residual
4: Solve
M BT (p® 48
B of{ -]  \o
/ steepest descent direction, projected to ker B, w.r.t. M-inner product
5 Set §©) = —({©)Tp(® /89 = ||projpr, s (M,
6: while (") > &2 5 do / check stopping criterion
7 Setql® = Ap®
5 Setf = (q)Tp®
o: if 0 > 0 then
10: Set o't = 5 /9O
11 Set d(+) = d(O) 4 o (O p(0)
Set £ 1= () 4 (00
13 Solve
M BT p(t’+1) {([+1)
B of{ - )" Lo
/ steepest descent direction, projected to ker B, w.r.t. M-inner product
14: Set 5(t’+1) — —(§(f+1))Tp(f+1) //5(€+1) — ||pr0jl/<ve[er(M_1§<[+1))||/2\/l
- Set ) = 541 /5(0)
“ Set p(tH) 1= p(E+) 4 G+ p(0)
- Setf :=+1
18: else
19: Abort the while loop
20: end if
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21: end while
22: returnd?

Remark 13.3 (on Algorithm 13.2).

(0)

(if)

(iii)

(iv)

(v)

(vi)

One can show that Algorithm 13.2 is equivalent to the classical truncated conjugate gradient
Algorithm 5.41 applied to the reduced problem (13.3). When the initial guesses for Algorithm 5.41
and Algorithm 13.2 are related via

d(o) = dpart + Zy(o),

then this relation also holds for all subsequent iterates.

The constraint preconditioner in Algorithm 13.2, which acts as an M-orthogonal projector onto
ker B, ensures that all directions p'*) belong to ker B. Consequently, all iterates will satisfy d*) €
dpart + ker B and are therefore feasible, i. e., they satisfy Bd O =

When B is formally not present, i. e., its row dimension is m = 0, and when d,ax = 0 is chosen, then
Algorithm 13.2 reduces to the classical truncated conjugate gradient Algorithm 5.41.

Algorithm 13.2 as written does not return or maintain an estimate of the Lagrange multiplier A of
(13.2), but it could be extended to provide that as well.

Remark 5.43, which refers to the classical truncated conjugate gradient Algorithm 5.41, can be
transferred to Algorithm 13.2. In particular, the first search direction is proj{(‘irB(M_lb), which is
equal to the steepest descent direction —M ™'V L (x5, y®) 1)) M-orthogonally projected onto
ker B in the optimization context. When p(®) is a direction of positive curvature (if 0®) > 0), then
dW is the same as though we had applied a projected steepest descent method with Cauchy step
size.

Moreover, the sequence b'd?), corresponding to
pTadlo) = —.Ex(x(k),/l(k)) 40 = —f'(x(k)) d® — (A(k))Th'(x(k)) 4

is strictly monotonically decreasing as long as the search directions p'*) remain directions of positive
curvature for A. Therefore, it is reasonable to continue performing projected CG iterations until
either the desired tolerance (dictated by the outer SQP iteration, to be discussed) is reached, or a
direction of non-positive curvature is encountered.

End of Week 11
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§ 13.2 SoLruTioN oF QPs wiTH ADDITIONAL LOWER BoUND CONSTRAINTS

We now come to the solution of QPs with equality constraints and lower bounds, i. e., problems of the
form

1
Minimize EdTA d-b"d
subjectto Bd=c¢ (13.6)
and d>¢

with lower bounds ¢ € [R U {—00}] " The KKT conditions associated with (13.6) are

Ad—pu+BA=b (13.72)
p>0, £-d<0, p(t-d)=0 (13.7b)
Bd=c. (13.7¢)

Recall that an inequality constrained QP may have many local minimizers. How can we find such a
local minimizer for (13.6) or, more generally, a KKT point with associated Lagrange multipliers? We
cannot use the Josephy-Newton method since in each iteration, we would have to solve precisely a
problem of type (13.6).

There are various methods available in the literature for bound constrained (and more general inequality
constrained) QPs. We will consider here a semismooth Newton method to solve the QP (13.6)
respectively its first-order optimality system (13.7)." The semismooth Newton method addresses a
non-smooth (in fact, semismooth) reformulation of the complementarity system (13.7¢), achieved by
means of a nonlinear complementarity function.

Definition 13.4 (Nonlinear complementarity function). A function®: R* — R is said to be a nonlinear
complementarity function (NCP) if the scalar complementarity condition

a0, b>0, ab=0 forabeR

is equivalent to ®(a,b) = 0.

Prominent examples of NCP functions are

®nin(a, b) := min{a, b} “min” function, (13.8a)
®rp(a,b) = Va? + b2 —a—b Fischer-Burmeister function (Fischer, 1992). (13.8b)

Note: NCP functions must either be nonsmooth at the origin or have vanishing derivative there.
(Quiz 13.1: What is the precise formulation of this statement, and why is this true?)

We will use the NCP function ®pin(a, b). It allows us to represent the complementarity condition
(13.7¢) equivalently as
min{y, d — £} =0, (13.9)

1 Alternative methods comprise active set methods, penalty methods, Augmented Lagrangian methods, and interior point
methods.
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where the “min” is understood componentwise.

We now investigate the generalized differentiability properties of such a function.

Consider a function F: R* — R™ which is Lipschitz continuous on some neighborhood U(x) of
x € R™ Then Rademacher’s theorem states that F is differentiable on U (x) except on a set of Lebesgue

measure zero; see, for instance Ziemer, 1989, Theorem 2.2.1.”> We denote by Dp the set of points in R”
where F is differentiable.

Definition 13.5 (Bouligand and Clarke generalized derivatives). Suppose that F: R" — R™ isa
function which is Lipschitz continuous on some neighborhood U (x) of x € R".

(i) The Bouligand generalized derivative is defined as the collection of limit points of derivatives of

F near x:
there exists a sequence (x(k)) C Dr
dgF(x) = {M e R™" B B ) (13.10)
such that x%) — x and F'(x®¥) - M
(ii) The Clarke generalized derivative at x is defined as the convex hull’® of dgf (x):
dF (x) = conv dgF(x). (13.11)

Example 13.6 (Bouligand and Clarke generalized derivatives of ®p;y).

The function @iy (a, b) = min{a, b} is globally Lipschitz (with Lipschitz constant 1). It is differentiable
everywhere in R? except on the diagonal H = {(a,b) € R"|a = b}. On the open half space H* =
{(a,b) € R" | a > b}, we have Dy (a, b) = b, while Py (a,b) = a holds on H™ = {(a,b) € R" | a < b}.

Consequently, we have
0,1 H*,
(@)= o
(,0) onH".

@/

min

Since H* and H™ are open, the Bouligand generalized derivative agrees with the derivative there. Points
on the diagonal can be approximated by points of differentiability from either side, and hence we obtain

{(0,1)} for (a,b) € HY,
9BPmin(a,b) = 1{(0,1)} U{(1,0)} for(a,b) € H,
{(1,0)} for (a,b) € H™.
for the Bouligand generalized derivative and
{(0,1)} for (a,b) € HY,
OPmin(a,b) = {{(a,1—a)|a € [0,1]} for(a,b) € H,
{(1,0)} for (a,b) € H™

for the Clarke generalized derivative.

20ne also says that F is almost everywhere differentiable on U(x).
3The convex hull of a set is the smallest convex set containing it.
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Based on the Clarke generalized derivative, we can formulate a generalized Newton iteration
0= F(z™) 4 vm) (z(m+) _ z(m)y, (13.12)

As a substitute V™) for the Jacobian, we can use any invertible element of 9F(z(™) € R™". The
convergence analysis of this generalized Newton scheme is based on the notion of semismoothness.
Hence we also refer to (13.12) as a semismooth Newton method.

Definition 13.7 (Semismooth function; see Mifflin, 1977; Qi, 1993; Qi, Sun, 1993; Pang, Qi, 1993).
Suppose that F: R* — R™ is a function which is Lipschitz continuous on some neighborhood U(z) of
z € R". F is said to be semismooth at z if, for any d € R" and all sequences d®) — d, t%) \, 0 and
M®) € oF (z + t© @), the limit

lim M*a®

k—o0

exists.

There are equivalent characterizations of semismoothness available in the literature that may be easier
to verify, but we do not discuss them here since we are primarily interested in the semismoothness of
the @iy complementarity function.

Example 13.8 (®y,iy is semismooth).
The function @, : R? — R defined by ®pin(a, b) := min{a, b} is semismooth everywhere.

There is a rich calculus available for semismooth function. For our purpose, it is relevant that

(1) C! functions are semismooth (Mifflin, 1977, Proposition 4) and their Clarke generalized derivative
equals the classical derivative.

(2) componentwise semismoothness implies semismoothness (Qi, Sun, 1993, Corollary 2.4). This can
be used to show that the “vectorized” version ®py, : R?” — R” defined by ® i, (a, b) := min{a, b},
with the “min” understood componentwise, is semismooth everywhere.

(3) achain rule holds, showing that the composition of semismooth functions is semismooth (Mifflin,
1977, Theorem s5).

Theorem 13.9 (Convergence of the local semismooth Newton method). Suppose that F: R" — R”
and that z* € R" is a point where F(z") = 0. Suppose further that F is Lipschitz continuous on some
neighborhood U (z*) of z* € R", that F is semismooth at z* and that all V € 0F(z") are non-singular.
Then there exists a neighborhood Bg/[ (z*) such that

(i) 2" is the unique zero of F in B?(z*).

(ii) For any initial guess z(*) € ng(z*), the local semismooth Newton method is well-defined (indeed,
any VO € 9F (2 will be invertible), and it generates a sequence z'*) which converges to z*.
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(iii) (z(k)) converges to z* Q-superlinearly w.r.t. the M-norm.

The proof of Theorem 13.9 can be found, for instance, in Qi, Sun, 1993, Theorem 3.2. The order of
convergence can be shown to be of Q-order 1+ p for p € [0,1], i. e, up to Q-quadratic, provided that F
is semismooth of order p, but we do not pursue this any further. Notice that Theorem 13.9 contains the
local convergence theorem 5.27 for the classical Newton method as a special case since C! functions
are semismooth and their Clarke generalized derivative equals the classical derivative.

Let us now address the application of the semismooth Newton method to the solution of bound
constrained QPs, respectively their KKT conditions (13.7) written in semismooth form:

Ad-pu+BA-b=0 (13.132)
min{y, d —£} =0 (13.13b)
Bd—-c=0. (13.13¢)

We can thus write this system as a root finding problem for the function F: R” X R™1 x R* —
R™ X R"1 x R" defined by
Ad—pu+BA-b
F(d,p;,A) =] min{y, d— ¢}
Bd-c

Since the components F; and F; are linear and thus C! and the function inside the “min” term is also
linear and thus C!, we conclude that F is everywhere semismooth.

At points satisfying ;1 = d — ¢, the Clarke generalized derivative is not unique. Given a point (x, z, 1),
we define the primal-dual index sets

A(d, ) ={i €{1,..., Nineq} | i =2 d; — ;}  primal-dual active indices at (d, 1), (13.14a)
I(d,p) ={i€{l,..., Nineq} | i < d;i — &}  primal-dual inactive indices at (d, ).  (13.14b)
Also, let the diagonal matrices D74,y and D # (4, be defined by

1 ifieI(d,p),

and D N)=Id=Dyzra,..
0 ifie A, p), Aldg) T(dn)

[Dramlii = {

One choice of the Clarke generalized derivative of F is then

A -1d BT
V(d,p,A) = |Daayy Dry 0
B 0 0

At an iterate (d™), u(™, (™)) a semismooth Newton (13.12) step reads

Adm — y(m) 4 Bram) _p A -1d BT (d\m) — glm)
min{p™, d™ =€} |+ | Dggiom yimy  Drgaom yomy O [{p7H) = ptm) = 0.
Bdm _ . B 0 o | \1(m+D) _ y(m)

Due to most terms in F being linear in the unknowns, and using

min{p ™, d™ = €} = Dy (gom o 1™ + D (atm i (4™ = 0)

https://tinyurl.com/scoop-nlo 189


https://tinyurl.com/scoop-nlo

R. Herzog @O®S

we can write the semismooth Newton step more concisely as

A -1d B [a'm™+D b
D ggom yomy  Dr(gom yomy 0 [ [ = | D ggom yom € (13.15)
B 0 0] \Atmy c

Notice that the previous iterate enters solely through the active and inactive sets. Also notice that
the matrix — unlike in classical Newton methods — is not symmetric. The Schwarz theorem does
not apply since the matrix is not the Hessian of a twice differentiable function but rather the Clarke
generalized derivative of a nonsmooth reformulation of the first-order optimality conditions in KKT
form. We could, however, easily replace problem (13.15) by an equivalent one with a symmetric matrix.
(Quiz 13.2: Do you see how?)

The middle block row of (13.15) reads:

dm — p onﬂ(d(m),y(m)),
p(m+1) =0 onI(d(m),p(m)).

We may therefore remove these unknowns from (13.15). For simplicity of notation, we drop the iteration
indices from the unknowns and the active/inactive sets for now and introduce selection matrices

Za = rows of Id € R™" pertaining to active indices

Zr = rows of Id € R™" pertaining to inactive indices

so that we can write
d=Z%da+Z%dr and p=Zgua+Zrjr

with subvectors d 4 = Z#d and d;y = Zyd of d, and similarly for ;.. Notice that ZT?{Z 2 = D4 holds
and also Z}Z 7 = Dy. Moreover, Z ﬂZ}{ and Z IZ} are identity matrices of appropriate dimensions.

Plugging in the information d.s = Z# ¢ and ji; = 0 obtained from the middle block row of (13.15), we
arrive at the equivalent reduced problem

ZrAZy ZiB|(dr\ _ (Zr(b—ADgt)
BZ, 0o |[\1)~\ c-BDat

(13.16)
together with d 4 = Z4¢, iy = 0 and

HaAa = ZﬂAZ}d[ +ZﬂBT}. - Zy{b +ZaADgt = Zﬂ(Ad +B"} - b)
(Quiz 13.3: Can you confirm this?)

We are now in a position to state the semismooth Newton method for the lower-bound constrained

QP (13.6).

Algorithm 13.10 (Semismooth Newton method for the KKT conditions (13.13) of the lower-bound
constrained QP (13.6)).

Input: initial guess d'®) € R"

Input: initial guess u'* € R"
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Input: right-hand sideb € R"
Input: right-hand side c € R"«
Input: lower bound { € [R U {—oo}]n
Input: symmetric matrix A (or matrix-vector products with A)
Input: matrix B of full row rank (or matrix-vector products with B and B")
Output: approximate solution of (13.13)
1 Setm =0
2: Determine the active and inactive sets

A = {ie{y,...,n}| g™ = d"™ -4}
7m = {ie {1,...,n}|p.(m) < dl,(’") -4}

4

32 whilem = 0 or A™) is different from A™V do

& Set d(m+) .= D aomt / Set the active components ofd(’"“)
5: Solve the linear system / Solve for the inactive components of d"™*V) as well as for A"+
ZrmAZ ) Zyom BT di_’;’;;) (Zrm(b-A d(m+D)y
B Z}(m) 0 ) (m+1) ¢ — Bd(m+)
6: Set yi,r(",:)l) =0 / Set the inactive multiplier components
Set y(;z;l)) = Zqom [AdMD 4 BTAMD _ p] / Set the active multiplier components

Determine the active and inactive sets

Alm+D) {i €{1,...,n} |,u(m+1) > dl.(mH) - {’,-}

i
J(m+) . {i e{1,...,n} |;1i(m+1) < di(mH) - [i}
9: Setm =m+1

10: end while
u: returnd™, /1(’"> and A(m)

Remark 13.11 (on Algorithm 13.10).

(i) You can convince yourself that the solution (d™, y(m+) 1m0y 1o the semismooth Newton
system (13.15), achieved through Lines 4 to 7 in Algorithm 4.6, satisfies the necessary optimality
conditions for the equality constrained QP

1
Minimize EdTAd -b'd
subjectto Bd=c

and d=¢ onAM™
and d is free on 7™

(13.17)

(m+1)
)

The quantities p FA(m and A"V serve as the unique Lagrange multipliers associated with the

constraints { —d = 0 and Bd — ¢ = 0, respectively, and "™V is then padded with zeros on T ™,

(if) In case A is positive definite on ker B, the semismooth Newton system (13.15) will be uniquely
solvable, regardless of the active set. (Quiz 13.4: Can you explain why?)
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(iii)

(iv)

(v)

(vi)

(vii)

(viii)

From iteration to iteration, the only quantity that changes is the active set (and therefore also
the complementary, inactive set). Once the active sets agree between two consecutive iterations, a
solution of the KKT conditions has been found.

In a numerical realization of Algorithm 13.10, we do not actually have to form the selection matri-
ces Zyomy and Z gom . Instead of (13.16), we can formally consider the system

5 3000

and implement the projected conjugate gradient method (Algorithm 13.2) to work only on the inactive
indices of the unknown d, and to consider exclusively the inactive indices of the first block row.
When initialized with d = D ¢, the iterations will be identical to those of the projected conjugate
gradient method applied to the reduced problem (13.16) and initialized with d; = 0. The details are
beyond our scope here.

Algorithm 13.10 is is known as a semismooth Newton method and as a primal-dual active set
method. The latter derives from the fact that

(1) it is an active set method, which means that it maintains and updates a working set of indices
(into the components of the inequality constraints) deemed active, enforces the inequalities as
equalities there, and ignores the inequalities deemed inactive,

(2) the active sets are determined from a combination of primal (d) and dual (1) quantities; see
(13.14). The equality constraint multiplier A does not play a role here, therefore we do not
require an initial guess for it.

In the absence of a better initial guess, an initialization of Algorithm 13.10 with d® = 0 and
,ul.(o) = —oo foralli=1,...,nineq leads to an initially empty active set A = 0 and will result in

dW solving the QP with the inequality constraints removed.

We recall that the lower bound ¢ can have components equal to —co. Those components will belong
to the inactive set in all iterations.

In the presence of inequality constraints in (7.1), an SQP method may result in three levels of
iterations:

(1) The outermost iteration (with iteration counter k) is the SQP iteration. In every iteration, we
have to solve an inequality constrained QP. Using the slack reformulation (12.1), the inequality
constraints in all QPs will be lower bound constraints.

(2) The middle iteration (with iteration counter m) is the semismooth Newton iteration which deals
with the inequality constraints in each QP. In every iteration, we have to solve an equality
constrained QP (13.17).

(3) The innermost iteration (with iteration counter £) arises when we apply the projected conjugate
gradient to the solution of this equality constrained QP, respectively to the linear system
representing its KKT conditions (13.16).
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End of Week 12

§ 14 FURTHER PRACTICAL AsPECTS OF SQP METHODS

So far we have discussed only local aspects of SQP methods. In order to devise a practical algorithm,
many further questions need to be addressed. Let us mention some of them:

(1) How can we achieve global convergence of an SQP method, in the sense that accumulation
points are KKT points?

(2) How can we ensure that the fast local convergence properties of the local SQP method (see
Corollary 11.15) are preserved under the globalization?

(3) Can we use quasi-Newton updates of the Hessian of the Lagrangian instead of forming it exactly?
(4) How can we deal with potentially infeasible QP subproblems?
(5) How can we deal with non-unique Lagrange multipliers in the QPs, i. e., lack of LICQ?

We will discuss some of these aspects in this section. However, given the wealth of these and further
questions, it can be expected that there are countless useful varieties of practical SQP methods.

§ 14.1  GLOBALIZATION OF SQP METHODS BY LINE SEARCH

We recall that globalization is an effort to ensure that accumulation points of the sequence of iterates
are KKT points. For constrained problems, the two goals “feasibility” and “stationarity” need to be
taken into account simultaneously. Therefore, a line search solely with respect to the objective as in
§ 5 is not appropriate. Instead, one considers line search with respect to a merit function.

Various merit functions are in use in the literature. We consider the # penalty function as merit
function, which measures the constraint violation in terms of the #;-norm. It is defined as

$1(x;y) = f(x) +ym(x)

= fG) +y ) max{0,gi(x)} +y ) k()]
i=1 Jj=1
= f(x) + llmax{0, g(x)} | + y A(x) s (14.1)

with the #-norm ||-||;. Here y is called the penalty parameter. The function sy and thus ¢; are not
everywhere differentiable. However, the (one-sided) directional derivatives
m(x +td) — m(x)

3

7 (x;d) = }1{%
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exist everywhere and they are given by

Nineq Nineq Tineq
(x;d) = Z 0 + Z max{0,g/(x)d} + > gi(x)d
g(9<0  gi(0=0 g1(0)>0
e - neq
+ Z ~H(x)d  + Zm;(x) d + Z R (x)d. (14.2)
h,-(j;)l<o hj(';):o hj(;)>o

Lemma 14.1 (descent direction for ¢;; compare Ulbrich, Ulbrich, 2012, Satz 19.11). Suppose that (d, p, A)
is a KKT point of

1
Minimize f'(x®)d + 5 dH®d,  whered € R"

subject to g(x™) +¢'(x*)d <0 (14.3)
and h(x®)+ K (x®)d =o.
Moreover, suppose that
v = max {||ulleo, 1A}

holds. Then we have
¢! (x;d) < —d"H®d.

When H'®) is positive definite and d # 0, we therefore have
$1(x;d) <0,

i.e., d is a descent direction for the ¢, penalty function.

Proof. We estimate

Mineq

wg (¥ d =" pigi(x*)d
i=1
Mineq Tineq
= 2 mg I = D g ) sinee (g1 + g1 d) = 0

gi(x(k))>0 gi (x<k))<0

Mineq
> Z Hi g; "(x®)d since y; > 0

gi (x(k))>0

Nineq
>y Z g/ (x®yd since y > y; and g} (x¥) d < —g;(x®) < 0.

gi (x(k))>0
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For the equality constraints, we obtain similarly

Neq
AR (x%))d = Z Ak (x®) d
j=1
Neq
_ZA H(x®)yd  + ZA 1 (x9) d
h; (x(k>)¢0 h; (x(k)) 0
Neq Neq
= Z LR (x®)d  + Z AR (x®)d  since h(x®)) + 1/ (x¥)) d = 0
” .
hj(x®))>0 hj(x®))<0
Teq Neq
> yZh;(x(k))d - yZh}(x(k))d since y > [A;].
4 _
h; (x®))>0 hj(x®)) <0

From the stationarity of the Lagrangian for (14.3), i.e., Vf(x®)) + H®d + ¢’ (x ")y + b’ (x®))TA = 0,
we thus have

Fx®d=-dH®d - yTg (x*)d - ATh’(x(k)) d

Nineq
<-d'H®d - ng (x®yd - yZh’ (x<k>>d+y2h’ (x®)d. (*)
j=1 Jj=1
(x“‘>)>0 hj(x®))>0 hj(x ) <0

Plugging this into the formula (14.2) for the directional derivative, we find

¢ (xM; d)
= (") d+yx(x";d)

Nineq Nineq

=S Ay ) max{0.gi(x ) d) 4y ) gi(xd
gz(x(k)) 0 gi (x(k))>0
Negq
- yZ Wo(x®Y)d + yZ|h' (x®Y d| + yZ W(x®Yd  dueto (14.2)
h;j (x<’<>)<o h; (x<’<>) 0 hj (x(k>)>o
Mineq Tleq
<-dH®d+y Z max{0, g/ (x®)) d} + )/Z|h}(x(k)) d| due to (%)
i=1 =1
gi (x(0))=0 hj(x®))=0
=-d"H®4.

The last equality holds since, due to feasibility, we have g(x®)) + ¢’(x®))d < 0 and h(x®)) +
W (x%)) d = 0. This shows
¢l(x;d) < —d"H®d

as claimed. When H is positive definite' and d # 0 holds, then clearly
¢! (x;d) < —d"H®d < 0. O

Un fact, it is enough for H to be positive definite on ker b’ (x(K)).
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When all inequality constraints in an NLP (7.1) are converted into lower bound constraints by means
of the slack reformulation (12.2), we use the # penalty function in the form

$1(x;y) = f(x) +y Al (14.4)

That is, the lower bound constraints are not included by the penalty function because they can be
taken into account exactly, through the QP solver. The directional derivative (14.2) then simplifies to

Neq Neq Neq
m(xd) =) -hjx)d + Y |Hxd + Y Kx)d (14.5)
Jj=1 Jj=1 J=1
h;(x)<0 R (x)=0 h;(x)>0

We now specify an SQP line search model algorithm for the slack reformulation

Minimize f(x), where x € R"
subjectto  h(x) =0 (12.2)
and x >{.

of an NLP (7.1) with lower bound ¢ € [R U {—00}]".

Algorithm 14.2 (SQP Model Algorithm with Line Search; compare Geiger, Kanzow, 2002, Algorith-
mus 5.37, Nocedal, Wright, 2006, Algorithm 18.3 and Ulbrich, Ulbrich, 2012, Algorithmus 19.12).

Input: initial guess x'*) € R"
Input: routine to evaluate f and f’ (or Vf)
Input: routine to evaluate h and b’
Input: lower bound ¢ € [RU {-o0}]|"
Input: initial symmetric model Hessian H'®) € R™™ (possibly s. p. d.)
Input: routine to determine the symmetric model Hessians H®
Input: Armijo parameter o € (0,1/2)
Input: backtracking parameter € (0,1)
Input: penalty rule parameter p € (0,1)
Output: approximate KKT point of (12.2)
1 Setk =0
2: Set the initial penalty parameter y(V) := —co
while stopping criterion not met do
4 Determine a solution d®) of

@

1
Minimize f'(x%)d + 5 dH®d,  whered € R"
subjectto h(x®) + n' (x*®)d =0 (12.3)

and x% +d>¢

with associated Lagrange multipliers pi and A
1 if(d)yH® R > 0o
5 Set y() .= { (™)

0 if(dW)H® IR < g / curvature indicator
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£/ W) d0 4 0 1) g

6: if y=1 satisfies y(k_l) > then
(1= p) IR(x®N)]x
Set y(K) = (k=D / penalty parameter is already large enough
else
1(x0)) g0 4 o (B) 1 g(RYTE(R) g(k)
x +
9: Setyk) = f) A (k ) / increase the penalty parameter
(1= p) Ilh(x®)L

10: end if
11 Determine a step size a® > 0 from an Armijo line search procedure (Algorithm 5.11), applied

top(a) = f(x® +ad®) + y©||\h(x® + ad®)|,, with initial trial step size «'**) = 1, Armijo
parameter o and backtracking parameter f3

12: Set x (k1) = x (k) 4 (k) g(k) / update the iterate
13: Set kD) = 1K) 4 () (- k) / update the bound constraint Lagrange multiplier
14 Set Ak+) = 1K) 4 g () (3 — A(K)) / update the equality constraint Lagrange multiplier

15: Setk = k+1
16: end while
17 returnd®, 1* and 1K)

Remark 14.3 (on Algorithm 14.2).

(i) The choice of the penalty parameter is motivated as follows. We can use the model
4 l ’
¢P (@) = fEE) + 1) d o} O d) SAHE d+y ) + 1 )l (a6)

for the t, merit function. Here y\¥) is a curvature indicator, defined as

1 ifdH®d > o,
X(k)(d) = f Trr(k)
0 ifdH'Wd<o.

The goal is to make the penalty parameter y large enough so that a certain fraction in the decrease
of ¢'¥) in the current step can be attributed to a decrease in the penalty term. In terms of formulas,
one requires

fraction

g (0) = q® (@®) = Ty [IhG) = h(x®) + 1 (xE) d|],] .

decrease in the model of the merit function decrease in the penalty term of the model

Plugging in the model (14.5), we can rewrite this as

/ 1 ’
VRGO = £/ ©) a® = 0 @®) Z@OTER O —y ) + 1 (9 d O,
> py (I = 1A G®) + 1 (x9) O,
Since d'%) is feasible for the QP (12.3), this is equivalent to
’ 1
Y ||h(x(k))||1 —f (x(k)) d®) _ X(k)(d(k)) 5(d(k))TI_I(k)d(k)

> py h(x®)|s
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and finally to
ff(x(k)) d5 4 ) (g(k)y %(d(k))TH(k)d(k)

(1= p) lIR(x®)]y
This is the condition enforced through Lines 6 to 10.

(ii) The step size a'X) obtained from the Armijo line search is used to update both the optimization
variable and the Lagrange multipliers; see Lines 12 to 14.

(iii) The model Algorithm 14.2 still leaves a number of important details open, which are touched upon
in the coming subsections.

§ 14.2 QuAsi-NEwToN SQP METHODS

The benefits of using quasi-Newton approximations of the Hessian of the Lagrangian £, (x¥), (%) 1(K))
as Hessians H'¥) in the sequence of QPs are the same as in unconstrained optimization (§ 5.7). In
contrast to (5.45), quasi-Newton updates are based on the data

sk oo (k1) _ (k) —  (R) g(R)  apd y(k) = VXL(x(kH),u(k),/l(k)) —VXL(x(k>,y(k),)L(k>). (14.7)

In the unconstrained optimization context, we used the fact that d (k) was a descent direction for the
objective. A Wolfe-Powell line search then ensured (y*))7s(®) > 0, which is a necessary condition
for the positive definiteness of any quasi-Newton formula and is also sufficient for DFP and BFGS;
see Lemma 5.49. Unfortunately, we cannot expect this result to be applicable here since d*) is not
necessarily a descent direction for L(x(k), y(k), /1(")). Therefore, a Wolfe-Powell line search w.r.t. to
L is generally not applicable. Even if it were successful, it might not yield (y*))7s(®) > 0; see the
proof of Lemma 5.48. In any case, the line search applied in Algorithm 14.2 is w.r.t. the merit function,
not the Lagrangian, and one usually goes with the simpler Armijo backtracking procedure.

We describe here an often used modification of the BFGS update proposed by Powell, 1978, which is
still able to maintain positive definiteness. This strategy replaces the BFGS update

Pprgs(H, s, y) = H — Hf o +pyy withp= — (5.55)
sTH's y's
by the damped BFGS
DPamped BFGs (H, 5, y) = H — Iif :ITSH +pyy withp = % (14.8a)
Here 7y is a convex combination of y and H s, namely
y=0y+(1-0)Hs, (14.8b)

where the scalar 6 is defined as

0.85TH ) (14.8¢)
STHi_yfs if y's < 0.25"Hs.

g {1 if y's > 0.25"Hs,
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When H is symmetric positive definite, then it can be easily shown that 8 € [0,1]. (Quiz 14.1: Details?)
One of the extreme cases is 6 = 0, which means ®gamped Brgs (H, s, y) = H and results in H (k+1) = py k)
in an algorithm. The other extreme case is = 1, which means ®gamped BrGs (H, s, ¥) = Pprcs(H, s, ¥),
i.e., a regular BFGS update step.

Lemma 14.4 (Positive definiteness of the damped BFGS update; see Geiger, Kanzow, 2002, Lemma 5.38).

Suppose that H is symmetric and positive definite and that y, s are any vectors, s # 0. Then H:{amped BFGS =

@gamped BEGs (H, 8, y) is symmetric and positive definite as well.

Proof. The proof is part of ??. O

§ 14.3 INFEASIBLE QP SUBPROBLEMS

The linearization h(x¥))+ k" (x(¥)) d of the constraints h(x) = 0 may lead to infeasible QP subproblems.
This phenomenon is also known as inconsistent linearization.

Example 14.5 (from Geiger, Kanzow, 2002, p.264). Consider the problem

Minimize x°, wherex € R

subject to 1—x* < 0.

The feasible set is (—co, —1] U [1, co). When linearized at x'*) = 0, the constraint g(x*)) + ¢’ (x¥))d < 0
reads

1+0d <0,

which is impossible to satisfy.

Quiz 14.2: Would the reformulation using slack variables solve the issue?

A prominent idea to deal with potentially infeasible QPs is to relax and penalize their constraints. We
describe this technique for a QP with general constraints (14.3). To simplify the notation, we write this
here as

1
Minimize EdTA d—b'd
subjectto  Begd —cCeq =0 (14.9)

and Bineq d- Cineq < 0.

The slack reformulation is contained as a special case.
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The penalty reformulation of (14.9) reads

1
Minimize EdTAd -b'd+y [lTZ} +1Tw + 1Tt], where (d, v, w, ) € R" X R™4 x R x R"nea

subjectto  Beqd —Ceq =0-—w
and  Bipeqd — Cineq < £
aswellas >0, w>0,t>0.

(14.10)
This penalized QP is always feasible (Quiz 14.3: Why?).

A convergence analysis of a modified SQP algorithm utilizing this penalty approach can be found in
Geiger, Kanzow, 2002, Abschnitt 5.5.7 and 5.5.8.

§ 14.4 FAsT LocAL CONVERGENCE AND THE MARATOS EFFECT

We already emphasized in the context of unconstrained optimization methods that a globalization
mechanism is not supposed to interfere with the fast local convergence we typically obtain in a local
version of the method; see for instance Theorem 5.33. Unfortunately, the use of a line search w.r.t.
a merit function can cause the step size a'*) = 1 to become unacceptable, thus impeding fast local
convergence. This phenomenon is known as the Maratos effect, first described in the dissertation
Maratos, 1978.

Example 14.6 (Maratos effect; compare Geiger, Kanzow, 2002, Beispiel 5.39 and Powell, 1986).
Consider the problem
Minimize 2 (x?+x?—1)—x;, wherex € R?

14.11
subject to  x? + x5 —1=0. (4-1)

We find the following expressions for the derivative of the objective f and the equality constraint h:

Vf(x)=4x— ((1)) , F7(x) = 41d, Loc(x,A) = (44214
Vh(x) = 2 x, h'(x) = 21d.
It is easy to see that x* = (1,0)" is the unique global minimizer and that A* = —3/2 is the unique

associated Lagrange multiplier. The second-order sufficient condition (Theorem 9.5) and the LICQ hold.
Due to the absence of inequality constraints, the strong second-order sufficient condition (Definition 11.12)
coincides with the usual second-order sufficient condition and thus holds as well. Therefore, Corollary 11.15
guarantees the local Q-quadratic convergence of a local SQP method.

We consider an iterate (x), 2%)) and the associated QP

1
Minimize f'(x®)d + 5 (4+2250) ||d|?

subject to h(x®) +2 (x*)Td = 0.
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The KKT conditions of the associated QP read
Viax®) + (44228 d+21x% =, (14.122)
h(x®) +2 (xF)Td = 0. (14.12b)
Since f and h are quadratic, their second-order Taylor expansion is exact. We obtain
FEO 4 D) = ) = () d 2T () g
= —(+220) I - 22 <O+ 4 by (14.122)
= —(2+225) ||d||? + 2 h(x*)) by (14.12b).
We also have
G +d) — h(x®) = ' (x) d + %dTh”(x(k)) d
= —h(x™) +|d||? by (14.12b).

We now consider the case where x¥) is already admissible, i. e., h(x(k)) =0, butx®) # (%1,0)". Moreover,
we assume A%) < —1. Then the unique solution d of the QP satisfies d # 0 (Quiz 14.4: Why?) Thus we
have

Fx® +d) - F(x®)y = —@2+22F) |d|)2 + 1 h(xF) > 0

———
=0

and also
h(x® +d) = h(x") = = h(x®) +]|d|)* > 0.

S~—— S——
=0 =0

This means that the full QP step d would increase both the value of the objective and the value of the
constraint penalty, i. e.,

$i(x® +d) = fF(x® +d) +y® |px®) + d)| > 1(xP)),
for any value of the penalty parameter y)! Therefore, the Armijo condition will not hold for the full step

size a®) = 1. Consequently, a step size a'%) < 1 will be chosen in Algorithm 14.2, resulting in the loss of
Q-superlinear convergence. Starting close to the solution does not help.

Another concrete example for the Maratos effect is given in Nocedal, Wright, 2006, Example 18.1.

One strategy to overcome the Maratos effect is known as second-order correction. In a nutshell, one
modifies the QP direction d in case the step size a(K) = 1is not acceptable. This modification requires
the solution of a second QP. We refer the reader to Geiger, Kanzow, 2002, Abschnitt 5.5.6 or Nocedal,
Wright, 2006, p.543 for details.

§ 14.5 GLOBALIZATION STRATEGIES DIFFERENT FROM LINE SEARCH

Apart from line search, two other globalization strategies are known in constrained optimization.
These are trust-region and filter approaches.
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TRUST-REGION APPROACH

We already saw trust-region methods for unconstrained optimization in § 6. An advantage is that we
can dispense with the positive definiteness of the model Hessians since the trust-region constraint
ensures that the QP cannot be unbounded. However, a direct transfer of the technique by considering
trust-region constrained QPs such as
1
Minimize f’(x®))d + 5 d"H"™ d,  whered e R"
subjectto  h(x®) + 1 (xF)d =0
and ¢—x® —d<o
plus ||d[l; < AP
is impossible. (Quiz 14.5: What might be the problem with (14.13)?)

(14.13)

One possible fix was proposed in the dissertation Omojokun, 1989 supervised by Richard Byrd; see also
Conn, Gould, Toint, 2000, Chapter 15.4. The resulting class of methods is known as composite-step
trust-region methods or Byrd-Omojokun methods. They decompose the step d into a normal
step and a tangential step according to d = n +t.

The normal step serves to improve the linearized feasibility. It is defined as the solution to
Minimize [|h(x®) + B’ () n||? + |max{0, £ — x*) — n}|?

. (k) (14.14)

subjectto ||n||p < LAY

Here { € (0, 1) is the fraction of the trust region radius reserved for the normal step. Problem (14.14) is
a convex problem with a C!, piecewise quadratic objective. In the absence of inequality constraints, we
can approximately solve (14.14) by the dogleg method, which considers the Cauchy point n¢ of (14.14)
as well as the unique least-norm solution ny¢c of (14.14) with the trust-region constraint removed:

. 1 9
Minimize —|n[|5,
2 (14.15)

subjectto  A(x®) + 1 (x®) n = 0.

Problem (14.15) can be solved using the projected conjugate gradient method (Algorithm 13.2). The
dogleg method then either returns ny ¢ (if it satisfies the constraint ||nycllp < ¢ A(k)), or else it finds
the unique intersection of the path

0 — Cauchy point nc — least-norm solution ngc

with the trust-region ball ||n]|s < ¢ A%,

The purpose of the tangential step is to reduce the value of the objective in (14.13) while maintaining
the achieved level of linearized feasibility. The tangential step may use up the remainder of the
trust-region ball. This results in the problem

1
Minimize f'(x®) (n+1) + 5 (n+ DT Ly (x50, 4y ® 10 (0 4 1)

subjectto B (x®)r=0

and > min{0, £ —x® —n}

(14.16)

aswellas |n+t]|y < AR,
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In practice, the trust-region constraint in (14.16) is often replaced by the simpler ||t||[2\4 < (A2 —
lInl3,- In the absence of inequality constraints, problem (14.16) too can be solved using the using the
projected conjugate gradient method (Algorithm 13.2), endowed with the Steihaug-Toint modifications
(Algorithm 6.14) to monitor the curvature of search directions and the trust-region constraint.

Finally, there is typically a Lagrange multiplier update step. In the absence of inequality constraints,
this can be formulated as

1
Minimize ||V FeED) 40 (o FDYTAR (14.17)

FILTER APPROACH

A filter approach for the solution of nonlinear optimization problems was first introduced in Fletcher,
Leyffer, 2002. It uses a measure of infeasibility, e. g.,

Nineq Neq

m(x) = ) max{0,g:(x)} + Y [h;(x)],
i=1 Jj=1

as in the #; penalty function. We can then consider the problem

Minimize f(x), where x € R"
subject to  g;(x) <0 fori=1,...,Nineq (7.1)
and hj(x) =0 forj=1,...,n.

as a minimization problem with two goals, the minimization of both f and ;. Such problems are
known as multiobjective problem.

Filter methods maintain a collection of “interesting” points x(¥), called the filter. All subsequent
iterates compete against points in this filter. More precisely, we say that a pair (f (x()), ﬂl(x(k)))
dominates another pair (f(x([)), nl(x([))) if both f(x®)) < f(x®) and h(x®) < h(x®) hold, i.e.,
if x(%) is better than x(*) both with respect to objective value and feasibility violation. A filter is any
collection of points x(¥) such that no pair dominates any other pair, i. e.,

F = {x(l), cx®) | (f(x(k)), nl(x(k))) is not dominated by (f(x(()), Jrl(x(())) for any ¢ # k} .
(14.18)

A trial iteration, obtained from the solution of a trust-region constrained QP, is then accepted into the
filter if it provides a certain improvement over the points already present. Points which are dominated
by the new member are then removed from the filter. The details of a practical method are beyond our
scope here.

End of Week 13
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Chapter 4 Differentiation Techniques

All algorithms we considered require at least first-order derivatives of the objective and the constraint
functions. Providing these derivatives can be an extra burden to the user. Therefore, the question arises
whether these derivatives can somehow be obtained automatically. This of course also of interest
outside of applications in optimization.

We generally in this chapter consider first-order derivatives for differentiable functions F: R” — R™.
We recall the structure of the Jacobian

oFy(x) oF(x)
T o

F'(x) = : : e R™".
OFu(x)  Fu(x)
ox1 oxp,

We denote the partial derivatives of F, i. e., the columns of the Jacobian, by gTF_'
J

§ 15 FINITE DIFFERENCE AND COMPLEX-STEP APPROXIMATION

§ 15.1  FIRST- AND SECOND-ORDER FINITE DIFFERENCES

Finite differencing (also known as numerical differentiation) is the most elementary approach to
evaluate derivatives for a given function. Recalling the differentiation formula
F(x+td)—F(x
F'(x)d = lim ( )~ K ),
t—0 t

it is an obvious idea to approximate this directional derivative by the finite difference
F(x+td) - F(x)
t

for some value of t # 0. In case of t > 0, we speak of a forward difference, while t < 0 is referred
to as a backward difference. Using (15.1), we can thus approximate derivatives using only function
values. Every column of the Jacobian requires one additonal function evaluation with v = e;, the j-unit

(15.1)

F(x)d =

vector.

A Taylor analysis shows that the accuracy of (15.1) is of order t (provided that F is of class C?), in
short:

€eO(|t]) ast— 0.

F(x)d - F(x+tci) — F(x)
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(Quiz 15.1: Can you fill in the details?) Thus, in principle, the approximation can be made arbitrarily
precise by choosing ¢t small enough. In numerical practice, however, the accuracy is limited by round-
off effects, which dominate the error when ¢ is small, since taking the difference between two similar
numbers is ill-conditioned (“catastrophic cancellation”).

In order to achieve higher accuracy, one resorts to a central difference formula

F(x+td) - F(x - td)

F(x)d =
(x) "

(15.2)

which is twice as expensive but yields O(|t|?) accuracy (provided that F is of class C?). (Quiz 15.2:
Can you fill in the details here as well?) It thus (often) allows us to use larger values of ¢, which cause
less round-off error. In any case, the optimal value for the step size t depends on the function F and
the direction v and is generally unknown.

Many optimization solvers provide a finite difference functionality and fall back to it in case the user
does not provide the respective derivatives.

§ 15.2 COMPLEX-STEP DIFFERENTIATION

A lesser known approach is complex-step differentiation; see Lyness, Moler, 1967; Squire, Trapp,
1998. It requires F: R" — R™ to be a function which smoothly extends into the complex space to a
function F: C" — C™. A sufficient condition is that F is analytic.

The main idea is to use the Taylor expansion
1
F(x+itd)e F(x)+itF'(x)d- Etz F”(x)[d,d] + O(|t]*) (15.3)
for x,d € R", where i is the imaginary unit. This means that

F(x) eReF(x+itd)+O(|t|*) and F'(x)d €Im +0(|t)

F(x+itd)
t
holds for t € R, t # 0. This has the advantage that we can obtain a second-order accurate approximation
of F’(x) d with just one evaluation of F, albeit for a complex argument. Since no differences need to

be taken, catastrophic cancellation does not take place.

Example 15.1 (finite differences vs. complex-step differentiation'). We consider the function F: R — R,
given by

_ exp(x)
FGx) = (cosx)3 + (sinx)3’

Its true symbolic derivative (in the directiond = 1) is given by

exp(x) [(cosx)® + (sinx)® — 3 ((sinx)? cos x — (cos x)? sinx) ]

F(x) = :
[(cos x)3 + (sinx)3]

'This example is from Cleve Moler’s blog https://blogs.mathworks.com/cleve/2013/10/14/
complex-step-differentiation/.

https://tinyurl.com/scoop-nlo 205


https://blogs.mathworks.com/cleve/2013/10/14/complex-step-differentiation/
https://blogs.mathworks.com/cleve/2013/10/14/complex-step-differentiation/
https://tinyurl.com/scoop-nlo

R. Herzog @O®S

F can be extended to a function C — C and the formulas for F and F’ remain the same.

We numerically compare

F —F
the first-order finite difference M

t
Fx+t)—F(x—t
the second-order central finite difference ( ) T ( )
L F(x+it)
the complex-step approximation Im -

for a range of valuest > 0 to approximate the derivative F’'(x) at x = Z. It exact value is F'(x) ~ 3.1018.
The results are shown in Figure 15.1.

1020 —

—— first-order FD
second-order FD
complex-step

1010 L
S
]
c
il
T oL
£ 10
=
o
o
o
©
10'10 —
10_20 L L R 1 L L 1 L L 1 L L R 1 L L L P
10720 1015 10710 107 10° 10°
step size

Figure 15.1: Comparison of the approximation errors of the first- and second-order finite differences as
well as the complex-step approximation for the function in Example 15.1. We clearly see
the limited accuracies due to round-off in the finite difference approximations, while the
complex-step method achieves full machine precision.

§ 16 ALGORITHMIC DIFFERENTIATION

Algorithmic Differentiation (also known as Automatic Differentiation or AD) is a technique to
evaluate derivatives of functions F: R” — R™ that are realized by computer code. The origins of AD
reach as far back as the 1950s; see the references in Bischof, Hovland, Norris, 2008; Griewank, Walther,
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2008. Algorithmic differentiation is based on the fact that even complicated functions are ultimately
compositions of elementary operations such as “+”, “-”, “exp”, etc. Using a table of the derivatives of
these elementary functions and the chain rule, the computer code realizing derivatives (for instance
the directional derivative F’(x) dx for a given direction dx) can be automatically generated. We begin

with an example.

Example 16.1 (algorithmic differentiation by hand). We use the function from Example 15.1. When
implemented, e. g., in PYTHON syntax, the function may look like this:

y = exp(x) / (cos(x)**3 + sin(x)**3)

When this expression is broken down into elementary functions, which is similar to what a compiler would
do, we might obtain the following sequence of intermediate results. Next to each elementary operation, we
also write the respective derivative.

X 5 X

e=e € =e X
¢ == cos(x) ¢ = —sin(x) x
c3 = ¢ é3 = 3c¢2¢
s := sin(x) $ == cos(x) x
S3 = s S3 = 352§
d=c3+s3 di=1¢3+8

e . é e
=g V=TT

Here a dot above a quantity means the derivative of that quantity with respect to the input variable x, in
a given direction 8x in input space. In this example, since x is a scalar, it is reasonable to set 6x = 1, which
amounts to x = 1.

While the differentiation process in Example 16.1 was carried out by hand, we were following a
simple set of rules, which can be formalized and automated. In general, we can think of the result
y = F(x) € R™ being obtained from the input x passing through a sequence of elementary operations,
which can be arranged in a computational graph.

Definition 16.2 (Directed graph).

(i) A finite directed graph (digraph) is a pair G = (V, E) consisting of a finite set V (whose elements
are called vertices) and a finite set E (whose elements are called edges or arcs). Every edge is a
pair (u,0) € E withu,o € V.

(ii) A digraph is called simple if no edge is of the form (u,u) (no loops), and if every possible edge
(u,v) appears at most once in E.

(iii) The fact that (u,v) is an edge with tail u and head v will also be denoted by the short-hand notation
u < v orv > u. In this case, we also call v a direct successor of u and u a direct predecessor of v.
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Figure 16.1: Computational graph for a possible realization of the function F(x) = #ﬁznxﬁ (left)
and the corresponding graph for its derivative (right).

(iv) A tuple (vy,...,vx) of vertices, k > 1, is said to be a path from vy to vy if (v;,0i41) € E holds for
i=01....k—1

(v) A simple digraph is said to be acyclic if there is no path from any vertex back to itself.

We now generalize the computations in Example 16.1 to a general function y = F(x). We assume
that the function evaluation has been represented as a simple, acyclic digraph, which we term a
computational graph of F. The vertices vy, . .., vy of the graph correspond to intermediate quantities,
which can be scalars or vector-valued quantities. Our convention is that vy = x is the input and
ony = y = F(x) is the output. Consequently, vy has no direct predecessors and vy has no direct
successors. Every intermediate quantity vy, ...,on is going to be a function of some of the other
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intermediate quantities. We denote this fact in the form

0;i = ¢i(v))j<i- (16.1)

The functions ¢; are called elemental functions. They are typically unary or binary functions, i. e.,
{Jj | j < i} has typically zero, one or two entries. (Quiz 16.1: How do we usually refer to a quantity v;
that does not depend on any input?) We can assume that the vertices are ordered to that j < i implies
j < i. In other words, no intermediate quantity depends on an intermediate quantity with a higher
index.

As illustrated in Example 16.1, we may evaluate a directional derivative F’(x) x by propagating, along-
side the values of the intermediate quantities vy, vy, . . ., vn, the values of their directional derivatives

0; = %(x) dx through the computational graph. Due to the chain rule, these values obey
@i:Z%(Uj)i’j forizl,...,N. (16.2)
— an
Jj<i
We initialize the process by setting
0y = ox
and then implement (16.2) with an outer loop over the vertices v; from i = 1,..., N and a (short) inner

loop over the few vertices v; that vertex v; depends on. Due to y = vy, we will obtain the desired
derivative as y = 9y = F'(x) dx.

Remark 16.3 (on the forward mode of algorithmic differentiation).

(i) The process of propagating directional derivatives through the computational graph simultaneously
with the quantities needed for the evaluation of F(x) is known as the forward mode of algorithmic
differentiation. The quantities 0; are also known as tangents.

(if) Mathematically speaking, the forward mode computes F’(x) 8x, i. e., a Jacobian-vector product, by
evaluating the components of the chain rule from the right. For example, in the graph
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we have (omitting arguments for readability)

d a d a 0 a
035 D0, O (30 ) 90 (901 (163)

03 = —01 + Vg =
Jdug du, dvy \ duyg du, \ oy

(iii) It is easily possible to evaluate several directional derivatives of F'(x) dx at once. All we have to do
is make dx a matrix with one column for each direction in the input space. We will then propagate
all directional derivatives at once. This is known as the vector forward mode, and dx is called the
seed matrix. For example, when 6x = 1d, we will obtain the full Jacobian y = F’(x) §x = F’(x)
instead of a single Jacobian-vector product.

(iv) A computational graph is an idealized model of a function that is realized as computer code. For
instance, when variables in a code are overwritten, an acyclic computational graph representation
requires new variable names to be generated for disambiguation. In addition, we often have
constructs which make the conversion into a static computational graph impossible, e. g., loops with
a variable number of iterations. Nonetheless, the forward mode of AD works the same way, even
when the computational graph is developing only at run-time and when it depends on the input x.

(v) The smallest computational entity in a computational graph are the elemental functions ¢;. What
precisely qualifies as an elemental function depends on the programming language and the libraries
in use. What is important from the AD tool point of view is that the derivatives of an elemental
function w.r.t. its input parameters are available. For instance, when the computational graph
contains an elemental function which realizes p(A, b) = A71b, i e, the solution of a linear system,
then we may need to provide the AD tool with functions that realize the partial directional derivatives

o d
X (A b)SA=-ATSAATD and ZL(Ab)Sb=A"'sb.
?Ab)s 15AA Y and Z2(Ab)Sb=A"'5b
0A ob

(Quiz 16.2: Can you confirm these formulas for the partial directional derivatives of ¢ ?)

The forward mode is not the only way to obtain derivatives of a function y = F(x) using algorithmic
differentiation. The reverse mode starts from the output y = vy and works its way backwards
through the computational graph to evaluate the derivatives

d
v; = 5y—y(vl-, ...,ON)
avi

of y w.rt. each of the intermediate quantities v;. The quantities v; are also known as adjoints. That is,
the quantities propagated through the graph are the derivatives of the linear combination dy y of the
components of the output y w.r.t. the intermediate quantities v;. Due to the chain rule, these values
obey
— — 0p;
0= v;,— forj=1,...,N. 16.
1= 205, for) (6.9

We initialize the process by setting

For our simple example graph
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we obtain (omitting arguments for readability)

y =03 =0y

Uy =03 o
90y

51 = 53 6<p3
duq

5o =5, 22 43, 01
(900 300

This amounts to the formula

%) o2 (5 %) ) (16.5)

vy E’N y duq 600'

SyF (x)=(6
y(x)(y 20,

We observe that the reverse mode computes §y F’(x), i. e., a vector-Jacobian product, by evaluating
the components of the chain rule from the left. Compare this to the forward mode representation

0 0 0 0
oy = 202 (%0 ) | 000900y ) (163
81)2 81)0 61)1 aUO

where the components of the chain rule are evaluated from the right.

We now work out a slightly more complex example for the reverse mode by hand by revisiting
Example 16.1.
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Example 16.4 (algorithmic differentiation by hand: reverse mode).

e:=¢e"

¢ = cos(x)
C3 == C3

s = sin(x)

y =0y

initialize d, 53, s, ¢3, ¢ and e to zero

Remark 16.5 (on the reverse mode of algorithmic differentiation).

(i) The reverse mode propagates the derivatives in reverse order through the computional graph,
compared to the flow of data during the evaluation of F(x) itself. Therefore, all intermediate
quantities from the forward pass need to be stored! For example, near the end of the backward pass,

we require access to the intermediate quantity ¢ from near the beginning of the forward pass to
evaluatec := ¢ + ¢33 c2.

(ii) The chain rule

_ — 9¢i
Ui = v,— forj=1,...,N 16.
J § " 90, for j (16.4)
>]
is implemented with the outer loop over the vertices v; fromi = N, ...,1, and the (short) inner loop

over the few vertices v; that vertex v; depends on. (Quiz 16.3: Why can’t the outer loop be over
Jj and the inner loop over i?) This loop ordering means that at the time vertex v; is visited in the
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forward mode reverse mode

F(x) plus F’(x) 8x F(x) plus §y F’'(x)
computational effort (time) < (1+1.5p) effort(F(x)) < (1.5+ 2.5¢q) effort(F(x))
memory requirement < (1+ p) memory(F(x)) < (1+ q) memory(F(x))

Table 16.1: Computation effort and memory requirements for the (vector) forward and (vector) reverse
mode of AD, where p denotes the number of columns in dx, and g denotes the number of
rows in §y. See Griewank, Walther, 2008, Chapter 4 for details.

backward pass, the valuesv; of all verticesv; that vertex v; depends on are updated. At a later stage,
the valuev; may be updated again. (Quiz 16.4: When does it happen that a valuev; is updated
multiple times?) In Example 16.4, this happens only for vertex x, whose adjoint x is touched three
times, while all other adjoints such ase, d etc. are touched only once during the backward pass.

(iii) The vector reverse mode evaluates several vector-Jacobian products at once. All we have to do is
make 8y a matrix with one row for each direction in the output space. Again, 8y is called the seed
matrix for the reverse mode. When 8y = 1d, we will obtain the full Jacobiany = 8y F'(x) = F'(x)
instead of a single vector-jacobian product.

(iv) We emphasize again that the intermediate values v; as well as their tangents 0; (forward mode)
or adjoints v; (reverse mode) need not necessarily be scalars (as they were in our Examples 16.1
and 16.4), but they can be vectors, matrices, or any other data type representing numerical values.

Let us briefly discuss the numerical effort incurred by the forward and the reverse mode of AD to see
in which case which variant is to be preferred. Table 16.1 summarizes the results in simplified form.
More details can be found in Griewank, Walther, 2008, Chapter 4.

It can be shown that the evaluation of F(x) plus a single Jacobian-vector product F’(x) dx has an
effort which is a small multiple of the effort to evaluate F(x) alone. The effort grows linearly with
every additional Jacobian-vector product, i.e., every column of the seed matrix dx. Therefore, an
evaluation of the full Jacobian of a function F: R” — R™ via the forward mode has a time and memory
complexity proportional to the dimension n of the input, relative to the complexity of evaluating F(x)
alone.

Similarly, the evaluation of F(x) plus a single vector-Jacobian product §y F’(x) also has an effort which
is a small multiple of the effort to evaluate F(x) alone. This time, however, the effort grows linearly
with every additional row of the seed matrix §y. Consequently, an evaluation of the full Jacobian of a
function F: R" — R™ via the reverse mode has a time and memory complexity proportional to the
dimension m of the output, relative to the complexity of evaluating F(x) alone.

For instance, the derivative of a scalar-valued function f: R” — R (m = 1!) should clearly be obtained
using the reverse mode! By the way, the famous backpropagation in the training of neural networks

is nothing but the reverse mode of AD, applied to the scalar-valued loss (objective) function.

Algorithmic differentiation can be implemented via
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(1) source transformation, where the AD tool takes code realizing a function F: R* — R™ as
input and returns augmented code to evaluate F(x) plus F’(x) éx (forward mode?), or F(x) plus
dy F'(x) (reverse mode3) as output,

(2) or via operator overloading, where the AD tool overloads all algorithmic operations of the
programming language and augments them with derivative functionality.

There is much more to be said about algorithmic differentiation, its efficient implementation, floating
point error analysis, higher-order derivatives etc. Suffice it to mention that numerous stand-alone AD
tools exist for a range of programming languages, while other AD tools are included in libraries devoted,
for instance, to optimization and machine learning. A good source is https://autodiff.org.

End of Week 14

2The code that implements the forward mode derivative is also known as tangent code or tangent model.
3The code that implements the reverse mode derivative is also known as adjoint code or adjoint model.
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