
Lecture Notes
Nonlinear Optimization

Spring Semester 2023

Roland Herzog∗

2023-05-28

∗Interdisciplinary Center for Scientific Computing, Heidelberg University, 69120 Heidelberg, Germany
(roland.herzog@iwr.uni-heidelberg.de, https://scoop.iwr.uni-heidelberg.de/team/roland-herzog).

mailto:roland.herzog@iwr.uni-heidelberg.de
https://scoop.iwr.uni-heidelberg.de/team/roland-herzog

R. Herzog cbn

These lecture notes are partly based on content from the books Nocedal, Wright, 2006; Ulbrich, Ulbrich,
2012 as well as on previous lecture notes by Roland Herzog and Gerd Wachsmuth (BTU Cottbus).

Material for 14 weeks.

Please send comments to roland.herzog@iwr.uni-heidelberg.de.

2 https://tinyurl.com/scoop-nlo 2023-05-28

mailto:roland.herzog@iwr.uni-heidelberg.de
https://tinyurl.com/scoop-nlo

Contents

0 Introduction 5

§ 1 Elementary Notions 5
§ 2 Notation and Background Material 7

§ 2.1 Vector Norms 7
§ 2.2 Matrix Norms 8
§ 2.3 Eigenvalues and Eigenvectors 8
§ 2.4 Kantorovich Inequality 10
§ 2.5 Functions and Derivatives 12
§ 2.6 Taylor’s Theorem 13
§ 2.7 Convergence Rates 14
§ 2.8 Convexity 15
§ 2.9 Miscellanea 17

1 Numerical Techniques for Unconstrained Optimization Problems 18

§ 3 Optimality Conditions 18
§ 4 Minimization of Quadratic Functions 20

§ 4.1 Direction of Steepest Descent 23
§ 4.2 Gradient Descent Method with Cauchy Step Sizes 24
§ 4.3 Gradient Descent Method with Constant Step Sizes 31
§ 4.4 Gradient Descent Method with Other Step Size Rules 34
§ 4.5 Gradient Descent Method as Discretized Gradient Flow 34
§ 4.6 Conjugate Gradient Method 35

§ 5 Line Search Methods for Nonlinear Unconstrained Problems 48
§ 5.1 A Generic Descent Method 49
§ 5.2 Step Size Strategies 55
§ 5.3 Gradient Descent Method 69
§ 5.4 Newton’s Method 72
§ 5.5 Newton-Like Methods 83
§ 5.6 Inexact Newton Methods 89

https://tinyurl.com/scoop-nlo

https://tinyurl.com/scoop-nlo

R. Herzog cbn

§ 5.7 Quasi-Newton Methods 96
§ 5.8 Nonlinear Conjugate Gradient Methods 109

§ 6 Trust-Region Methods for Nonlinear Unconstrained Problems 113
§ 6.1 Global Convergence 116
§ 6.2 Fast Local Convergence 126
§ 6.3 Solution of the Trust-Region Subproblem 127

2 Theory for Constrained Optimization Problems 134

3 Numerical Techniques for Constrained Optimization Problems 135

4 Differentiation Techniques 136

4 https://tinyurl.com/scoop-nlo 2023-05-28

https://tinyurl.com/scoop-nlo

Chapter 0 Introduction

§ 1 Elementary Notions

Mathematical optimization is about solving problems of the form

Minimize 𝑓 (𝑥) where 𝑥 ∈ Ω (objective function)
subject to 𝑔𝑖 (𝑥) ≤ 0 for 𝑖 = 1, . . . , 𝑛ineq (inequality constraints)

and ℎ 𝑗 (𝑥) = 0 for 𝑗 = 1, . . . , 𝑛eq. (equality constraints)

 (1.1)

Ω ⊆ R𝑛 is the basic set and 𝑥 is the optimization variable or simply the variable of the problem.
We will assume that

• the functions 𝑓 , 𝑔𝑖 , ℎ 𝑗 : R𝑛 → R are sufficiently smooth (𝐶2 functions),

• we have a finite number (possibly zero) of inequality and equality constraints, i. e., 𝑛ineq and 𝑛eq
are in N0.

We will assume Ω = R𝑛 , i. e., we consider only continuous optimization problems and without
implicit constraints.

Definition 1.1 (Elementary notions).
(𝑖) The set

𝐹 B
{
𝑥 ∈ R𝑛

��𝑔𝑖 (𝑥) ≤ 0 for all 𝑖 = 1, . . . , 𝑛ineq, ℎ 𝑗 (𝑥) = 0 for all 𝑗 = 1, . . . , 𝑛eq
}

associated with an optimization problem (1.1) is termed the feasible set. Any 𝑥 ∈ 𝐹 is termed a
feasible point.

(𝑖𝑖) The inequality 𝑔𝑖 (𝑥) ≤ 0 is called active at a point 𝑥 if 𝑔𝑖 (𝑥) = 0 holds. It is called inactive in
case 𝑔𝑖 (𝑥) < 0. It is called violated if 𝑔𝑖 (𝑥) > 0 holds.

(𝑖𝑖𝑖) The value
𝑓 ∗ B inf {𝑓 (𝑥) | 𝑥 ∈ 𝐹 }

is termed the infimal value of problem (1.1).

(𝑖𝑣) In case 𝐹 = ∅, the problem (1.1) is said to be infeasible. In that case, we have 𝑓 ∗ = +∞. In case
𝑓 ∗ = −∞, the problem is said to be unbounded.

https://tinyurl.com/scoop-nlo

https://tinyurl.com/scoop-nlo

R. Herzog cbn

(𝑣) A point 𝑥∗ ∈ 𝐹 is a global minimizer or globally optimal solution of (1.1) if

𝑓 (𝑥∗) ≤ 𝑓 (𝑥) for all 𝑥 ∈ 𝐹

holds. Equivalently, 𝑥∗ ∈ 𝐹 is a global minimizer if 𝑓 (𝑥∗) = 𝑓 ∗ holds. In this case, the infimal
value 𝑓 ∗ is also referred to as the global minimum or globally optimal value of (1.1).

(𝑣𝑖) A global minimizer 𝑥∗ is strict in case

𝑓 (𝑥∗) < 𝑓 (𝑥) for all 𝑥 ∈ 𝐹, 𝑥 ≠ 𝑥∗.

(𝑣𝑖𝑖) A point 𝑥∗ ∈ 𝐹 is a local minimizer or locally optimal solution of (1.1) if there exists a
neighborhood𝑈 (𝑥∗) such that

𝑓 (𝑥∗) ≤ 𝑓 (𝑥) for all 𝑥 ∈ 𝐹 ∩𝑈 (𝑥∗)

holds. In this case, 𝑓 (𝑥∗) is also referred to as a local minimum or a locally optimal value of
(1.1).

(𝑣𝑖𝑖𝑖) A local minimizer 𝑥∗ is strict in case

𝑓 (𝑥∗) < 𝑓 (𝑥) for all 𝑥 ∈ 𝐹 ∩𝑈 (𝑥∗), 𝑥 ≠ 𝑥∗.

(𝑖𝑥) An optimization problem (1.1) is solvable if it has at least one global minimizer, i. e., if the optimal
value is attained at some point. Otherwise, the problem is unsolvable.

Definition 1.2 (Classification of optimization problems).
(𝑖) An optimization problem (1.1) is said to be unconstrained in case 𝑛ineq = 𝑛eq = 0. Otherwise, it is

said to be equality constrained and/or inequality constrained.

(𝑖𝑖) Inequality constraints of the simple kind

ℓ𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑖 , 𝑖 = 1, . . . , 𝑛

with bounds ℓ𝑖 ∈ R ∪ {−∞} and 𝑢𝑖 ∈ R ∪ {∞} are called bound constraints.

(𝑖𝑖𝑖) When 𝑓 is a quadratic polynomial and 𝑔 and ℎ are affine linear functions, then (1.1) is called a
quadratic optimization problem or a quadratic program (QP).

(𝑖𝑣) In the general case, i. e., when (1.1) is not a quadratic program, we refer to (1.1) as a nonlinear
optimization problem or nonlinear program (NLP).

The emphasis in this class is on numerical techniques for unconstrained and constrained nonlinear
programs. We will see that fast algorithms take into account the optimality conditions of the respective
problem. Therefore we will also discuss optimality conditions.

6 https://tinyurl.com/scoop-nlo 2023-05-28

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

We will begin in Chapter 1 with algorithms for unconstrained optimization. Some of the content was
already part of the class Grundlagen der Optimierung (Herzog, 2022), but we will revisit the material
in more detail here. The theory for constrained problems is relatively involved and merits its own
chapter (Chapter 2). We will subsequently discuss major algorithmic ideas for constrained problems in
Chapter 3. Finally, we will review in Chapter 4 some computer-aided techniques to obtain derivatives
of functions, which the algorithms under consideration generally require.

Throughout the class, we will emphasize the connections between optimization and numerical linear
algebra.

§ 2 Notation and Background Material

In these lecture notes we use color codes for definitions and highlights. The natural numbers are
N = {1, 2, . . .}, and we write N0 for N∪ {0}. We denote open intervals by (𝑎, 𝑏) and closed intervals by
[𝑎, 𝑏]. We usually use Latin capital letters for matrices, Latin lowercase letters for vectors and Greek or
Latin lowercase letters for scalars. We use Id for the identity matrix. We distinguish the vector space
R𝑛 of column vectors from the vector space R𝑛 of row vectors.

§ 2.1 Vector Norms

An inner product (·, ·) onR𝑛 is a symmetric and positive definite bilinear form, i. e., a mapR𝑛×R𝑛 → R
with the following properties:

(𝑥, 𝑦) = (𝑦, 𝑥) (symmetry) (2.1a)
(𝛼1 𝑥1 + 𝛼2 𝑥2, 𝑦) = 𝛼1 (𝑥1, 𝑦) + 𝛼2 (𝑥2, 𝑦) (bilinearity part 1) (2.1b)
(𝑥, 𝛽1 𝑦1 + 𝛽2 𝑦2) = 𝛽1 (𝑥, 𝑦1) + 𝛽2 (𝑥, 𝑦2) (bilinearity part 2) (2.1c)
(𝑥, 𝑥) ≥ 0 and 𝑥 ≠ 0⇒ (𝑥, 𝑥) > 0 (positive definiteness) (2.1d)

for all 𝑥, 𝑥1, 𝑥2, 𝑦, 𝑦1, 𝑦2 ∈ R𝑛 and all 𝛼1, 𝛼2, 𝛽1, 𝛽2 ∈ R.

Inner products on R𝑛 are in one-to-one correspondence with symmetric and positive definite (s. p. d.)
𝑛 × 𝑛 matrices. That is, every s. p. d. matrix𝑀 ∈ R𝑛×𝑛 induces an inner product

(𝑥, 𝑦)𝑀 B 𝑥ᵀ𝑀 𝑦,

and, on the other hand, every inner product (·, ·) on R𝑛 is induced by an s. p. d. matrix𝑀 . For simplicity,
we will refer to𝑀 itself as the inner product it induces, or use the term “𝑀-inner product”.

Every inner product (·, ·)𝑀 induces a norm1 by way of

∥𝑥 ∥𝑀 B
√
𝑥ᵀ𝑀 𝑥. (2.2)

1We are only considering norms induced by inner products.

https://tinyurl.com/scoop-nlo 7

https://tinyurl.com/scoop-nlo

R. Herzog cbn

In particular, the Euclidean inner product 𝑥ᵀ𝑦 corresponds to the identity matrix𝑀 = Id, and we denote
the associated norm by ∥𝑥 ∥. We won’t be writing ⟨𝑥 , 𝑦⟩ or 𝑥 · 𝑦 for the Euclidean inner product.

Notice that for vectors 𝑥, 𝑦 ∈ R𝑛 , we have
𝑎ᵀ𝑏 = 𝑎ᵀ𝑀−1𝑀 𝑏

≤ ∥𝑀−1𝑎∥𝑀 ∥𝑏∥𝑀 by the Cauchy-Schwarz inequality w.r.t. the𝑀-inner product
= ∥𝑎∥𝑀−1 ∥𝑏∥𝑀 . (2.3)

§ 2.2 Matrix Norms

A matrix 𝐴 ∈ R𝑚×𝑛 represents a linear map by way of R𝑛 ∋ 𝑥 ↦→ 𝐴𝑥 ∈ R𝑚 . When R𝑛 is equipped
with the𝑀1-inner product and R𝑚 is equipped with the𝑀2-inner product, we define thematrix norm
or operator norm of 𝐴 as

∥𝐴∥𝑀2←𝑀1 B max
𝑥≠0

∥𝐴𝑥 ∥𝑀2

∥𝑥 ∥𝑀1
. (2.4)

We thus have
∥𝐴𝑥 ∥𝑀2 ≤ ∥𝐴∥𝑀2←𝑀1 ∥𝑥 ∥𝑀1 for all 𝑥 ∈ R𝑛 . (2.5)

When𝑀1 and𝑀2 are both the Euclidean inner products, ∥𝐴∥Id←Id or simply ∥𝐴∥ is the largest singular
value of𝐴. In the general case, ∥𝐴∥𝑀2←𝑀1 is the largest singular value of a suitably generalized singular
value decomposition.

There are matrix norm which are not operator norms. The most prominent one is induced by the inner
product

𝐴 : 𝐵 B trace(𝐴ᵀ𝐵) =
𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1
𝑎𝑖 𝑗 𝑏𝑖 𝑗 . (2.6)

The associated norm

∥𝐴∥𝐹 B
(𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1
𝑎2𝑖 𝑗

) 1/2
(2.7)

is termed the Frobenius norm of 𝐴.

§ 2.3 Eigenvalues and Eigenvectors

Every symmetric matrix 𝐴 ∈ R𝑛×𝑛 possesses an orthogonal transformation to a diagonal matrix,
known as eigen decomposition or spectral decomposition. That is, there exists an orthogonal
matrix 𝑉 ∈ R𝑛×𝑛 and a diagonal matrix Λ ∈ R𝑛×𝑛 , such that

𝐴𝑉 = 𝑉Λ, i. e., 𝐴 = 𝑉Λ𝑉 ᵀ (2.8)

holds. The diagonal of Λ contains the eigenvalues 𝜆𝑖 , and the columns 𝑣𝑖 of 𝑉 are the corresponding
eigenvectors. This decomposition yields the complete solution to the eigenvalue problem

𝐴𝑣 = 𝜆 𝑣. (2.9)

8 https://tinyurl.com/scoop-nlo 2023-05-28

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

We also work with the generalized eigenvalue problem

𝐴𝑣 = 𝜆𝑀 𝑣 (2.10)

for the particular case where 𝐴 is still symmetric and the second matrix 𝑀 ∈ R𝑛×𝑛 is s. p. d. There
exists an analogous generalized spectral decomposition

𝐴𝑉 = 𝑀𝑉Λ, i. e., 𝐴 = 𝑀𝑉Λ𝑉 ᵀ𝑀, (2.11)

where now 𝑉 is orthogonal w.r.t. the 𝑀-inner product, i. e., 𝑉 ᵀ𝑀𝑉 = Id holds. This implies 𝑉𝑉 ᵀ =
𝑀−1. We also refer to the solutions of (2.10) as the eigenvalues/eigenvectors of 𝐴 w.r.t. 𝑀 or
eigenvalues/eigenvectors of the pair (𝐴;𝑀).

In view of the Courant-Fischer theorem for (generalized) eigenvalues of symmetric matrices, the
generalized Rayleigh quotient of 𝐴 w.r.t. 𝑀 satisfies

𝜆min(𝐴;𝑀) ≤ 𝑥ᵀ𝐴𝑥
𝑥ᵀ𝑀 𝑥

≤ 𝜆max(𝐴;𝑀) for all 𝑥 ≠ 0. (2.12)

The eigenvectors associated with the smallest and largest generalized eigenvalues 𝜆min(𝐴;𝑀) and
𝜆max(𝐴;𝑀) satisfy the first respectively the second inequality with equality. Using (2.3) and (2.5), we
also have

−∥𝐴∥𝑀−1←𝑀 ≤ −
∥𝑥 ∥𝑀 ∥𝐴𝑥 ∥𝑀−1
∥𝑥 ∥2

𝑀

≤ 𝑥
ᵀ𝐴𝑥
∥𝑥 ∥2

𝑀

≤ ∥𝑥 ∥𝑀 ∥𝐴𝑥 ∥𝑀−1∥𝑥 ∥2
𝑀

≤ ∥𝐴∥𝑀−1←𝑀

and thus
𝜆max(𝐻 ;𝑀) ≤ ∥𝐻 ∥𝑀−1←𝑀 and − 𝜆min(𝐻 ;𝑀) ≤ ∥𝐻 ∥𝑀−1←𝑀 . (2.13)

Notice that the generalized eigenvalue problems (2.10) and

𝑀 𝑣 = 𝜆𝑀 𝐴−1𝑀 𝑣 (2.14a)

as well as

𝐴𝑀−1𝐴𝑣 = 𝜆𝐴 𝑣 (2.14b)

have the same eigenvalues and eigenvectors (provided in case of (2.14a) that 𝐴 is not only symmetric
but also invertible) since𝑀 𝑣 = 𝜆𝑀 𝐴−1𝑀 𝑣 ⇔ 𝑣 = 𝜆𝐴−1𝑀 𝑣 ⇔ 𝐴𝑣 = 𝜆𝑀 𝑣 and 𝐴𝑀−1𝐴𝑣 = 𝜆𝐴 𝑣 ⇔
𝑀−1𝐴𝑣 = 𝜆 𝑣 ⇔ 𝐴𝑣 = 𝜆𝑀 𝑣 . Consequently, we obtain the following estimate for the generalized
Rayleigh quotients associated with (2.14):

𝜆min(𝐴;𝑀) ≤ 𝑥ᵀ𝑀 𝑥

𝑥ᵀ𝑀𝐴−1𝑀 𝑥
≤ 𝜆max(𝐴;𝑀) for all 𝑥 ≠ 0, (2.15a)

𝜆min(𝐴;𝑀) ≤ 𝑥
ᵀ𝐴𝑀−1𝐴𝑥
𝑥ᵀ𝐴𝑥

≤ 𝜆max(𝐴;𝑀) for all 𝑥 ≠ 0. (2.15b)

Every s. p. d. matrix 𝐴 ∈ R𝑛×𝑛 possesses a unique s. p. d. matrix square root 𝐴1/2. When 𝐴 = 𝑉Λ𝑉 ᵀ

is a spectral decomposition of 𝐴 with orthogonal 𝑉 , then

𝐴1/2 = 𝑉Λ1/2𝑉 ᵀ (2.16)

holds. Herein, Λ1/2 is the elementwise square root of the diagonal matrix Λ.

https://tinyurl.com/scoop-nlo 9

https://en.wikipedia.org/wiki/Min-max_theorem
https://en.wikipedia.org/wiki/Rayleigh_quotient
https://tinyurl.com/scoop-nlo

R. Herzog cbn

§ 2.4 Kantorovich Inequality

Suppose that 𝐴 is an s. p. d. matrix. Let us denote the extremal eigenvalues by 𝛼 B 𝜆min(𝐴) and
𝛽 B 𝜆max(𝐴). Moreover, since 𝐴 is s. p. d., it follows that its condition number2 is given by

𝜅 B
𝛽

𝛼
. (2.17)

Notice that a condition number always satisfies 𝜅 ≥ 1. From the Rayleigh quotient estimate (2.12) (with
𝑀 = Id), we have

𝑥ᵀ𝐴𝑥
∥𝑥 ∥2 ≤ 𝛽.

Moreover, since the eigenvalues of 𝐴−1 are the reciprocals of those of 𝐴, we have 𝜆max(𝐴−1) =

1/𝜆min(𝐴) = 1/𝛼 and thus
𝑥ᵀ𝐴−1 𝑥
∥𝑥 ∥2 ≤ 1

𝛼
.

These inequalities hold for all 𝑥 ∈ R𝑛 \ {0}, and they imply

(𝑥ᵀ𝐴𝑥) (𝑥ᵀ𝐴−1 𝑥)
∥𝑥 ∥4 ≤ 𝛽

𝛼
.

This estimate, however, is not sharp in general. (Quiz 2.1: Can you explain why not?) The Kantorovich
inequality improves this estimate.

Lemma 2.1 (Kantorovich inequality). Suppose that 𝐴 ∈ R𝑛×𝑛 is s. p. d., 𝛼 B 𝜆min(𝐴) and 𝛽 B 𝜆max(𝐴)
are its extremal eigenvalues, and 𝜅 = 𝛽/𝛼 is its condition number. Then

1 ≤ (𝑥
ᵀ𝐴𝑥) (𝑥ᵀ𝐴−1𝑥)
∥𝑥 ∥4 ≤ (𝛼 + 𝛽)

2

4𝛼 𝛽 ≤ 𝛽

𝛼
(2.18a)

holds for all 𝑥 ∈ R𝑛 \ {0}, or equivalently, in terms of the condition number 𝜅 = 𝛽/𝛼 ,

1 ≤ (𝑥
ᵀ𝐴𝑥) (𝑥ᵀ𝐴−1𝑥)
∥𝑥 ∥4 ≤ (𝜅 + 1)

2

4𝜅 ≤ 𝜅. (2.18b)

Proof. The Cauchy-Schwarz inequality implies

∥𝑥 ∥2 = 𝑥ᵀ𝑥 = 𝑥ᵀ𝐴−1/2𝐴1/2𝑥 ≤ ∥𝐴−1/2𝑥 ∥ ∥𝐴1/2𝑥 ∥ .

By squaring this, we obtain

∥𝑥 ∥4 ≤ ∥𝐴−1/2𝑥 ∥2 ∥𝐴1/2𝑥 ∥2 = (𝑥ᵀ𝐴𝑥) (𝑥ᵀ𝐴−1𝑥)

and thus the lower bound in (2.18).
2Generally, the condition of an invertible matrix 𝐴 is 𝜅 = ∥𝐴∥ ∥𝐴−1∥. This is equal to 𝜎max (𝐴)/𝜎min (𝐴) with the extremal
singular values 𝜎max (𝐴) and 𝜎min (𝐴). Since 𝐴 is symmetric, its singular values are just the absolute values of its
eigenvalues, and since 𝐴 is also positive definite, we have 𝜎max (𝐴) = 𝜆max (𝐴) = 𝛽 and 𝜎min (𝐴) = 𝜆min (𝐴) = 𝛼 .

10 https://tinyurl.com/scoop-nlo 2023-05-28

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

From here on, the proof follows Anderson, 1971, as reproduced in the Master’s thesis Alpargu, 1996,
Section 1.2.2. Let 𝜆1, . . . , 𝜆𝑛 > 0 be the eigenvalues of 𝐴 (in any order), and let 𝑣1, . . . , 𝑣𝑛 be an
orthonormal set of associated eigenvectors. We represent 𝑥 ∈ R𝑛 \ {0} as 𝑥 =

∑𝑛
𝑖=1 𝛾𝑖 𝑣𝑖 . Suppose,

w.l.o.g., that ∥𝑥 ∥2 = ∑𝑛
𝑖=1 𝛾

2
𝑖 = 1 holds. Inserting the representation of 𝑥 yields

(𝑥ᵀ𝐴𝑥) (𝑥ᵀ𝐴−1𝑥)
∥𝑥 ∥4 =

[𝑛∑︁
𝑖=1

𝜆𝑖 𝛾
2
𝑖

]
︸ ︷︷ ︸

=E(𝑇)

[𝑛∑︁
𝑖=1

1
𝜆𝑖
𝛾2𝑖

]
︸ ︷︷ ︸

=E(1/𝑇)

.

It is helpful to think about the two factors on the right-hand side as expected values of a “random
variable” 𝑇 and 1/𝑇 , respectively. Here 𝑇 takes the values 𝜆𝑖 ∈ [𝛼, 𝛽] with “probability” 𝛾2𝑖 . For any
0 < 𝛼 ≤ 𝑇 ≤ 𝛽 , we can estimate

0 ≤ (𝛽 −𝑇) (𝑇 − 𝛼) = (𝛽 + 𝛼 −𝑇)𝑇 − 𝛼 𝛽,

and thus
1
𝑇
≤ 𝛼 + 𝛽 −𝑇

𝛼 𝛽
.

Taking the expected value, this implies

E(𝑇) E(1/𝑇) ≤ E(𝑇) 𝛼 + 𝛽 − E(𝑇)
𝛼 𝛽

=
(𝛼 + 𝛽)2
4𝛼 𝛽 − 1

𝛼 𝛽

[
E(𝑇) − 1

2 (𝛼 + 𝛽)
]2

≤ (𝛼 + 𝛽)
2

4𝛼 𝛽 .

This shows that essential upper bound in (2.18). The remaining inequality follows directly from
0 < 𝛼 ≤ 𝛽 . □

Instead of the Euclidean norm, we can also use the norm induced by the𝑀-inner product.

Corollary 2.2 (Generalized Kantorovich inequality). Suppose that 𝐴 ∈ R𝑛×𝑛 and 𝑀 are both s. p. d.,
𝛼 B 𝜆min(𝐴;𝑀) and 𝛽 B 𝜆max(𝐴;𝑀) are the extremal generalized eigenvalues of 𝐴 w.r.t. 𝑀 . Then

1 ≤ (𝑥
ᵀ𝐴𝑥) (𝑥ᵀ𝑀𝐴−1𝑀 𝑥)

∥𝑥 ∥4
𝑀

≤ (𝛼 + 𝛽)
2

4𝛼 𝛽 ≤ 𝛽

𝛼
(2.19a)

holds for all 𝑥 ∈ R𝑛 \ {0}, or equivalently, in terms of the generalized condition number 𝜅 = 𝛽/𝛼 ,

1 ≤ (𝑥
ᵀ𝐴𝑥) (𝑥ᵀ𝐴−1𝑥)
∥𝑥 ∥4

𝑀

≤ (𝜅 + 1)
2

4𝜅 ≤ 𝜅. (2.19b)

We do not give a proof of Corollary 2.2 here; see for instance Herzog, 2022, Folgerung 4.14.

https://tinyurl.com/scoop-nlo 11

https://tinyurl.com/scoop-nlo

R. Herzog cbn

§ 2.5 Functions and Derivatives

• Given a function 𝑓 : R𝑛 → R and 𝑥 ∈ R𝑛 , the derivative of the partial function 𝑡 ↦→ 𝑓 (𝑥 + 𝑡 𝑒 (𝑖))
at 𝑡 = 0 is the 𝑖-th partial derivative of 𝑓 at 𝑥 , briefly: 𝜕

𝜕𝑥𝑖
𝑓 (𝑥). Here 𝑒 (𝑖) = (0, . . . , 0, 1, 0, . . . , 0)ᵀ

is one of the standard basis vectors of R𝑛 . In other words,

𝜕

𝜕𝑥𝑖
𝑓 (𝑥) = lim

𝑡→0

𝑓 (𝑥 + 𝑡 𝑒 (𝑖)) − 𝑓 (𝑥)
𝑡

.

• More generally, the derivative of the function 𝑡 ↦→ 𝑓 (𝑥 + 𝑡 𝑑) at 𝑡 = 0 is the (two-sided)
directional derivative of 𝑓 at 𝑥 in the direction 𝑑 ∈ R𝑛 , briefly:

𝜕

𝜕𝑑
𝑓 (𝑥) = lim

𝑡→0

𝑓 (𝑥 + 𝑡 𝑑) − 𝑓 (𝑥)
𝑡

.

• The right-sided derivative of the function 𝑡 ↦→ 𝑓 (𝑥 + 𝑡 𝑑) at 𝑡 = 0 is the (one-sided) directional
derivative of 𝑓 at 𝑥 in the direction 𝑑 ∈ R𝑛 , briefly:

𝑓 ′(𝑥 ;𝑑) = lim
𝑡↘0

𝑓 (𝑥 + 𝑡 𝑑) − 𝑓 (𝑥)
𝑡

.

• A function 𝑓 : R𝑛 → R is differentiable at 𝑥 ∈ R𝑛 if there exists a row vector 𝑣 ∈ R𝑛 such that

𝑓 (𝑥 + 𝑑) − 𝑓 (𝑥) − 𝑣 𝑑
∥𝑑 ∥ → 0 for 𝑑 → 0.

In this case, the vector 𝑣 is the (total) derivative of 𝑓 at 𝑥 , and it is denoted by 𝑓 ′(𝑥).

• When 𝑓 : R𝑛 → R is differentiable at 𝑥 ∈ R𝑛 , then

𝑓 ′(𝑥) =
(
𝜕𝑓 (𝑥)
𝜕𝑥1

, · · · , 𝜕𝑓 (𝑥)
𝜕𝑥𝑛

)
∈ R𝑛 .

The transposed vector (a column vector)

∇𝑓 (𝑥) =
©«
𝜕𝑓 (𝑥)
𝜕𝑥1
...

𝜕𝑓 (𝑥)
𝜕𝑥𝑛

ª®®®¬ = 𝑓 ′(𝑥)ᵀ ∈ R𝑛

is the gradient (w.r.t. the Euclidean inner product) of 𝑓 at 𝑥 .

• When 𝑓 : R𝑛 → R is differentiable at 𝑥 ∈ R𝑛 , then

𝑓 ′(𝑥 ;𝑑) = 𝜕

𝜕𝑑
𝑓 (𝑥) = 𝑓 ′(𝑥) 𝑑

holds for all 𝑑 ∈ R𝑛 . That is, the one-sided and two-sided directional derivatives of 𝑓 at 𝑥 agree,
and they can be evaluated by applying the derivative 𝑓 ′(𝑥) to the direction 𝑑 .

12 https://tinyurl.com/scoop-nlo 2023-05-28

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

• A function 𝑓 : R𝑛 → R is continuously partially differentiable or briefly: 𝐶1(R𝑛,R), if all
partial derivatives 𝜕𝑓 (𝑥)

𝜕𝑥𝑖
, as functions of 𝑥 , are continuous. 𝐶1-functions are differentiable, and

the derivative 𝑓 ′ is continuous.

• A vector-valued function 𝐹 : R𝑛 → R𝑚 is differentiable at 𝑥 ∈ R𝑛 if all component func-
tion 𝐹1, . . . , 𝐹𝑚 are differentiable at 𝑥 . In this case, the derivative 𝐹 ′(𝑥) is given by the Jacobian
of 𝐹 at 𝑥 , i. e., by ©«

𝜕𝐹1(𝑥)
𝜕𝑥1

· · · 𝜕𝐹1(𝑥)
𝜕𝑥𝑛

...
...

𝜕𝐹𝑚 (𝑥)
𝜕𝑥1

· · · 𝜕𝐹𝑚 (𝑥)
𝜕𝑥𝑛

ª®®®®®¬
∈ R𝑚×𝑛 .

• 𝐹 is continuously partially differentiable if all entries of the Jacobian are continuous as
functions of 𝑥 . 𝐶1-functions are differentiable, and the derivative 𝐹 ′ is continuous.

• A function 𝑓 : R𝑛 → R is twice differentiable at 𝑥 ∈ R𝑛 if 𝑓 is differentiable in a neighbor-
hood of 𝑥 and the derivative 𝑥 ↦→ 𝑓 ′(𝑥) ∈ R𝑛 is differentiable at 𝑥 . In this case, the second
derivative 𝑓 ′′(𝑥) is given by the Hessian of 𝑓 at 𝑥 , i. e., by the matrix of second-order partial
derivatives

(
𝜕2 𝑓 (𝑥)
𝜕𝑥𝑖 𝜕𝑥 𝑗

)𝑛
𝑖,𝑗=1

=

©«

𝜕2 𝑓 (𝑥)
𝜕𝑥21

𝜕2 𝑓 (𝑥)
𝜕𝑥1𝜕𝑥2

· · · 𝜕2 𝑓 (𝑥)
𝜕𝑥1𝜕𝑥𝑛

𝜕2 𝑓 (𝑥)
𝜕𝑥2𝜕𝑥1

𝜕2 𝑓 (𝑥)
𝜕𝑥22

· · · 𝜕2 𝑓 (𝑥)
𝜕𝑥2𝜕𝑥𝑛

...
...

...
𝜕2 𝑓 (𝑥)
𝜕𝑥𝑛𝜕𝑥1

𝜕2 𝑓 (𝑥)
𝜕𝑥𝑛𝜕𝑥2

· · · 𝜕2 𝑓 (𝑥)
𝜕𝑥2𝑛

ª®®®®®®®¬
.

When 𝑓 is twice differentiable at 𝑥 , then the Hessian is symmetric by Schwarz’ theorem.3

• A function 𝑓 : R𝑛 → R is twice continuously partially differentiable or briefly: 𝐶2(R𝑛,R), if
all entries of the Hessian are continuous as functions of 𝑥 . 𝐶2-functions are twice differentiable.

§ 2.6 Taylor’s Theorem

We are going to state Taylor’s theorem in two variants:

Theorem 2.3 (Taylor, see Cartan, 1967, Theorem 5.6.3). Suppose that 𝐺 ⊆ R𝑛 open, 𝑘 ∈ N0 and
𝑓 : 𝐺 → R 𝑘 times differentiable, and (𝑘 + 1) times differentable at 𝑥 (0) ∈ 𝐺 . Then for all 𝜀 > 0, there
exists 𝛿 > 0 such that

in case 𝑘 = 0 :
��𝑓 (𝑥 (0) + 𝑑) − 𝑓 (𝑥 (0)) − 𝑓 ′(𝑥 (0)) 𝑑 �� ≤ 𝜀 ∥𝑑 ∥,

in case 𝑘 = 1 :
��𝑓 (𝑥 (0) + 𝑑) − 𝑓 (𝑥 (0)) − 𝑓 ′(𝑥 (0)) 𝑑 − 1

2𝑑
ᵀ 𝑓 ′′(𝑥 (0))𝑑

�� ≤ 𝜀 ∥𝑑 ∥2.
for all ∥𝑑 ∥ < 𝛿 .
3See for instance Cartan, 1967, Proposition 5.2.2

https://tinyurl.com/scoop-nlo 13

https://tinyurl.com/scoop-nlo

R. Herzog cbn

Theorem 2.4 (Taylor, see Geiger, Kanzow, 1999, Satz A.2 or Heuser, 2002, Satz 168.1).
Suppose that 𝐺 ⊆ R𝑛 is open, 𝑘 ∈ N0 and 𝑓 : 𝐺 → R (𝑘 + 1) times continuously partially differentiable,
briefly a𝐶𝑘+1(𝐺,R) function. Suppose that 𝑥 (0) and 𝑥 (0) +𝑑 and the entire line segment between them lie
in 𝐺 . Then there exists 𝜉 ∈ (0, 1) such that

in case 𝑘 = 0 : 𝑓 (𝑥 (0) + 𝑑) = 𝑓 (𝑥 (0)) + 𝑓 ′(𝑥 (0) + 𝜉 𝑑) 𝑑 (mean value theorem),
in case 𝑘 = 1 : 𝑓 (𝑥 (0) + 𝑑) = 𝑓 (𝑥 (0)) + 𝑓 ′(𝑥 (0)) 𝑑 + 1

2𝑑
ᵀ 𝑓 ′′(𝑥 (0) + 𝜉 𝑑) 𝑑.

§ 2.7 Convergence Rates

We denote (vector-valued) sequencesN→ R𝑛 by (
𝑥 (𝑘)

)
and not (𝑥𝑘) etc., in order to avoid a conflict of

notation with the components of a vector 𝑥 = (𝑥1, . . . , 𝑥𝑛)ᵀ ∈ R𝑛 . The subsequence of
(
𝑥 (𝑘)

)
obtained

by the strictly increasing sequence N ∋ ℓ ↦→ 𝑘 (ℓ) ∈ N is denoted by
(
𝑥 (𝑘

(ℓ))) .
We introduce various convergence rates for sequences in order to characterize the speed of convergence,
e. g., of iterates in an algorithm.

Definition 2.5 (Q-convergence rates4).
Suppose that

(
𝑥 (𝑘)

) ⊂ R𝑛 is a sequence and 𝑥∗ ∈ R𝑛 . Moreover, let𝑀 be an inner product on R𝑛 .

(𝑖) (
𝑥 (𝑘)

)
converges to 𝑥∗ (at least) Q-linearly w.r.t. the𝑀-norm if there exists 𝑐 ∈ (0, 1) such that

∥𝑥 (𝑘+1) − 𝑥∗∥𝑀 ≤ 𝑐 ∥𝑥 (𝑘) − 𝑥∗∥𝑀 for all 𝑘 ∈ N sufficiently large.

(𝑖𝑖) (
𝑥 (𝑘)

)
converges to 𝑥∗ (at least) Q-superlinearly w.r.t. the𝑀-norm if there exists a null sequence(

𝜀 (𝑘)
)
such that

∥𝑥 (𝑘+1) − 𝑥∗∥𝑀 ≤ 𝜀 (𝑘) ∥𝑥 (𝑘) − 𝑥∗∥𝑀 for all 𝑘 ∈ N.

(𝑖𝑖𝑖) Suppose that 𝑥 (𝑘) → 𝑥∗.
(
𝑥 (𝑘)

)
converges to 𝑥∗ (at least) Q-quadratically w.r.t. the𝑀-norm if

there exists 𝐶 > 0 such that

∥𝑥 (𝑘+1) − 𝑥∗∥𝑀 ≤ 𝐶 ∥𝑥 (𝑘) − 𝑥∗∥2𝑀 for all 𝑘 ∈ N.

Note: Q-superlinear and Q-quadratic convergence of a sequence are independent of the norm (inner
product)𝑀 . However, the property of Q-linear convergence can be lost when changing the norm.

Definition 2.6 (R-convergence rates5).
Suppose that

(
𝑥 (𝑘)

) ⊂ R𝑛 is a sequence and 𝑥∗ ∈ R𝑛 . Moreover, let𝑀 be an inner product on R𝑛 .

4“Q” stands for “quotient”.
5“R” stands for “root”.

14 https://tinyurl.com/scoop-nlo 2023-05-28

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

(𝑖) (
𝑥 (𝑘)

)
converges to 𝑥∗ (at least) R-linearly w.r.t. the𝑀-norm if there exists a null sequence

(
𝜀 (𝑘)

)
such that

∥𝑥 (𝑘) − 𝑥∗∥𝑀 ≤ 𝜀 (𝑘) for all 𝑘 ∈ N,
and

(
𝜀 (𝑘)

)
converges to zero Q-linearly w.r.t. | · |.

(𝑖𝑖) (
𝑥 (𝑘)

)
converges to 𝑥∗ (at least) R-superlinearly w.r.t. the𝑀-norm if there exists a null sequence(

𝜀 (𝑘)
)
such that

∥𝑥 (𝑘) − 𝑥∗∥𝑀 ≤ 𝜀 (𝑘) for all 𝑘 ∈ N,
and

(
𝜀 (𝑘)

)
converges to zero Q-superlinearly w.r.t. | · |.

(𝑖𝑖𝑖) (
𝑥 (𝑘)

)
converges to 𝑥∗ (at least) R-quadratically w.r.t. the𝑀-norm if there exists a null sequence(

𝜀 (𝑘)
)
such that

∥𝑥 (𝑘) − 𝑥∗∥𝑀 ≤ 𝜀 (𝑘) for all 𝑘 ∈ N,
and

(
𝜀 (𝑘)

)
converges to zero Q-quadratically w.r.t. | · |.

Note: The R-convergence modes are slightly weaker than the respective Q-convergence rates. Q-
convergence considers the decrease in the distance to the limit ∥𝑥 (𝑘) − 𝑥∗∥𝑀 in every step of the
sequence. By contrast, R-convergence considers the decrease overall.

§ 2.8 Convexity

Convexity plays a very important role in optimization in general. In this class, however, we will rely
on it only scarcely. We briefly recall here some elements of convexity. You may study Herzog,
2022, § 13 if you wish to have more background information.

Definition 2.7 (Convex function).
A function 𝑓 : R𝑛 → R is termed

(𝑖) convex in case
𝑓 (𝛼 𝑥 + (1 − 𝛼) 𝑦) ≤ 𝛼 𝑓 (𝑥) + (1 − 𝛼) 𝑓 (𝑦) (2.20)

holds for all 𝑥, 𝑦 ∈ R𝑛 and 𝛼 ∈ [0, 1].

(𝑖𝑖) strictly convex in case

𝑓 (𝛼 𝑥 + (1 − 𝛼) 𝑦) < 𝛼 𝑓 (𝑥) + (1 − 𝛼) 𝑓 (𝑦) (2.21)

holds for all 𝑥, 𝑦 ∈ R𝑛 and 𝛼 ∈ (0, 1).

(𝑖𝑖𝑖) 𝜇-strongly convex or strongly convex with parameter 𝜇 > 0 in case

𝑓 (𝛼 𝑥 + (1 − 𝛼) 𝑦) + 𝜇2 𝛼 (1 − 𝛼)∥𝑥 − 𝑦 ∥
2 ≤ 𝛼 𝑓 (𝑥) + (1 − 𝛼) 𝑓 (𝑦) (2.22)

holds for all 𝑥, 𝑦 ∈ R𝑛 and 𝛼 ∈ [0, 1].

https://tinyurl.com/scoop-nlo 15

https://tinyurl.com/scoop-nlo

R. Herzog cbn

(𝑖𝑣) concave (concave) or strictly concave or constrly concave if −𝑓 is convex or strictly convex or
strongly convex, respectively.

Theorem 2.8 (Characterization of convexity via first-order derivatives).
Suppose that 𝑓 : R𝑛 → R is differentiable.

(a) The following are equivalent:

(𝑖) 𝑓 is convex.

(𝑖𝑖) For all 𝑥, 𝑦 ∈ R𝑛 ,
𝑓 (𝑥) − 𝑓 (𝑦) ≥ 𝑓 ′(𝑦) (𝑥 − 𝑦) (2.23)

holds.

(𝑖𝑖𝑖) For all 𝑥, 𝑦 ∈ R𝑛 , (
𝑓 ′(𝑥) − 𝑓 ′(𝑦)) (𝑥 − 𝑦) ≥ 0 (2.24)

holds. Equation (2.24) means that 𝑓 ′ is amonotone operator.

(b) The following are equivalent:

(𝑖) 𝑓 ist strictly convex.

(𝑖𝑖) For all 𝑥, 𝑦 ∈ R𝑛 such that 𝑥 ≠ 𝑦 ,

𝑓 (𝑥) − 𝑓 (𝑦) > 𝑓 ′(𝑦) (𝑥 − 𝑦) (2.25)

holds.

(𝑖𝑖𝑖) For all 𝑥, 𝑦 ∈ R𝑛 such that 𝑥 ≠ 𝑦 ,(
𝑓 ′(𝑥) − 𝑓 ′(𝑦)) (𝑥 − 𝑦) > 0. (2.26)

Equation (2.26) means that 𝑓 ′ is a strictly monotone operator.

(c) The following are equivalent:

(𝑖) 𝑓 ist strongly convex.

(𝑖𝑖) There exists 𝜇 > 0 such that for all 𝑥, 𝑦 ∈ R𝑛 ,

𝑓 (𝑥) − 𝑓 (𝑦) ≥ 𝑓 ′(𝑦) (𝑥 − 𝑦) + 𝜇2 ∥𝑥 − 𝑦 ∥
2 (2.27)

holds.

(𝑖𝑖𝑖) There exists 𝜇 > 0 such that for all 𝑥, 𝑦 ∈ R𝑛 ,(
𝑓 ′(𝑥) − 𝑓 ′(𝑦)) (𝑥 − 𝑦) ≥ 𝜇 ∥𝑥 − 𝑦 ∥2. (2.28)

Equation (2.28) means that 𝑓 ′ is a strongly monotone operator.

16 https://tinyurl.com/scoop-nlo 2023-05-28

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

Theorem 2.9 (Characterization of convexity via second-order derivatives).
Suppose that 𝑓 : R𝑛 → R is twice differentiable.

(a) The following are equivalent:

(𝑖) 𝑓 ist convex.

(𝑖𝑖) 𝑓 ′′ is everywhere positive semidefinite (has only non-negative eigenvalues).

(b) When 𝑓 ′′ is everywhere positive definite, then 𝑓 is strictly convex.

(c) The following are equivalent:

(𝑖) 𝑓 is strongly convex with parameter 𝜇 > 0.

(𝑖𝑖) The smallest eigenvalue of 𝑓 ′′(𝑥) satisfies 𝜆min(𝑓 ′′(𝑥)) ≥ 𝜇 > 0 for all 𝑥 ∈ R𝑛 .

§ 2.9 Miscellanea

We denote the interior of a set 𝑆 ⊆ R𝑛 by int 𝑆 and its closure by cl 𝑆 .

Given 𝜀 > 0 and 𝑥 ∈ R𝑛 ,
𝐵𝑀𝜀 (𝑥 (0)) B

{
𝑥 ∈ R𝑛

�� ∥𝑥 − 𝑥 (0) ∥𝑀 < 𝜀
}

denotes the open 𝜀-ball w.r.t. the𝑀-norm about 𝑥 (0) . Similarly, the closed 𝜀-ball is

cl𝐵𝑀𝜀 (𝑥 (0)) B
{
𝑥 ∈ R𝑛

�� ∥𝑥 − 𝑥 (0) ∥𝑀 ≤ 𝜀}.
The ceiling function ⌈𝑥⌉ returns the smallest integer ≥ 𝑥 .

https://tinyurl.com/scoop-nlo 17

https://tinyurl.com/scoop-nlo

Chapter 1 Numerical Techniques for Unconstrained
Optimization Problems

We discuss in this chapter numerical methods for the unconstrained version of (1.1), i. e.,

Minimize 𝑓 (𝑥) where 𝑥 ∈ R𝑛 . (UP)

The reason for discussing the unconstrained problem first is that we can introduce the essential
algorithmic techniques without the difficulties of any constraints present.

Up front, we mention that we can only hope to find local minimizers. Determining global minimizers is
generally much harder and only possible under additional assumptions on the objective, and generally
only in relatively small dimensions 𝑛 ∈ N. A notable case of an additional assumption is that of a
convex objective 𝑓 . In this case, every local minimizer is already a global minimizer. Morever, first-
order optimality conditions are already sufficient for optimality, and we do not require second-order
conditions.

§ 3 Optimality Conditions

We assume you have seen the following first- and second-order optimality conditions, so we only
briefly recall them; see Herzog, 2022, § 3 for more details.

Theorem 3.1 (First-order necessary optimality condition).
Suppose that 𝑥∗ is a local minimizer of (UP) and that 𝑓 is differentiable at 𝑥∗. Then 𝑓 ′(𝑥∗) = 0.

Proof. Suppose that 𝑑 ∈ R𝑛 is arbitrary. We consider the curve 𝛾 : (−𝛿, 𝛿) → R𝑛 , 𝛾 (𝑡) B 𝑥∗ + 𝑡 𝑑 . For
sufficiently small 𝛿 > 0, this curve runs within the neighborhood of local optimality of 𝑥∗. This implies
that 𝑓 ◦ 𝛾 has a local minimizer at 𝑡 = 0.

From this local optimality, we infer that the difference quotient satisfies

𝑓 (𝛾 (𝑡)) − 𝑓 (𝛾 (0))
𝑡

=
𝑓 (𝑥∗ + 𝑡 𝑑) − 𝑓 (𝑥∗)

𝑡

{
≥ 0 for 𝑡 > 0,
≤ 0 for 𝑡 < 0.

On the other hand, this difference quotient converges to 𝑓 ′(𝑥∗) 𝑑 as 𝑡 → 0. Consequently, we must
have 𝑓 ′(𝑥∗) 𝑑 = 0. Since 𝑑 ∈ R𝑛 was arbitrary, this means 𝑓 ′(𝑥∗) = 0. □

https://tinyurl.com/scoop-nlo

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

A point 𝑥 ∈ R𝑛 with the property 𝑓 ′(𝑥) = 0 is termed a stationary point of 𝑓 .

Theorem 3.2 (Second-order necessary optimality condition).
Suppose that 𝑥∗ is a local minimizer of (UP) and that 𝑓 is twice differentiable at 𝑥∗. Then the Hessian
𝑓 ′′(𝑥∗) is positive semidefinite.1

Proof. Suppose that 𝑑 ∈ R𝑛 is arbitrary. Wie in Theorem 3.1 we define 𝛾 (𝑡) B 𝑥∗ + 𝑡 𝑑 and again
consider the objective along the curve, i. e., 𝜑 B 𝑓 ◦ 𝛾 , which has a local minimizer at 𝑡 = 0. Since 𝜑 is
twice differentiable at 𝑡 = 0, Theorem 2.3 implies the following: for all 𝜀 > 0 there exists 𝛿 > 0 such
that ��𝜑 (𝑡) − 𝜑 (0) − 𝜑 ′(0) 𝑡 − 1

2𝜑
′′(0) 𝑡2

�� ≤ 𝜀 𝑡2
holds for all |𝑡 | < 𝛿 . In view of Theorem 3.1, 𝜑 ′(0) = 0, and the local optimality implies 𝜑 (0) ≤ 𝜑 (𝑡)
for all |𝑡 | sufficiently small. We thus obtain

− 12𝜑
′′(0) 𝑡2 ≤ 𝜑 (𝑡) − 𝜑 (0) − 1

2𝜑
′′(0) 𝑡2 ≤ 𝜀 𝑡2

for all |𝑡 | sufficiently small, whence
1
2𝜑
′′(0) ≥ −𝜀.

Since 𝜀 > 0 was arbitrary, we conclude 𝜑 ′′(0) = 𝑑ᵀ 𝑓 ′′(𝑥∗) 𝑑 ≥ 0. And since 𝑑 ∈ R𝑛 was arbitrary, we
have shown 𝑓 ′′(𝑥∗) to be positive semidefinite. □

Theorem 3.3 (Second-order sufficient optimality condition).
Suppose that 𝑓 is twice differentiable at 𝑥∗ and

(𝑖) 𝑓 ′(𝑥∗) = 0 and

(𝑖𝑖) 𝑓 ′′(𝑥∗) is positive definite2, with minimal eigenvalue 𝜇 > 0.

Then for every 𝛽 ∈ (0, 𝜇), there exists a neighborhood𝑈 (𝑥∗) of 𝑥∗ such that

𝑓 (𝑥) ≥ 𝑓 (𝑥∗) + 𝛽2 ∥𝑥 − 𝑥
∗∥2 for all 𝑥 ∈ 𝑈 (𝑥∗) . (3.1)

In particular, 𝑥∗ is a strict local minimizer of 𝑓 .

Proof. Here we use Theorem 2.3 directly for 𝑓 (not along a curve). For every 𝜀 > 0, there exists 𝛿 > 0
such that ��𝑓 (𝑥∗ + 𝑑) − 𝑓 (𝑥∗) − 𝑓 ′(𝑥∗) 𝑑 − 1

2𝑑
ᵀ 𝑓 ′′(𝑥∗)𝑑

�� ≤ 𝜀 ∥𝑑 ∥2
holds for all ∥𝑑 ∥ < 𝛿 . According to the assumptions, 𝑓 ′(𝑥∗) = 0 holds. Therefore,

−𝜀 ∥𝑑 ∥2 ≤ 𝑓 (𝑥∗ + 𝑑) − 𝑓 (𝑥∗) − 1
2𝑑
ᵀ 𝑓 ′′(𝑥∗)𝑑

1Due to the symmetry of 𝑓 ′′ (𝑥∗) this is equivalent to all eigenvalues of 𝑓 ′′ (𝑥∗) being non-negative.
2Due to the symmetry of 𝑓 ′′ (𝑥∗) this is equivalent to all eigenvalues of 𝑓 ′′ (𝑥∗) being positive.

https://tinyurl.com/scoop-nlo 19

https://tinyurl.com/scoop-nlo

R. Herzog cbn

holds for all ∥𝑑 ∥ < 𝛿 . This implies

𝑓 (𝑥∗ + 𝑑) ≥ 𝑓 (𝑥∗) + 1
2𝑑
ᵀ 𝑓 ′′(𝑥∗) 𝑑 − 𝜀 ∥𝑑 ∥2

for all ∥𝑑 ∥ < 𝛿 .

From (2.12) (with𝑀 = Id), the values of the Rayleigh quotient associated with the symmetric matrix
𝑓 ′′(𝑥∗) are bounded above and below by the extremal eigenvalues of 𝑓 ′′(𝑥∗). In particular, we have

𝑑ᵀ 𝑓 ′′(𝑥∗) 𝑑 ≥ 𝜇 ∥𝑑 ∥2 for all 𝑑 ∈ R𝑛 .

We can now finalize the proof: for 𝛽 ∈ (0, 𝜇), choose 𝜀 B (𝜇 − 𝛽)/2 > 0 and an appropriate value of
𝛿 > 0. Then we have

𝑓 (𝑥∗ + 𝑑) ≥ 𝑓 (𝑥∗) + 1
2𝑑
ᵀ 𝑓 ′′(𝑥∗) 𝑑 − 𝜀 ∥𝑑 ∥2

≥ 𝑓 (𝑥∗) + 𝜇2 ∥𝑑 ∥
2 − 𝜀 ∥𝑑 ∥2

= 𝑓 (𝑥∗) + 𝛽2 ∥𝑑 ∥
2

for all ∥𝑑 ∥ < 𝛿 . □

Property (3.1) means that 𝑓 has at least quadratic growth near 𝑥∗. Equivalently, 𝑓 is locally strongly
convex with parameter 𝛽 ∈ (0, 𝜇).

End of Week 1

§ 4 Minimization of Quadratic Functions

In this section we consider the simplest reasonable class of unconstrained optimization problems,
namely the minimization of quadratic polynomials:

Minimize 𝜙 (𝑥) B 1
2𝑥
ᵀ𝐴𝑥 − 𝑏ᵀ𝑥 + 𝑐 where 𝑥 ∈ R𝑛 . (4.1)

The data of the problem is 𝐴 ∈ R𝑛×𝑛 , 𝑏 ∈ R𝑛 and 𝑐 ∈ R. We can assume w.l.o.g. that 𝐴 is symmetric.
Quiz 4.1: Why?

If we knew a spectral decomposition of 𝐴 = 𝑉Λ𝑉 ᵀ (which of course we usually don’t), we could
represent the objective as 𝜙 (𝑥) = 1

2𝑥
ᵀ𝑉 Λ𝑉 ᵀ𝑥 − 𝑏ᵀ𝑉 𝑉 ᵀ𝑥 + 𝑐 . After a substitution of variables 𝑥 = 𝑉 ᵀ𝑦 ,

this becomes 𝜙 (𝑦) = 1
2𝑦
ᵀ Λ 𝑦 −𝑏ᵀ𝑉 𝑦 + 𝑐 . Consequently, in these coordinates, the problem decomposes

into a sum of 𝑛 independent quadratic minimization problems in the components 𝑦𝑖 .

Being able to solve (4.1) is an essential building block for subsequent tasks.

20 https://tinyurl.com/scoop-nlo 2023-05-28

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

Lemma 4.1 (Solvability and global solutions of (4.1)3). Suppose that 𝐴 ∈ R𝑛×𝑛 is symmetric, 𝑏 ∈ R𝑛
and 𝑐 ∈ R. Then the following holds:

(𝑖) If 𝐴 is positive semidefinite, then the objective in (4.1) is convex. In this case, the following are
equivalent:

(a) The problem (4.1) possess at least one (global) minimizer.

(b) The objective 𝜙 is bounded below.

(c) 𝐴𝑥 = 𝑏 is solvable.

The global minimizers of (4.1) are precisely the solutions of the linear system 𝐴𝑥 = 𝑏.

(𝑖𝑖) In case 𝐴 is not positive semidefinite4, the objective 𝜙 is not bounded below, thus problem (4.1) is
unbounded.

Proof. □

Corollary 4.2 (Unique solvability of (4.1)). Problem (4.1) possesses a unique (global) solution 𝑥∗ if and
only if 𝐴 is s. p. d. In this case, 𝑥∗ = 𝐴−1𝑏, and the optimal value is

𝜙 (𝑥∗) = 𝑐 − 1
2 ∥𝑥

∗∥2𝐴 = 𝑐 − 1
2 ∥𝐴

−1𝑏∥2𝐴 = 𝑐 − 1
2 ∥𝑏∥

2
𝐴−1 .

We will assume for the remainder of § 4 that 𝐴 is symmetric and positive definite (s. p. d.). Hence, the
solution of (4.1) is equivalent to the solution of the linear system 𝐴𝑥 = 𝑏. We denote that solution
by 𝑥∗ = 𝐴−1𝑏. Of course, we could be using a direct solver, such as Gaussian elimination, which
computes an LU decomposition of 𝐴, or rather its s. p. d. variant without pivoting, which computes the
Cholesky decomposition 𝐴 = 𝐿𝐿ᵀ with the lower triangular matrix 𝐿.5 However, when the problem
is high-dimensional (such as 𝑛 ≥ 10 000), then the generic ∼ 𝑛3 effort for solving the linear system
becomes prohibitive. Even when 𝐴 is sparse, as is often the case for high-dimensional problems, and a
direct solver which exploits this is used6, this is no longer feasible for very high dimension 𝑛.

This is where iterative solvers for linear systems come into play. They do not solve the problem at
once, but rather generate a sequence

(
𝑥 (𝑘)

)
which converges to the solution. Beyond the ability to

deal with very high-dimensional problems, iterative solvers have another advantage: Any iterate 𝑥 (𝑘)
of the method can be viewed as an approximate solution of 𝐴𝑥 = 𝑏 (or an approximate solution of
(4.1)), and we can stop the iteration as soon as the desired tolerance is reached, when the time budget
is used up, or when something unexpected happens, e. g., 𝐴 turns out not to be positive definite after
all. Recall that direct solvers do not yield any usable approximate solutions of the system while they
3compare Nocedal, Wright, 2006, Lemma 4.7
4The matrix 𝐴 possesses at least one negative eigenvalue.
5We assume you have seen these methods, e. g., in the class Einführung in die Numerik.
6such as a sparse Cholesky decomposition

https://tinyurl.com/scoop-nlo 21

https://en.wikipedia.org/wiki/Gaussian_elimination
https://en.wikipedia.org/wiki/Cholesky_decomposition
https://tinyurl.com/scoop-nlo

R. Herzog cbn

are running; they have to carry through to the end, and only then return a solution, which is exact up
to the influence of floating-point error. Iterative solvers have the additional advantage that they do
not require access to the matrix 𝐴 entry by entry. Rather they only require matrix-vector products,
i. e., a function which evaluates 𝑥 ↦→ 𝐴𝑥 . Quiz 4.2: Can you think of an example where matrix-vector
products are available, but you typically don’t have access to the entries of the underlying matrix?

Our objective 𝜙 from (4.1) satisfies

𝜙 (𝑥) = 1
2𝑥
ᵀ𝐴𝑥 − 𝑏ᵀ𝑥 + 𝑐

∇𝜙 (𝑥) = 𝐴𝑥 − 𝑏 C 𝑟 .

We call 𝑟 = ∇𝜙 (𝑥) the residual of the linear system 𝐴𝑥 = 𝑏 at 𝑥 .7 Independently of any method we
might be using to solve 𝐴𝑥 = 𝑏 (or minimize 𝜙), we have the following relation between the values of
the objective, the error 𝑥 − 𝑥∗ at a point 𝑥 , and the residual at 𝑥 :

Lemma 4.3. We have

𝜙 (𝑥) − 𝜙 (𝑥∗) = 1
2 ∥𝑥 − 𝑥

∗∥2𝐴 =
1
2 ∥𝑟 ∥

2
𝐴−1 =

1
2 ∥∇𝜙 (𝑥)∥

2
𝐴−1 . (4.2)

Proof. Direct calculation shows

𝜙 (𝑥) − 𝜙 (𝑥∗) = 1
2𝑥
ᵀ𝐴𝑥 − 𝑏ᵀ𝑥 + 𝑐 − 1

2 (𝑥
∗)ᵀ𝐴𝑥∗ + 𝑏ᵀ𝑥∗ − 𝑐

=
1
2𝑥
ᵀ𝐴𝑥 − (𝑥∗)ᵀ𝐴𝑥 − 1

2 (𝑥
∗)ᵀ𝐴𝑥∗ + (𝑥∗)ᵀ𝐴𝑥∗ since 𝑏 = 𝐴𝑥∗

=
1
2𝑥
ᵀ𝐴𝑥 − (𝑥∗)ᵀ𝐴𝑥 + 1

2 (𝑥
∗)ᵀ𝐴𝑥∗

=
1
2 ∥𝑥 − 𝑥

∗∥2𝐴
=

1
2 (𝑥 − 𝑥

∗)ᵀ𝑟 = 1
2𝑟
ᵀ𝐴−1𝑟 since 𝑟 = 𝐴 (𝑥 − 𝑥∗)

=
1
2 ∥𝑟 ∥

2
𝐴−1

=
1
2 ∥∇𝜙 (𝑥)∥

2
𝐴−1 .

□

We will discuss in the remainder of this section two different iterative methods for the solution of (4.1),
and equivalently the solution of the linear system 𝐴𝑥 = 𝑏, where 𝐴 is s. p. d.8 These methods are the
gradient descent method (also known as steepest descent method), and the conjugate gradient
method.
7Sometimes the residual is defined in the literature with opposite sign. We do not write 𝑟 (𝑥) to keep the notation concise.
It will be clear from the context which vector 𝑥 the residual is associated with.

8You can learn more about iterative solvers for more general linear systems (not related to optimization) in the class
Numerische lineare Algebra.

22 https://tinyurl.com/scoop-nlo 2023-05-28

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

We begin with the gradient descent method, which is based on the following simple
Idea: from the current iterate 𝑥 (𝑘) , move a bit along the direction of steepest descent of the objective,
and take the point reached as the next iterate 𝑥 (𝑘+1) .

§ 4.1 Direction of Steepest Descent

We first need to clarify what descent directions and the directions of steepest descent of a function
𝑓 : R𝑛 → R at a point 𝑥 are.

Definition 4.4 (Descent direction).
Suppose that 𝑓 : R𝑛 → R is differentiable at 𝑥 ∈ R𝑛 . A vector 𝑑 ∈ R𝑛 is termed a descent direction for 𝑓
at 𝑥 if

𝑓 ′(𝑥) 𝑑 < 0. (4.3)

holds.

By definition, the direction of steepest descent minimizes the directional derivative 𝑓 ′(𝑥) 𝑑 over all
vectors 𝑑 ∈ R𝑛 of constant length. What we mean by “length” is defined through the inner product𝑀
in use:

Minimize 𝑓 ′(𝑥) 𝑑 where 𝑑 ∈ R𝑛
subject to ∥𝑑 ∥𝑀 = 1.

(4.4)

We note that we could be considering the equivalent problem

Minimize 𝑓 ′(𝑥) 𝑑 where 𝑑 ∈ R𝑛
subject to ∥𝑑 ∥𝑀 ≤ 1.

(4.5)

The normalization to unit length is, by the way, arbitrary.

Problems (4.4), (4.5) are constrained problems, but we can solve them without an elaborated theory.
We rewrite the objective so that the directional derivative is expressed using the𝑀-inner product9

𝑓 ′(𝑥) 𝑑 = ∇𝑓 (𝑥)ᵀ𝑑 = ∇𝑓 (𝑥)ᵀ𝑀−1𝑀 𝑑 =
(
𝑀−1∇𝑓 (𝑥))ᵀ𝑀 𝑑,

where we used the symmetry of𝑀 (actually of𝑀−1) in the last step. The Cauchy-Schwarz inequality
w.r.t. the𝑀-inner product shows that this expression is minimal precisely when 𝑑 is antiparallel to
𝑀−1∇𝑓 (𝑥).

We summarize these findings:

Definition 4.5 (𝑀-gradient, direction of steepest descent w.r.t. the𝑀-inner product).
Suppose that 𝑓 : R𝑛 → R is differentiable at 𝑥 ∈ R𝑛 and that 𝑓 ′(𝑥) ≠ 0 holds.
9In case this means something to you, we determine the Riesz representer of 𝑓 ′ (𝑥) w.r.t. the𝑀-inner product.

https://tinyurl.com/scoop-nlo 23

https://tinyurl.com/scoop-nlo

R. Herzog cbn

(𝑖) The vector
∇𝑀 𝑓 (𝑥) B 𝑀−1∇𝑓 (𝑥) (4.6)

is termed the gradient of 𝑓 at 𝑥 w.r.t. the𝑀-inner product or briefly: the𝑀-gradient.

(𝑖𝑖) The vector −∇𝑀 𝑓 (𝑥) and all of its positive multiples are termed the directions of steepest descent
of 𝑓 at 𝑥 w.r.t. the𝑀-inner product.

We evaluate the negative𝑀-gradient (direction of steepest descent) by solving the linear system

𝑀 𝑑∗ = −∇𝑓 (𝑥) . (4.7)

When using the Euclidean inner product (𝑀 = Id), we continue to write ∇𝑓 (𝑥) instead of ∇Id 𝑓 (𝑥).
Sometimes, the use of ∇𝑀 𝑓 (𝑥) instead of the Euclidean gradient direction ∇𝑓 (𝑥) is referred to as
preconditioning.

§ 4.2 Gradient Descent Method with Cauchy Step Sizes

The direction of steepest descent at 𝑥 used by the gradient method is thus10

𝑑 = −∇𝑀𝜙 (𝑥) = −𝑀−1𝑟 .

Now that the choice of direction is clear, let us analyze the choice of the step size. We have the
following expression for the difference of function values before and after a step:

𝜙 (𝑥 + 𝛼 𝑑) − 𝜙 (𝑥) = 1
2 (𝑥 + 𝛼 𝑑)

ᵀ𝐴 (𝑥 + 𝛼 𝑑) − 𝑏ᵀ(𝑥 + 𝛼 𝑑) + 𝑐 − 1
2𝑥
ᵀ𝐴𝑥 + 𝑏ᵀ𝑥 − 𝑐

=
1
2 (𝑑

ᵀ𝐴𝑑) 𝛼2 + (𝐴𝑥 − 𝑏)ᵀ𝑑 𝛼

=
1
2 (𝑑

ᵀ𝐴𝑑) 𝛼2 + (𝑟 ᵀ𝑑) 𝛼. (4.8)

Note: This formula holds for arbitrary directions 𝑑 and step sizes 𝛼 .

When 𝑑 ≠ 0, then the one-dimensional quadratic polynomial 𝛼 ↦→ 𝜙 (𝑥 + 𝛼 𝑑) is strongly convex. It is
therefore an obvious idea to choose 𝛼 such that 𝜙 (𝑥 +𝛼 𝑑) is minimized. According to (4.8), we have

d
d𝛼 𝜙 (𝑥 + 𝛼 𝑑) = (𝑑

ᵀ𝐴𝑑) 𝛼 + 𝑟 ᵀ𝑑,
d2

d𝛼2𝜙 (𝑥 + 𝛼 𝑑) = 𝑑
ᵀ𝐴𝑑 > 0.

Due to the positivity of the second derivative, the second-order sufficient condition (Theorem 3.3) is
satisfied when d

d𝛼𝜙 (𝑥 + 𝛼 𝑑) = 0, which amounts to

𝛼∗ = − 𝑟 ᵀ𝑑
𝑑ᵀ𝐴𝑑

. (4.9)

10We avoid iteration indices for now in order to avoid cluttered notation.

24 https://tinyurl.com/scoop-nlo 2023-05-28

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

This “optimal” step size is also known as the Cauchy step size. For this choice, the difference of
function values (4.8) before and after a step becomes

𝜙 (𝑥 + 𝛼∗ 𝑑) − 𝜙 (𝑥) = 1
2 (𝑑

ᵀ𝐴𝑑) (𝛼∗)2 + (𝑟 ᵀ𝑑) 𝛼∗

=
1
2 (𝑑

ᵀ𝐴𝑑)
(𝑟 ᵀ𝑑
𝑑ᵀ𝐴𝑑

)2
− (𝑟 ᵀ𝑑) 𝑟 ᵀ𝑑

𝑑ᵀ𝐴𝑑

= − 12
(𝑟 ᵀ𝑑)2
𝑑ᵀ𝐴𝑑

. (4.10)

Note: This formula holds for arbitrary directions 𝑑 ≠ 0 but it uses the Cauchy step size 𝛼∗.

We can now state the steepest descent method w.r.t. the 𝑀-inner product and the Cauchy step size
(4.9) for the iterative solution of the unconstrained quadratic minimization problem (4.1) with s. p. d. 𝐴.
This method, with𝑀 = Id, was already published by Cauchy, 1847.

Algorithm 4.6 (Gradient descent method for (4.1) w.r.t. the𝑀-inner product with Cauchy step size).
Input: initial guess 𝑥 (0) ∈ R𝑛
Input: right-hand side 𝑏 ∈ R𝑛
Input: s. p. d. matrix 𝐴 (or matrix-vector products with 𝐴)
Input: s. p. d. matrix𝑀 (or matrix-vector products with𝑀−1)
Output: approximate solution of (4.1), i. e., of 𝐴𝑥 = 𝑏
1: Set 𝑘 B 0
2: Set 𝑟 (0) B 𝐴𝑥 (0) − 𝑏 // evaluate the initial residual
3: Set 𝑑 (0) B −𝑀−1𝑟 (0) // evaluate the initial negative𝑀-gradient
4: Set 𝛿 (0) B −(𝑟 (0))ᵀ𝑑 (0) // 𝛿 (0) = ∥∇𝑀𝜙 (𝑥 (0))∥2𝑀 = ∥𝑟 (0) ∥2

𝑀−1
5: while stopping criterion not met do
6: Set 𝑞 (𝑘) B 𝐴𝑑 (𝑘)

7: Set 𝜃 (𝑘) B (𝑞 (𝑘))ᵀ𝑑 (𝑘)
8: Set 𝛼 (𝑘) B 𝛿 (𝑘)/𝜃 (𝑘) // evaluate the Cauchy step size
9: Set 𝑥 (𝑘+1) B 𝑥 (𝑘) + 𝛼 (𝑘)𝑑 (𝑘) // update the iterate
10: Set 𝑟 (𝑘+1) B 𝑟 (𝑘) + 𝛼 (𝑘)𝑞 (𝑘) // update the residual
11: Set 𝑑 (𝑘+1) B −𝑀−1𝑟 (𝑘+1) // evaluate the negative𝑀-gradient
12: Set 𝛿 (𝑘+1) B −(𝑟 (𝑘+1))ᵀ𝑑 (𝑘+1) // 𝛿 (𝑘+1) = ∥∇𝑀𝜙 (𝑥 (𝑘+1))∥2𝑀 = ∥𝑟 (𝑘+1) ∥2

𝑀−1
13: Set 𝑘 B 𝑘 + 1
14: end while
15: return 𝑥 (𝑘)

The following can be said about Algorithm 4.6.

Remark 4.7 (on Algorithm 4.6).
(𝑖) Algorithm 4.6 is an iterative solver for the unconstrained quadratic minimization problem (4.1) with

s. p. d. 𝐴, and simultaneously an iterative solver for the linear system 𝐴𝑥 = 𝑏.

(𝑖𝑖) We do not require access to the matrix 𝐴 entry by entry, matrix-vector products with 𝐴 are enough.

https://tinyurl.com/scoop-nlo 25

https://tinyurl.com/scoop-nlo

R. Herzog cbn

(𝑖𝑖𝑖) The user gets to choose the inner product 𝑀 . This is known as preconditioning, and therefore
Algorithm 4.6 is often termed a preconditioned gradient descent method. The case 𝑀 = Id
corresponds to the classical gradient descent method (without preconditioning).

(𝑖𝑣) We also do not require access to the inner product matrix𝑀 entry by entry, matrix-vector products
with𝑀−1 (i. e., solutions of linear systems with𝑀) are enough.

(𝑣) Algorithm 4.6 requires the storage of four vectors, which are iteratively overwritten: iterates 𝑥 (𝑘) ,
residuals 𝑟 (𝑘) , negative gradient directions 𝑑 (𝑘) , and vectors 𝑞 (𝑘) = 𝐴𝑑 (𝑘) .

(𝑣𝑖) Every iteration requires one matrix-vector product with 𝐴 and one application of the preconditioner,
i. e., one matrix-vector product with𝑀−1.

(𝑣𝑖𝑖) In order to mitigate the accumulation of round-off error, it is advisable to evaluate the residual
every, say, 50 iterations according to 𝑟 (𝑘) B 𝐴𝑥 (𝑘) − 𝑏, rather than update it.

(𝑣𝑖𝑖𝑖) The Cauchy step sizes satisfy

0 < 𝜆min(𝐴;𝑀) ≤ 1
𝛼 (𝑘)

=
(𝑑 (𝑘))ᵀ𝐴𝑑 (𝑘)
(𝑑 (𝑘))ᵀ𝑀 𝑑 (𝑘)

≤ 𝜆max(𝐴;𝑀), (4.11)

as long as 𝑑 (𝑘) ≠ 0 holds, i. e., as long as 𝑥 (𝑘) ≠ 𝑥∗. Consequently, the Cauchy step sizes generated
can be used to obtain estimates on the eigenvalues of 𝐴 w.r.t. 𝑀 .

(𝑖𝑥) When Algorithm 4.6 is provided with the value of 𝑐 , the following recursion can be added to the
algorithm to keep track of the value of the objective:

𝜙 (𝑥 (0)) = 𝑐 + 1
2 (𝑟
(0) − 𝑏)ᵀ(𝑥 (0)) initialization (4.12a)

𝜙 (𝑥 (𝑘+1)) = 𝜙 (𝑥 (𝑘)) − 1
2 𝛼
(𝑘)𝛿 (𝑘) update. (4.12b)

This does not incur noticeable computational overhead and does not require the storage of extra
vectors. Alternatively, the value of 𝜙 (𝑥 (0)) can be provided.

We now seek to estimate the speed of convergence of Algorithm 4.6. The function values at the iterates
satisfy

𝜙 (𝑥 (𝑘+1)) − 𝜙 (𝑥∗)
=

1
2 ∥𝑟

(𝑘+1) ∥2
𝐴−1 by (4.2)

=
1
2 ∥𝑟

(𝑘) + 𝛼 (𝑘)𝐴𝑑 (𝑘) ∥2
𝐴−1

=
1
2 ∥𝑟

(𝑘) ∥2
𝐴−1 + 𝛼 (𝑘) (𝑟 (𝑘))ᵀ𝑑 (𝑘) +

1
2
[
𝛼 (𝑘)

]2 (𝑑 (𝑘))ᵀ𝐴𝑑 (𝑘) .
26 https://tinyurl.com/scoop-nlo 2023-05-28

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

This formula so far holds for any choice of step size 𝛼 (𝑘) and any choice of direction 𝑑 (𝑘) . We now
insert the Cauchy step size 𝛼 (𝑘) = − (𝑟 (𝑘))ᵀ𝑑 (𝑘)(𝑑 (𝑘))ᵀ𝐴𝑑 (𝑘) and obtain

=
1
2 ∥𝑟

(𝑘) ∥2
𝐴−1 −

[(𝑟 (𝑘))ᵀ𝑑 (𝑘)]2
(𝑑 (𝑘))ᵀ𝐴𝑑 (𝑘) +

1
2

[(𝑟 (𝑘))ᵀ𝑑 (𝑘)]2
(𝑑 (𝑘))ᵀ𝐴𝑑 (𝑘)

=

(
1 −

[(𝑟 (𝑘))ᵀ𝑑 (𝑘)]2[(𝑑 (𝑘))ᵀ𝐴𝑑 (𝑘)] [(𝑟 (𝑘))ᵀ𝐴−1𝑟 (𝑘)]
) (
𝜙 (𝑥 (𝑘)) − 𝜙 (𝑥∗)) by (4.2).

The directions 𝑑 (𝑘) are still arbitrary. Inserting the relationship 𝑑 (𝑘) = −𝑀−1 𝑟 (𝑘) = −∇𝑀𝜙 (𝑥 (𝑘))
characteristic for gradient descent, in the form 𝑟 (𝑘) = −𝑀 𝑑 (𝑘) , we obtain

=

(
1 −

[(𝑑 (𝑘))ᵀ𝑀 𝑑 (𝑘)
]2[(𝑑 (𝑘))ᵀ𝐴𝑑 (𝑘)] [(𝑑 (𝑘))ᵀ𝑀𝐴−1𝑀 𝑑 (𝑘)

]) (𝜙 (𝑥 (𝑘)) − 𝜙 (𝑥∗)) .
The fraction is precisely the type of expression estimated by the generalized Kantorovich inequality
(2.19). This yields

𝜙 (𝑥 (𝑘+1)) − 𝜙 (𝑥∗)

≤
(
1 − 4𝛼 𝛽
(𝛼 + 𝛽)2

) (
𝜙 (𝑥 (𝑘)) − 𝜙 (𝑥∗))

=

(
𝛽 − 𝛼
𝛽 + 𝛼

)2 (
𝜙 (𝑥 (𝑘)) − 𝜙 (𝑥∗))

=

(
𝜅 − 1
𝜅 + 1

)2 (
𝜙 (𝑥 (𝑘)) − 𝜙 (𝑥∗)) since 𝜅 = 𝛽/𝛼.

We have thus shown the following classical convergence result for Algorithm 4.6:

Theorem 4.8 (Convergence of Algorithm 4.6). Suppose that 𝐴 ∈ R𝑛×𝑛 are 𝑀 are both s. p. d., 𝛼 B
𝜆min(𝐴;𝑀) and 𝛽 B 𝜆max(𝐴;𝑀) are the extremal generalized eigenvalues of 𝐴 w.r.t. 𝑀 . Then for any
choice of the initial guess 𝑥 (0) , the gradient descent method with Cauchy step sizes converges to the unique
solution 𝑥∗ = 𝐴−1𝑏 of (4.1). In terms of the generalized condition number 𝜅 = 𝛽/𝛼 , we have the estimates

𝜙 (𝑥 (𝑘+1)) − 𝜙 (𝑥∗) ≤
(
𝜅 − 1
𝜅 + 1

)2 (
𝜙 (𝑥 (𝑘)) − 𝜙 (𝑥∗)) (4.13a)

∥𝑥 (𝑘+1) − 𝑥∗∥𝐴 ≤
(
𝜅 − 1
𝜅 + 1

)
∥𝑥 (𝑘) − 𝑥∗∥𝐴 (4.13b)

and consequently

𝜙 (𝑥 (𝑘)) − 𝜙 (𝑥∗) ≤
(
𝜅 − 1
𝜅 + 1

)2𝑘 (
𝜙 (𝑥 (0)) − 𝜙 (𝑥∗)) (4.13c)

∥𝑥 (𝑘) − 𝑥∗∥𝐴 ≤
(
𝜅 − 1
𝜅 + 1

)𝑘
∥𝑥 (0) − 𝑥∗∥𝐴 . (4.13d)

Moreover, the objective values 𝜙 (𝑥 (𝑘)) and thus the norm of the error ∥𝑥 (𝑘) − 𝑥∗∥𝐴 are monotonically
decreasing.

https://tinyurl.com/scoop-nlo 27

https://tinyurl.com/scoop-nlo

R. Herzog cbn

As an immediate consequence of this theorem, we can estimate the maximal number of iterations
required until the left-hand terms in (4.13c) and (4.13d) have been decreased relative to their initial
values.

Corollary 4.9 (Maximal number of iterations required in Algorithm 4.6). Given positive numbers 𝜀1
and 𝜀2, it takes

𝑘 ≤
⌈
𝜅

4 ln
(
1
𝜀1

)⌉
iterations until

(
𝜅 − 1
𝜅 + 1

)2𝑘
≤ 𝜀1,

𝑘 ≤
⌈
𝜅

2 ln
(
1
𝜀2

)⌉
iterations until

(
𝜅 − 1
𝜅 + 1

)𝑘
≤ 𝜀2.

Proof. (1) We first show that

− ln
(
𝜅 − 1
𝜅 + 1

)
≥ 2
𝜅
> 0

holds for all 𝜅 ≥ 1. At 𝜅 = 𝑒+1
𝑒−1 , we have

− ln
(
𝜅 − 1
𝜅 + 1

)
= − ln

(
1
𝑒

)
= 1 > 2

𝜅
= 2 𝑒 − 1

𝑒 + 1 ≈ 0.92.

We now show that
d
d𝜅

[
− ln

(
𝜅 − 1
𝜅 + 1

)]
≥ d

d𝜅
2
𝜅

holds for all 𝜅 > 1, which proves the claim. The derivative on the left is −2
(𝜅−1) (𝜅+1) , while the

derivative on the right is −2
𝜅2 . In view of 0 < 𝜅2 − 1 < 𝜅2 for all 𝜅 > 1, we conclude

−2
(𝜅 − 1) (𝜅 + 1) <

−2
𝜅2

< 0 for all 𝜅 > 1.

(2) Taking the reciprocal of the inequality shown above, we obtain

0 <
−1

ln
(
𝜅−1
𝜅+1

) ≤ 𝜅2 (∗)

for all 𝜅 > 1.

(3) Given 𝜅 > 1, we easily infer that
(
𝜅−1
𝜅+1

)2𝑘 ≤ 𝜀1 holds if and only if

𝑘 ≥ 1
2
− ln 𝜀1
− ln (

𝜅−1
𝜅+1

) =
1
2
−1

ln
(
𝜅−1
𝜅+1

) ln (
1
𝜀1

)
. (∗∗)

In view of the inequality (∗) shown above, we obtain that

𝑘 ≥
⌈
𝜅

4 ln
(
1
𝜀1

)⌉
≥ 𝜅4 ln

(
1
𝜀1

)
implies (∗∗), which proves the first claim.

The second claim follows similarly. □

28 https://tinyurl.com/scoop-nlo 2023-05-28

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

Remark 4.10 (on Theorem 4.8).
(𝑖) (4.13b) shows the Q-linear convergence of

(
𝑥 (𝑘)

)
to the solution 𝑥∗ in the 𝐴-norm.

(𝑖𝑖) The contraction factor is 0 ≤ 𝜅−1
𝜅+1 < 1, i. e., the convergence estimate depends on the ratio 𝜅

between the largest and the smallest generalized eigenvalue of 𝐴 w.r.t. 𝑀 . It is the purpose of the
preconditioner/inner product𝑀 to keep this ratio small.

(𝑖𝑖𝑖) In the extreme case 𝜅 = 1 we obtain convergence in one step. This happens precisely when𝑀 is a
multiple of 𝐴. However, we need a solve a linear system with𝑀 in every iteration. If we were able
to do that, we might as well solve 𝐴𝑥 = 𝑏 directly.

(𝑖𝑣) A good preconditioner is a compromise between a moderate generalized condition number 𝜅 and
the effort in applying𝑀−1. Finding a good preconditioner generally requires knowledge about the
problem at hand.

(𝑣) It is natural to measure convergence of the method in the 𝐴-norm of the error because, due to (4.2),
that is the quantity being minimized.

(𝑣𝑖) The estimates of Theorem 4.8 are worst-case estimates since they do not depend on the initial guess
𝑥 (0) . In fact, as can be seen in Figure 4.1c, the actual contraction factor for the objective values can
be significantly smaller for some initial guesses than the estimate (4.13c) suggests.

Figure 4.1 illustrates the convergence behavior of Algorithm 4.6 for a 2-dimensional example problem
from a number of different initial guesses 𝑥 (0) . We observe the typical “zig-zagging” behavior of the
iterates as they converge to the solution. This happens for any initial guess, except when 𝑥 (0) − 𝑥∗
happens to be a generalized eigenvector of 𝐴 w.r.t. 𝑀 , in which case convergence occurs in one step
due to 𝑥 (1) = 𝑥∗. (Such a case is not shown in Figure 4.1). Quiz 4.3: Suppose 𝐴, 𝑏 and𝑀 are given and
you consider a random distribution of initial values 𝑥 (0) in R𝑛 , which has a probability density. What
is the probability of hitting an initial value such that convergence happens in one step?

The zig-zagging behavior of the iterates 𝑥 (𝑘) , as well as the non-monotone behavior of ∥𝑟 (𝑘) ∥𝑀−1
have been analyzed in detail in the literature; see for instance Akaike, 1959; Forsythe, 1968; Nocedal,
Sartenaer, Zhu, 2002. Essentially what happens is that, asymptotically, the error 𝑥 (𝑘) − 𝑥∗ alternates
between elements of the eigenspaces belonging to the smallest and the largest eigenvalues of 𝐴 w.r.t.
𝑀 . This is ultimately a consequence of the fact that gradient descent is a memoryless method.

It has also been shown that a necessary condition in order for the norm of the gradient ∥𝑟 (𝑘) ∥𝑀−1 to
converge non-monotonically is that the condition number satisfy 𝜅 > 3 + 2√2 ≈ 5.83.

It remains to discuss stopping criteria. Several quantities may be of interest in this respect:

(𝑖) Are we happy with a point 𝑥 (𝑘) which is almost stationary, i. e., where ∥𝑟 (𝑘) ∥𝑀−1 is small?

(𝑖𝑖) Are we happy with a point 𝑥 (𝑘) whose objective value is near the optimal value, i. e., where
𝜙 (𝑥 (𝑘)) − 𝜙 (𝑥∗) is small, or equivalently, where ∥𝑥 (𝑘) − 𝑥∗∥𝐴 is small?

https://tinyurl.com/scoop-nlo 29

https://tinyurl.com/scoop-nlo

R. Herzog cbn

(a) Iterates
(
𝑥 (𝑘)

)
of the method. Each color corresponds to a different initial guess 𝑥 (0) .

0 5 10 15 20 25 30
10-6

10-5

10-4

10-3

10-2

10-1

100

101

(b) The norm of the gradient
√
𝛿 (𝑘) =

∥∇𝑀𝜙 (𝑥 (𝑘))∥𝑀 = ∥𝑟 (𝑘) ∥𝑀−1 does not
necessarily converge monotonically.

0 5 10 15 20 25 30
10-15

10-10

10-5

100

(c) The objective values 𝜙 (𝑥 (𝑘)) − 𝜙 (𝑥∗) converge
monotonically. The black line illustrates the
bound (4.13c).

Figure 4.1: Illustration of the convergence behavior of Algorithm 4.6 from a number of initial guesses
𝑥 (0) . No preconditioning (𝑀 = Id) is used. The two eigenvalues of the matrix are 𝛼 = 1 and
𝛽 = 10 so the condition number is 𝜅 = 10.

30 https://tinyurl.com/scoop-nlo 2023-05-28

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

(𝑖𝑖𝑖) Are we happy with a point 𝑥 (𝑘) whose distance from the minimizer is small in the preconditioner-
induced norm𝑀 , i. e., where ∥𝑥 (𝑘) − 𝑥∗∥𝑀 is small?

The only of these three quantities which we can evaluate without knowing 𝑥∗ or 𝜙 (𝑥∗) is 𝛿 (𝑘) =
∥𝑟 (𝑘) ∥2

𝑀−1 . Therefore, many implementations use one of the following combinations of a relative and
an absolute criterion based on ∥𝑟 (𝑘) ∥𝑀−1 :

∥𝑟 (𝑘) ∥𝑀−1 ≤ 𝜀rel ∥𝑟 (0) ∥𝑀−1, i. e., 𝛿 (𝑘) ≤ 𝜀2rel 𝛿 (0) , (4.14a)
∥𝑟 (𝑘) ∥𝑀−1 ≤ 𝜀abs, i. e., 𝛿 (𝑘) ≤ 𝜀2abs, (4.14b)
∥𝑟 (𝑘) ∥𝑀−1 ≤ 𝜀rel ∥𝑟 (0) ∥𝑀−1 + 𝜀abs, i. e., (𝛿 (𝑘))1/2 ≤ 𝜀rel (𝛿 (0))1/2 + 𝜀abs, (4.14c)
∥𝑟 (𝑘) ∥𝑀−1 ≤ max

{
𝜀rel ∥𝑟 (0) ∥𝑀−1, 𝜀abs

}
, i. e., 𝛿 (𝑘) ≤ max

{
𝜀2rel 𝛿

(0) , 𝜀2abs
}
. (4.14d)

Let us see which consequences either of the implementable stopping criteria (4.14) has on the other
two quantities of interest:

Lemma 4.11 (Implications). The criteria from (4.14) imply, respectively,

∥𝑥 (𝑘) − 𝑥∗∥𝐴 ≤
√
𝜅 𝜀rel ∥𝑥 (0) − 𝑥∗∥𝐴

∥𝑥 (𝑘) − 𝑥∗∥𝑀 ≤ 𝜅 𝜀rel ∥𝑥 (0) − 𝑥∗∥𝑀

}
(4.15a)

∥𝑥 (𝑘) − 𝑥∗∥𝐴 ≤ (1/
√
𝛼) 𝜀abs

∥𝑥 (𝑘) − 𝑥∗∥𝑀 ≤ (1/𝛼) 𝜀abs

}
(4.15b)

∥𝑥 (𝑘) − 𝑥∗∥𝐴 ≤
√
𝜅 𝜀rel ∥𝑥 (0) − 𝑥∗∥𝐴 + (1/

√
𝛼) 𝜀abs

∥𝑥 (𝑘) − 𝑥∗∥𝑀 ≤ 𝜅 𝜀rel ∥𝑥 (0) − 𝑥∗∥𝑀 + (1/𝛼) 𝜀abs

}
(4.15c)

∥𝑥 (𝑘) − 𝑥∗∥𝐴 ≤ max
{√
𝜅 𝜀rel ∥𝑥 (0) − 𝑥∗∥𝐴, (1/

√
𝛼) 𝜀abs

}
∥𝑥 (𝑘) − 𝑥∗∥𝑀 ≤ max

{
𝜅 𝜀rel ∥𝑥 (0) − 𝑥∗∥𝑀 , (1/𝛼) 𝜀abs

} }
(4.15d)

Proof. homework problem 2.3 □

§ 4.3 Gradient Descent Method with Constant Step Sizes

We can show that the gradient descent method continues to converge Q-linearly when, in place of
the Cauchy step sizes, we choose constant step sizes 𝛼 (𝑘) ≡ 𝛼 within a certain range. We obtain as
above

𝜙 (𝑥 (𝑘+1)) − 𝜙 (𝑥∗)
=

1
2 ∥𝑟

(𝑘) ∥2
𝐴−1 + 𝛼 (𝑟 (𝑘))ᵀ𝑑 (𝑘) +

1
2𝛼

2(𝑑 (𝑘))ᵀ𝐴𝑑 (𝑘) .

https://tinyurl.com/scoop-nlo 31

https://tinyurl.com/scoop-nlo

R. Herzog cbn

We leave 𝛼 open for now and insert the gradient descent relation 𝑟 (𝑘) = −𝑀 𝑑 (𝑘) to obtain

=
1
2 ∥𝑟

(𝑘) ∥2
𝐴−1 − 𝛼 (𝑑 (𝑘))ᵀ𝑀 𝑑 (𝑘) + 1

2𝛼
2(𝑑 (𝑘))ᵀ𝐴𝑑 (𝑘)

≤ 1
2 ∥𝑟

(𝑘) ∥2
𝐴−1 − 𝛼 (𝑑 (𝑘))ᵀ𝑀 𝑑 (𝑘) + 1

2𝛼
2𝛽 (𝑑 (𝑘))ᵀ𝑀 𝑑 (𝑘) since 𝑑ᵀ𝐴𝑑 ≤ 𝛽 𝑑ᵀ𝑀 𝑑

=
1
2 ∥𝑟

(𝑘) ∥2
𝐴−1 + 𝛼

(1
2𝛼 𝛽 − 1

)
(𝑑 (𝑘))ᵀ𝑀 𝑑 (𝑘) .

Here we need to convert the last term into 𝑑ᵀ𝑀𝐴−1𝑀 𝑑 , which is equal to 𝑟 ᵀ𝐴−1𝑟 , so that it can
be combined with the first term. We require that the coefficient 𝛼

(
1
2𝛼 𝛽 − 1

)
is negative to obtain

convergence. Consequently, we use the first estimate in (2.15a):

≤ 1
2 ∥𝑟

(𝑘) ∥2
𝐴−1 + 𝛼

(1
2𝛼 𝛽 − 1

)
𝛼 (𝑑 (𝑘))ᵀ𝑀𝐴−1𝑀 𝑑 (𝑘) provided that 𝛼

(1
2𝛼 𝛽 − 1

)
< 0

=

[
1 + 2𝛼

(1
2𝛼 𝛽 − 1

)
𝛼

]
1
2 ∥𝑟

(𝑘) ∥2
𝐴−1

=

[
1 + 2𝛼

(1
2𝛼 𝛽 − 1

)
𝛼

] (
𝜙 (𝑥 (𝑘)) − 𝜙 (𝑥∗)) .

The condition that 𝛼
(
1
2𝛼 𝛽 − 1

)
is negative amounts to 𝛼 ∈ (0, 2

𝛽
). It is precisely the midpoint 𝛼 = 1/𝛽

of this interval which minimizes this term and yields the optimal estimate, and the expression in [· · ·]
becomes 𝜅−1

𝜅
in this case.

Remark 4.12 (on the convergence of Algorithm 4.6 with constant step sizes).
(𝑖) We have shown that Algorithm 4.6, where Line 8 is replaced by 𝛼 (𝑘) B 𝛼 , still converges, provided

that 𝛼 ∈ (0, 2
𝛽
).

(𝑖𝑖) From a practical perspective, we therefore need to know at least an upper bound for the largest
eigenvalue 𝛽 of the generalized eigenvalue problem 𝐴𝑥 = 𝜆𝑀 𝑥 . When we have 𝛽 ≤ 𝛽estimate and
choose 𝛼 ∈ (0, 2

𝛽estimate
), we also have 𝛼 ∈ (0, 2

𝛽
).

(𝑖𝑖𝑖) The choice 𝛼 = 1
𝛽
yields the optimal estimate. In this case, we obtain

𝜙 (𝑥 (𝑘+1)) − 𝜙 (𝑥∗) ≤
(
𝜅 − 1
𝜅

) (
𝜙 (𝑥 (𝑘)) − 𝜙 (𝑥∗)) .

Since for all 𝜅 ≥ 1, we have
(
𝜅−1
𝜅+1

)2 ≤ 𝜅−1
𝜅
, the contraction factor in the bound we obtained with

constant step sizes is worse than the one for the Cauchy step sizes; see (4.13a). Consequently, there
is no reason to prefer the gradient descent method with constant step sizes over the version with
Cauchy step sizes.

(𝑖𝑣) The Kantorovich inequality was not needed in the proof.

Figure 4.2 illustrates the convergence behavior of Algorithm 4.6 with constant step sizes for a 2-
dimensional example problem from a number of different initial guesses 𝑥 (0) .

32 https://tinyurl.com/scoop-nlo 2023-05-28

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

(a) Iterates
(
𝑥 (𝑘)

)
of the method.

0 5 10 15 20 25 30
10-6

10-5

10-4

10-3

10-2

10-1

100

101

(b) Gradient norm ∥𝑟 (𝑘) ∥𝑀−1 .
0 5 10 15 20 25 30

10-15

10-10

10-5

100

(c) Objective 𝜙 (𝑥 (𝑘)) − 𝜙 (𝑥∗).

(d) Iterates
(
𝑥 (𝑘)

)
of the method.

0 5 10 15 20 25 30
10-6

10-5

10-4

10-3

10-2

10-1

100

101

(e) Gradient norm ∥𝑟 (𝑘) ∥𝑀−1 .
0 5 10 15 20 25 30

10-15

10-10

10-5

100

(f) Objective 𝜙 (𝑥 (𝑘)) − 𝜙 (𝑥∗).

(g) Iterates
(
𝑥 (𝑘)

)
of the method.

0 5 10 15 20 25 30
10-6

10-5

10-4

10-3

10-2

10-1

100

101

(h) Gradient norm ∥𝑟 (𝑘) ∥𝑀−1 .
0 5 10 15 20 25 30

10-15

10-10

10-5

100

(i) Objective 𝜙 (𝑥 (𝑘)) − 𝜙 (𝑥∗).

Figure 4.2: Illustration of the convergence behavior of Algorithm 4.6 with various constant step sizes
instead of the Cauchy step size. The step sizes, from top to bottom, are 𝛼 ∈ {0.03, 0.10, 0.17}.
No preconditioning (𝑀 = Id) is used. The two eigenvalues of the matrix are 𝛼 = 1 and
𝛽 = 10 so the admissible range of constant step sizes is 𝛼 ∈ (0, 2

𝛽
) = (0, 0.2).

https://tinyurl.com/scoop-nlo 33

https://tinyurl.com/scoop-nlo

R. Herzog cbn

§ 4.4 Gradient Descent Method with Other Step Size Rules

Step size rules other than the Cauchy step sizes and constant step sizes have been proposed and
analyzed in the literature with the goal of breaking the non-efficient zig-zaggging pattern; among
them Barzilai, Borwein, 1988; De Asmundis, di Serafino, Riccio, et al., 2013; De Asmundis, di Serafino,
Hager, et al., 2014; Gonzaga, Schneider, 2015. We do not go into the details here but mention one
remarkable result from Gonzaga, 2016, Theorem 1. Suppose that 𝛼 B 𝜆min(𝐴;𝑀) and 𝛽 B 𝜆max(𝐴;𝑀)
are the extremal generalized eigenvalues of 𝐴 w.r.t. 𝑀 , and 𝜅 B 𝛽

𝛼
is the generalized condition number.

Suppose that 𝜅 ≥ 1.06 and that

𝑘 B

⌈√
𝜅 ln

(
2
𝜀1

)⌉
.

holds. Consider the set of mutually distinct, precomputed step sizes{
𝛼 (𝑗) B

1
𝜔 (𝑗)

����𝜔 (𝑗) B 𝛽 − 𝛼
2 cos

(
1 + 2 𝑗
2𝑘 𝜋

)
+ 𝛽 + 𝛼2 , 𝑗 = 0, 1, . . . , 𝑘 − 1

}
.

Then the gradient descent method Algorithm 4.6 with step sizes 𝛼 (𝑘) , applied in any order, requires at
most

𝑘 iterations until
(
𝜅 − 1
𝜅 + 1

)2𝑘
≤ 𝜀1.

The interesting fact is that, compared to the estimate of Corollary 4.9 for the Cauchy step size, the
bound on the iteration numbers is proportional only to

√
𝜅 , not to 𝜅 . The result can be modified so that

it is not required to know the extremal eigenvalues exactly, but knowledge of an interval containing
them is sufficient.

We are going to obtain a similar complexity result for the conjgate gradient method in § 4.6.

§ 4.5 Gradient Descent Method as Discretized Gradient Flow

We conclude the discussion of the gradient descent method by interpreting it in another way. Consider
the differential equation

¤𝑥 (𝑡) = −∇𝑀 𝑓 (𝑥 (𝑡)), 𝑡 ≥ 0
𝑥 (0) = 𝑥 (0) . (4.16)

This is known as the gradient flow associated with 𝑓 . Its stationary points are precisely the stationary
points of 𝑓 . Due to

d
d𝑡 𝑓 (𝑥 (𝑡)) = 𝑓

′(𝑥 (𝑡)) ¤𝑥 (𝑡) = −𝑓 ′(𝑥 (𝑡))𝑀−1∇𝑓 (𝑥 (𝑡)) = −∥∇𝑓 (𝑥 (𝑡))∥2
𝑀−1 = −∥∇𝑀 𝑓 (𝑥 (𝑡))∥2𝑀 , (4.17)

the value of 𝑓 is decreasing along the path 𝑥 (𝑡).

When we discretize (4.16) by the explicit (forward) Euler method with time step size Δ𝑡 (𝑘) , we obtain

𝑥 (𝑘+1) − 𝑥 (𝑘)
Δ𝑡 (𝑘)

= −𝑀−1∇𝑓 (𝑥 (𝑘)),

34 https://tinyurl.com/scoop-nlo 2023-05-28

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

or equivalently,
𝑥 (𝑘+1) = 𝑥 (𝑘) − Δ𝑡 (𝑘) 𝑀−1∇𝑓 (𝑥 (𝑘)) . (4.18)

This is precisely a step of the gradient descent method with step size Δ𝑡 (𝑘) . Therefore, we can interpret
the gradient descent method as a discretization of the continuous gradient flow equation.

End of Week 2

§ 4.6 Conjugate Gradient Method

The typical inefficient zig-zaggging pattern of the directions 𝑑 (𝑘) is a consequence of the fact that
gradient descent is a memoryless method. That is, we could restart the method at any iterate and it
would produce the same iterates, whether restarted or not. This is where the conjugate gradient
method (CG method, introduced in Hestenes, Stiefel, 1952) takes a different turn. It works with
search directions 𝑑 (𝑘) which are pairwise 𝐴-orthogonal (also known as 𝐴-conjugate), and builds a
memory of previously visited directions.

Definition 4.13 (Conjugate directions). Suppose that 𝐴 ∈ R𝑛×𝑛 is s. p. d. A set of non-zero vectors
{𝑑 (0) , . . . , 𝑑 (𝑘) } ⊂ R𝑛 is termed 𝐴-conjugate if

(𝑑 (𝑖))ᵀ𝐴𝑑 (𝑗) = 0 for 0 ≤ 𝑖, 𝑗 ≤ 𝑘, 𝑖 ≠ 𝑗 .

In other words, 𝐴-conjugate vectors are pairwise orthogonal w.r.t. the 𝐴-inner product. In particular,
{𝑑 (0) , . . . , 𝑑 (𝑘) } is a linearly independent set. (Quiz 4.4: Can you prove that?)

The CG method is a member of the class of conjugate direction methods. We begin by describing
the properties of a generic conjugate direction method first before we particularize to the CG method.
A conjugate direction method chooses its search directions 𝑑 (0) , 𝑑 (1) , . . . so that they are 𝐴-conjugate,
and the iterates satisfy

𝑥 (𝑘+1) = 𝑥 (𝑘) + 𝛼 (𝑘)𝑑 (𝑘) . (4.19)

The step size𝛼 (𝑘) is the Cauchy step size, whichminimizes the one-dimensional quadratic polynomial

𝛼 ↦→ 𝜙 (𝑥 (𝑘) + 𝛼 𝑑 (𝑘)) .

That is, we have

𝛼 (𝑘) B − (𝑟
(𝑘))ᵀ𝑑 (𝑘)

(𝑑 (𝑘))ᵀ𝐴𝑑 (𝑘) , (4.20)

compare (4.9). As in the gradient descent method, the residuals satisfy the recursion

𝑟 (𝑘+1) = 𝑟 (𝑘) + 𝛼 (𝑘)𝐴𝑑 (𝑘) . (4.21)

Conjugate direction methods have the remarkable property that the sequence of one-dimensional
minimizations in the 𝐴-conjugate directions 𝑑 (0) , 𝑑 (1) , . . . is equivalent to the minimization over the
entire affine subspace 𝑥 (0) + span{𝑑 (0) , 𝑑 (1) , . . .}. This is shown in the following result.

https://tinyurl.com/scoop-nlo 35

https://tinyurl.com/scoop-nlo

R. Herzog cbn

Lemma 4.14 (Properties of conjugate direction methods). Suppose that 𝐴 ∈ R𝑛×𝑛 is s. p. d. Given an
initial guess 𝑥 (0) and a set {𝑑 (0) , 𝑑 (1) , . . . , 𝑑 (𝑘−1) }, 𝑘 ≥ 1 of𝐴-conjugate search directions, suppose that the
iterates 𝑥 (0) , . . . , 𝑥 (𝑘) are generated according to (4.19) with Cauchy step size (4.20). Then the following
holds.

(𝑖)
(𝑟 (𝑘))ᵀ𝑑 (𝑖) = 0 for all 𝑖 = 0, 1, . . . , 𝑘 − 1. (4.22)

(𝑖𝑖) 𝑥 (𝑘) minimizes 𝜙 over the affine subspace 𝑥 (0) + span{𝑑 (0) , 𝑑 (1) , . . . , 𝑑 (𝑘−1) }.

Proof. We can show Statement (𝑖) via induction over 𝑘 . For 𝑘 = 1,

(𝑟 (1))ᵀ𝑑 (0) = (𝐴𝑥 (1) − 𝑏)ᵀ𝑑 (0) by definition of the residual
= (𝐴𝑥 (0) + 𝛼 (0)𝐴𝑑 (0) − 𝑏)ᵀ𝑑 (0) by (4.19)
= (𝑟 (0))ᵀ𝑑 (0) + 𝛼 (0) (𝑑 (0))ᵀ𝐴𝑑 (0) by definition of the residual
= 0 since 𝛼 (0) is the Cauchy step size (4.20).

The induction step assumes (𝑟 (𝑘−1))ᵀ𝑑 (𝑖) = 0 for all 𝑖 = 0, 1, . . . , 𝑘 − 2 and proceeds as follows.

(𝑟 (𝑘))ᵀ𝑑 (𝑘−1) = (𝑟 (𝑘−1) + 𝛼 (𝑘−1)𝐴𝑑 (𝑘−1))ᵀ𝑑 (𝑘−1) by the residual recursion (4.21)
= 0 since 𝛼 (𝑘−1) is the Cauchy step size (4.20).

For the remaining search directions 𝑑 (𝑖) , 𝑖 = 0, 1, . . . , 𝑘 − 2 we have

(𝑟 (𝑘))ᵀ𝑑 (𝑖) = (
𝑟 (𝑘−1) + 𝛼 (𝑘−1)𝐴𝑑 (𝑘−1))ᵀ𝑑 (𝑖) by the residual recursion (4.21)

= (𝑟 (𝑘−1))ᵀ𝑑 (𝑖)︸ ︷︷ ︸
=0 by assumption

+𝛼 (𝑘−1) (𝑑 (𝑘−1))ᵀ𝐴𝑑 (𝑖)︸ ︷︷ ︸
=0 due to 𝐴-conjugacy

= 0.

For Statement (𝑖𝑖) we consider the function ℎ : R𝑘 → R

ℎ(𝜎) B 𝜙

(
𝑥 (0) +

𝑘−1∑︁
𝑗=0

𝜎 𝑗 𝑑
(𝑗)

)
.

ℎ is strongly convex (Quiz 4.5: Why?), and the unique minimizer 𝜎∗ is characterized by

𝜕ℎ(𝜎∗)
𝜕𝜎𝑖

= ∇𝜙
(
𝑥 (0) +

𝑘−1∑︁
𝑗=0

𝜎∗𝑗 𝑑
(𝑗)

)ᵀ
𝑑 (𝑖) = 0, 𝑖 = 0, . . . , 𝑘 − 1. (∗)

However, we already know that it is the iterate

𝑥 (𝑘) = 𝑥 (0) +
𝑘−1∑︁
𝑗=0

𝛼 (𝑗) 𝑑 (𝑗) ∈ 𝑥 (0) + span{𝑑 (0) , 𝑑 (1) , . . . , 𝑑 (𝑘−1) }

36 https://tinyurl.com/scoop-nlo 2023-05-28

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

which satisfies (∗), since

∇𝜙
(
𝑥 (0) +

𝑘−1∑︁
𝑗=0

𝛼 (𝑗) 𝑑 (𝑗)
)ᵀ
𝑑 (𝑖) = ∇𝜙 (𝑥 (𝑘))ᵀ𝑑 (𝑖) = (𝑟 (𝑘))ᵀ𝑑 (𝑖) = 0

holds for all 𝑖 = 0, . . . , 𝑘 − 1, as shown in Statement (𝑖). □

Corollary 4.15 (Properties of conjugate direction methods). Any iterative method (4.19) using 𝐴-
conjugate directions 𝑑 (𝑘) and Cauchy step sizes (4.20) converges to the unique solution of (4.1) in at most
𝑛 steps.

Proof. The search directions 𝑑 (𝑘) are 𝐴-conjugate and thus linearly independent. Therefore,

span{𝑑 (0) , 𝑑 (1) , . . . , 𝑑 (𝑛−1) }
is all of R𝑛 , so that 𝑥 (𝑛) minimizes 𝜙 over all of R𝑛 by Lemma 4.14. □

In practice, the statement of Corollary 4.15 is weakened by floating point error. Moreover, the result of
Corollary 4.15 is not really relevant for high-dimensional problems since performing 𝑛 iterations is
prohibitively expensive. We will later see more practical converge estimates.

There are many possibilities to generate pairwise 𝐴-conjugate directions 𝑑 (𝑘) , each of which leads to a
different conjugate direction method. The conjugate gradient method (CGmethod) determines the
current direction 𝑑 (𝑘) as a linear combination of the previous direction 𝑑 (𝑘−1) and the current steepest
descent direction −𝑀−1𝑟 (𝑘) :11

𝑑 (0) B −𝑀−1𝑟 (0) for 𝑘 = 0,
𝑑 (𝑘) B −𝑀−1𝑟 (𝑘) + 𝛽 (𝑘) 𝑑 (𝑘−1) for 𝑘 ≥ 1.

(4.23)

The coefficient 𝛽 (𝑘) is determined in such a way that at least 𝑑 (𝑘) and 𝑑 (𝑘−1) are 𝐴-conjugate:

𝛽 (𝑘) B
(𝑟 (𝑘))ᵀ𝑀−1𝐴𝑑 (𝑘−1)
(𝑑 (𝑘−1))ᵀ𝐴𝑑 (𝑘−1) . (4.24)

Interestingly, the algorithm obtained in this way generates search directions which are fully 𝐴-
conjugate, as shown in the following result.

Lemma 4.16 (Properties of the iterates in the CG algorithm, see Nocedal, Wright, 2006, Theorem 5.3).
Suppose that 𝑥 (0) ∈ R𝑛 is given and that the search directions {𝑑 (0) , 𝑑 (1) , . . . , 𝑑 (𝑘) } and the subsequent
iterates 𝑥 (1) , . . . , 𝑥 (𝑘) , 𝑘 ≥ 1, are generated according to (4.19)–(4.20), (4.23)–(4.24), where 𝛼 (𝑘) ≠ 0.12

span{𝑟 (0) , 𝑟 (1) , . . . , 𝑟 (𝑘) } = span{𝑟 (0) , (𝐴𝑀−1) 𝑟 (0) , . . . , (𝐴𝑀−1)𝑘 𝑟 (0) }, (4.25)
span{𝑑 (0) , 𝑑 (1) , . . . , 𝑑 (𝑘) } = 𝑀−1 span{𝑟 (0) , (𝐴𝑀−1) 𝑟 (0) , . . . , (𝐴𝑀−1)𝑘 𝑟 (0) }, (4.26)

(𝑑 (𝑘))ᵀ𝐴𝑑 (𝑖) = 0 for all 𝑖 = 0, 1, . . . , 𝑘 − 1, (4.27)
(𝑟 (𝑘))ᵀ𝑀−1𝑟 (𝑖) = 0 for all 𝑖 = 0, 1, . . . , 𝑘 − 1. (4.28)

11With 𝛽 (𝑘) = 0, we obtain again the steepest descent method (Algorithm 4.6).
12𝛼 (𝑘) = 0 would mean that 𝑥 (𝑘) is the unique solution 𝑥∗. Due to the form of the Cauchy step (4.20), this is clear for 𝑘 = 0,

as the nominator is ∥𝑟 (𝑘) ∥𝑀−1 . (4.22) shows that this is also true for 𝑘 > 0.

https://tinyurl.com/scoop-nlo 37

https://tinyurl.com/scoop-nlo

R. Herzog cbn

The subspace

K (𝑘+1) (𝐴𝑀−1; 𝑟 (0)) B span{𝑟 (0) , (𝐴𝑀−1) 𝑟 (0) , . . . , (𝐴𝑀−1)𝑘 𝑟 (0) } (4.29)

is termed the Krylov subspace (of order 𝑘 + 1) of the matrix 𝐴𝑀−1 with initial vector 𝑟 (0) . Therefore,
the CG method is a representative of the class of Krylov subspace methods. The properties (4.25)
and (4.26) imply that the method creates, simultaneously, an expanding sequence of𝑀−1-orthogonal
basis vectors of the spaces K (𝑘) (𝐴𝑀−1; 𝑟 (0)), as well as an expanding sequence of 𝐴-orthogonal basis
vectors of the spaces𝑀−1K (𝑘) (𝐴𝑀−1; 𝑟 (0)).

Proof. We first prove (4.25)–(4.27), by induction. For 𝑘 = 0, statement (4.25) holds trivially. Statement
(4.26) holds since the CG method starts with 𝑑 (0) = −𝑀−1𝑟 (0) . Statement (4.27) is void for 𝑘 = 0.

Suppose now that (4.25) and (4.26) have been shown up to some 𝑘 ≥ 0. We need to show that they
also hold for 𝑘 + 1. By hypothesis,

𝑟 (𝑘) ∈ span{𝑟 (0) , (𝐴𝑀−1) 𝑟 (0) , . . . , (𝐴𝑀−1)𝑘 𝑟 (0) },
𝑑 (𝑘) ∈ 𝑀−1 span{𝑟 (0) , (𝐴𝑀−1) 𝑟 (0) , . . . , (𝐴𝑀−1)𝑘 𝑟 (0) },

hence 𝐴𝑑 (𝑘) ∈ 𝐴𝑀−1 span{𝑟 (0) , (𝐴𝑀−1) 𝑟 (0) , . . . , (𝐴𝑀−1)𝑘 𝑟 (0) }
= span{(𝐴𝑀−1) 𝑟 (0) , . . . , (𝐴𝑀−1)𝑘+1 𝑟 (0) }.

Due to the residual recursion (4.21), we therefore have

𝑟 (𝑘+1) = 𝑟 (𝑘) + 𝛼 (𝑘)𝐴𝑑 (𝑘)
∈ span{𝑟 (0) , (𝐴𝑀−1) 𝑟 (0) , . . . , (𝐴𝑀−1)𝑘 𝑟 (0) } + span{(𝐴𝑀−1) 𝑟 (0) , . . . , (𝐴𝑀−1)𝑘+1 𝑟 (0) }
= span{𝑟 (0) , (𝐴𝑀−1) 𝑟 (0) , . . . , (𝐴𝑀−1)𝑘+1 𝑟 (0) }. (∗)

Due to the induction hypothesis for (4.25), the same statement (∗) holds when 𝑘 + 1 is replaced by a
smaller index. Therefore, we have shown that

span{𝑟 (0) , 𝑟 (1) , . . . , 𝑟 (𝑘+1) } ⊆ span{𝑟 (0) , (𝐴𝑀−1) 𝑟 (0) , . . . , (𝐴𝑀−1)𝑘+1 𝑟 (0) }

holds. Now for the reverse inequality. By the induction hypothesis for (4.26), we find

𝐴𝑀−1(𝐴𝑀−1)𝑘𝑟 (0) ∈ 𝐴 span{𝑑 (0) , 𝑑 (1) , . . . , 𝑑 (𝑘) } = span{𝐴𝑑 (0) , 𝐴𝑑 (1) , . . . , 𝐴𝑑 (𝑘) }.

By the residual recursion (4.21), specifically

𝐴𝑑 (𝑖) =
1
𝛼 (𝑖)

(
𝑟 (𝑖+1) − 𝑟 (𝑖)) ∈ span{𝑟 (𝑖) , 𝑟 (𝑖+1) }

for 𝑖 = 0, 1, . . . , 𝑘 , it follows that

𝐴𝑀−1(𝐴𝑀−1)𝑘𝑟 (0) ∈ span{𝑟 (0) , 𝑟 (1) , . . . , 𝑟 (𝑘+1) }.

When combined with the induction hypothesis for (4.25), i. e.,

span{𝑟 (0) , (𝐴𝑀−1) 𝑟 (0) , . . . , (𝐴𝑀−1)𝑘 𝑟 (0) } = span{𝑟 (0) , 𝑟 (1) , . . . , 𝑟 (𝑘) },

38 https://tinyurl.com/scoop-nlo 2023-05-28

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

we find the desired reverse inequality

span{𝑟 (0) , (𝐴𝑀−1) 𝑟 (0) , . . . , (𝐴𝑀−1)𝑘+1 𝑟 (0) } ⊆ span{𝑟 (0) , 𝑟 (1) , . . . , 𝑟 (𝑘+1) }.

Thus the induction step for (4.25) is complete.

To see (4.26),

span{𝑑 (0) , . . . , 𝑑 (𝑘) , 𝑑 (𝑘+1) }
= span{𝑑 (0) , . . . , 𝑑 (𝑘) , 𝑀−1𝑟 (𝑘+1) } by (4.23)
= 𝑀−1 span{𝑟 (0) , (𝐴𝑀−1) 𝑟 (0) , . . . , (𝐴𝑀−1)𝑘 𝑟 (0) , 𝑟 (𝑘+1) } by (4.26)
= 𝑀−1 span{𝑟 (0) , 𝑟 (1) , . . . , 𝑟 (𝑘) , 𝑟 (𝑘+1) } by (4.25)
= 𝑀−1 span{𝑟 (0) , (𝐴𝑀−1) 𝑟 (0) , . . . , (𝐴𝑀−1)𝑘 𝑟 (0) , (𝐴𝑀−1)𝑘+1 𝑟 (0) } by (4.25) for 𝑘 + 1.

This concludes the induction step for (4.26).

Next we address the𝐴-conjugacy of search directions, (4.27). By the induction hypothesis, the directions
𝑑 (0) , . . . , 𝑑 (𝑘) are pairwise 𝐴-conjugate. Consider

(𝑑 (𝑘+1))ᵀ𝐴𝑑 (𝑖) = (−𝑀−1𝑟 (𝑘+1) + 𝛽 (𝑘+1) 𝑑 (𝑘))ᵀ𝐴𝑑 (𝑖) (∗∗)

for 𝑖 = 0, . . . , 𝑘 . In case 𝑖 = 𝑘 , we have

(𝑑 (𝑘+1))ᵀ𝐴𝑑 (𝑘) = 0

by construction of the search direction 𝑑 (𝑘+1) , see (4.23) and (4.24). When 𝑖 ≤ 𝑘 − 1, we argue as follows.
From (4.26), we obtain

𝑀−1𝐴𝑑 (0) ∈ 𝑀−1𝐴𝑀−1 span{𝑟 (0) } ⊆ span{𝑑 (0) , 𝑑 (1) },
𝑀−1𝐴𝑑 (1) ∈ 𝑀−1𝐴𝑀−1 span{𝑟 (0) , (𝐴𝑀−1) 𝑟 (0) } ⊆ span{𝑑 (0) , 𝑑 (1) , 𝑑 (2) },

...
...

...

𝑀−1𝐴𝑑 (𝑘−1) ∈ 𝑀−1𝐴𝑀−1 span{𝑟 (0) , . . . , (𝐴𝑀−1)𝑘−1 𝑟 (0) } ⊆ span{𝑑 (0) , . . . , 𝑑 (𝑘) }.

We thus find that, for any 𝑖 ≤ 𝑘 − 1, the term (𝑟 (𝑘+1))ᵀ𝑀−1𝐴𝑑 (𝑖) in (∗∗) belongs to

(𝑟 (𝑘+1))ᵀ span{𝑑 (0) , . . . , 𝑑 (𝑖+1) } = span{(𝑟 (𝑘+1))ᵀ𝑑 (0) , . . . , (𝑟 (𝑘+1))ᵀ𝑑 (𝑖+1) }.

By (4.22), however, (𝑟 (𝑘+1))ᵀ𝑑 (𝑗) = 0 for 𝑗 = 0, . . . , 𝑘 . Therefore, (∗∗) reduces to

(𝑑 (𝑘+1))ᵀ𝐴𝑑 (𝑖) = 𝛽 (𝑘+1) (𝑑 (𝑘))ᵀ𝐴𝑑 (𝑖) . (∗∗∗)

By the induction hypothesis, this is equal to zero, which concludes the induction step for (4.27).

Finally, we consider the 𝑀−1-conjugacy of residuals, (4.28), for 𝑘 ≥ 1. We do not need an induction
argument for this. We consider two cases for (𝑟 (𝑘))ᵀ𝑀−1𝑟 (𝑖) :

https://tinyurl.com/scoop-nlo 39

https://tinyurl.com/scoop-nlo

R. Herzog cbn

(1) In case 𝑖 = 𝑘 − 1, we have

(𝑟 (𝑘))ᵀ𝑀−1𝑟 (𝑘−1) =
{ (□)︷ ︸︸ ︷
(𝑟 (𝑘−1) + 𝛼 (𝑘−1) 𝐴𝑑 (𝑘−1))ᵀ(−𝑑 (𝑘−1) + 𝛽 (𝑘−1) 𝑑 (𝑘−2)) for 𝑘 ≥ 2
(𝑟 (𝑘−1) + 𝛼 (𝑘−1) 𝐴𝑑 (𝑘−1))ᵀ(−𝑑 (𝑘−1))︸ ︷︷ ︸

(□)

for 𝑘 = 1

by the residual recursion (4.21) and the construction of search directions (4.23). Since the Cauchy
step size satisfies 𝛼 (𝑘−1) = − (𝑑 (𝑘−1))ᵀ𝑟 (𝑘−1)(𝑑 (𝑘−1))ᵀ𝐴𝑑 (𝑘−1) , the term (□) is equal to zero for all 𝑘 ≥ 1. Let us
consider the remaining terms when 𝑘 ≥ 2. We obtain

(𝑟 (𝑘−1))ᵀ𝑑 (𝑘−2) = 0 due to (4.22),
(𝐴𝑑 (𝑘−1))ᵀ(𝑑 (𝑘−2)) = 0 owing to the 𝐴-conjugacy of search directions.

Therefore we conclude that (𝑟 (𝑘))ᵀ𝑀−1𝑟 (𝑘−1) = 0 holds for all 𝑘 ≥ 1.

(2) in case 𝑖 < 𝑘 − 1, we have

(𝑟 (𝑘))ᵀ𝑀−1𝑟 (𝑖) =
{
(𝑟 (𝑘−1) + 𝛼 (𝑘−1) 𝐴𝑑 (𝑘−1))ᵀ(−𝑑 (𝑖) + 𝛽 (𝑖) 𝑑 (𝑖−1)) for 𝑖 ≥ 1
(𝑟 (𝑘−1) + 𝛼 (𝑘−1) 𝐴𝑑 (𝑘−1))ᵀ(−𝑑 (𝑖)) for 𝑖 = 0

When expanding, we obtain terms of the types (note 𝑖 < 𝑘 − 1)
(𝑟 (𝑘−1))ᵀ𝑑 (𝑖) = 0 due to (4.22),
(𝐴𝑑 (𝑘−1))ᵀ𝑑 (𝑖) = 0 owing to the 𝐴-conjugacy of search directions,
(𝑟 (𝑘−1))ᵀ𝑑 (𝑖−1) = 0 due to (4.22),
(𝐴𝑑 (𝑘−1))ᵀ𝑑 (𝑖−1) = 0 owing to the 𝐴-conjugacy of search directions.

Therefore we conclude that (𝑟 (𝑘))ᵀ𝑀−1𝑟 (𝑖) = 0 holds for all 𝑘 ≥ 1 and 0 ≤ 𝑖 < 𝑘 − 1. □

Using the properties of the iterates shown above, the equations (4.20) for 𝛼 (𝑘) as well as (4.24) for 𝛽 (𝑘)
in the CG method can be equivalently formulated as follows:

𝛼 (𝑘) = − (𝑟
(𝑘))ᵀ𝑑 (𝑘)

(𝑑 (𝑘))ᵀ𝐴𝑑 (𝑘) by the Cauchy step size formula (4.20)

=
(𝑟 (𝑘))ᵀ𝑀−1𝑟 (𝑘)
(𝑑 (𝑘))ᵀ𝐴𝑑 (𝑘) − 𝛽

(𝑘) (𝑟 (𝑘))ᵀ𝑑 (𝑘−1)
(𝑑 (𝑘))ᵀ𝐴𝑑 (𝑘) by the search direction recursion (4.23)

=
(𝑟 (𝑘))ᵀ𝑀−1𝑟 (𝑘)
(𝑑 (𝑘))ᵀ𝐴𝑑 (𝑘) by (4.22) (4.20’)

and

𝛽 (𝑘+1) =
(𝑟 (𝑘+1))ᵀ𝑀−1𝐴𝑑 (𝑘)
(𝑑 (𝑘))ᵀ𝐴𝑑 (𝑘) by the orthogonalization coefficient (4.24)

=
(𝑟 (𝑘+1))ᵀ𝑀−1(𝑟 (𝑘+1) − 𝑟 (𝑘))
(𝑑 (𝑘))ᵀ(𝑟 (𝑘+1) − 𝑟 (𝑘)) by the residual recursion (4.21)

=
(𝑟 (𝑘+1))ᵀ𝑀−1(𝑟 (𝑘+1) − 𝑟 (𝑘))

(−𝑀−1𝑟 (𝑘) + 𝛽 (𝑘) 𝑑 (𝑘−1))ᵀ(𝑟 (𝑘+1) − 𝑟 (𝑘)) by the construction of search directions (4.23)

=
(𝑟 (𝑘+1))ᵀ𝑀−1𝑟 (𝑘+1)
(𝑟 (𝑘))ᵀ𝑀−1𝑟 (𝑘) by (4.22) and (4.25). (4.24’)

40 https://tinyurl.com/scoop-nlo 2023-05-28

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

The relations (4.20’) and (4.24’) are also true for 𝑘 = 0.

We have now obtained the common form of the CG method w.r.t. the 𝑀-inner product, commonly
referred to as the preconditioned conjugate gradient method.

Algorithm 4.17 (Conjugate gradient method for (4.1) w.r.t. the𝑀-inner product).
Input: initial guess 𝑥 (0) ∈ R𝑛
Input: right-hand side 𝑏 ∈ R𝑛
Input: s. p. d. matrix 𝐴 (or matrix-vector products with 𝐴)
Input: s. p. d. matrix𝑀 (or matrix-vector products with𝑀−1)
Output: approximate solution of (4.1), i. e., of 𝐴𝑥 = 𝑏
1: Set 𝑘 B 0
2: Set 𝑟 (0) B 𝐴𝑥 (0) − 𝑏 // evaluate the initial residual
3: Set 𝑑 (0) B −𝑀−1𝑟 (0) // evaluate the initial negative𝑀-gradient
4: Set 𝛿 (0) B −(𝑟 (0))ᵀ𝑑 (0) // 𝛿 (0) = ∥∇𝑀𝜙 (𝑥 (0))∥2𝑀 = ∥𝑟 (0) ∥2

𝑀−1
5: while stopping criterion not met do
6: Set 𝑞 (𝑘) B 𝐴𝑑 (𝑘)

7: Set 𝜃 (𝑘) B (𝑞 (𝑘))ᵀ𝑑 (𝑘)
8: Set 𝛼 (𝑘) B 𝛿 (𝑘)/𝜃 (𝑘) // evaluate the Cauchy step size
9: Set 𝑥 (𝑘+1) B 𝑥 (𝑘) + 𝛼 (𝑘)𝑑 (𝑘) // update the iterate
10: Set 𝑟 (𝑘+1) B 𝑟 (𝑘) + 𝛼 (𝑘)𝑞 (𝑘) // update the residual
11: Set 𝑑 (𝑘+1) B −𝑀−1𝑟 (𝑘+1) // evaluate the negative𝑀-gradient
12: Set 𝛿 (𝑘+1) B −(𝑟 (𝑘+1))ᵀ𝑑 (𝑘+1) // 𝛿 (𝑘+1) = ∥∇𝑀𝜙 (𝑥 (𝑘+1))∥2𝑀 = ∥𝑟 (𝑘+1) ∥2

𝑀−1

13: Set 𝛽 (𝑘+1) B 𝛿 (𝑘+1)/𝛿 (𝑘) // evaluate the 𝐴-orthogonalization coefficient
14: Set 𝑑 (𝑘+1) B 𝑑 (𝑘+1) + 𝛽 (𝑘+1) 𝑑 (𝑘) // make 𝑑 (𝑘+1) 𝐴-orthogonal w.r.t. 𝑑 (𝑘)

15: Set 𝑘 B 𝑘 + 1
16: end while
17: return 𝑥 (𝑘)

Remark 4.18 (on Algorithm 4.17).

(𝑖) From Lemma 4.16 we know that the CGmethod generates pairwise𝐴-orthogonal directions, although
it only needs to orthogonalize any new direction 𝑑 (𝑘+1) against the most recent one, 𝑑 (𝑘) . This
phenomenon, known as short-term recurrence, is possible due to the symmetry of 𝐴.

(𝑖𝑖) The conjugate thus keeps a memory of previously visited directions, although this memory is mainly
implicit. As shown in Algorithm 4.17, we can implement the method with a constant amount of
storage.

(𝑖𝑖𝑖) The implementation of the CG method is very similar to the steepest descent method (Algorithm 4.6).
The only (but significant!) difference lies in the fact that we 𝐴-orthogonalize the steepest descent
direction against 𝑑 (𝑘) before we use it as the new search direction 𝑑 (𝑘+1) . The initial search di-
rection 𝑑 (0) is the steepest descent direction for 𝜙 at 𝑥 (0) . Consequently, the iterate 𝑥 (1) is the
same for the conjugate gradient method and the steepest descent method with Cauchy step size
(Algorithm 4.6).

https://tinyurl.com/scoop-nlo 41

https://tinyurl.com/scoop-nlo

R. Herzog cbn

(𝑖𝑣) The name conjugate gradient method is a bit of a misnomer, since it is not the gradients which
are 𝐴-conjugate, but rather the search directions 𝑑 (𝑘) .

(𝑣) Remark 4.7 remains valid for the conjugate gradient method as well, with minor modifications. We
need to store one additional vector since 𝑑 (𝑘) and 𝑑 (𝑘+1) are needed simultaneously.

(𝑣𝑖) The stopping criteria (4.14) and their consequences (4.15) continue to hold since they depend on the
same computable quantity ∥𝑟 (𝑘) ∥𝑀−1 as in the steepest descent method.

Our next goal is to establish a convergence result for the conjugate gradient method, and to compare
it to Theorem 4.8 for the steepest descent method with Cauchy step size. A major difference is that we
will not obtain a result about the reduction of the error from iteration to iteration, but rather a result
about the reduction of the error compared with its initial value.

Theorem 4.19 (Convergence of Algorithm 4.17, compare Theorem 4.8). Suppose that 𝐴 ∈ R𝑛×𝑛 are
𝑀 are both s. p. d., 𝛼 B 𝜆min(𝐴;𝑀) and 𝛽 B 𝜆max(𝐴;𝑀) are the extremal generalized eigenvalues of 𝐴
w.r.t. 𝑀 . Then for any choice of the initial guess 𝑥 (0) , the conjugate gradient method converges to the
unique solution 𝑥∗ = 𝐴−1𝑏 of (4.1). In terms of the generalized condition number 𝜅 = 𝛽/𝛼 , we have the
estimates13

𝜙 (𝑥 (𝑘)) − 𝜙 (𝑥∗) ≤ 2
(√
𝜅 − 1√
𝜅 + 1

)2𝑘 (
𝜙 (𝑥 (0)) − 𝜙 (𝑥∗)) (4.30a)

∥𝑥 (𝑘) − 𝑥∗∥𝐴 ≤ 2
(√
𝜅 − 1√
𝜅 + 1

)𝑘
∥𝑥 (0) − 𝑥∗∥𝐴, (4.30b)

Moreover, the objective values 𝜙 (𝑥 (𝑘)) and thus the norm of the error ∥𝑥 (𝑘) − 𝑥∗∥𝐴 are monotonically
decreasing.

Proof. Since the search directions, by (4.26), span𝑀−1K (𝑘) (𝐴𝑀−1; 𝑟 (0)), we have

𝑥 (𝑘) − 𝑥 (0) ∈ 𝑀−1K (𝑘) (𝐴𝑀−1; 𝑟 (0)) .

In other words, we have
𝑥 (𝑘) − 𝑥 (0) = 𝑞 (𝑘−1) (𝑀−1𝐴)𝑀−1𝑟 (0)

for some polynomial 𝑞 (𝑘−1) in the matrix𝑀−1𝐴 of degree at most 𝑘 − 1. Abbreviating 𝑒 (𝑘) B 𝑥 (𝑘) − 𝑥∗
and using 𝐴𝑒 (0) = 𝐴𝑥 (0) −𝐴𝑥∗ = 𝑟 (0) , we can manipulate this equation into

𝑒 (𝑘) = 𝑒 (0) + 𝑞 (𝑘−1) (𝑀−1𝐴)𝑀−1𝑟 (0)
= 𝑒 (0) + 𝑞 (𝑘−1) (𝑀−1𝐴)𝑀−1𝐴𝑒 (0)
=

[
Id + 𝑞 (𝑘−1) (𝑀−1𝐴)𝑀−1𝐴]

𝑒 (0)

= 𝑝 (𝑘) (𝑀−1𝐴) 𝑒 (0) ,

where now 𝑝 (𝑘) is a polynomial of degree at most 𝑘 satisfying 𝑝 (𝑘) (0) = 1.
13compare (4.13c), (4.13d)

42 https://tinyurl.com/scoop-nlo 2023-05-28

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

By construction, the conjugate gradient method minimizes ∥𝑒 (𝑘) ∥𝐴 in every iteration. We can now
express this in terms of a minimization over the vector space Π𝑘 of polynomials of degree ≤ 𝑘 :

∥𝑒 (𝑘) ∥𝐴 = min
{
∥𝑝 (𝑀−1𝐴) 𝑒 (0) ∥𝐴

���𝑝 ∈ Π𝑘 , 𝑝 (0) = 1
}
. (4.31)

We expand the initial error 𝑒 (0) in terms of the basis of eigenvectors of 𝐴 w.r.t. 𝑀 ; see (2.10), (2.11).
Suppose we denote the generalized eigenpairs by (𝜆 (𝑗) , 𝑣 (𝑗)), we can write

𝑒 (0) =
𝑛∑︁
𝑗=1
𝛾 (𝑗)𝑣 (𝑗)

with some coefficients 𝛾 (𝑗) determined by 𝑒 (0) . We can thus manipulate the objective in the minimiza-
tion problem above as follows:

∥𝑝 (𝑀−1𝐴) 𝑒 (0) ∥𝐴 =

𝑝 (𝑀−1𝐴) (𝑛∑︁
𝑗=1
𝛾 (𝑗)𝑣 (𝑗)

)
𝐴

=

 𝑛∑︁
𝑗=1
𝛾 (𝑗)𝑝 (𝑀−1𝐴) 𝑣 (𝑗)

𝐴

In view of 𝐴𝑣 (𝑗) = 𝜆 (𝑗)𝑀 𝑣 (𝑗) and thus𝑀−1𝐴𝑣 (𝑗) = 𝜆 (𝑗)𝑣 (𝑗) , this is

=

 𝑛∑︁
𝑗=1
𝛾 (𝑗)𝑝 (𝜆 (𝑗)) 𝑣 (𝑗)

𝐴
.

By pulling the maximal value of |𝑝 (𝜆 (𝑗)) | out of the sum (Quiz 4.6: Can you fill in the details why this
is possible?), we can estimate this quantity further:

≤ max
𝑗=1,...,𝑛

|𝑝 (𝜆 (𝑗)) |
 𝑛∑︁
𝑗=1
𝛾 (𝑗)𝑣 (𝑗)

𝐴

= max
𝑗=1,...,𝑛

|𝑝 (𝜆 (𝑗)) |
𝑒 (0)

𝐴
.

Combining this with (4.31), we see

∥𝑒 (𝑘) ∥𝐴 ≤ min
{
max
𝑗=1,...,𝑛

|𝑝 (𝜆 (𝑗)) | ∥𝑒 (0) ∥𝐴
���𝑝 ∈ Π𝑘 , 𝑝 (0) = 1

}
= min

{
max
𝑗=1,...,𝑛

|𝑝 (𝜆 (𝑗)) |
���𝑝 ∈ Π𝑘 , 𝑝 (0) = 1

}
∥𝑒 (0) ∥𝐴

and since the eigenvalues lie in the interval [𝛼, 𝛽],

∥𝑒 (𝑘) ∥𝐴 ≤ min
{
max
𝑧∈[𝛼,𝛽]

|𝑝 (𝑧) |
���𝑝 ∈ Π𝑘 , 𝑝 (0) = 1

}
∥𝑒 (0) ∥𝐴 . (4.32)

We have thus estimated ∥𝑒
(𝑘) ∥𝐴
∥𝑒 (0) ∥𝐴 by the smallest maximal absolute value any polynomial 𝑝 ∈ Π𝑘 with

𝑝 (0) = 1 can attain on the interval [𝛼, 𝛽] spanning all generalized eigenvalues of 𝐴 w.r.t. 𝑀 .

https://tinyurl.com/scoop-nlo 43

https://tinyurl.com/scoop-nlo

R. Herzog cbn

The question about the optimal polynomial in (4.32) can be answered by Chebyshev polynomials; we
refer you to Elman, Silvester, Wathen, 2014, Theorem 2.4 if you want to know more details. It turns
out that the optimal value

min
{
max
𝑧∈[𝛼,𝛽]

|𝑝 (𝑧) |
���𝑝 ∈ Π𝑘 , 𝑝 (0) = 1

}
depends only on 𝜅 = 𝛽/𝛼 and it is given by

= 2
[(√

𝜅 + 1√
𝜅 − 1

)𝑘
+

(√
𝜅 − 1√
𝜅 + 1

)𝑘]−1
≤ 2

(√
𝜅 − 1√
𝜅 + 1

)𝑘
.

From there, we finally obtain

∥𝑒 (𝑘) ∥𝐴 ≤ 2
(√
𝜅 − 1√
𝜅 + 1

)𝑘
∥𝑒 (0) ∥𝐴,

which is precisely (4.32). Squaring both sides and dividing by 2, we also obtain (4.30a). □

Corollary 4.20 (Maximal number of iterations required in Algorithm 4.17, compare Corollary 4.9).
Given positive numbers 𝜀1 and 𝜀2, it takes

𝑘 ≤
⌈√
𝜅

4 ln
(
2
𝜀1

)⌉
iterations until 2

(√
𝜅 − 1√
𝜅 + 1

)2𝑘
≤ 𝜀1,

𝑘 ≤
⌈√
𝜅

2 ln
(
2
𝜀2

)⌉
iterations until 2

(√
𝜅 − 1√
𝜅 + 1

)𝑘
≤ 𝜀2.

Proof. The proof is similar to Corollary 4.9 and it uses that

− ln
(√
𝜅 − 1√
𝜅 + 1

)
≥ 2√

𝜅
> 0

holds for all 𝜅 ≥ 1. □

Remark 4.21 (on Theorem 4.19).
(𝑖) The estimates (4.30a) and (4.32) establish the R-linear convergence of the respective quantities to

zero.

(𝑖𝑖) Compared to the estimates (4.13c) and (4.13d) for the gradient descent method, we obtain the

reduction factor
(√
𝜅−1√
𝜅+1

)𝑘
in place of

(
𝜅−1
𝜅+1

)𝑘 , which is generally much better.

(𝑖𝑖𝑖) The superiority of the CG method compared to the gradient descent method is also reflected in
the estimates for the maximal iteration numbers to achieve a certain reduction in the quantities
𝜙 (𝑥 (𝑘)) −𝜙 (𝑥∗) and ∥𝑥 (𝑘) − 𝑥∗∥𝐴, respectively. The bounds for the maximal iteration numbers are
proportional to

√
𝜅 for the CG method, not proportional to 𝜅.

44 https://tinyurl.com/scoop-nlo 2023-05-28

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

(a) Iterates
(
𝑥 (𝑘)

)
of the method. Each color corresponds to a different initial guess 𝑥 (0) .

0 5 10 15 20 25 30
10-6

10-5

10-4

10-3

10-2

10-1

100

101

(b) The norm of the gradient
√
𝛿 (𝑘) =

∥∇𝑀𝜙 (𝑥 (𝑘))∥𝑀 = ∥𝑟 (𝑘) ∥𝑀−1 does not
necessarily converge monotonically.

0 5 10 15 20 25 30
10-15

10-10

10-5

100

(c) The objective values 𝜙 (𝑥 (𝑘)) − 𝜙 (𝑥∗) converge
monotonically. The black line illustrates the
bound (4.30a).

Figure 4.3: Illustration of the convergence behavior of Algorithm 4.17 from a number of initial guesses
𝑥 (0) . No preconditioning (𝑀 = Id) is used. The two eigenvalues of the matrix are 𝛼 = 1 and
𝛽 = 10 so the condition number is 𝜅 = 10.

https://tinyurl.com/scoop-nlo 45

https://tinyurl.com/scoop-nlo

R. Herzog cbn

0 5 10 15 20 25 30
10-6

10-5

10-4

10-3

10-2

10-1

100

101

(a) The norm of the gradient
√
𝛿 (𝑘) =

∥∇𝑀𝜙 (𝑥 (𝑘))∥𝑀 = ∥𝑟 (𝑘) ∥𝑀−1 does not
necessarily converge monotonically.

0 5 10 15 20 25 30
10-15

10-10

10-5

100

(b) The objective values 𝜙 (𝑥 (𝑘)) − 𝜙 (𝑥∗) converge
monotonically. The black line illustrates the
bound (4.30a).

Figure 4.4: Illustration of the convergence behavior of Algorithm 4.17 from a number of initial guesses
𝑥 (0) . No preconditioning (𝑀 = Id) is used. Here𝐴 is a randommatrix of dimension 100×100
with eigenvalues in the interval [𝛼, 𝛽] = [1, 100] so that the condition number is 𝜅 = 100.

(𝑖𝑣) As was the case for Theorem 4.8, the estimates of Theorem 4.19 are worst-case estimates since they
do not depend on the initial guess 𝑥 (0) . In fact, as can be seen in Figure 4.3c and Figure 4.4b, the
actual contraction factor for the objective values can be significantly smaller for some initial guesses
than the estimate (4.30a) suggests.

(𝑣) Other informative error bounds than (4.30) and (4.32) and convergence results can be obtained by
proceeding as in the proof of Theorem 4.19 and choosing other polynomials to bound the error with.

The iterates of the conjugate gradient method have a further remarkable property, which we will
exploit later on:

Lemma 4.22 (Growth of the distance from the initial guess14). Consider the iterates 𝑥 (𝑘) of the conjugate
gradient method (Algorithm 4.17). As long as 𝑥 (𝑘) ≠ 𝑥∗ holds, the sequence ∥𝑥 (𝑘) − 𝑥 (0) ∥𝑀 is strictly
increasing.

Note: The steepest descent method does not have this property.

Proof. Statement (𝑖) in Lemma 4.14 implies that

(𝑟 (𝑘))ᵀ(𝑥 (𝑘) − 𝑥 (0)) =
𝑘−1∑︁
𝑖=0

𝛼𝑖 (𝑟 (𝑘))ᵀ𝑑 (𝑖)︸ ︷︷ ︸
=0

= 0 for all 𝑘 ≥ 0. (∗)

14In the literature, we find this result often only for the case 𝑥 (0) = 0, see for instance Nocedal, Wright, 2006, Theorem 7.3.

46 https://tinyurl.com/scoop-nlo 2023-05-28

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

We now show by induction that (𝑥 (𝑘) − 𝑥 (0))ᵀ𝑀 𝑑 (𝑘) > 0 holds for 𝑘 ≥ 1. Initially, for 𝑘 = 1,
Statement (𝑖) in Lemma 4.14 once again yields

(𝑥 (1) − 𝑥 (0))ᵀ𝑀 𝑑 (1) = 𝛼 (0)

=0︷ ︸︸ ︷
(𝑑 (0))ᵀ𝑀 (−𝑀−1𝑟 (1) + 𝛽 (1)𝑑 (0))

= 𝛼 (0)︸ ︷︷ ︸
>0

𝛽 (1)︸ ︷︷ ︸
>0

(𝑑 (0))ᵀ𝑀 𝑑 (0)︸ ︷︷ ︸
>0

> 0.

We now proceed with the step from index 𝑘 to 𝑘 + 1:
(𝑥 (𝑘+1) − 𝑥 (0))ᵀ𝑀 𝑑 (𝑘+1) = (𝑥 (𝑘+1) − 𝑥 (0))ᵀ𝑀 (−𝑀−1𝑟 (𝑘+1) + 𝛽 (𝑘+1) 𝑑 (𝑘))

= 𝛽 (𝑘+1) (𝑥 (𝑘+1) − 𝑥 (0))ᵀ𝑀 𝑑 (𝑘) by (∗)
= 𝛽 (𝑘+1) (𝑥 (𝑘) + 𝛼 (𝑘)𝑑 (𝑘) − 𝑥 (0))ᵀ𝑀 𝑑 (𝑘)

= 𝛽 (𝑘+1) (𝑥 (𝑘) − 𝑥 (0))ᵀ𝑀 𝑑 (𝑘) + 𝛼 (𝑘)𝛽 (𝑘+1) (𝑑 (𝑘))ᵀ𝑀 𝑑 (𝑘)

> 0. (∗∗)

Due to the induction hypothesis as well as 𝛼 (𝑘) > 0, 𝛽 (𝑘+1) > 0 and (𝑑 (𝑘))ᵀ𝑀 𝑑 (𝑘) > 0, the entire
expression is positive.

The desired result now easily follows from

∥𝑥 (𝑘+1) − 𝑥 (0) ∥2𝑀 = ∥𝑥 (𝑘) + 𝛼 (𝑘)𝑑 (𝑘) − 𝑥 (0) ∥2𝑀
= ∥𝑥 (𝑘) − 𝑥 (0) ∥2𝑀 + 2 𝛼 (𝑘)︸ ︷︷ ︸

>0

(𝑥 (𝑘) − 𝑥 (0))ᵀ𝑀 𝑑 (𝑘)︸ ︷︷ ︸
>0

+ (𝛼 (𝑘))2 ∥𝑑 (𝑘) ∥2𝑀︸ ︷︷ ︸
>0

. (∗∗∗)

□

The relations (∗∗) and (∗∗∗) allow us to compute the informative quantities

𝜔 (𝑘) B ∥𝑥 (𝑘) − 𝑥 (0) ∥2𝑀 (4.33a)
𝜉 (𝑘) B (𝑥 (𝑘) − 𝑥 (0))ᵀ𝑀 𝑑 (𝑘) (4.33b)
𝛾 (𝑘) B ∥𝑑 (𝑘) ∥2𝑀 (4.33c)

on the side without any noticeable effort. This can be achieved by inserting, at the appropriate positions
in Algorithm 4.17 (Quiz 4.7: Where?), the relations

𝜔 (0) B 0, 𝜔 (𝑘+1) B 𝜔 (𝑘) + 2𝛼 (𝑘)𝜉 (𝑘) + (𝛼 (𝑘))2 𝛾 (𝑘) see (∗∗∗) (4.34a)
𝜉 (0) B 0, 𝜉 (𝑘+1) B 𝛽 (𝑘+1) (𝜉 (𝑘) + 𝛼 (𝑘)𝛾 (𝑘)) see (∗∗) (4.34b)
𝛾 (0) B 𝛿 (0) , 𝛾 (𝑘+1) B 𝛿 (𝑘+1) + (𝛽 (𝑘+1))2 𝛾 (𝑘) (confirm for yourself). (4.34c)

The remarkable fact about this is the possibility to keep track of (4.33) without requiring access to the
matrix𝑀 , or even matrix-vector products with𝑀 . Notice that we usually do not have the latter since
we only need matrix-vector products with𝑀−1 in Algorithm 4.17.

End of Week 3

https://tinyurl.com/scoop-nlo 47

https://tinyurl.com/scoop-nlo

R. Herzog cbn

§ 5 Line Search Methods for Nonlinear Unconstrained Problems

We consider in this section a large class of methods to solve general, nonlinear unconstrained prob-
lems

Minimize 𝑓 (𝑥) where 𝑥 ∈ R𝑛 . (UP)

The methods we consider are so-called line search methods. In every iteration, a line search method
first determines a search direction and subsequently finds a step size (or step length) 𝛼 (𝑘) , that
leads to the next iterate via

𝑥 (𝑘+1) B 𝑥 (𝑘) + 𝛼 (𝑘)𝑑 (𝑘) .

Assumption 5.1. Throughout § 5 we are assuming that 𝑓 : R𝑛 → R is a 𝐶1 function.

Most line search methods, in particular the ones we consider, require that 𝑑 (𝑘) is a descent direction
for the objective 𝑓 at the current iterate 𝑥 (𝑘) , i. e., that

𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘) < 0 (5.1)

holds, see Definition 4.4. This implies that we have descent at least for sufficiently small positive step
sizes 𝛼 (𝑘) ,

𝑓 (𝑥 (𝑘+1)) = 𝑓 (𝑥 (𝑘) + 𝛼 (𝑘)𝑑 (𝑘)) < 𝑓 (𝑥 (𝑘))
and it motivates the term descent method.

Most methods15 we are discussing in § 5 determine the search direction 𝑑 (𝑘) by considering a local
quadratic model of the ojective:

𝑞 (𝑘) (𝑑) = 𝑓 (𝑥 (𝑘)) + 𝑓 ′(𝑥 (𝑘)) 𝑑 + 1
2 𝑑
ᵀ𝐻 (𝑘)𝑑. (5.2)

This model uses the data 𝑓 (𝑥 (𝑘)) and 𝑓 ′(𝑥 (𝑘)) at the iterate 𝑥 (𝑘) and it agrees with 𝑓 regarding that
data at 𝑑 = 0:

𝑞 (𝑘) (0) = 𝑓 (𝑥 (𝑘))
and (𝑞 (𝑘))′(0) = 𝑓 ′(𝑥 (𝑘))

The matrix 𝐻 (𝑘) is the Hessian of the model, briefly: the model Hessian. In case 𝐻 (𝑘) = 𝑓 ′′(𝑥 (𝑘)),
the model 𝑞 (𝑘) is the second-order Taylor polynomial of 𝑓 at 𝑥 (𝑘) . However, in general, the model
Hessian is chosen to be any symmetric and possibly positive definite matrix. In fact, different line
search methods differ w.r.t. their choice of the model Hessians 𝐻 (𝑘) , and thus with respect to the
search directions they use.

The search direction 𝑑 (𝑘) is obtained by minimizing (possibly only to a certain accuracy) the quadratic
polynomial 𝑞 (𝑘) :

Minimize 𝑞 (𝑘) (𝑑), 𝑑 ∈ R𝑛 . (5.3)

As we know from Lemma 4.1, the following cases can occur:
15with the exception of nonlinear conjugate gradient methods

48 https://tinyurl.com/scoop-nlo 2023-05-28

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

(𝑖) When 𝐻 (𝑘) is s. p. d., then the unique solution of (5.3) is given by the unique solution of the
linear system

𝐻 (𝑘)𝑑 (𝑘) = −∇𝑓 (𝑥 (𝑘)) . (5.4)

(𝑖𝑖) When 𝐻 (𝑘) is symmetric and only positive semidefinite, then (5.3) is either unbounded, or else
has infinitely many minimizers. In any case, the minimizers of (5.3) are precisely the solutions
of the linear system (5.4).16

(𝑖𝑖𝑖) When 𝐻 (𝑘) is symmetric but not positive semidefinite (i. e., at least one eigenvalue of 𝐻 (𝑘) is
negative), then (5.3) is an unbounded problem. However, the linear system (5.4) may still be
uniquely solvable, or solvable with multiple solutions, or not solvable. The solutions of the linear
systems (if any) are either all saddle points17 of 𝑞 (𝑘) , or they are all global maximizers. (Quiz 5.1:
Is this statement clear?)

To solve (5.3) and (5.4), respectively, we can employ the conjugate gradient (CG) method from § 4.6.
However, it would be useful to enhance it so that it checks and reacts to the potential occurrence of
non-positive eigenvalues in the model Hessian 𝐻 (𝑘) . We will see more details on that later.

§ 5.1 A Generic Descent Method

We begin by considering the following model algorithm of a generic line-search descent method:

Algorithm 5.2 (Generic line-search descent method).
Input: initial guess 𝑥 (0) ∈ R𝑛
Input: routine to evaluate 𝑓 and 𝑓 ′ (or ∇𝑓)
Output: approximately stationary point of (UP)
1: Set 𝑘 B 0
2: while stopping criterion not met do
3: Determine a search direction 𝑑 (𝑘) such that 𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘) < 0 // descent direction
4: Choose a step size 𝛼 (𝑘) > 0 such that 𝑓 (𝑥 (𝑘) + 𝛼 (𝑘)𝑑 (𝑘)) < 𝑓 (𝑥 (𝑘)) // obtain descent
5: Set 𝑥 (𝑘+1) B 𝑥 (𝑘) + 𝛼 (𝑘)𝑑 (𝑘) // take the step
6: Set 𝑘 B 𝑘 + 1
7: end while
8: return 𝑥 (𝑘)

In order to analyze the convergence properties of this generic algorithm and to determine further
requirements for the descent directions and step sizes, we ignore the stopping criterion for now, so that
Algorithm 5.2 produces infinite sequences of iterates 𝑥 (𝑘) , search directions 𝑑 (𝑘) and step sizes 𝛼 (𝑘) .
In practice, of course, we will use a stopping criterion to be discussed later.
16The solution set of the linear system (5.4) is either the empty set or an affine subspace of R𝑛 whose dimension agrees with

the dimension of ker𝐻 (𝑘) .
17A stationary point 𝑥 of 𝑓 is called a saddle point of 𝑓 if the Hessian 𝑓 ′′ (𝑥) is indefinite, i. e., has at least one positive and

at least one negative eigenvalue.

https://tinyurl.com/scoop-nlo 49

https://tinyurl.com/scoop-nlo

R. Herzog cbn

We will see that, in general, we cannot expect the iterates 𝑥 (𝑘) to converge overall, but there may be
convergent subsequences with different limit points (although this rarely occurs in practice). We recall
that the limit points of convergent subsequences

(
𝑥 (𝑘

(ℓ))) are precisely the accumulation points of(
𝑥 (𝑘)

)
.

We would like the accumulation points of the sequence of iterates{𝑥 (𝑘) } to be “special” points. There-
fore, it would be desirable to have the following property:

When 𝑥∗ is an accumulation of
(
𝑥 (𝑘)

)
, then 𝑓 ′(𝑥∗) = 0, i. e., 𝑥∗ is stationary. (5.5)

The relatively weak property (5.5) is often referred to as the global convergence of an algorithm.
In particular, global convergence does not mean that one obtains a global minimizer. By contrast, it
means that one obtains a convergence result (5.5) that is valid for arbitrary initial guesses 𝑥 (0) . Notice
that (5.5) does not assert that an accumulation point even exists.18 It turns out that, in general, we
cannot expect more. Under additional assumptions on 𝑓 , one may be able to show stronger results,
for instance

∥∇𝑓 (𝑥 (𝑘))∥ has an accumulation point at 0. (5.6a)
The entire sequence ∥∇𝑓 (𝑥 (𝑘))∥ converges to 0. (5.6b)
Accumulation points of

(
𝑥 (𝑘)

)
are stationary. (5.6c)

The entire sequence
(
𝑥 (𝑘)

)
converges to a stationary point. (5.6d)

The entire sequence
(
𝑥 (𝑘)

)
converges to a local miminizer. (5.6e)

We will now investigate the minimal requirements on the search directions 𝑑 (𝑘) and step sizes 𝛼 (𝑘)
in Algorithm 5.2 that ensure global convergence in the sense of (5.5). To this end, two properties are
essential:

(1) The search directions 𝑑 (𝑘) are “good descent directions”.

(2) The step sizes 𝛼 (𝑘) are chosen so that the achievable descent along the search direction 𝑑 (𝑘) is
“sufficiently exploited”.

We use the user-defined𝑀-inner product in the space of optimization variables and search directionsR𝑛 .
Since all norms in R𝑛 are equivalent, all concepts and properties of algorithms in the remainder of § 5
are qualitatively independent of the choice of𝑀 . However, the choice of𝑀 is still important through
its impact on the convergence properties and stopping criteria.

Requirements on the Descent Directions

Definition 5.3 (Admissible search directions). Suppose that 𝑥 (𝑘) and 𝑑 (𝑘) the sequences of iterates and
search (descent) directions generated by an algorithm of type Algorithm 5.2. The sequence 𝑑 (𝑘) of search

18Indeed, an example such as 𝑓 (𝑥) = 𝑥 for 𝑥 ∈ R shows that any algorithm with the global convergence property (5.5)
couldn’t produce an accumulation point, since 𝑓 has no stationary point.

50 https://tinyurl.com/scoop-nlo 2023-05-28

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

directions is termed admissible in case

𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘)
∥𝑑 (𝑘) ∥𝑀

→ 0 ⇒ 𝑓 ′(𝑥 (𝑘)) → 0. (5.7)

Note: The admissibility is a property that the sequence of search directions generated by a particular
algorithm, applied to a particular problem (objective), started from a particular initial guess may or
may not possess. One is, of course, interested in designing algorithms which generate admissible
search directions for arbitrary objectives 𝑓 and initial guesses 𝑥 (0) .

The expression 𝑓 ′ (𝑥 (𝑘)) 𝑑 (𝑘)
∥𝑑 (𝑘) ∥𝑀 is the directional derivative of 𝑓 at 𝑥 (𝑘) in the direction 𝑑 (𝑘) normalized.

Therefore, we can interpret the condition (5.7) as follows: when the directional derivatives in the
normalized search directions converge to zero, then it is due to the derivatives converging to zero
and not due to the search directions becoming inefficient (which would be the case if they become
essentially𝑀-orthogonal to the steepest descent direction −∇𝑀 𝑓). This reflects our first goal (item (1)
above) that the search directions are “good descent directions”. (Quiz 5.2: Which search directions are
admissible for functions 𝑓 : R→ R?)

Condition (5.7) is purely qualitative. By contrast, the angle condition

cos ∡
(−∇𝑀 𝑓 (𝑥 (𝑘))︸ ︷︷ ︸

steepest descent direction

,

chosen search direction︷ ︸︸ ︷
𝑑 (𝑘)

)
=
(−∇𝑀 𝑓 (𝑥 (𝑘)), 𝑑 (𝑘))𝑀
∥∇𝑀 𝑓 (𝑥 (𝑘))∥𝑀 ∥𝑑 (𝑘) ∥𝑀

=
−𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘)

∥ 𝑓 ′(𝑥 (𝑘))∥𝑀−1 ∥𝑑 (𝑘) ∥𝑀
≥ 𝜂 (5.8)

with some 𝜂 ∈ (0, 1) is a stronger, quantitative condition, which is moreover easy to verify. It means
that the angles (as measured in the𝑀-inner product) between the chosen search directions 𝑑 (𝑘) and
the directions of steepest descent −∇𝑀 𝑓 (𝑥 (𝑘)) are uniformly bounded away from 90◦.

Lemma 5.4 (Angle condition implies admissibility). Suppose that 𝑥 (𝑘) and 𝑑 (𝑘) are the sequences of
iterates and search (descent) directions generated by an algorithm of type Algorithm 5.2. If the angle
condition (5.8) holds with some 𝜂 ∈ (0, 1), then the sequence 𝑑 (𝑘) of search directions is admissible.

Proof. We have
𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘) = (∇𝑓 (𝑥 (𝑘)), 𝑑 (𝑘)) = (∇𝑀 𝑓 (𝑥 (𝑘)), 𝑑 (𝑘))𝑀 .

The angle condition (5.8) implies

− 𝑓
′(𝑥 (𝑘)) 𝑑 (𝑘)
∥𝑑 (𝑘) ∥𝑀

≥ 𝜂 ∥∇𝑀 𝑓 (𝑥 (𝑘))∥𝑀 = 𝜂 ∥ 𝑓 ′(𝑥 (𝑘))ᵀ∥𝑀−1 ≥ 0.

When the left-hand term goes to zero, then 𝑓 ′(𝑥 (𝑘)) must go to zero as well. □

As we already mentioned, almost all of the algorithms we will discuss in detail determine their search
directions from the solutions of linear systems

𝐻 (𝑘)𝑑 (𝑘) = −∇𝑓 (𝑥 (𝑘)) (5.4)

https://tinyurl.com/scoop-nlo 51

https://tinyurl.com/scoop-nlo

R. Herzog cbn

with a symmetric and possibly positive definite matrix 𝐻 (𝑘) , the model Hessian. In the s. p. d. case, in
view of

𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘) = −𝑓 ′(𝑥 (𝑘)) [(𝐻 (𝑘))−1 ∇𝑓 (𝑥 (𝑘))] = −∇𝑓 (𝑥 (𝑘))ᵀ (𝐻 (𝑘))−1 ∇𝑓 (𝑥 (𝑘)) < 0, (5.9)

𝑑 (𝑘) is a descent direction as long as 𝑓 ′(𝑥 (𝑘)) ≠ 0 holds. However, when 𝐻 (𝑘) is not positive definite,
then 𝑑 (𝑘) may fail to be a descent direction.

In the s. p. d. case, we can show that as long as the sequence of model Hessians remains “well behaved”,
the sequence of search directions satisfies the angle condition (5.8) and thus is admissible as well.

Lemma 5.5 (Bounded condition numbers imply the angle condition19). Suppose that 𝑥 (𝑘) and 𝑑 (𝑘) are
the sequences of iterates and search (descent) directions generated by an algorithm of type Algorithm 5.2.
Suppose that the search directions are obtained from (5.4), where 𝐻 (𝑘) ∈ R𝑛×𝑛 is a sequence of s. p. d.
model Hessians. Suppose, moreover, that the generalized condition numbers of 𝐻 (𝑘) w.r.t. 𝑀 satisfy

𝜅 (𝐻 (𝑘) ;𝑀) B 𝜆max(𝐻 (𝑘) ;𝑀)
𝜆min(𝐻 (𝑘) ;𝑀)

≤ 𝜅.

Then the sequence of search directions 𝑑 (𝑘) satisfies the angle condition (5.8) with

𝜂 =
2
√
𝜅

𝜅 + 1 ≥
1√
𝜅
.

Proof. We perform a couple of equivalent reformulations of the claim to obtain

− ∇𝑓 (𝑥 (𝑘))ᵀ𝑑 (𝑘) ≥ 2
√
𝜅

𝜅 + 1 ∥∇𝑀 𝑓 (𝑥
(𝑘))∥𝑀 ∥𝑑 (𝑘) ∥𝑀

⇔ (𝑑 (𝑘))ᵀ𝐻 (𝑘)𝑑 (𝑘) ≥ 2
√
𝜅

𝜅 + 1 ∥𝑀
−1𝐻 (𝑘)𝑑 (𝑘) ∥𝑀 ∥𝑑 (𝑘) ∥𝑀 since 𝐻 (𝑘)𝑑 (𝑘) = −∇𝑓 (𝑥 (𝑘))

⇔ ((𝑑 (𝑘))ᵀ𝐻 (𝑘)𝑑 (𝑘))2 ≥ 4𝜅
(𝜅 + 1)2 ∥𝑀

−1𝐻 (𝑘)𝑑 (𝑘) ∥2𝑀 ∥𝑑 (𝑘) ∥2𝑀

⇔ ((𝑑 (𝑘))ᵀ𝐻 (𝑘)𝑀−1𝐻 (𝑘)𝑑 (𝑘)) ((𝑑 (𝑘))ᵀ𝑀 𝑑 (𝑘))
((𝑑 (𝑘))ᵀ𝐻 (𝑘)𝑑 (𝑘))2 ≤ (𝜅 + 1)

2

4𝜅 .

The statement in the previous line, however, is true due to the generalized Kantorovich inequality
(Corollary 2.2). □

We summarize our findings on search directions:

the model Hessians 𝐻 (𝑘) have bounded condition numbers
⇒ the angle condition (5.8) holds
⇒ the search directions are admissible (5.7).

19In the literature, one often finds this result only in the case 𝑀 = Id, and with the non-optimal bound 𝜂 = 1
𝜅 ; see for

instance Ulbrich, Ulbrich, 2012, S.32 or Nocedal, Wright, 2006, eq.(3.19).

52 https://tinyurl.com/scoop-nlo 2023-05-28

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

Requirements on the Step Sizes

We now address the step sizes 𝛼 (𝑘) . The following example shows that the mere requirement

𝑓 (𝑥 (𝑘) + 𝛼 (𝑘)𝑑 (𝑘)) < 𝑓 (𝑥 (𝑘))

is not sufficient to obtain a reasonable convergence behavior.

Example 5.6 (Too small step sizes20). Consider the objective 𝑓 : R→ R, 𝑓 (𝑥) = 𝑥2, initial guess 𝑥 (0) = 1,
search directions 𝑑 (𝑘) = −1 and the Euclidean inner product 𝑀 = 1. With step sizes 𝛼 (𝑘) =

(1
2
)𝑘+2, we

obtain the sequences of iterates according to

𝑥 (𝑘+1) = 𝑥 (𝑘) + 𝛼 (𝑘) (−1) = 𝑥 (0) −
𝑘∑︁
𝑖=0

(1
2
)𝑖+2

= 1
2 +

(1
2
)𝑘+2

.

This implies 𝑥 (𝑘+1) < 𝑥 (𝑘) and 𝑓 (𝑥 (𝑘+1)) < 𝑓 (𝑥 (𝑘)). However, 𝑥 (𝑘) → 𝑥∗ = 1/2, which is not a stationary
point of 𝑓 .

The step sizes in the previous example are too small and thus they violate our second goal (item (2)
above) since they do not exploit the achievable descent sufficiently well. We therefore introduce the
following qualitative condition on the step sizes.

Definition 5.7 (Admissible step sizes). Suppose that 𝑥 (𝑘) and 𝑑 (𝑘) are the sequences of iterates and
search (descent) directions generated by an algorithm of type Algorithm 5.2. The sequence 𝛼 (𝑘) of step
sizes is termed admissible in case

𝑓 (𝑥 (𝑘) + 𝛼 (𝑘)𝑑 (𝑘)) ≤ 𝑓 (𝑥 (𝑘)) for all 𝑘 ∈ N0, (5.10a)

𝑓 (𝑥 (𝑘) + 𝛼 (𝑘)𝑑 (𝑘)) − 𝑓 (𝑥 (𝑘)) → 0 ⇒ 𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘)
∥𝑑 (𝑘) ∥𝑀

→ 0. (5.10b)

We can interpret (5.10b) as follows: when the progress in the objective values converges to zero, then
it is due to the normalized directional derivatives converging to zero and not due to the step sizes
becoming too small. In other words, admissible step sizes do make sufficient use of the descent available
in the direction 𝑑 (𝑘) .

Condition (5.10) is purely qualitative. By contrast, the condition that the step sizes be efficient, i. e.,
there exists 𝜃 > 0 such that

𝑓 (𝑥 (𝑘) + 𝛼 (𝑘)𝑑 (𝑘)) ≤ 𝑓 (𝑥 (𝑘)) − 𝜃
(
𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘)
∥𝑑 (𝑘) ∥𝑀

)2
(5.11)

for all 𝑘 ∈ N0 is a stronger, quantitative condition, which is moreover easy to verify.
20from Alt, 2002, Beispiel 4.4.1

https://tinyurl.com/scoop-nlo 53

https://tinyurl.com/scoop-nlo

R. Herzog cbn

Lemma 5.8 (Efficiency implies admissibility). Suppose that 𝑥 (𝑘) and 𝑑 (𝑘) are the sequences of iterates
and search (descent) directions generated by an algorithm of type Algorithm 5.2. If the sequence of step
sizes 𝛼 (𝑘) is efficient, then it is also admissible.

Proof. Suppose that 𝛼 (𝑘) is efficient, i. e.,

0 ≤ 𝜃
(
𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘)
∥𝑑 (𝑘) ∥𝑀

)2
≤ 𝑓 (𝑥 (𝑘)) − 𝑓 (𝑥 (𝑘) + 𝛼 (𝑘)𝑑 (𝑘))

Therefore (5.10a) is clear. To show (5.10b), suppose

𝑓 (𝑥 (𝑘) + 𝛼 (𝑘)𝑑 (𝑘)) − 𝑓 (𝑥 (𝑘)) → 0.

Since 𝜃 is strictly positive, this implies

𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘)
∥𝑑 (𝑘) ∥𝑀

→ 0,

which confirms (5.10b). □

Using the assumptions of admissible search directions and admissible step sizes, we will obtain a
theorem (see Theorem 5.9 below) on the global convergence of Algorithm 5.2. However, in view of
the expected convergence result (5.5), we will have to work with accumulation points (limits of subse-
quences) of the iterates. This means that we should refine the notion of admissible search directions
(5.7), the notions of admissible step sizes (5.10) as well as efficient step sizes (5.11) to subsequences.
We denote such subsequences here with

(
𝑥 (𝑘)

)
𝑘∈𝐾 , where 𝐾 ⊆ N0 is an infinite subset of the index

set N0. (Quiz 5.3: How does this notation relate to the notation for subsequences
(
𝑥 (𝑘

(ℓ))) introduced
in § 2.7?)

In detail, the refined conditions on subsequences read as follows:

admissible search directions:

𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘)
∥𝑑 (𝑘) ∥𝑀

𝑘∈𝐾−−−→ 0 ⇒ 𝑓 ′(𝑥 (𝑘)) 𝑘∈𝐾−−−→ 0, (5.7’)

angle condition:

−𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘)
∥∇𝑀 𝑓 (𝑥 (𝑘))∥𝑀 ∥𝑑 (𝑘) ∥𝑀

≥ 𝜂 for all 𝑘 ∈ 𝐾 (5.8’)

admissible step sizes:

𝑓 (𝑥 (𝑘) + 𝛼 (𝑘)𝑑 (𝑘)) ≤ 𝑓 (𝑥 (𝑘)) for all 𝑘 ∈ N0, (5.10a’)

𝑓 (𝑥 (𝑘) + 𝛼 (𝑘)𝑑 (𝑘)) − 𝑓 (𝑥 (𝑘)) 𝑘∈N0−−−−→ 0 ⇒ 𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘)
∥𝑑 (𝑘) ∥𝑀

𝑘∈𝐾−−−→ 0, (5.10b’)

54 https://tinyurl.com/scoop-nlo 2023-05-28

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

efficient step sizes:

𝑓 (𝑥 (𝑘) + 𝛼 (𝑘)𝑑 (𝑘)) ≤ 𝑓 (𝑥 (𝑘)) − 𝜃
(
𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘)
∥𝑑 (𝑘) ∥𝑀

)2
for all 𝑘 ∈ 𝐾. (5.11’)

The statements of Lemma 5.4 and Lemma 5.5 continue to hold when restricted to subsequences. For
the analog of Lemma 5.8, we have to make (5.10a’) an assumption rather than a conclusion.

We now show a global convergence theorem for the model Algorithm 5.2.

Theorem 5.9 (Global convergence of model Algorithm 5.2). Suppose that Algorithm 5.2 generates an
infinite sequence of iterates 𝑥 (𝑘) , search directions 𝑑 (𝑘) ≠ 0 and step sizes 𝛼 (𝑘) . Suppose that 𝑥∗ is an
accumulation point of 𝑥 (𝑘) and that

(
𝑥 (𝑘)

)
𝑘∈𝐾 is a subsequence converging to 𝑥∗. Finally, suppose that

the subsequences
(
𝑑 (𝑘)

)
𝑘∈𝐾 and

(
𝛼 (𝑘)

)
𝑘∈𝐾 of search directions and step sizes are both admissible. Then

𝑓 ′(𝑥∗) = 0.

Note: In other words, when a generic descent algorithm (Algorithm 5.2) produces admissible search
directions and admissible step sizes, then any accumulation point of the iterates is stationary.

Quiz 5.4: What goes wrong in Example 5.6?

Proof. Due to the continuity of 𝑓 , we have 𝑓 (𝑥 (𝑘)) 𝑘∈𝐾−−−→ 𝑓 (𝑥∗). Moreover, by admissibility of the step
sizes (5.10a’), the entire sequence 𝑓 (𝑥 (𝑘)) is monotone decreasing. Therefore, the entire sequence in
fact converges: 𝑓 (𝑥 (𝑘)) → 𝑓 (𝑥∗). Consequently, we also have

𝑓 (𝑥 (𝑘+1)) − 𝑓 (𝑥 (𝑘)) = 𝑓 (𝑥 (𝑘) + 𝛼 (𝑘)𝑑 (𝑘)) − 𝑓 (𝑥 (𝑘)) → 0.

The admissibility of step sizes along the subsequence, (5.10b’), implies

𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘)
∥𝑑 (𝑘) ∥

𝑘∈𝐾−−−→ 0.

Since the search directions along the subsequence are in turn admissible, (5.7’), we can conclude

𝑓 ′(𝑥 (𝑘)) 𝑘∈𝐾−−−→ 0.

On the other hand, since 𝑓 is of class 𝐶1, we also have

𝑓 ′(𝑥 (𝑘)) 𝑘∈𝐾−−−→ 𝑓 ′(𝑥∗).
This shows 𝑓 ′(𝑥∗) = 0. □

§ 5.2 Step Size Strategies

In this section we will see how efficient step sizes (5.11) or at least admissible step sizes (5.10) can be
found in general.

https://tinyurl.com/scoop-nlo 55

https://tinyurl.com/scoop-nlo

R. Herzog cbn

Armijo Backtracking Line Search

The Armijo backtracking line search is the simplest step size strategy and it is sufficient in many
situations. Suppose that 𝑑 (𝑘) is a descent direction for 𝑓 at 𝑥 (𝑘) . In order to obtain sufficient decrease,
the Armijo condition requires that the step size 𝛼 satisfy

𝑓 (𝑥 (𝑘) + 𝛼 𝑑 (𝑘)) ≤ 𝑓 (𝑥 (𝑘)) + 𝜎 𝛼 𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘) (5.12)

holds. Here 𝜎 ∈ (0, 1) is the given Armijo parameter. Using the auxiliary function (line search
function)

𝜑 (𝛼) ≔ 𝑓 (𝑥 (𝑘) + 𝛼 𝑑 (𝑘))
to simplify notation, we can write the Armijo condition (5.12) equivalently in the form

𝜑 (𝛼) ≤ 𝜑 (0) + 𝜎 𝛼 𝜑 ′(0). (5.12)

Step sizes 𝛼 ≥ 0 which satify (5.12) are termed Armijo step sizes. Condition (5.12) requires that the
step size 𝛼 realizes at least the 𝜎-fraction of the first-order descent suggested by the tangent of 𝜑 at
𝛼 = 0.

Notice that due to the chain rule, 𝜑 inherits the 𝐶1 property of 𝑓 , and we have

𝜑 ′(𝛼) = 𝑓 ′(𝑥 (𝑘) + 𝛼 𝑑 (𝑘)) 𝑑 (𝑘) (5.13a)
and, in particular, 𝜑 ′(0) = 𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘) . (5.13b)

𝜑 (𝛼)

𝜑 (0) +
𝛼
𝜑 ′(0)

𝜑 (0) + 𝜎 𝛼 𝜑 ′(0)

𝛼

Figure 5.1: Illustration of step sizes 𝛼 ≥ 0 satisfying the Armijo condition (5.12) (blue). As an example,
the Armijo parameter is chosen as 𝜎 = 0.07.

We will now answer the question whether Armijo step sizes exist, and how to find them.

Lemma 5.10 (Existence of Armijo step sizes). Suppose that 𝑑 is a descent direction for 𝑓 at 𝑥 , and that
the Armijo parameter satisfies 𝜎 ∈ (0, 1). Then there exists 𝛼 > 0 such that (5.12) holds for all 𝛼 ∈ [0, 𝛼].

56 https://tinyurl.com/scoop-nlo 2023-05-28

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

Proof. 𝜑 ′ is continuous at 0, which implies that there exists 𝛼 > 0 such that

𝜑 ′(𝛼) < 𝜎 𝜑 ′(0) holds for all 𝛼 ∈ [0, 𝛼] .

From Taylor’s theorem 2.4 we obtain that there exists 𝜉 ∈ [0, 𝛼] such that

𝜑 (𝛼) = 𝜑 (0) + 𝛼 𝜑 ′(𝜉)
≤ 𝜑 (0) + 𝜎 𝛼 𝜑 ′(0) .

Therefore, the Armijo condition (5.12) holds for all 𝛼 ∈ [0, 𝛼]. □

We have seen that the Armijo condition is always satisfied in an interval starting at 𝛼 = 0. However,
we need to select a step size which is not too small, as demonstrated by Example 5.6. This can be
achieved by a backtracking strategy: run through a sequence of trial step sizes from large to small
until the Armijo conditon (5.12) is satisfied for the first time.

Algorithm 5.11 (Armijo backtracking line search).
Input: initial trial step size 𝛼
Input: routine to evaluate 𝜑
Input: pre-computed function values 𝜑 (0) and 𝜑 ′(0)
Input: Armijo parameter 𝜎 ∈ (0, 1)
Input: backtracking parameter 𝛽 ∈ (0, 1)
Output: step size 𝛼 satisfying the Armijo condition (5.12)
1: Set ℓ B 0
2: while Armijo condition (5.12) does not hold for 𝛼 do
3: Set 𝛼 B 𝛽 𝛼 // new trial step size
4: Set ℓ B ℓ + 1
5: end while
6: return 𝛼

Remark 5.12 (on Algorithm 5.11).
(𝑖) In Algorithm 5.11, we did not number the trial step sizes 𝛼 (0) , 𝛼 (1) , . . . by an index in order to avoid

confusion with the step size 𝛼 (𝑘) which eventually gets used in the 𝑘-th iteration of the outer
algorithm (Algorithm 5.2).

(𝑖𝑖) Every trial step size that fails to satisfy the Armijo condition “costs” one additional evaluation of 𝜑 ,
i. e., one additional evaluation of 𝑓 .

(𝑖𝑖𝑖) The Armijo parameter is often chosen to be small, e. g., 𝜎 = 10−2 or even 𝜎 = 10−4. A typical value
for the backtracking parameter is 𝛽 = 1/2.

(𝑖𝑣) It follows from Lemma 5.10 that Algorithm 5.11 terminates successfully after finitely many iterations
with a step size 𝛼 that satisfies 𝛼 ≥ 𝛼 𝛽 . Here 𝛼 > 0 is the upper bound of any interval [0, 𝛼]
containing only Armijo step sizes.

https://tinyurl.com/scoop-nlo 57

https://tinyurl.com/scoop-nlo

R. Herzog cbn

(𝑣) In a practical implementation, one often adds further checks and stopping criteria to Algorithm 5.11.
For instance, we need to safeguard against 𝜑 ′(0) ≥ 0 (𝑑 is not a descent direction) and against too
many unsuccessful trial steps.

Suitable values for the initial trial step size 𝛼 in Algorithm 5.11 depend on how the search directions
𝑑 (𝑘) are generated in the outer method. We will see more on that when we discuss concrete instances
of Algorithm 5.2. Since the backtracking strategy only shortens the initial trial step size, we need to
ensure that the initial trial step size is sufficiently large in order to obtain admissible step sizes that
exploit the achievable descent sufficiently well. This is what the following result is about.

Lemma 5.13 (Armijo backtracking line search produces admissible step sizes). Suppose that Algo-
rithm 5.2 generates an infinite sequence of iterates 𝑥 (𝑘) and search (descent) directions 𝑑 (𝑘) ≠ 0. Suppose
moreover that the step sizes 𝛼 (𝑘) are obtained by the Armijo backtracking line search (Algorithm 5.11)
with initial trial step size 𝛼 (𝑘,0) . Assume that 𝐾 ⊆ N0 is an infinite index set such that the subsequence(
𝑥 (𝑘)

)
𝑘∈𝐾 is bounded. Finally, suppose that𝜓 : [0,∞→ [0,∞) is any monotone increasing function and

that the initial trial step sizes satisfy

𝛼 (𝑘,0) ∥𝑑 (𝑘) ∥𝑀 ≥ 𝜓
(−𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘)
∥𝑑 (𝑘) ∥𝑀

)
for all 𝑘 ∈ 𝐾. (5.14)

Then the step sizes
(
𝛼 (𝑘)

)
𝑘∈𝐾 are admissible.

Proof. We need to show (5.10a’) and (5.10b’). The first condition is a direct consequence of the Armijo
condition holding at 𝛼 (𝑘) > 0

𝑓 (𝑥 (𝑘) + 𝛼 (𝑘) 𝑑 (𝑘)) ≤ 𝑓 (𝑥 (𝑘)) + 𝜎 𝛼 (𝑘) 𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘)︸ ︷︷ ︸
<0

,

the fact that 𝑑 (𝑘) is a descent direction and that 𝜎 is positive. It remains to verify (5.10b’).

By assumption, the sequence
(
𝑥 (𝑘)

)
𝑘∈𝐾 is bounded. Therefore, it has a convergent subsequence with

index set 𝐾 ′. By continuity of 𝑓 ,
(
𝑓 (𝑥 (𝑘)))

𝑘∈𝐾 ′ converges. Due to the Armijo condition (5.12), the
sequence 𝑓 (𝑥 (𝑘)) is monotone decreasing, so that in fact the entire sequence 𝑓 (𝑥 (𝑘)) converges. From
there and the Armijo condition (5.12) we conclude

𝑓 (𝑥 (𝑘+1)) − 𝑓 (𝑥 (𝑘)) = 𝑓 (𝑥 (𝑘) + 𝛼 (𝑘)𝑑 (𝑘)) − 𝑓 (𝑥 (𝑘)) ≤ 𝜎 𝛼 (𝑘) 𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘) < 0.

The left-hand side converges to 0, therefore we must have

𝛼 (𝑘) 𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘) → 0. (∗)

In order to verify (5.10b’), we need to show

𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘)
∥𝑑 (𝑘) ∥𝑀

𝑘∈𝐾−−−→ 0.

58 https://tinyurl.com/scoop-nlo 2023-05-28

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

In the remainder of the proof, we distinguish indices 𝑘 ∈ 𝐾 according to the following cases:

When 𝛼 (𝑘) ∥𝑑 (𝑘) ∥𝑀 is “large”, then 𝛼
(𝑘) 𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘)
𝛼 (𝑘) ∥𝑑 (𝑘) ∥𝑀

is small.

When 𝛼 (𝑘) ∥𝑑 (𝑘) ∥𝑀 is “small”, then
{
we use the assumption (5.14) in case 𝛼 (𝑘) = 𝛼 (𝑘,0) .
we use the Armijo condition (5.12) in case 𝛼 (𝑘) < 𝛼 (𝑘,0) .

By assumption, the sequence
(
𝑥 (𝑘)

)
𝑘∈𝐾 is bounded, hence the continuous function 𝑓 ′ is uniformly

continuous “near the
(
𝑥 (𝑘)

)
𝑘∈𝐾 ”. More precisely, suppose that 𝑅 > 0 is any fixed number, then 𝑓 ′ is

uniformly continuous on the compact set

𝐴𝑅 B cl
⋃
𝑘∈𝐾

𝐵𝑀𝑅 (𝑥 (𝑘)) .

(Quiz 5.5: Why is this set compact?) Now suppose that 𝜀 > 0 is given. Then there exists 𝛿 > 0 such
that

∥ 𝑓 ′(𝑦) − 𝑓 ′(𝑧)∥𝑀−1 ≤ (1 − 𝜎) 𝜀
holds for all 𝑦, 𝑧 ∈ 𝐴𝑅 such that ∥𝑦 − 𝑧∥𝑀 ≤ 𝛿 . Possibly by making 𝛿 smaller, we can assume 𝛿 ≤ 𝑅.
Thus, in particular, we obtain𝑓 ′(𝑥 (𝑘) + 𝑒︸ ︷︷ ︸

∈𝐴𝑅

) − 𝑓 ′(𝑥 (𝑘)︸ ︷︷ ︸
∈𝐴𝑅

)

𝑀−1 ≤ (1 − 𝜎) 𝜀 for all 𝑘 ∈ 𝐾, ∥𝑒 ∥𝑀 ≤ 𝛿. (∗∗)

We now set
𝛿 B min

{
𝛿 𝛽, 𝜓 (𝜀)} ∈ (0, 𝛿) .

Due to the convergence in (∗), there exists an index 𝑘0 ∈ N0 such that

𝛼 (𝑘)
��𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘) �� ≤ 𝜀 𝛿 holds for all 𝑘 ≥ 𝑘0. (∗∗∗)

From now on, let 𝑘 ∈ 𝐾 , 𝑘 ≥ 𝑘0, be arbitrary. We are going to show that

0 ≤ 𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘)
∥𝑑 (𝑘) ∥𝑀

≤ 𝜀

holds, which proves (5.10b’). We distinguish the following cases, as anticipated above:

Case 1: 𝛼 (𝑘) ∥𝑑 (𝑘) ∥𝑀 ≥ 𝛿
In this case we immediately conclude

0 ≤ −𝑓
′(𝑥 (𝑘)) 𝑑 (𝑘)
∥𝑑 (𝑘) ∥𝑀

since 𝑑 (𝑘) is a descent direction

=
−𝛼 (𝑘) 𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘)
𝛼 (𝑘) ∥𝑑 (𝑘) ∥𝑀

≤ 𝜀 𝛿
𝛿

by (∗∗∗) and the assumption in case 1

= 𝜀.

https://tinyurl.com/scoop-nlo 59

https://tinyurl.com/scoop-nlo

R. Herzog cbn

Case 2: 𝛼 (𝑘) ∥𝑑 (𝑘) ∥𝑀 < 𝛿 and 𝛼 (𝑘) = 𝛼 (𝑘,0)
We obtain

𝜓
(−𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘)
∥𝑑 (𝑘) ∥𝑀

)
≤ 𝛼𝑘,0 ∥𝑑 (𝑘) ∥𝑀 by assumption (5.14)

< 𝛿 by the assumption in case 2
≤ 𝜓 (𝜀) by the choice of 𝛿.

Since𝜓 is monotone increasing, we conclude

0 ≤ −𝑓
′(𝑥 (𝑘)) 𝑑 (𝑘)
∥𝑑 (𝑘) ∥𝑀

≤ 𝜀.

Case 3: 𝛼 (𝑘) ∥𝑑 (𝑘) ∥𝑀 < 𝛿 and 𝛼 (𝑘) < 𝛼 (𝑘,0)
The assumption 𝛼 (𝑘) < 𝛼 (𝑘,0) means that the initial trial step size (and possibly some of the subsequent
trial step sizes) did not satisfy the Armijo condition. Since 𝛼 (𝑘) was the first trial step size to satisfy
the Armijo condition (5.12), the previous trial step size, 𝛽−1𝛼 (𝑘) , violated it:

𝜎 𝛽−1𝛼 (𝑘) 𝑓 ′(𝑥 (𝑘))𝑑 (𝑘) < 𝑓
(
𝑥 (𝑘) + 𝛽−1𝛼 (𝑘)𝑑 (𝑘)) − 𝑓 (𝑥 (𝑘)) .

By Taylor’s theorem 2.4, there exists 𝜉 (𝑘) ∈ (0, 1) such that

𝜎 𝛽−1𝛼 (𝑘) 𝑓 ′(𝑥 (𝑘))𝑑 (𝑘) < 𝛽−1𝛼 (𝑘) 𝑓 ′
(
𝑥 (𝑘) + 𝛽−1𝛼 (𝑘) 𝜉 (𝑘)𝑑 (𝑘)) 𝑑 (𝑘)

and thus

𝜎 𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘)
< 𝑓 ′

(
𝑥 (𝑘) + 𝛽−1𝛼 (𝑘) 𝜉 (𝑘)𝑑 (𝑘)) 𝑑 (𝑘)

= 𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘) + [
𝑓 ′

(
𝑥 (𝑘) + 𝛽−1𝛼 (𝑘) 𝜉 (𝑘)𝑑 (𝑘)) − 𝑓 ′(𝑥 (𝑘))]𝑑 (𝑘)

≤ 𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘) + ∥ 𝑓 ′ (𝑥 (𝑘) + 𝛽−1𝛼 (𝑘) 𝜉 (𝑘)𝑑 (𝑘)︸ ︷︷ ︸
C𝑒 (𝑘)

) − 𝑓 ′(𝑥 (𝑘))∥𝑀−1 ∥𝑑 (𝑘) ∥𝑀 by (2.3).

The vector 𝑒 (𝑘) satisfies

∥𝑒 (𝑘) ∥𝑀 = 𝛽−1𝛼 (𝑘)𝜉 (𝑘) ∥𝑑 (𝑘) ∥𝑀
< 𝛽−1𝛿 by the assumption in case 3 and since 𝜉 (𝑘) ∈ (0, 1)
≤ 𝛿 by the choice of 𝛿.

We may thus apply estimate (∗∗) to the inequality above to obtain

𝜎 𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘) ≤ 𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘) + (1 − 𝜎) 𝜀 ∥𝑑 (𝑘) ∥𝑀 .

Sorting terms and dividing by ∥𝑑 (𝑘) ∥𝑀 finally yields

0 ≤ −𝑓
′(𝑥 (𝑘)) 𝑑 (𝑘)
∥𝑑 (𝑘) ∥𝑀

≤ 𝜀.

□

60 https://tinyurl.com/scoop-nlo 2023-05-28

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

Remark 5.14 (Armijo backtracking line search produces efficient step sizes). Whenwe choose𝜓 (𝑧) = 𝑐 𝑧
with some 𝑐 > 0, i. e., when we use initial trial step sizes satisfying

𝛼𝑘,0 ∥𝑑 (𝑘) ∥𝑀 ≥ 𝑐
−𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘)
∥𝑑 (𝑘) ∥𝑀

, (5.15)

and if 𝑓 ′ is Lipschitz continuous on the sublevel setM𝑓 (𝑥 (0)) B {𝑥 ∈ R𝑛 | 𝑓 (𝑥) ≤ 𝑓 (𝑥 (0))}, then one
can show that Algorithm 5.11 produces not only admissible, but efficient step sizes.

To conclude the presentation of Armijo backtracking strategies, we consider a modification of Algo-
rithm 5.11 which often produces trial step sizes more effectively than simple backtracking 𝛼 { 𝛽 𝛼 in
case the Armijo condition fails on the initial trial step size.

The modification is based on the fact that we have available the data of the line search function 𝜑

𝜑 (0), 𝜑 ′(0) < 0 and 𝜑 (𝛼)
for the current trial step size 𝛼 . Using this data, we can fit a quadratic polynomial

𝑝 (𝛼) = 𝑎 + 𝑏 𝛼 + 𝑐 𝛼2.
The conditions21 𝑝 (0) = 𝜑 (0), 𝑝′(0) = 𝜑 ′(0) and 𝑝 (𝛼) = 𝜑 (𝛼) uniquely define the coefficients

𝑎 = 𝜑 (0), 𝑏 = 𝜑 ′(0), 𝑐 =
1
𝛼2

(
𝜑 (𝛼) − 𝜑 (0) − 𝜑 ′(0) 𝛼) . (5.16)

Naturally, this quadratic model of 𝜑 will be used only when the Armijo condition (5.12) failed at the
trial step size 𝛼 , i. e., in case

𝜑 (𝛼) − 𝜑 (0) − 𝜑 ′(0) 𝛼 > 𝜑 (𝛼) − 𝜑 (0) − 𝜎 𝜑 ′(0) 𝛼 > 0

holds, which implies 𝑐 > 0. This in turn means that the unique global minimizer 𝛼∗ = − 𝑏2𝑐 of 𝑝
satisfies

𝛼∗ =
−𝜑 ′(0) 𝛼2

2
(
𝜑 (𝛼) − 𝜑 (0) − 𝜑 ′(0) 𝛼) > 0.

We then choose 𝛼∗ as the next trial step size 𝛼+, but in order to avoid drastic changes or even an
increase from 𝛼 to 𝛼+, we clip 𝛼∗ to the interval [𝛽 𝛼, 𝛽 𝛼] according to

𝛼+ B min
{
max{𝛼∗, 𝛽 𝛼}, 𝛽 𝛼} =

𝛽 𝛼, if 𝛼∗ < 𝛽 𝛼,

𝛼∗, if 𝛽 𝛼 ≤ 𝛼∗ ≤ 𝛽 𝛼,
𝛽 𝛼, if 𝛼∗ > 𝛽 𝛼,

where 0 < 𝛽 < 𝛽 < 1 are the clipping parameters.22 This modified Armijo backtracking line search
maintains the essential properties of the simple Armijo backtracking line search. In particular, the
admissibility (and potentially efficiency) of the accepted step sizes (see Lemma 5.13 and Remark 5.14)
continue to hold.

For completeness, we present the modified Armijo backtracking line search procedure in Algo-
rithm 5.15.
21Fitting a polynomial using function values and derivatives is known as Hermite interpolation. Using function values

only is known as Lagrange interpolation.
22Using 𝛽 = 𝛽 = 𝛽 we get back our previous simple backtracking strategy where 𝛼+ = 𝛽 𝛼 .

https://tinyurl.com/scoop-nlo 61

https://tinyurl.com/scoop-nlo

R. Herzog cbn

Algorithm 5.15 (Modified Armijo backtracking line search with interpolation).
Input: initial trial step size 𝛼
Input: routine to evaluate 𝜑
Input: pre-computed function values 𝜑 (0) and 𝜑 ′(0)
Input: Armijo parameter 𝜎 ∈ (0, 1)
Input: backtracking parameters 0 < 𝛽 < 𝛽 < 1
Output: step size 𝛼 satisfying the Armijo condition (5.12)
1: Set ℓ B 0
2: while Armijo condition (5.12) does not hold for 𝛼 do

3: Set 𝛼∗ B
−𝜑 ′(0) 𝛼2

2
(
𝜑 (𝛼) − 𝜑 (0) − 𝜑 ′(0) 𝛼) // minimizer of quadratic polynomial

4: Set 𝛼 B min
{
max{𝛼∗, 𝛽 𝛼}, 𝛽 𝛼} // clip it and use as new trial step size

5: Setze ℓ B ℓ + 1
6: end while
7: return 𝛼

Wolfe-Powell Line Search

Recall from Lemma 5.10 that the Armijo condition

𝑓 (𝑥 (𝑘) + 𝛼 𝑑 (𝑘)) ≤ 𝑓 (𝑥 (𝑘)) + 𝜎 𝛼 𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘) or 𝜑 (𝛼) ≤ 𝜑 (0) + 𝜎 𝛼 𝜑 ′(0) (5.12)

always holds in some interval [0, 𝛼]. Therefore, we combined the Armijo condition with backtracking,
where we generate trial step sizes from large to small, in order to avoid overly small step sizes.

Alternatively, we could require, in addition to (5.12), the curvature condition

𝑓 ′(𝑥 (𝑘) + 𝛼 𝑑 (𝑘)) 𝑑 (𝑘) ≥ 𝜏 𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘) or 𝜑 ′(𝛼) ≥ 𝜏 𝜑 ′(0) (5.17)

or even the strong curvature condition

|𝑓 ′(𝑥 (𝑘) + 𝛼 𝑑 (𝑘)) 𝑑 (𝑘) | ≤ −𝜏 𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘) or |𝜑 ′(𝛼) | ≤ −𝜏 𝜑 ′(0) (5.18)

to hold, where 𝜏 ∈ (𝜎, 1) is the curvature parameter. The curvature condition (5.17) demands that
the derivative of 𝜑 at 𝛼 is not too negative, namely that it is larger (has less descent) than at 𝛼 = 0.
However, it would be fine for 𝜑 to increase near 𝛼 ; see Figure 5.2. This curvature condition already
avoids too small step sizes 𝛼 near 0.

The strong curvature condition (5.18) demands that, in addition, the derivative of 𝜑 at 𝛼 it not too
positive either. The condition can be interpreted as the requirement that 𝛼 be an approximately
stationary point of 𝜑 . Note: When 𝛼 is a local minimizer of 𝜑 , then (5.18) holds even for 𝜏 = 0.

The Armijo condition (5.12) and the curvature condition (5.17) together are referred to as theWolfe-
Powell conditions. The Armijo condition (5.12) and the strong curvature condition (5.18) together are
referred to as the strong Wolfe-Powell conditions. Consequently, step sizes 𝛼 ≥ 0 which satisfy the
above conditions are referred to asWolfe-Powell step sizes and strong Wolfe-Powell step sizes,
respectively.

62 https://tinyurl.com/scoop-nlo 2023-05-28

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

𝜑 (𝛼)

𝜑 (0) + 𝜎 𝛼 𝜑 ′(0)

𝛼

Figure 5.2: Illustration of step sizes 𝛼 ≥ 0 satisfying the curvature condition (5.17) (red) and the strong
curvature condition (5.18) (teal). As an example, the curvature parameter is chosen as
𝜏 = 0.2.

A simple example such as 𝜑 (𝛼) = −𝛼 shows that the curvature condition may not be satisfiable without
further assumptions on 𝑓 . The following result gives a sufficient condition for strong Wolfe-Powell
step sizes to exist.

Lemma 5.16 (Existence of (strong) Wolfe-Powell step sizes). Suppose that 𝑑 is a descent direction for
𝑓 at 𝑥 and that the Armijo and curvature parameters satisfy 0 < 𝜎 < 𝜏 < 1. Suppose, moreover, that 𝑓
is bounded below on the ray {𝑥 + 𝛼 𝑑 | 𝛼 ≥ 0}. Then there exists a step size 𝛼2 > 0 such that the strong
Wolfe-Powell conditions (5.12) and (5.18) (and thus also the regular Wolfe-Powell conditions (5.12) and
(5.17)) hold in a neighborhood of 𝛼2.

Proof. We abbreviate as usual 𝜑 (𝛼) B 𝑓 (𝑥 + 𝛼 𝑑). Since by assumption, 𝜑 is bounded below on R≥0, 𝜑
intersects the Armijo line

𝛼 ↦→ 𝜑 (0) + 𝜎 𝜑 ′(0)︸ ︷︷ ︸
<0

𝛼,

which is unbounded below, in at least one positive point. Suppose that 𝛼1 is the smallest positive point
of intersection (Quiz 5.6: Why does 𝛼1 exist?). Then we have

𝜑 (𝛼1) = 𝜑 (0) + 𝜎 𝜑 ′(0) 𝛼1.
In view of 𝜑 ′(0) < 0, the Armijo condition (5.12) holds for all 𝛼 ∈ [0, 𝛼1], i. e., the Armijo line lies below
𝜑 on this interval. From the mean value theorem 2.4, we infer the existence of 𝛼2 ∈ (0, 𝛼1) such that

𝜑 ′(𝛼2) = 𝜑 (𝛼1) − 𝜑 (0)
𝛼1

= 𝜎 𝜑 ′(0).

And thus we obtain the strong curvature condition (5.18) at 𝛼2:

|𝜑 ′(𝛼2) | = −𝜎 𝜑 ′(0) < −𝜏 𝜑 ′(0) .

https://tinyurl.com/scoop-nlo 63

https://tinyurl.com/scoop-nlo

R. Herzog cbn

𝜑 (𝛼)

𝜑 (0) +
𝛼
𝜑 ′(0)

𝜑 (0) + 𝜎 𝛼 𝜑 ′(0)

𝛼

Figure 5.3: Illustration of step sizes 𝛼 ≥ 0 satisfying both the Armijo condition (5.12) (blue), the
curvature condition (5.17) (red) and the strong curvature condition (5.18) (teal). As an
example, the Armijo parameter is chosen as 𝜎 = 0.07 and the curvature parameter is chosen
as 𝜏 = 0.2.

Due to the continuity of 𝜑 ′, the strong curvature condition (5.18) and thus also the regular curvature
condition (5.17) continue to hold for all 𝛼 in a neighborhood of 𝛼2. □

We now address an algorithm to find a Wolfe-Powell step size. To simplify notation, we introduce the
auxiliary function

𝜓 (𝛼) B 𝜑 (𝛼) − 𝜑 (0) − 𝜎 𝜑 ′(0) 𝛼,
which measures the signed gap between the function values of the one dimensional line search function
𝜑 and its 𝜎-relaxed linearization at the origin, so that we can write

the Armijo condition (5.12) ⇐⇒ 𝜓 (𝛼) ≤ 0, (5.12’)
the curvature condition (5.17) ⇐⇒ −(𝜏 − 𝜎) |𝜑 ′(0) | ≤ 𝜓 ′(𝛼), (5.17’)

the strong curvature condition (5.18) ⇐⇒ −(𝜏 − 𝜎︸ ︷︷ ︸
>0

) |𝜑 ′(0) | ≤ 𝜓 ′(𝛼) ≤ (𝜏 + 𝜎) |𝜑 ′(0) |. (5.18’)

We restrict the discussion to the regular Wolfe-Powell condition, i. e., (5.12) and (5.17). See for instance
Geiger, Kanzow, 1999, Kapitel 6.3 for the strong Wolfe-Powell condition.

Lemma 5.17 (Inclusion of Wolfe-Powell step sizes, see Geiger, Kanzow, 1999, Lemma 6.1). Suppose
that 0 ≤ 𝑎 < 𝑏 are chosen such the conditions

𝜓 (𝑎) ≤ 0 and 𝜓 ′(𝑎) < 0 (5.19a)
as well as 𝜓 (𝑏) ≥ 0 (5.19b)

64 https://tinyurl.com/scoop-nlo 2023-05-28

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

hold; see Figure 5.4. Then there exists 𝛼∗ ∈ (𝑎, 𝑏) such that

𝜓 (𝛼∗) < 0 and 𝜓 ′(𝛼∗) = 0

holds. In particular, the Wolfe-Powell conditions (5.12’) and (5.17’) hold in a neighborhood of 𝛼∗.

Proof. Let us denote by 𝛼∗ a global minimizer of

Minimize𝜓 (𝛼) on the compact interval [𝑎, 𝑏] .

The assumptions on 𝑎 and 𝑏 imply that 𝛼∗ belongs to the open interval (𝑎, 𝑏). Consequently, 𝛼∗ is
also a local minimizer of the unconstrained problem “Minimize𝜓 (𝛼) where 𝛼 ∈ R”, and thus we have
𝜓 ′(𝛼∗) = 0. From𝜓 (𝑎) ≤ 0 and𝜓 ′(𝑎) < 0 we infer𝜓 (𝛼∗) < 0. Since both (5.12’) and (5.17’) hold with
strict inequalities at 𝛼∗, continuity implies that they hold in a neighborhood of 𝛼∗. □

𝜓 (𝛼)

𝛼

𝛼∗

𝑎

𝑏

Figure 5.4: Illustration of the condition (5.19) and the statement of Lemma 5.17.

Note: The condition (5.19a) is readily seen to hold at 𝑎 = 0. This motivates the strategy to first find a
right boundary 𝑏 so that (5.19b) holds as well, and then to approximate 𝛼∗ by nesting intervals.

Algorithm 5.18 (Wolfe-Powell line search).
Input: initial trial step size 𝛼
Input: routine to evaluate 𝜑 and 𝜑 ′

Input: pre-computed function values 𝜑 (0) and 𝜑 ′(0)
Input: Armijo and curvature parameters 0 < 𝜎 < 𝜏 < 1
Input: expansion parameter 𝛾 > 1
Input: nesting parameters 𝛾,𝛾 ∈ (0, 1/2]
Output: step size 𝛼 satisfying the Wolfe-Powell conditions (5.12) and (5.17)
1: Set 𝑎 B 0 and 𝑏 B 𝛼
2: Set ℓ B 0
3: while 𝜑 (𝑏) < 𝜑 (0) + 𝜎 𝜑 ′(0) 𝑏 and 𝜑 ′(𝑏) < 𝜏 𝜑 ′(0) do // phase 1 repeatedly expands [0, 𝑏] until

(5.19) holds

https://tinyurl.com/scoop-nlo 65

https://tinyurl.com/scoop-nlo

R. Herzog cbn

4: Set 𝑏 B 𝛾 𝑏 // expand the right boundary 𝑏
5: Set ℓ B ℓ + 1
6: end while // now we have (5.19)
7: Set 𝛼 B 𝑏
8: while Armijo condition (5.12) or curvature condition (5.17) is violated at 𝛼 do // phase 2 repeatedly

shrinks [𝑎, 𝑏] until (5.12) and (5.17) hold
9: Choose 𝛼 ∈ [𝑎 + 𝛾 (𝑏 − 𝑎), 𝑏 − 𝛾 (𝑏 − 𝑎)] // for instance, choose the midpoint
10: if 𝜑 (𝛼) ≥ 𝜑 (0) + 𝜎 𝜑 ′(0) 𝛼 then // Armijo condition is violated at 𝛼
11: Set 𝑏 B 𝛼 // reduce the right boundary 𝑏
12: else
13: Set 𝑎 B 𝛼 // increase the left boundary 𝑎
14: end if
15: Set ℓ B ℓ + 1
16: end while
17: return 𝛼

Remark 5.19 (on Algorithm 5.18, compare Remark 5.12).
(𝑖) The Armijo parameter is often chosen to be small, e. g., 𝜎 = 10−2 or even 𝜎 = 10−4. Depending

on the characteristics of the outer method (which determines the search directions), the curvature
parameter 𝜏 > 𝜎 should be chosen “small” as well, e. g., 𝜏 = 0.1, or otherwise “large”, e. g., 𝜏 = 0.9.

(𝑖𝑖) Each iteration of phase 1 “costs” one additional evaluation of 𝜑 and 𝜑 ′, i. e., one additional evaluation
of 𝑓 and 𝑓 ′, or rather the directional derivative of 𝑓 in the direction of the current search direction;
compare (5.13). Each iteration of phase 2 “costs” one additional evaluation of 𝜑 .

(𝑖𝑖𝑖) Using Lemma 5.17, it is not difficult to see that Algorithm 5.18 terminates after finitely many steps
under the conditions of Lemma 5.16:

• The while loop beginning at Line 3 terminates, since for 𝑏 sufficiently large, the Armijo
condition (5.12) is violated. For such 𝑏, we have𝜓 (𝑏) > 0, i. e., (5.19b) holds.

• At the first iteration of the while loop beginning at Line 8, the conditions (5.19) of Lemma 5.17
are satisfied. Consequently, they continue to hold also in all subsequent iterations.

• The length of the intervals [𝑎, 𝑏] in phase 2 goes to zero if infinitely many iterations of the
while loop beginning at Line 8 were performed. However, as shown in Lemma 5.17, there
is an open set of points which satisfy both the Armijo condition (5.12) and the curvature
condition (5.17) inside any of the intervals [𝑎, 𝑏] considered in phase 2. Therefore, phase 2
must terminate.

(𝑖𝑣) The step size accepted by Algorithm 5.18 may be larger or smaller than the initial trial step size
provided by the user.

(𝑣) As was already noted for the Armijo backtracking line search (Algorithm 5.11) in Remark 5.12, in
a practical implementation, one often adds further checks and stopping criteria to Algorithm 5.11.

66 https://tinyurl.com/scoop-nlo 2023-05-28

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

For instance, we need to safeguard against 𝜑 ′(0) ≥ 0 (𝑑 is not a descent direction) and against too
many unsuccessful trial steps.

(𝑣𝑖) An algorithm for the strong Wolfe-Powell line search can be found in Geiger, Kanzow, 1999, Kapi-
tel 6.3.

The admissibility of step sizes generated by the Wolfe-Powell line search algorithm is shown in the
following result. Clearly, this result also applies to step sizes satisfying the strong Wolfe-Powell
conditions.

Lemma 5.20 (Wolfe-Powell line search produces admissible step sizes). Suppose that Algorithm 5.2
generates an infinite sequence of iterates 𝑥 (𝑘) and search (descent) directions 𝑑 (𝑘) ≠ 0. Suppose moreover
that the step sizes 𝛼 (𝑘) are chosen so that they satisfy the Wolfe-Powell conditions (5.12) and (5.17) (for
instance by Algorithm 5.18).23 Assume that 𝐾 ⊆ N0 is an infinite index set such that the subsequence(
𝑥 (𝑘)

)
𝑘∈𝐾 is bounded. Then the step sizes

(
𝛼 (𝑘)

)
𝑘∈𝐾 are admissible.

Proof. As in the proof of Lemma 5.13 we obtain the result

−𝛼 (𝑘) 𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘) → 0. (∗)

It remains to show
𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘)
∥𝑑 (𝑘) ∥

𝑘∈𝐾−−−→ 0.

To this end, let 𝜀 > 0.

Just like in the proof of Lemma 5.13, we can argue that the boundedness of
(
𝑥 (𝑘)

)
𝑘∈𝐾 entails that the

continuous function 𝑓 ′ is uniformly continuous “near the
(
𝑥 (𝑘)

)
𝑘∈𝐾 ”. More precisely, there exists

𝛿 > 0 such that 𝑓 ′(𝑥 (𝑘) + 𝑒) − 𝑓 ′(𝑥 (𝑘))
𝑀−1 ≤ (1 − 𝜏) 𝜀 for all 𝑘 ∈ 𝐾, ∥𝑒 ∥𝑀 ≤ 𝛿.

Because of (∗), there exists an index 𝑘0 ∈ N such that

𝛼 (𝑘) |𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘) | ≤ 𝜀 𝛿 for all 𝑘 ≥ 𝑘0. (∗∗)

From now on, let 𝑘 ∈ 𝐾 , 𝑘 ≥ 𝑘0, be arbitrary. Similarly as in the proof of Lemma 5.13, we consider the
following cases:

Case 1: 𝛼 (𝑘) ∥𝑑 (𝑘) ∥𝑀 ≥ 𝛿
23Notice that, in contrast to condition (5.14) in Lemma 5.13, there is no lower bound on the initial trial step size necessary to

be observed.

https://tinyurl.com/scoop-nlo 67

https://tinyurl.com/scoop-nlo

R. Herzog cbn

Precisely as in the proof of Lemma 5.13, we obtain

0 ≤ −𝑓
′(𝑥 (𝑘)) 𝑑 (𝑘)
∥𝑑 (𝑘) ∥𝑀

since 𝑑 (𝑘) is a descent direction

=
−𝛼 (𝑘) 𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘)
𝛼 (𝑘) ∥𝑑 (𝑘) ∥𝑀

≤ 𝜀 𝛿
𝛿

by (∗∗) and the assumption in case 1

= 𝜀.

Case 2: 𝛼 (𝑘) ∥𝑑 (𝑘) ∥𝑀 < 𝛿
In this we argue with the satisfaction of the curvature conditon (5.17) for 𝛼 (𝑘) :

𝜏 𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘) ≤ 𝑓 ′(𝑥 (𝑘) + 𝛼 (𝑘)𝑑 (𝑘)) 𝑑 (𝑘) .

The addition of |𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘) | = −𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘) on both sides yields

(1 − 𝜏) |𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘) | ≤ 𝑓 ′(𝑥 (𝑘) + 𝛼 (𝑘)𝑑 (𝑘)) 𝑑 (𝑘) − 𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘)
≤

��𝑓 ′ (𝑥 (𝑘) + 𝛼 (𝑘)𝑑 (𝑘)) 𝑑 (𝑘) − 𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘) ��
≤

𝑓 ′ (𝑥 (𝑘) + 𝛼 (𝑘)𝑑 (𝑘)) − 𝑓 ′(𝑥 (𝑘))
𝑀−1 ∥𝑑 (𝑘) ∥𝑀 .

Invoking now the uniform continuity, we obtain

(1 − 𝜏) |𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘) | ≤ (1 − 𝜏) 𝜀 ∥𝑑 (𝑘) ∥𝑀 ,

and hence
0 ≤ −𝑓

′(𝑥 (𝑘)) 𝑑 (𝑘)
∥𝑑 (𝑘) ∥𝑀

≤ 𝜀.

□

Analogously as with the Armijo backtracking line search (Remark 5.14), one can also show the efficiency
of step sizes when 𝑓 ′ is Lipschitz continuous on the sublevel setM𝑓 (𝑥 (0)) B {𝑥 ∈ R𝑛 | 𝑓 (𝑥) ≤ 𝑓 (𝑥 (0))}.
The proof is part of homework problem 4.2.

In concluding, we also remark that Line 9 in phase 2 of Algorithm 5.18 leaves some freedom in the
choice of the next trial step size 𝛼 . The available data 𝜑 (𝑎), 𝜑 ′(𝑎), 𝜑 (𝑏) and 𝜑 ′(𝑏) lends itself to a cubic
Hermite interpolation, using the model

𝑝 (𝛼) = 𝑎 + 𝑏 𝛼 + 𝑐 𝛼2 + 𝑑 𝛼3.

Provided that a unique local minimizuer 𝛼∗ of 𝑝 exists, we can calculate it explicitly and subsequently
clip it to the interval [𝑎, 𝑏]:

𝛼 B max{𝑎,min{𝑏, 𝛼∗}}.
One needs to pay attention to the fact that not all of the data 𝜑 ′(𝑎) and 𝜑 ′(𝑏) is necessarily available
in the current iteration of Algorithm 5.18. In this case one may proceed with a quadratic polynomial as
in the modified Armijo backtracking line search method.

68 https://tinyurl.com/scoop-nlo 2023-05-28

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

Remark 5.21 (Scaling invariance of the Armijo and curvature conditions). The Armijo and curvature
conditions (5.12), (5.17) and (5.18) are invariant w.r.t. affine scaling in the domain and codomain spaces.
Suppose that we consider, besides the objective 𝑓 , another objective 𝑔 related via

𝑓 (𝑥) { 𝑔(𝑥) B 𝛾 𝑓 (𝐴𝑥 + 𝑏) + 𝛿,

where 𝐴 ∈ R𝑛×𝑛 is non-singular, 𝑏 ∈ R𝑛 , 𝛾 > 0 and 𝛿 ∈ R.

Then the following holds: a step size 𝛼 that satisfies any of the conditions (5.12), (5.17) or (5.18) for 𝑔 at 𝑥
with search direction 𝑑 , satisfies the same conditions for 𝑓 at 𝐴𝑥 + 𝑏 with the search direction 𝐴𝑑 . Since
the scaling of an optimization problem is often arbitrary, this is a desirable property.

The proof is part of homework problem 4.3.

§ 5.3 Gradient Descent Method

In the remainder of § 5 we consider different concrete realizations of the generic descent method
Algorithm 5.2. The methods differ w.r.t. the way the search directions 𝑑 (𝑘) are generated and w.r.t.
the choice of the line search method (Armijo or Wolfe-Powell) to determine the step sizes 𝛼 (𝑘) . As
was already mentioned, the methods discussed here obtain the search drection at an iterate 𝑥 (𝑘) by
minimizing a quadratic model of the objective

𝑞 (𝑘) (𝑑) = 𝑓 (𝑥 (𝑘)) + 𝑓 ′(𝑥 (𝑘)) 𝑑 + 1
2 𝑑
ᵀ𝐻 (𝑘)𝑑. (5.2)

When the model Hessian 𝐻 (𝑘) is s. p. d., this is equivalent to the solution of the linear system

𝐻 (𝑘)𝑑 (𝑘) = −∇𝑓 (𝑥 (𝑘)) . (5.4)

The gradient descent method (also known as steepest descent method) for our generic uncon-
strained linear problem

Minimize 𝑓 (𝑥) where 𝑥 ∈ R𝑛 (UP)

generates its search directions in the same way we already know from § 4.2, when 𝑓 was a quadratic
polynomial. That is, we use

𝑀 𝑑 (𝑘) = −∇𝑓 (𝑥 (𝑘)) or 𝑑 (𝑘) = −𝑀−1∇𝑓 (𝑥 (𝑘)) = −∇𝑀 𝑓 (𝑥 (𝑘)) . (5.20)

This corresponds to using a constant model Hessian 𝐻 (𝑘) ≡ 𝑀 in the model (5.2):

𝑞 (𝑘) (𝑑) = 𝑓 (𝑥 (𝑘)) + 𝑓 ′(𝑥 (𝑘)) 𝑑 + 1
2 𝑑
ᵀ𝑀 𝑑.

The choice of the inner product 𝑀 is due to the user. As was already mentioned in Remark 4.7,
one refers to the case 𝑀 = Id as the classical gradient descent method without preconditioning.
Otherwise one speaks of a preconditioned gradient descent method with preconditioner𝑀 .

https://tinyurl.com/scoop-nlo 69

https://tinyurl.com/scoop-nlo

R. Herzog cbn

The particular choice of 𝑑 (𝑘) in the gradient descent method clearly implies the angle condition (5.8)
with the maximal possible value, 𝜂 = 1. In particular, the search direction 𝑑 (𝑘) is a descent direction
for 𝑓 at 𝑥 (𝑘) , as long as 𝑓 ′(𝑥 (𝑘)) ≠ 0 holds.

A simple strategy is sufficient to determine admissible step sizes (5.10). One typically employs the
Armijo backtracking line search (Algorithm 5.11) or the version with interpolation (Algorithm 5.15).

The efficiency condition (5.15) requires that the initial trial step size satisfy

𝛼 (𝑘,0) ≥ 𝑐 −𝑓
′(𝑥 (𝑘)) 𝑑 (𝑘)
∥𝑑 (𝑘) ∥2

𝑀

= 𝑐
−(∇𝑀 𝑓 (𝑥 (𝑘)), 𝑑 (𝑘))𝑀

∥𝑑 (𝑘) ∥2
𝑀

= 𝑐
∥𝑑 (𝑘) ∥2

𝑀

∥𝑑 (𝑘) ∥2
𝑀

since 𝑑 (𝑘) = −∇𝑀 𝑓 (𝑥 (𝑘))

= 𝑐

with some constant 𝑐 > 0. This simply suggests to impose a lower bound on the initial trial step sizes
in gradient descent methods. We will re-label 𝑐 as 𝛼 in Algorithm 5.22 below.

In addition to observing this bound, it is useful to construct initial trial step sizes using information
from past iterations. Assuming that the descent achievable in the current step is equal (to first order)
to the descent in the previous step (when the accepted step size was 𝛼 (𝑘−1)), we obtain the following
proposal for an initial trial step size 𝛼 (𝑘,0) at iteration 𝑘 ≥ 1:

𝛼 (𝑘,0) 𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘) = 𝛼 (𝑘−1) 𝑓 ′(𝑥 (𝑘−1)) 𝑑 (𝑘−1)

⇒ 𝛼 (𝑘,0) = 𝛼 (𝑘−1)
𝑓 ′(𝑥 (𝑘−1)) 𝑑 (𝑘−1)
𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘) .

Plugging in the descent directions used in the gradient descent method, this becomes

𝛼 (𝑘,0) = 𝛼 (𝑘−1)
∥∇𝑀 𝑓 (𝑥 (𝑘−1))∥2𝑀
∥∇𝑀 𝑓 (𝑥 (𝑘))∥2𝑀

= 𝛼 (𝑘−1)
∥𝑑 (𝑘−1) ∥2

𝑀

∥𝑑 (𝑘) ∥2
𝑀

.

Alternatively, we could use the actual descent achieved in the previous step instead of its linearization,
which would result in

𝛼 (𝑘,0) =
𝑓 (𝑥 (𝑘−1)) − 𝑓 (𝑥 (𝑘))
∥∇𝑀 𝑓 (𝑥 (𝑘))∥2𝑀

=
𝑓 (𝑥 (𝑘−1)) − 𝑓 (𝑥 (𝑘))

∥𝑑 (𝑘) ∥2
𝑀

.

We state the full gradient descent method in Algorithm 5.22, using the above considerations for the
initial trial step size. As was the case for our methods in § 4 addressing the minimization of quadratic
polynomials, we refer to the value of the derivative of 𝑓 at an iterate 𝑥 (𝑘) as the residual 𝑟 (𝑘) .

The global convergence of Algorithm 5.22, in the sense that every accumulation point of the sequence
of iterates 𝑥 (𝑘) is a stationary point, follows directly from the global convergence theorem 5.9.

70 https://tinyurl.com/scoop-nlo 2023-05-28

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

Algorithm 5.22 (Gradient descent method for (UP) w.r.t. the𝑀-inner product and Armijo backtracking
line search).
Input: initial guess 𝑥 (0) ∈ R𝑛
Input: routine to evaluate 𝑓 and 𝑓 ′ (or ∇𝑓)
Input: s. p. d. matrix𝑀 (or matrix-vector products with𝑀−1)
Input: Armijo parameter 𝜎 ∈ (0, 1) // to be passed through to the Armijo backtracking line search
Input: backtracking parameter 𝛽 ∈ (0, 1) // to be passed through to the Armijo backtracking line search
Input: lower bound 𝛼 > 0 for the initial trial step sizes
Output: approximately stationary point of (UP)
1: Set 𝑘 B 0
2: Set 𝑓 (0) B 𝑓 (𝑥 (0)) // evaluate the initial objective value
3: Set 𝑟 (0) B 𝑓 ′(𝑥 (0))ᵀ = ∇𝑓 (𝑥 (0)) // evaluate the initial residual
4: Set 𝑑 (0) B −𝑀−1𝑟 (0)
5: Set 𝛿 (0) B −(𝑟 (0))ᵀ𝑑 (0) // 𝛿 (0) = ∥∇𝑀 𝑓 (𝑥 (0))∥2𝑀 = ∥𝑑 (0) ∥2

𝑀

6: while stopping criterion not met do
7: if 𝑘 = 0 then
8: Set 𝛼 (𝑘,0) B 𝛼 // no information from previous iteration available
9: else
10: Set 𝛼 (𝑘,0) B max

{
𝛼, 𝑓 (𝑘−1)−𝑓 (𝑘)

𝛿 (𝑘)
}

11: end if
12: Determine a step size 𝛼 (𝑘) > 0 from an Armijo backtracking line search procedure (Algorithm 5.11),

applied to 𝜑 (𝛼) B 𝑓 (𝑥 (𝑘) + 𝛼 𝑑 (𝑘)), with initial trial step size 𝛼 (𝑘,0) , Armijo parameter 𝜎 and
backtracking parameter 𝛽 // 𝜑 (0) = 𝑓 (𝑘) and 𝜑 ′(0) = (𝑟 (𝑘))ᵀ𝑑 (𝑘) = −𝛿 (𝑘) are already known

13: Set 𝑥 (𝑘+1) B 𝑥 (𝑘) + 𝛼 (𝑘)𝑑 (𝑘)
14: Set 𝑓 (𝑘+1) B 𝑓 (𝑥 (𝑘+1)) // can be returned by the Armijo backtracking line search routine
15: Set 𝑟 (𝑘+1) B 𝑓 ′(𝑥 (𝑘+1))ᵀ = ∇𝑓 (𝑥 (𝑘+1))
16: Set 𝑑 (𝑘+1) B −𝑀−1𝑟 (𝑘+1)
17: Set 𝛿 (𝑘+1) B −(𝑟 (𝑘+1))ᵀ𝑑 (𝑘+1) // 𝛿 (𝑘+1) = ∥∇𝑀 𝑓 (𝑥 (𝑘+1))∥2𝑀 = ∥𝑑 (𝑘+1) ∥2

𝑀

18: Set 𝑘 B 𝑘 + 1
19: end while
20: return 𝑥 (𝑘)

In Line 12, we could also invoke the modified Armijo backtracking method (Algorithm 5.15), with the
backtracking parameter 𝛽 replaced by the pair of parameters 0 < 𝛽 < 𝛽 < 1.

As a stopping criterion, we can choose again any of the conditions from (4.14), i. e., stop on the relative
or absolute magnitude of the derivative or gradient

∥𝑟 (𝑘) ∥𝑀−1 = ∥ 𝑓 ′(𝑥 (𝑘))∥𝑀−1 = ∥∇𝑀 𝑓 (𝑥 (𝑘))∥𝑀 = ∥𝑑 (𝑘) ∥𝑀 = (𝛿 (𝑘))1/2.
These quantities are already available in the algorithm. A limited interpretation in the sense of
Lemma 4.11 is also possible. In case the sequence 𝑥 (𝑘) converges to a local minimizer that satisfies the
second-order sufficient optimality conditions (Theorem 3.3), then we have: for all 𝜀 > 0, there exists
𝛿 > 0 such that

∥𝑥 (𝑘) − 𝑥∗∥𝑀 ≤ 𝛿 and ∥ 𝑓 ′(𝑥 (𝑘))∥𝑀−1 ≤ 𝜀abs ⇒ ∥𝑥 (𝑘) − 𝑥∗∥𝑀 ≤
(1
𝛼
+ 𝜀︸︷︷︸
≈1/𝛼

)
𝜀abs,

https://tinyurl.com/scoop-nlo 71

https://tinyurl.com/scoop-nlo

R. Herzog cbn

where 𝛼 = 𝜆min(𝑓 ′′(𝑥∗);𝑀) is the smallest eigenvalue of the Hessian at the solution w.r.t. 𝑀 . In
other words, when we are sufficiently close to a local minimizer satisfying the second-order sufficient
optimality conditions, then the norm of the derivative (or the gradient) is — up to the factor 1/𝛼 — a
useful measure of the distance to the solution.

Other often used stopping criteria are

∥𝑥 (𝑘) − 𝑥 (𝑘−1) ∥𝑀 ≤ 𝜀𝑥abs + 𝜀𝑥rel ∥𝑥 (𝑘) − 𝑥 (0) ∥𝑀 ,
|𝑓 (𝑥 (𝑘)) − 𝑓 (𝑥 (𝑘−1)) | ≤ 𝜀 𝑓abs + 𝜀

𝑓

rel |𝑓 (𝑥 (𝑘)) − 𝑓 (𝑥 (0)) |.

These are triggered by slow progress in the iterates or the objective values, respectively. One typically
sets 𝜀 𝑓rel = (𝜀𝑥rel)2.

It is remarkable that it is possible to monitor the quantities ∥𝑥 (𝑘) − 𝑥 (𝑘−1) ∥𝑀 and ∥𝑥 (𝑘) − 𝑥 (0) ∥𝑀 ,
although the matrix 𝑀 (or matrix-vector products with 𝑀) may not be available. Matrix-vector
products with 𝑀−1 are sufficient. The following quantities are useful for this purpose and can be
recursively updated, compare (4.33):

𝜔 (𝑘) B ∥𝑥 (𝑘) − 𝑥 (0) ∥2𝑀 (5.21a)
𝜉 (𝑘) B (𝑥 (𝑘) − 𝑥 (0))ᵀ𝑀 𝑑 (𝑘) = −(𝑥 (𝑘) − 𝑥 (0))ᵀ𝑟 (𝑘) (5.21b)
𝛿 (𝑘) B ∥𝑑 (𝑘) ∥2𝑀 (5.21c)

The details are left as an exercise.
End of Week 4

§ 5.4 Newton’s Method

Newton’s method is known as a method to solve a (nonlinear) equation 𝐹 (𝑥) = 0, where 𝐹 : R𝑛 → R𝑛 is
a𝐶1 function. For optimization purposes, we apply it to the first-order necessary optimality conditions,
i. e., we have 𝐹 (𝑥) = ∇𝑓 (𝑥) = 0, and thus 𝑓 is assumed to be of class 𝐶2.

The idea of Newton’s method to find a zero (root) of 𝐹 is as follows. Suppose 𝑥 (0) is an initial guess.
We replace 𝐹 by its linear Taylor model at 𝑥 (0) and determine the zero of this model instead. This
results in

𝐹 (𝑥 (0)) + 𝐹 ′(𝑥 (0)) (𝑥 − 𝑥 (0)) = 0 ⇔ 𝑥 = 𝑥 (0) − 𝐹 ′(𝑥 (0))−1𝐹 (𝑥 (0)),
provided that the Jacobian 𝐹 ′(𝑥 (0)) is non-singular. This zero of the linear model is used as the next
iterate 𝑥 (1) , etc. This procedure is known as the (local) Newton’s method.

Algorithm 5.23 (Local Newton’s method for 𝐹 (𝑥) = 0).
Input: initial guess 𝑥 (0) ∈ R𝑛
Input: routine to evaluate 𝐹 and 𝐹 ′

Output: approximate zero of 𝐹
1: Set 𝑘 B 0

72 https://tinyurl.com/scoop-nlo 2023-05-28

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

2: while stopping criterion not met do
3: Determine the Newton direction by solving

𝐹 ′(𝑥 (𝑘)) 𝑑 (𝑘) = −𝐹 (𝑥 (𝑘))

4: Set 𝑥 (𝑘+1) B 𝑥 (𝑘) + 𝑑 (𝑘)
5: Set 𝑘 B 𝑘 + 1
6: end while
7: return 𝑥 (𝑘)

Auxiliary Results

We recall some auxiliary results, which you may know from Grundlagen der Optimierung (Herzog,
2022) or other classes. As usual, we equip R𝑛 with the 𝑀-inner product. Recall from § 2.2 that the
operator norm of a matrix 𝐾 ∈ R𝑛×𝑛 that represents a map 𝐾 : R𝑛 → R𝑛 is defined by

∥𝐾 ∥𝑀←𝑀 B max
𝑥≠0

∥𝐾 𝑥 ∥𝑀
∥𝑥 ∥𝑀 .

Although in finite dimensions all norms are equivalent, the above norm is not always the most
appropriate choice: some matrices 𝐴 ∈ R𝑛×𝑛 actually represent maps 𝐴 : R𝑛 → (R𝑛)∗, where (R𝑛)∗
is the dual space of R𝑛 . The appropriate inner product in the dual space is the 𝑀−1-inner product,
leading to

∥𝐴∥𝑀−1←𝑀 B max
𝑥≠0

∥𝐴𝑥 ∥𝑀−1
∥𝑥 ∥𝑀 .

Consequently, we would use

∥𝐴−1∥𝑀←𝑀−1 B max
𝑟≠0

∥𝐴−1 𝑟 ∥𝑀
∥𝑟 ∥𝑀−1

for the inverse of 𝐴. We also need the case 𝐵 : (R𝑛)∗ → R𝑛 .

Lemma 5.24 (Banach’ lemma).
(𝑖) Suppose that 𝐾 ∈ R𝑛×𝑛 is a matrix ∥𝐾 ∥𝑀←𝑀 < 1. Then Id − 𝐾 is non-singular, and we have the

following estimate on the norm of its inverse:

∥(Id − 𝐾)−1∥𝑀←𝑀 ≤ 1
1 − ∥𝐾 ∥𝑀←𝑀 .

(𝑖𝑖) Suppose that 𝐴, 𝐵 ∈ R𝑛×𝑛 are such that ∥Id − 𝐵𝐴∥𝑀←𝑀 < 1. Then 𝐴 and 𝐵 are both non-singular,
and we have

∥𝐵−1∥𝑀−1←𝑀 ≤
∥𝐴∥𝑀−1←𝑀

1 − ∥Id − 𝐵𝐴∥𝑀←𝑀 und ∥𝐴−1∥𝑀←𝑀−1 ≤
∥𝐵∥𝑀←𝑀−1

1 − ∥Id − 𝐵𝐴∥𝑀←𝑀 .

Note: Statement (𝑖) states that “small” perturbations of the identity matrix are still invertible. State-
ment (𝑖𝑖) states that Id−𝐵𝐴 “small”, i. e., 𝐵 ≈ 𝐴−1, entails that𝐴 and 𝐵 are both necessarily invertible.

https://tinyurl.com/scoop-nlo 73

https://tinyurl.com/scoop-nlo

R. Herzog cbn

Proof. Statement (𝑖): For 𝑥 ∈ R𝑛 , we have
∥(Id − 𝐾) 𝑥 ∥𝑀 = ∥𝑥 − 𝐾𝑥 ∥𝑀

≥ ∥𝑥 ∥𝑀 − ∥𝐾𝑥 ∥𝑀 by the triangle inequality
≥ (

1 − ∥𝐾 ∥𝑀←𝑀︸ ︷︷ ︸
>0

) ∥𝑥 ∥𝑀 since ∥𝐾𝑥 ∥𝑀 ≤ ∥𝐾 ∥𝑀←𝑀 ∥𝑥 ∥𝑀 .

This implies (Id − 𝐾) 𝑥 ≠ 0 for 𝑥 ≠ 0, ie, Id − 𝐾 is injective and thus non-singular.

Now let 𝑦 ∈ R𝑛 be arbitrary and 𝑥 B (Id − 𝐾)−1𝑦 . Then the above estimate shows

∥𝑦 ∥𝑀 ≥ (1 − ∥𝐾 ∥𝑀←𝑀)∥(Id − 𝐾)−1𝑦 ∥𝑀
⇒ ∥(Id − 𝐾)−1∥𝑀←𝑀 = max

𝑦≠0

∥(Id − 𝐾)−1𝑦 ∥𝑀
∥𝑦 ∥𝑀 ≤ 1

1 − ∥𝐾 ∥𝑀←𝑀 .

Statement (𝑖𝑖): We set 𝐾 B Id − 𝐵𝐴, whence ∥𝐾 ∥𝑀←𝑀 < 1 holds. Due to Statement (𝑖), we find that
Id − 𝐾 = Id − (Id − 𝐵𝐴) = 𝐵𝐴 is non-singular, i. e., 𝐴 and 𝐵 are both non-singular. Moreover,

(Id − 𝐾)−1 = (𝐵𝐴)−1 = 𝐴−1𝐵−1
⇒ 𝐵−1 = 𝐴 (Id − 𝐾)−1
⇒ ∥𝐵−1∥𝑀−1←𝑀 ≤ ∥𝐴∥𝑀−1←𝑀 ∥(Id − 𝐾)−1∥𝑀←𝑀

≤ ∥𝐴∥𝑀−1←𝑀1 − ∥𝐾 ∥𝑀←𝑀 by Statement (𝑖)

=
∥𝐴∥𝑀−1←𝑀

1 − ∥Id − 𝐵𝐴∥𝑀←𝑀 .

The remaining inequality follows similarly. □

Lemma 5.25 (Implications of the invertibility of the Jacobian). Suppose that 𝐹 : R𝑛 → R𝑛 is a 𝐶1

function and that 𝑥∗ ∈ R𝑛 is arbitrary with non-singular Jacobian 𝐹 ′(𝑥∗).

(𝑖) Then there exists a neighborhood 𝐵𝑀
𝛿
(𝑥∗) and a constant 𝑐 > 0 such that 𝐹 ′(𝑥) is invertible for all

𝑥 ∈ 𝐵𝑀
𝛿
(𝑥∗). Moreover,

∥𝐹 ′(𝑥)−1∥𝑀←𝑀−1 ≤ 𝑐 holds for all 𝑥 ∈ 𝐵𝑀
𝛿
(𝑥∗) . (5.22)

(𝑖𝑖) Suppose now in addition that 𝐹 (𝑥∗) = 0 holds. Then there exist a neighborhood 𝐵𝑀
𝛿
(𝑥∗) and a

constant 𝛽 > 0 such that

∥𝑥 − 𝑥∗∥𝑀 ≤ 𝛽 ∥𝐹 (𝑥)∥𝑀−1 for all 𝑥 ∈ 𝐵𝑀
𝛿
(𝑥∗). (5.23)

𝛽 can be chosen as 2 ∥𝐹 ′(𝑥∗)−1∥𝑀←𝑀 1 .

Note: Statement (𝑖) is an instance of the fact from functional analysis that the set of boundedly
invertible linear operators between two Banach spaces is open. Statement (𝑖𝑖) allows us to estimate
the norm of the error ∥𝑥 − 𝑥∗∥𝑀 from the norm of the residual ∥𝐹 (𝑥)∥𝑀−1 .

74 https://tinyurl.com/scoop-nlo 2023-05-28

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

Proof. Statement (𝑖): Since 𝐹 ′ is continuous at 𝑥∗, there exists 𝛿 > 0 such that

∥𝐹 ′(𝑥∗) − 𝐹 ′(𝑥)∥𝑀−1←𝑀 ≤ 𝜀 B
1

2 ∥𝐹 ′(𝑥∗)−1∥𝑀←𝑀−1

holds for all 𝑥 ∈ 𝐵𝑀
𝛿
(𝑥∗). Consequently,

∥Id − 𝐹 ′(𝑥∗)−1 𝐹 ′(𝑥)∥𝑀←𝑀 = ∥𝐹 ′(𝑥∗)−1 (𝐹 ′(𝑥∗) − 𝐹 ′(𝑥)) ∥𝑀←𝑀
≤ ∥𝐹 ′(𝑥∗)−1∥𝑀←𝑀−1 ∥𝐹 ′(𝑥∗) − 𝐹 ′(𝑥)∥𝑀−1←𝑀
≤ 1

2 < 1.

By Statement (𝑖𝑖) of Lemma 5.24 [with 𝐴 = 𝐹 ′(𝑥) and 𝐵 = 𝐹 ′(𝑥∗)−1], we can conclude that 𝐹 ′(𝑥) is
non-singular for all 𝑥 ∈ 𝐵𝑀

𝛿
(𝑥∗) with

∥𝐹 ′(𝑥)−1∥𝑀←𝑀−1 ≤
∥𝐹 ′(𝑥∗)−1∥𝑀←𝑀−1

1 − ∥Id − 𝐹 ′(𝑥∗)−1𝐹 ′(𝑥)∥𝑀←𝑀 ≤ 2 ∥𝐹 ′(𝑥∗)−1∥𝑀←𝑀−1 C 𝑐.

Statement (𝑖𝑖): Since 𝐹 is differentiable in 𝑥∗, there exists — for the same 𝜀 > 0 as above — a 𝛿 > 0
such that

∥𝐹 (𝑥) − 𝐹 (𝑥∗) − 𝐹 ′(𝑥∗) (𝑥 − 𝑥∗)∥𝑀−1 ≤ 𝜀 ∥𝑥 − 𝑥∗∥𝑀 for all 𝑥 ∈ 𝐵𝑀
𝛿
(𝑥∗) .

Therefore, for all 𝑥 ∈ 𝐵𝑀
𝛿
(𝑥∗),

∥𝐹 (𝑥)∥𝑀−1
≥ ∥𝐹 ′(𝑥∗) (𝑥 − 𝑥∗)∥𝑀−1 − ∥𝐹 (𝑥) −

=0︷ ︸︸ ︷
𝐹 (𝑥∗) − 𝐹 ′(𝑥∗) (𝑥 − 𝑥∗)∥𝑀−1 by the triangle inequality.

In view of ∥𝑥 − 𝑥∗∥𝑀 = ∥𝐹 ′(𝑥∗)−1𝐹 ′(𝑥∗) (𝑥 − 𝑥∗)∥𝑀 ≤ ∥𝐹 ′(𝑥∗)−1∥𝑀←𝑀−1 ∥𝐹 ′(𝑥∗) (𝑥 − 𝑥∗)∥𝑀−1 , we can
estimate this by

∥𝐹 (𝑥)∥𝑀−1
≥ 1
∥𝐹 ′(𝑥∗)−1∥𝑀←𝑀−1

∥𝑥 − 𝑥∗∥𝑀 − 𝜀 ∥𝑥 − 𝑥∗∥𝑀
= 𝜀 ∥𝑥 − 𝑥∗∥𝑀 by the definition of 𝜀,

and the claim follows with 𝛽 = 𝜀−1. □

Lemma 5.26 (Auxiliary estimate). Suppose that 𝐹 : R𝑛 → R𝑛 is a 𝐶1 function and 𝑥∗ ∈ R𝑛 . For all
𝜀 > 0, there exists 𝛿 > 0 such that

∥𝐹 (𝑥) − 𝐹 (𝑥∗) − 𝐹 ′(𝑥) (𝑥 − 𝑥∗)∥𝑀−1 < 𝜀 ∥𝑥 − 𝑥∗∥𝑀

holds for all 𝑥 ∈ 𝐵𝑀
𝛿
(𝑥∗).24

24Briefly, we can also denote this result as ∥𝐹 (𝑥) − 𝐹 (𝑥∗) − 𝐹 ′ (𝑥) (𝑥 − 𝑥∗)∥𝑀 ∈ 𝑜
(∥𝑥 − 𝑥∗∥𝑀)

.

https://tinyurl.com/scoop-nlo 75

https://tinyurl.com/scoop-nlo

R. Herzog cbn

Proof. Take 𝜀 > 0. The triangle inequality implies

∥𝐹 (𝑥) − 𝐹 (𝑥∗) − 𝐹 ′(𝑥) (𝑥 − 𝑥∗)∥𝑀−1
≤ ∥𝐹 (𝑥) − 𝐹 (𝑥∗) − 𝐹 ′(𝑥∗) (𝑥 − 𝑥∗)∥𝑀−1 + ∥𝐹 ′(𝑥∗) − 𝐹 ′(𝑥)∥𝑀−1←𝑀 ∥𝑥 − 𝑥∗∥𝑀 .

Since by assumption, 𝐹 is differentiable in 𝑥∗, there exists 𝛿1 > 0 uch that

∥𝐹 (𝑥) − 𝐹 (𝑥∗) − 𝐹 ′(𝑥∗) (𝑥 − 𝑥∗)∥𝑀−1 <
𝜀

2 ∥𝑥 − 𝑥
∗∥𝑀

holds for all 𝑥 ∈ 𝐵𝑀
𝛿1
(𝑥∗). On the other hand, 𝐹 ′ is continuous in 𝑥∗, which implies the existence of

𝛿2 > 0 such that
∥𝐹 ′(𝑥∗) − 𝐹 ′(𝑥)∥𝑀−1 <

𝜀

2
holds for all 𝑥 ∈ 𝐵𝑀

𝛿2
(𝑥∗). The conclusion follows with 𝛿 B min{𝛿1, 𝛿2}. □

Local Newton’s Method for 𝐹 (𝑥) = 0

We are now in a position to prove a convergence theorem for local Newton’s method.

Theorem 5.27 (Convergence of local Newton’s method). Suppose that 𝐹 : R𝑛 → R𝑛 is a 𝐶1 function
and that 𝑥∗ ∈ R𝑛 is a point where 𝐹 (𝑥∗) = 0 and 𝐹 ′(𝑥∗) is non-singular. Then there exists a neighborhood
𝐵𝑀
𝛿
(𝑥∗) such that

(𝑖) 𝑥∗ is the unique zero of 𝐹 in 𝐵𝑀
𝛿
(𝑥∗).

(𝑖𝑖) For any initial guess 𝑥 (0) ∈ 𝐵𝑀
𝛿
(𝑥∗), the local Newton’s method is well-defined, and it generates a

sequence 𝑥 (𝑘) which converges to 𝑥∗.

(𝑖𝑖𝑖) (
𝑥 (𝑘)

)
converges to 𝑥∗ Q-superlinearly w.r.t. the𝑀-norm.

(𝑖𝑣) If 𝐹 ′ is Lipschitz continuous in 𝐵𝑀
𝛿
(𝑥∗), then this convergence is even Q-quadratic.

Proof. Statement (𝑖): By Statement (𝑖𝑖) of Lemma 5.25, there exists 𝛿0 > 0 such that 𝑥∗ is the only zero
of 𝐹 in 𝐵𝑀

𝛿
(𝑥∗).

Statement (𝑖𝑖): By Statement (𝑖) of Lemma 5.25, there exist 𝛿1 > 0 and 𝑐 > 0 such that 𝐹 ′(𝑥) is
non-singular for all 𝑥 ∈ 𝐵𝑀

𝛿1
(𝑥∗) and

∥𝐹 ′(𝑥)−1∥𝑀←𝑀−1 ≤ 𝑐 B 2 ∥𝐹 (𝑥∗)−1∥𝑀←𝑀−1 . (∗)

By Lemma 5.26, given 𝜀 = 1/(2𝑐), there exists 𝛿2 > 0 such that

∥𝐹 (𝑥) − 𝐹 (𝑥∗) − 𝐹 ′(𝑥) (𝑥 − 𝑥∗)∥𝑀−1 ≤
1
2𝑐 ∥𝑥 − 𝑥

∗∥𝑀

76 https://tinyurl.com/scoop-nlo 2023-05-28

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

holds for all 𝑥 ∈ 𝐵𝑀
𝛿2
(𝑥∗). Now set 𝛿 B min{𝛿0, 𝛿1, 𝛿2} and choose 𝑥 (0) ∈ 𝐵𝑀

𝛿
(𝑥∗) arbitrarily. Then the

next iterate 𝑥 (1) B 𝑥 (0) − 𝐹 ′(𝑥 (0))−1𝐹 (𝑥 (0)) is well-defined, and we have

∥𝑥 (1) − 𝑥∗∥𝑀 = ∥𝑥 (0) − 𝑥∗ − 𝐹 ′(𝑥 (0))−1𝐹 (𝑥 (0))∥𝑀
= ∥𝐹 ′(𝑥 (0))−1 [𝐹 ′(𝑥 (0)) (𝑥 (0) − 𝑥∗) − 𝐹 (𝑥 (0)) + =0︷ ︸︸ ︷

𝐹 (𝑥∗)] ∥𝑀
≤ ∥𝐹 ′(𝑥 (0))−1∥𝑀←𝑀−1 ∥𝐹 (𝑥 (0)) − 𝐹 (𝑥∗) − 𝐹 ′(𝑥 (0)) (𝑥 (0) − 𝑥∗)∥𝑀−1
≤ 𝑐 1

2𝑐 ∥𝑥
(0) − 𝑥∗∥𝑀

=
1
2 ∥𝑥

(0) − 𝑥∗∥𝑀 ,

and thus 𝑥 (1) again belongs to 𝐵𝑀
𝛿
(𝑥∗). By induction, 𝑥 (𝑘) is well-defined, it belongs to 𝐵𝑀

𝛿
(𝑥∗), and

𝑥 (𝑘) → 𝑥∗ Q-linearly w.r.t. the𝑀-norm.

Statement (𝑖𝑖𝑖): We begin by setting up an equation for the error:

𝑥 (𝑘+1) − 𝑥∗ = 𝑥 (𝑘) − 𝑥∗ − 𝐹 ′(𝑥 (𝑘))−1 (𝐹 (𝑥 (𝑘)) − 𝐹 (𝑥∗))
= 𝐹 ′(𝑥 (𝑘))−1 [𝐹 ′(𝑥 (𝑘)) (𝑥 (𝑘) − 𝑥∗) − (

𝐹 (𝑥 (𝑘)) − 𝐹 (𝑥∗))]
= 𝐹 ′(𝑥 (𝑘))−1

[
𝐹 ′(𝑥 (𝑘)) (𝑥 (𝑘) − 𝑥∗) −

∫ 1

0
𝐹 ′(𝑥 (𝑘) + 𝑡 (𝑥∗ − 𝑥 (𝑘))) (𝑥 (𝑘) − 𝑥∗) d𝑡

]
= 𝐹 ′(𝑥 (𝑘))−1

[∫ 1

0
𝐹 ′(𝑥 (𝑘)) − 𝐹 ′(𝑥 (𝑘) + 𝑡 (𝑥∗ − 𝑥 (𝑘))) d𝑡

]
(𝑥 (𝑘) − 𝑥∗) .

This gives us the following fundamental estimate:

∥𝑥 (𝑘+1) − 𝑥∗∥𝑀

≤
𝐹 ′(𝑥 (𝑘))−1

𝑀←𝑀−1
∫ 1

0

 C𝐷 (𝑘) (𝑡)︷ ︸︸ ︷
𝐹 ′(𝑥 (𝑘)) − 𝐹 ′(𝑥 (𝑘) + 𝑡 (𝑥∗ − 𝑥 (𝑘)))

𝑀−1←𝑀 d𝑡︸ ︷︷ ︸

C𝐼 (𝑘)

∥𝑥 (𝑘) − 𝑥∗∥𝑀 . (∗∗)

Due to 𝑥 (𝑘) → 𝑥∗, we infer that 𝑥 (𝑘) + 𝑡 (𝑥∗ − 𝑥 (𝑘)) → 𝑥∗ uniformly for 𝑡 ∈ [0, 1]. Moreover, 𝐹 ′ is
continuous, and thus for any 𝜀 > 0, there exists an index 𝑘0 ∈ N such that

∥𝐷 (𝑘) (𝑡)∥𝑀−1←𝑀 ≤ 𝜀 for all 𝑘 ≥ 𝑘0 and all 𝑡 ∈ [0, 1] .
This implies

0 ≤ 𝐼 (𝑘) =
∫ 1

0
∥𝐷 (𝑘) (𝑡)∥𝑀−1←𝑀 d𝑡 ≤ 𝜀 for all 𝑘 ≥ 𝑘0.

This in turn gives 𝐼 (𝑘) → 0. But now (∗) and (∗∗) give us
∥𝑥 (𝑘+1) − 𝑥∗∥𝑀 ≤ 𝑐 𝐼 (𝑘) ∥𝑥 (𝑘) − 𝑥∗∥𝑀 ≤ 𝑐 𝜀 ∥𝑥 (𝑘) − 𝑥∗∥𝑀

for all 𝑘 ≥ 𝑘0, which is the Q-superlinear convergence.

Statement (𝑖𝑣): Since 𝑥 (𝑘) and 𝑥 (𝑘) + 𝑡 (𝑥∗ − 𝑥 (𝑘)) belong to 𝐵𝑀
𝛿
(𝑥∗) for all 𝑡 ∈ [0, 1], we can estimate

the integral in a better way, using the stronger assumptions:

𝐼 (𝑘) =
∫ 1

0

𝐹 ′(𝑥 (𝑘)) − 𝐹 ′(𝑥 (𝑘) + 𝑡 (𝑥∗ − 𝑥 (𝑘)))
𝑀−1←𝑀 d𝑡 ≤

∫ 1

0
𝐿 𝑡 ∥𝑥∗ − 𝑥 (𝑘) ∥𝑀 d𝑡 = 𝐿

2 ∥𝑥
(𝑘) − 𝑥∗∥𝑀 .

https://tinyurl.com/scoop-nlo 77

https://tinyurl.com/scoop-nlo

R. Herzog cbn

From (∗∗) we now obtain

∥𝑥 (𝑘+1) − 𝑥∗∥𝑀 ≤ 𝑐 𝐿2 ∥𝑥
(𝑘) − 𝑥∗∥2𝑀 .

□

Remark 5.28 (on local Newton’s method (Algorithm 5.23)).
(𝑖) Local Newton’s method (Algorithm 5.23) may break down since 𝐹 ′(𝑥 (𝑘)) is not guaranteed to be

invertible, in case the initial guess 𝑥 (0) lies outside the unknown neighborhood of local convergence
𝐵𝑀
𝛿
(𝑥∗).

(𝑖𝑖) The simplified Newton’s method, which uses the fixed matrix 𝐹 ′(𝑥 (0)) (assumed to be invertible)
instead of 𝐹 ′(𝑥 (𝑘)), still converges Q-linearly w.r.t. the𝑀-norm.

Local Newton’s Method in Optimization

Newton’s method in optimization can be motivated in one of two ways:

(𝑖) The first-order necessary optimality condition for (UP) reads

∇𝑓 (𝑥) = 0,

see Theorem 3.1. When we employ Newton’s mmethod to solve this (generally nonlinear)
equation 𝐹 (𝑥) = ∇𝑓 (𝑥) with Jacobian 𝐹 ′(𝑥) = 𝑓 ′′(𝑥), we obtain the iteration

𝑥 (𝑘+1) = 𝑥 (𝑘) − 𝑓 ′′(𝑥 (𝑘))−1∇𝑓 (𝑥 (𝑘)) . (5.24)

(𝑖𝑖) At the current iterate 𝑥 (𝑘) , we replace (UP) by the minimization of the quadratic model

𝑞 (𝑘) (𝑑) = 𝑓 (𝑥 (𝑘)) + 𝑓 ′(𝑥 (𝑘)) 𝑑 + 1
2 𝑑
ᵀ𝐻 (𝑘)𝑑 (5.2)

where the model Hessian is the symmetric matrix 𝐻 (𝑘) = 𝑓 ′′(𝑥 (𝑘)). That is, (5.2) becomes the
second-order Taylor polynomial. If 𝐻 (𝑘) is positive definite, then the unique solution of (5.2) is
characterized by the linear system

𝑓 ′′(𝑥 (𝑘)) 𝑑 (𝑘) = −∇𝑓 (𝑥 (𝑘)).

When one uses the fixed step size 𝛼 (𝑘) = 1 and sets

𝑥 (𝑘+1) B 𝑥 (𝑘) + 𝛼 (𝑘)𝑑 (𝑘) = 𝑥 (𝑘) + 𝑑 (𝑘) ,

we obtain again the iteration (5.24).

Remark 5.29 (on local Newton’s method for (UP)).

78 https://tinyurl.com/scoop-nlo 2023-05-28

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

(𝑖) Theorem 5.27 proves the local Q-superlinear (or local Q-quadratic) of local Newton’s method towards
a stationary point 𝑥∗ of 𝑓 , provided that 𝑓 ′′(𝑥∗) is non-singular. The point 𝑥∗ may be a local
minimizer, a local maximizer, or a saddle point of 𝑓 , unless we make an assumption or have
knowledge about the definiteness of 𝑓 ′′(𝑥∗).

(𝑖𝑖) If 𝑓 ′′(𝑥 (𝑘)) is s. p. d., then the Newton direction 𝑑 (𝑘) obtained from the Newton system

𝑓 ′′(𝑥 (𝑘)) 𝑑 (𝑘) = −∇𝑓 (𝑥 (𝑘)) (5.25)

is a descent direction for 𝑓 at 𝑥 (𝑘) , as long as 𝑓 ′(𝑥 (𝑘)) ≠ 0; compare (5.9):

𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘) = −∇𝑓 (𝑥 (𝑘))ᵀ 𝑓 ′′(𝑥 (𝑘))−1 ∇𝑓 (𝑥 (𝑘)) < 0.

Due to the fixed step size 𝛼 (𝑘) = 1 (instead of line search), descent from iterate to iterate, i. e.,
𝑓 (𝑥 (𝑘+1)) < 𝑓 (𝑥 (𝑘)), is not guaranteed when 𝑥 (𝑘) is still “far” from the local minimizer 𝑥∗.

(𝑖𝑖𝑖) Local Newton’s method is invariant w.r.t. affine scaling (see homework problem 5.1). This is in
contrast to the steepest descent method.

(𝑖𝑣) 𝑓 ′′(𝑥) is a bilinear form accepting two directions and returning a number. Consequently, when we
specify only a single direction, the resulting object becomes a linear form. It is thus appropriate to
view the Hessian 𝑓 ′′(𝑥) as a map R𝑛 → (R𝑛)∗ and to use the associated operator norm.

A Globalized Newton’s Method in Optimization

We now seek to globalize the local Newton’s method. In order to be able to apply the global convergence
theorem 5.9, we require the search directions and the step sizes to be admissible. We will realize these
requirements via a (generalized) angle condition and an Armijo backtracking line search. In addition,
we pay attention not to disturb the local Q-superlinear convergence.

Algorithm 5.30 (Globalized Newton method for (UP)).
Input: initial guess 𝑥 (0) ∈ R𝑛
Input: routine to evaluate 𝑓 and 𝑓 ′ (or ∇𝑓)
Input: routine to evaluate 𝑓 ′′ (or matrix-vector products with 𝑓 ′′)
Input: s. p. d. matrix𝑀 (or matrix-vector products with𝑀−1)
Input: globalization parameters 𝜂 ∈ (0, 1), 𝜌 > 0 and exponent 𝑝 > 0
Input: Armijo parameter 𝜎 ∈ (0, 1/2) // to be passed through to the Armijo backtracking line search
Input: backtracking parameter 𝛽 ∈ (0, 1) // to be passed through to the Armijo backtracking line search
Output: approximately stationary point of (UP)
1: Set 𝑘 B 0
2: Set 𝑓 (0) B 𝑓 (𝑥 (0)) // evaluate the initial objective value
3: Set 𝑟 (0) B 𝑓 ′(𝑥 (0))ᵀ = ∇𝑓 (𝑥 (0)) // evaluate the initial residual
4: Set 𝑑 (0)

𝐺
B −𝑀−1𝑟 (0) // evaluate the negative𝑀-gradient

5: Set 𝛿 (0) B −(𝑟 (0))ᵀ𝑑 (0)
𝐺

// 𝛿 (0) = ∥∇𝑀 𝑓 (𝑥 (0))∥2𝑀 = ∥𝑑 (0)
𝐺
∥2
𝑀

6: while stopping criterion not met do

https://tinyurl.com/scoop-nlo 79

https://tinyurl.com/scoop-nlo

R. Herzog cbn

7: Attempt to solve the Newton system

𝑓 ′′(𝑥 (𝑘)) 𝑑 (𝑘)
𝑁

= −𝑟 (𝑘) (5.26)

8: if the Newton system is not solvable or not uniquely solvable then
9: Set 𝑑 (𝑘) B 𝑑 (𝑘)

𝐺
// use the steepest descent direction as fallback

10: else // Newton direction 𝑑 (𝑘)
𝑁

available
11: Evaluate the generalized angle condition for the Newton direction

𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘)
𝑁
≤ −min

{
𝜂, 𝜌 ∥𝑑 (𝑘)

𝐺
∥𝑝
𝑀

} ∥𝑑 (𝑘)
𝐺
∥𝑀 ∥𝑑 (𝑘)𝑁

∥𝑀 (5.27)

12: if true then
13: Set 𝑑 (𝑘) B 𝑑 (𝑘)

𝑁
// use the Newton direction

14: else
15: Set 𝑑 (𝑘) B 𝑑 (𝑘)

𝐺
// use the steepest descent direction as fallback

16: end if
17: end if
18: Determine a step size 𝛼 (𝑘) > 0 from an Armijo backtracking line search procedure (Algorithm 5.11),

applied to 𝜑 (𝛼) B 𝑓 (𝑥 (𝑘) + 𝛼 𝑑 (𝑘)), with initial trial step size 𝛼 (𝑘,0) = 1, Armijo parameter 𝜎 and
backtracking parameter 𝛽 // 𝜑 (0) = 𝑓 (𝑘) and 𝜑 ′(0) = (𝑟 (𝑘))ᵀ𝑑 (𝑘) = −𝛿 (𝑘) in case of 𝑑 (𝑘) = 𝑑 (𝑘)

𝐺
, or

𝜑 ′(0) = 𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘)
𝑁

in case of 𝑑 (𝑘) = 𝑑 (𝑘)
𝑁

, are already known
19: Set 𝑥 (𝑘+1) B 𝑥 (𝑘) + 𝛼 (𝑘)𝑑 (𝑘)
20: Set 𝑓 (𝑘+1) B 𝑓 (𝑥 (𝑘+1)) // can be returned by the Armijo backtracking line search routine
21: Set 𝑟 (𝑘+1) B 𝑓 ′(𝑥 (𝑘+1))ᵀ = ∇𝑓 (𝑥 (𝑘+1))
22: Set 𝑑 (𝑘+1)

𝐺
B −𝑀−1𝑟 (𝑘+1) // evaluate the negative𝑀-gradient

23: Set 𝛿 (𝑘+1) B −(𝑟 (𝑘+1))ᵀ𝑑 (𝑘+1)
𝐺

// 𝛿 (𝑘+1) = ∥∇𝑀 𝑓 (𝑥 (𝑘+1))∥2𝑀 = ∥𝑑 (𝑘+1)
𝐺
∥2
𝑀

24: Set 𝑘 B 𝑘 + 1
25: end while
26: return 𝑥 (𝑘)

So the basic idea of Algorithm 5.30 is to use the negative𝑀-gradient 𝑑 (𝑘)
𝐺

in case the Newton direc-
tion𝑑 (𝑘)

𝑁
is either not available, or in case it is not a good descent direction. To decide the latter, we verify

its angle with the direction of steepest descent. We know that the steepest descent direction 𝑑 = 𝑑 (𝑘)
𝐺

satisfies the angle condition (5.8), i. e.,

𝑓 ′(𝑥 (𝑘)) 𝑑 ≤ −𝜂 ∥∇𝑀 𝑓 (𝑥 (𝑘))∥𝑀 ∥𝑑 ∥𝑀 = −𝜂 ∥𝑑 (𝑘)
𝐺
∥𝑀 ∥𝑑 ∥𝑀

with the maximal possible value, 𝜂 = 1. In (5.27), we require qualitatively the same condition for the
Newton direction, but with some smaller value 𝜂 ∈ (0, 1). Moreover, as the norm of the gradient
∥𝑑 (𝑘)
𝐺
∥𝑀 becomes smaller, i. e., as we get closer to being stationary, we wish to encourage the Newton

direction to be used in order to enable fast local convergence. In that phase, it is no longer necessary
and, in fact, disadvantageous, to limit the angle between the Newton direction and the steepest descent
direction. To be concrete, we use the term 𝜌 ∥𝑑 (𝑘)

𝐺
∥𝑝
𝑀
to determine whether we are in that phase. This

explains the condition

𝑓 ′(𝑥 (𝑘)) 𝑑 ≤ −min
{
𝜂, 𝜌 ∥𝑑 (𝑘)

𝐺
∥𝑝
𝑀

} ∥𝑑 (𝑘)
𝐺
∥𝑀 ∥𝑑 ∥𝑀

80 https://tinyurl.com/scoop-nlo 2023-05-28

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

that we employ the check the descent quality of the Newton direction 𝑑 (𝑘)
𝑁

in (5.27). A range of
similar conditions achieving the same goal is also conceivable; see for instance Geiger, Kanzow, 1999,
Kapitel 9.2 or Ulbrich, Ulbrich, 2012, S.49.

Remark 5.31 (on globalized Newton’s method (Algorithm 5.30)).
(𝑖) The parameters 𝜌 and 𝑝 are often chosen relatively small, e. g.,

𝜌 = 10−6 and 𝑝 = 10−1.

(𝑖𝑖) As in our previous algorithms, we may have available the preconditioner only in the form of
matrix-vector products with𝑀−1. In order to evaluate (5.27), however, we need to be able to compute
∥𝑑 (𝑘)
𝑁
∥𝑀 as well, which appears to be unavailable.

There is, however, an elegant way out. If we solve the Newton system (5.24) using the CG method
(Algorithm 4.17) with preconditioner𝑀 and initial guess 0, we have available by (4.33)–(4.34) the
𝑀-norm of the iterates and thus also the𝑀-norm of the solution 𝑑 (𝑘)

𝑁
.

Moreover, the CG method can be easily modified to accommodate the situation that the Newton
system is not solvable, or not uniquely solvable. This is the case when a direction of non-positive
curvature is encountered during the CG iterations, i. e., when the quantity 𝜃 in Algorithm 4.17
becomes ≤ 0. We describe these modifications below (Algorithm 5.41) in the context of inexact
Newton methods, where we also take advantage of the fact that it may not be necessary to solve
(5.24) exactly.

(𝑖𝑖𝑖) The approach to globalization taken in Algorithm 5.30 is to reject the Newton direction if it does not
exist or does not offer a sufficiently negative directional derivative, and to replace it by the steepest
descent direction. There are other approaches that modify the Newton direction so that it always
exists and offers sufficient descent. One can, for instance, add a multiple of the identity matrix (or
rather a multiple of the preconditioner) to 𝑓 ′′(𝑥 (𝑘)) when the latter is found not to be “sufficiently
positive definite”. The modified Newton system then reads[

𝑓 ′′(𝑥 (𝑘)) + 𝜏 𝑀]
𝑑 (𝑘) = −∇𝑓 (𝑥 (𝑘))

with some 𝜏 > 0; see for instance Geiger, Kanzow, 1999, S.93 and Nocedal, Wright, 2006, S.51.

We now proceed to show the global convergence of Algorithm 5.30.

Theorem 5.32 (Convergence of globalized Newton’s method). Suppose that 𝑓 is of class 𝐶2. Suppose
that 𝑥∗ is an accumulation point of 𝑥 (𝑘) and that

(
𝑥 (𝑘)

)
𝑘∈𝐾 is a subsequence converging to 𝑥∗. Then the

search directions
(
𝑑 (𝑘)

)
𝑘∈𝐾 and step sizes

(
𝛼 (𝑘)

)
𝑘∈𝐾 are admissible. Consequently, we have 𝑓 ′(𝑥∗) = 0.

Proof. We verify the prerequisites of the global convergence theorem 5.9, which then implies 𝑓 ′(𝑥∗) = 0.
To this end, we set

𝐾𝑁 B {𝑘 ∈ 𝐾 : 𝑑 (𝑘) = 𝑑 (𝑘)
𝑁
} (index set of Newton steps)

𝐾𝐺 B 𝐾 \ 𝐾𝑁 (index set of gradient steps).

https://tinyurl.com/scoop-nlo 81

https://tinyurl.com/scoop-nlo

R. Herzog cbn

Step (1) Wir first show the admissibility of the search directions. That is, we have to show that

𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘)
∥𝑑 (𝑘) ∥𝑀

𝑘∈𝐾−−−→ 0 implies 𝑓 ′(𝑥 (𝑘)) 𝑘∈𝐾−−−→ 0. (5.7’)

For indices 𝑘 ∈ 𝐾𝐺 we have 𝑑 (𝑘) = −𝑀−1∇𝑓 (𝑥 (𝑘)) and thus

− 𝑓
′(𝑥 (𝑘)) 𝑑 (𝑘)
∥𝑑 (𝑘) ∥𝑀

=
∥∇𝑀 𝑓 (𝑥 (𝑘))∥2𝑀
∥∇𝑀 𝑓 (𝑥 (𝑘))∥𝑀

= ∥∇𝑀 𝑓 (𝑥 (𝑘))∥𝑀 .

The left-hand side of (5.7’) thus implies ∥∇𝑀 𝑓 (𝑥 (𝑘))∥𝑀 𝑘∈𝐾𝐺−−−−→ 0, which is equivalent to 𝑓 ′(𝑥 (𝑘)) 𝑘∈𝐾𝐺−−−−→
0.

For the complementary indices 𝑘 ∈ 𝐾𝑁 , the generalized angle condition (5.27) reads

− 𝑓
′(𝑥 (𝑘)) 𝑑 (𝑘)
∥𝑑 (𝑘) ∥𝑀

≥ min
{
𝜂, 𝜌 ∥𝑑 (𝑘)

𝐺
∥𝑝
𝑀

} ∥𝑑 (𝑘)
𝐺
∥𝑀 ≥ 0.

The left-hand side of (5.7’) thus implies ∥𝑑 (𝑘)
𝐺
∥𝑀 = ∥∇𝑀 𝑓 (𝑥 (𝑘))∥𝑀 𝐾𝑁−−→ 0, which is the same as

𝑓 ′(𝑥 (𝑘)) 𝑘∈𝐾𝑁−−−−→ 0.

Step (2) The convergence of
(
𝑥 (𝑘)

)
𝑘∈𝐾 and the𝐶2-property of the objective imply that the subsequence of

Hessians 𝑓 ′′(𝑥 (𝑘)) converges as well, and consequently the subsequence 𝑓 ′′(𝑥 (𝑘)) is bounded (in
any normwemight impose on the space of𝑛-by-𝑛matrices), so that we have ∥ 𝑓 ′′(𝑥 (𝑘))∥𝑀−1←𝑀 ≤
𝐶 for 𝑘 ∈ 𝐾 . For the Newton steps, we recall 𝑓 ′′(𝑥) 𝑑 = −∇𝑓 (𝑥), which we can also write as
−𝑀−1 𝑓 ′′(𝑥) 𝑑 = ∇𝑀 𝑓 (𝑥). By the definition of matrix norms, see (2.5), we find

∥𝑑 (𝑘) ∥𝑀 ≥ 1
∥ 𝑓 ′′(𝑥 (𝑘))∥𝑀−1←𝑀

∥∇𝑀 𝑓 (𝑥 (𝑘))∥𝑀 ≥ 1
𝐶
∥∇𝑀 𝑓 (𝑥 (𝑘))∥𝑀 for 𝑘 ∈ 𝐾𝑁 ,

and clearly

∥𝑑 (𝑘) ∥𝑀 = 1 ∥∇𝑀 𝑓 (𝑥 (𝑘))∥𝑀 for 𝑘 ∈ 𝐾𝐺 ,
so overall we have

∥𝑑 (𝑘) ∥𝑀 ≥ min
{ 1
𝐶
, 1

}
∥∇𝑀 𝑓 (𝑥 (𝑘))∥𝑀 ≥ min

{ 1
𝐶
, 1

} −𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘)
∥𝑑 (𝑘) ∥𝑀

(5.28)

for all 𝑘 ∈ 𝐾 . In view of the initial Armijo trial step size being 𝛼 (𝑘,0) = 1, we satisfy condition
(5.14) of Lemma 5.13 with𝜓 (𝑡) = min{𝑡, 𝑡/𝐶}, which in turn implies the admissibility of the step
sizes along the subsequence.

□

Next we show that, under appropriate assumptions, Algorithm 5.30 eventually becomes identical to
the local Newton’s method, which means that

𝑑 (𝑘) = 𝑑 (𝑘)
𝑁

and 𝛼 (𝑘) = 1 (5.29)

holds for all 𝑘 sufficiently large. Consequently, the local convergence theorem 5.27 applies, which
yields the fast (at least Q-superlinear) convergence of the entire sequence of iterates, as soon as it is
sufficiently close to a local minimizer satisfying second-order sufficient optimality conditions.

82 https://tinyurl.com/scoop-nlo 2023-05-28

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

Theorem 5.33 (Transition to fast local convergence in Algorithm 5.30, see Ulbrich, Ulbrich, 2012,
Satz 10.14). Suppose that 𝑓 is of class 𝐶2. Suppose that 𝑥∗ is an accumulation point of 𝑥 (𝑘) and that(
𝑥 (𝑘)

)
𝑘∈𝐾 is a subsequence converging to 𝑥∗. Assume, moreover, that the Hessian 𝑓 ′′(𝑥∗) is s. p. d. Then

the following holds:

(𝑖) 𝑓 ′(𝑥∗) = 0 holds, i. e., 𝑥∗ satisfies the second-order sufficient optimality conditions.

(𝑖𝑖) The entire sequence 𝑥 (𝑘) converges to 𝑥∗.

(𝑖𝑖𝑖) There exists an index 𝑘0 ∈ N0 such that (5.29) holds for all 𝑘 ≥ 𝑘0. Consequently, 𝑥 (𝑘) converges to
𝑥∗ Q-superlinearly w.r.t. the𝑀-norm.

(𝑖𝑣) If 𝑓 ′′ is Lipschitz continuous in a neighorbood of 𝑥∗, then the convergence is Q-quadratic.

Proof. We do not provide the proof but refer the interested reader to Ulbrich, Ulbrich, 2012, Satz 10.14
for the time being. □

§ 5.5 Newton-Like Methods

From the point of convergence analysis, the globalized Newton’s method (Algorithm 5.30) is superior
to the steepest descent method (Algorithm 5.22) since it offers a Q-superlinear convergence phase.
However, Newton’s method has a number of drawbacks as well:

(1) The Hessian 𝑓 ′′(𝑥) may be expensive to evaluate, and it is needed in addition to the first-order
derivative 𝑓 ′(𝑥) of the objective.

(2) The solution of the Newton systems

𝑓 ′′(𝑥 (𝑘)) 𝑑 (𝑘) = −∇𝑓 (𝑥 (𝑘)) (5.25)

is often more expensive compared to the evaluation of the gradient direction

𝑀 𝑑 (𝑘) = −∇𝑓 (𝑑 (𝑘)) .

After all, 𝑀 is constant and can be factorized using the Cholesky decomposition when the
number of optimization variables is moderate.

We will address both issues simultaneously. To this end, we consider methods which allow us to

(1) replace the Hessian 𝑓 ′′(𝑥 (𝑘)) by a (s. p. d.) model Hessian 𝐻 (𝑘) and

(2) solve the linear system
𝐻 (𝑘)𝑑 (𝑘) = −∇𝑓 (𝑥 (𝑘)) (5.30)

iteratively, and possibly only inexactly.

https://tinyurl.com/scoop-nlo 83

https://tinyurl.com/scoop-nlo

R. Herzog cbn

The latter means that effectively we are solving a linear system

𝐻 (𝑘)𝑑 (𝑘) = −∇𝑓 (𝑥 (𝑘)) + 𝜁 (𝑘) (5.31)

with an implicitly defined residual 𝜁 (𝑘) . To this end, we will typically specify a tolerance of the form
∥𝜁 (𝑘) ∥𝑀−1 ≤ 𝜀 (𝑘) .

As a starting point, we consider a generic local Newton-like method with no line search.

Algorithm 5.34 (Generic Newton-like method for (UP)).
Input: initial guess 𝑥 (0) ∈ R𝑛
Input: routine to evaluate 𝑓 and 𝑓 ′ (or ∇𝑓)
Input: initial symmetric model Hessian 𝐻 (0) ∈ R𝑛×𝑛 (possibly s. p. d.)
Input: routine to determine the symmetric model Hessians 𝐻 (𝑘) (possibly s. p. d.)
Input: s. p. d. matrix𝑀 (or matrix-vector products with𝑀−1)
Output: approximately stationary point of (UP)
1: Set 𝑘 B 0
2: while stopping criterion not met do
3: Determine a search direction 𝑑 (𝑘) by (inexactly) solving 𝐻 (𝑘)𝑑 (𝑘) = −∇𝑓 (𝑥 (𝑘))
4: // 𝐻 (𝑘)𝑑 (𝑘) = −∇𝑓 (𝑥 (𝑘)) + 𝜁 (𝑘) with some residual 𝜁 (𝑘)

5: Set 𝑥 (𝑘+1) B 𝑥 (𝑘) + 𝑑 (𝑘)
6: Determine the next model Hessian 𝐻 (𝑘+1)

7: Set 𝑘 B 𝑘 + 1
8: end while
9: return 𝑥 (𝑘)

The following questions arise:

(1) What are the requirements for 𝐻 (𝑘) and 𝜁 (𝑘) in order to obtain fast (“Newton-like”, i. e., Q-
superlinear) convergence?

(2) What practical approaches exist to choose the matrices 𝐻 (𝑘) and to impose a bound for residual
norm 𝜁 (𝑘) , with an eye to reducing the numerical effort?

As we did for Newton’s method (§ 5.4), we begin by considering an analog of Algorithm 5.34 to
find a zero of a 𝐶1 function 𝐹 : R𝑛 → R𝑛 . In place of the exact Jacobians 𝐹 ′(𝑥 (𝑘)), we use model
Jacobians 𝐻 (𝑘) , which are supposed to be non-singular but not necessarily symmetric or positive
definite.

Algorithm 5.35 (Generic Newton-like method for 𝐹 (𝑥) = 0).
Input: initial guess 𝑥 (0) ∈ R𝑛
Input: routine to evaluate 𝐹
Input: routine to determine the non-singular model Jacobians 𝐻 (𝑘)

Input: s. p. d. matrix𝑀 (or matrix-vector products with𝑀−1)
Output: approximate zero of 𝐹

84 https://tinyurl.com/scoop-nlo 2023-05-28

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

1: Set 𝑘 B 0
2: while stopping criterion not met do
3: Determine a search direction 𝑑 (𝑘) by (inexactly) solving 𝐻 (𝑘)𝑑 (𝑘) = −𝐹 (𝑥 (𝑘))
4: // 𝐻 (𝑘)𝑑 (𝑘) = −𝐹 (𝑥 (𝑘)) + 𝜁 (𝑘) with some residual 𝜁 (𝑘)

5: Set 𝑥 (𝑘+1) B 𝑥 (𝑘) + 𝑑 (𝑘)
6: Set 𝑘 B 𝑘 + 1
7: end while
8: return 𝑥 (𝑘)

In a nutshell, the sequence generated by Algorithm 5.35 is governed by

𝐻 (𝑘)𝑑 (𝑘) = −𝐹 (𝑥 (𝑘)) + 𝜁 (𝑘)
𝑥 (𝑘+1) = 𝑥 (𝑘) + 𝑑 (𝑘) .

(5.32)

The following lemma shows that the fast local convergence of any sequence 𝑥 (𝑘) converging to a zero
of 𝐹 is related to the question how well the elements of that sequence satisfy the true Newton systems
𝐹 (𝑥 (𝑘)) + 𝐹 ′(𝑥 (𝑘)) (𝑥 (𝑘+1) − 𝑥 (𝑘)) = 0.

Lemma 5.36 (Characterization of fast local convergence). Suppose that 𝐹 : R𝑛 → R𝑛 is a 𝐶1 function
and that 𝑥 (𝑘) is any sequence in R𝑛 converging to 𝑥∗ with non-singular Jacobian 𝐹 ′(𝑥∗). Then the
following are equivalent:

(𝑖) 𝑥 (𝑘) converges Q-superlinearly w.r.t. the𝑀-norm, and we have 𝐹 (𝑥∗) = 0.

(𝑖𝑖) For any 𝜀 > 0 there exists an index 𝑘0 ∈ N0 such that25

∥𝐹 (𝑥 (𝑘)) + 𝐹 ′(𝑥 (𝑘)) (𝑥 (𝑘+1) − 𝑥 (𝑘))∥𝑀−1 ≤ 𝜀 ∥𝑥 (𝑘+1) − 𝑥 (𝑘) ∥𝑀 for all 𝑘 ≥ 𝑘0. (5.33a)

(𝑖𝑖𝑖) For any 𝜀 > 0 there exists an index 𝑘0 ∈ N0 such that26

∥𝐹 (𝑥 (𝑘)) + 𝐹 ′(𝑥 (𝑘)) (𝑥 (𝑘+1) − 𝑥 (𝑘))∥𝑀−1 ≤ 𝜀 ∥𝑥 (𝑘) − 𝑥∗∥𝑀 for all 𝑘 ≥ 𝑘0. (5.33b)

(𝑖𝑣) For any 𝜀 > 0 there exists an index 𝑘0 ∈ N0 such that27

∥𝐹 (𝑥 (𝑘)) + 𝐹 ′(𝑥∗) (𝑥 (𝑘+1) − 𝑥 (𝑘))∥𝑀−1 ≤ 𝜀 ∥𝑥 (𝑘+1) − 𝑥 (𝑘) ∥𝑀 for all 𝑘 ≥ 𝑘0. (5.33c)

Proof. We begin with some preliminary estimates. Since 𝐹 is of class𝐶1 and 𝐹 ′(𝑥∗) is non-singular, there
exists a neighborhood 𝐵𝑀

𝛿
(𝑥∗) and constants 𝑐,𝐶 > 0 such that ∥𝐹 ′(𝑥)∥𝑀−1←𝑀 and ∥𝐹 ′(𝑥)−1∥𝑀←𝑀−1

hold for all 𝑥 ∈ 𝐵𝑀
𝛿
(𝑥∗); compare Lemma 5.25. The mean value theorem 2.4 gives us

𝐹 (𝑥 (𝑘+1)) − 𝐹 (𝑥∗) = 𝐹 ′ (𝑥∗ + 𝜉 (𝑘) (𝑥 (𝑘+1) − 𝑥∗)) (𝑥 (𝑘+1) − 𝑥∗)
25briefly: ∥𝐹 (𝑥 (𝑘)) + 𝐹 ′ (𝑥 (𝑘)) (𝑥 (𝑘+1) − 𝑥 (𝑘))∥𝑀−1 ∈ 𝑜 (∥𝑥 (𝑘+1) − 𝑥 (𝑘) ∥𝑀)
26briefly: ∥𝐹 (𝑥 (𝑘)) + 𝐹 ′ (𝑥 (𝑘)) (𝑥 (𝑘+1) − 𝑥 (𝑘))∥𝑀−1 ∈ 𝑜 (∥𝑥 (𝑘) − 𝑥∗∥𝑀)
27briefly: ∥𝐹 (𝑥 (𝑘)) + 𝐹 ′ (𝑥∗) (𝑥 (𝑘+1) − 𝑥 (𝑘))∥𝑀−1 ∈ 𝑜 (∥𝑥 (𝑘+1) − 𝑥 (𝑘) ∥𝑀)

https://tinyurl.com/scoop-nlo 85

https://tinyurl.com/scoop-nlo

R. Herzog cbn

with some 𝜉 (𝑘) ∈ (0, 1). We thus conclude

𝑐 ∥𝑥 (𝑘+1) − 𝑥∗∥𝑀 ≤ ∥𝐹 (𝑥 (𝑘+1)) − 𝐹 (𝑥∗)∥𝑀−1 ≤ 𝐶 ∥𝑥 (𝑘+1) − 𝑥∗∥𝑀 . (∗)

for sufficiently large 𝑘 ∈ N0.

Another application of the mean value theorem 2.4 yields

𝐹 (𝑥 (𝑘+1)) − 𝐹 (𝑥 (𝑘))
= 𝐹 ′

(
𝑥 (𝑘) + 𝜉 (𝑘) (𝑥 (𝑘+1) − 𝑥 (𝑘))) (𝑥 (𝑘+1) − 𝑥 (𝑘)) where 𝜉 (𝑘) ∈ (0, 1)

= 𝐹 ′(𝑥 (𝑘)) (𝑥 (𝑘+1) − 𝑥 (𝑘)) + [
𝐹 ′

(
𝑥 (𝑘) + 𝜉 (𝑘) (𝑥 (𝑘+1) − 𝑥 (𝑘))) − 𝐹 ′(𝑥 (𝑘))] (𝑥 (𝑘+1) − 𝑥 (𝑘))

and thus

∥𝐹 (𝑥 (𝑘+1)) − 𝐹 (𝑥 (𝑘)) − 𝐹 ′(𝑥 (𝑘)) (𝑥 (𝑘+1) − 𝑥 (𝑘))∥𝑀−1
≤ ∥𝐹 ′ (𝑥 (𝑘) + 𝜉𝑘 (𝑥 (𝑘+1) − 𝑥 (𝑘))) − 𝐹 ′(𝑥 (𝑘))∥𝑀−1←𝑀 ∥𝑥 (𝑘+1) − 𝑥 (𝑘) ∥𝑀 .

As in the proof of Lemma 5.20 we can now exploit the uniform continuity of 𝐹 ′ “near the
(
𝑥 (𝑘)

)
”. This

entails that, for any 𝜀 > 0, there exists an index 𝑘0 ∈ N0 such that

∥𝐹 (𝑥 (𝑘+1)) − 𝐹 (𝑥 (𝑘)) − 𝐹 ′(𝑥 (𝑘)) (𝑥 (𝑘+1) − 𝑥 (𝑘))∥𝑀−1 ≤ 𝜀 ∥𝑥 (𝑘+1) − 𝑥 (𝑘) ∥𝑀 (∗∗)

holds for all 𝑘 ≥ 𝑘0.

Statement (𝑖) ⇒ Statement (𝑖𝑖) and Statement (𝑖𝑖𝑖): The triangle inequality and the Q-superlinear
convergence imply that, for sufficiently large 𝑘 , we have

∥𝑥 (𝑘) − 𝑥∗∥𝑀 ≤ ∥𝑥 (𝑘) − 𝑥 (𝑘+1) ∥𝑀 + ∥𝑥 (𝑘+1) − 𝑥∗∥𝑀 ≤ ∥𝑥 (𝑘) − 𝑥 (𝑘+1) ∥𝑀 + 1
2 ∥𝑥

(𝑘) − 𝑥∗∥𝑀 ,

and thus
∥𝑥 (𝑘) − 𝑥∗∥𝑀 ≤ 2 ∥𝑥 (𝑘+1) − 𝑥 (𝑘) ∥𝑀 . (∗∗∗)

On the other hand, the triangle inequality and the Q-superlinear convergence also imply that

∥𝑥 (𝑘+1) − 𝑥 (𝑘) ∥𝑀 ≤ ∥𝑥 (𝑘+1) − 𝑥∗∥𝑀 + ∥𝑥∗ − 𝑥 (𝑘) ∥𝑀 ≤ 1 ∥𝑥 (𝑘) − 𝑥∗∥𝑀 + ∥𝑥∗ − 𝑥 (𝑘) ∥𝑀 ,

holds for sufficiently large 𝑘 , whence

∥𝑥 (𝑘+1) − 𝑥 (𝑘) ∥𝑀 ≤ 2 ∥𝑥 (𝑘) − 𝑥∗∥𝑀 . (∗∗∗∗)

In other words, the quantities ∥𝑥 (𝑘+1) −𝑥 (𝑘) ∥𝑀 and ∥𝑥 (𝑘) −𝑥∗∥𝑀 “control each other” for 𝑘 sufficiently
large.

Let 𝜀 > 0 be arbitrary. We can estimate

∥𝐹 (𝑥 (𝑘)) + 𝐹 ′(𝑥 (𝑘)) (𝑥 (𝑘+1) − 𝑥 (𝑘))∥𝑀−1
≤ ∥𝐹 (𝑥 (𝑘+1)) − 𝐹 (𝑥 (𝑘)) − 𝐹 ′(𝑥 (𝑘)) (𝑥 (𝑘+1) − 𝑥 (𝑘))∥𝑀−1 + ∥𝐹 (𝑥 (𝑘+1)) − 𝐹 (𝑥∗)︸︷︷︸

=0

∥𝑀−1
≤ 𝜀 ∥𝑥 (𝑘+1) − 𝑥 (𝑘) ∥𝑀 + ∥𝐹 (𝑥 (𝑘+1)) − 𝐹 (𝑥∗)∥𝑀−1 by (∗∗)

86 https://tinyurl.com/scoop-nlo 2023-05-28

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

for 𝑘 sufficiently large. We need to address the second term in the previous inequality:

∥𝐹 (𝑥 (𝑘+1)) − 𝐹 (𝑥∗)∥𝑀−1 ≤ 𝐶 ∥𝑥 (𝑘+1) − 𝑥∗∥𝑀 by (∗)
≤ 𝐶 ∥𝑥 (𝑘) − 𝑥∗∥𝑀 by the Q-superlinear convergence.

for 𝑘 sufficiently large. Plugging tihs estimate into the previous inequality is Statement (𝑖𝑖).

Moreover, as we demonstrated in (∗∗∗∗), ∥𝑥 (𝑘) − 𝑥∗∥𝑀 and ∥𝑥 (𝑘+1) − 𝑥 (𝑘) ∥𝑀 are different by at most a
constant factor, we also have proved Statement (𝑖𝑖𝑖).

Statement (𝑖𝑖) or Statement (𝑖𝑖𝑖) ⇒ Statement (𝑖): We estimate

∥𝐹 (𝑥 (𝑘+1))∥𝑀−1
≤ ∥𝐹 (𝑥 (𝑘+1)) − 𝐹 (𝑥 (𝑘)) − 𝐹 ′(𝑥 (𝑘)) (𝑥 (𝑘+1) − 𝑥 (𝑘))∥𝑀−1 + ∥𝐹 (𝑥 (𝑘)) + 𝐹 ′(𝑥 (𝑘)) (𝑥 (𝑘+1) − 𝑥 (𝑘))∥𝑀−1
≤ 𝜀 ∥𝑥 (𝑘+1) − 𝑥 (𝑘) ∥𝑀 + ∥𝐹 (𝑥 (𝑘)) + 𝐹 ′(𝑥 (𝑘)) (𝑥 (𝑘+1) − 𝑥 (𝑘))∥𝑀−1 by (∗∗).

By Statement (𝑖𝑖) or Statement (𝑖𝑖𝑖), the second term can be bounded by 𝜀 ∥𝑥 (𝑘+1) −𝑥 (𝑘) ∥𝑀 or 𝜀 ∥𝑥 (𝑘) −
𝑥∗∥𝑀 , respectively. In any case, we have

∥𝐹 (𝑥 (𝑘+1))∥𝑀−1 ≤ 𝜀 ∥𝑥 (𝑘+1) − 𝑥 (𝑘) ∥𝑀 + 2 𝜀 ∥𝑥 (𝑘+1) − 𝑥 (𝑘) ∥𝑀 = 3 𝜀 ∥𝑥 (𝑘+1) − 𝑥 (𝑘) ∥𝑀
for sufficiently large 𝑘 . In view of 𝑥 (𝑘) → 𝑥∗, we find 𝐹 (𝑥 (𝑘+1)) → 0 and thus 𝐹 (𝑥∗) = 0.

It remains to show the Q-superlinear convergence of 𝑥 (𝑘) . For any 𝜀 ∈ (0, 𝑐), we have

𝑐 ∥𝑥 (𝑘+1) − 𝑥∗∥𝑀 ≤ ∥𝐹 (𝑥 (𝑘+1))∥𝑀−1 by (∗)
≤ 3 𝜀 ∥𝑥 (𝑘+1) − 𝑥 (𝑘) ∥𝑀
≤ 6 𝜀 ∥𝑥 (𝑘+1) − 𝑥∗∥𝑀 by (∗∗∗∗),

and thus
∥𝑥 (𝑘+1) − 𝑥∗∥𝑀 ≤ 6 𝜀

𝑐
∥𝑥 (𝑘) − 𝑥∗∥𝑀

for sufficiently large 𝑘 . This shows the Q-superlinear convergence of 𝑥 (𝑘) to 𝑥∗ w.r.t. the𝑀-norm.

Statement (𝑖𝑖) ⇔ Statement (𝑖𝑣): The difference of the terms inside the norms on the left hand sides
in (5.33a) and (5.33c) is [𝐹 ′(𝑥 (𝑘)) − 𝐹 ′(𝑥∗)] (𝑥 (𝑘+1) − 𝑥 (𝑘)). Its norm can be estimated as follows:

∥ [𝐹 ′(𝑥 (𝑘)) − 𝐹 ′(𝑥∗)] (𝑥 (𝑘+1) − 𝑥 (𝑘))∥𝑀−1
≤ ∥𝐹 ′(𝑥 (𝑘)) − 𝐹 ′(𝑥∗)∥𝑀−1←𝑀 ∥𝑥 (𝑘+1) − 𝑥 (𝑘) ∥𝑀
≤ 𝜀 ∥𝑥 (𝑘+1) − 𝑥 (𝑘) ∥𝑀 by the continuity of 𝐹 ′

for sufficiently large 𝑘 . The triangle inequality, either in the form

∥𝐹 (𝑥 (𝑘)) + 𝐹 ′(𝑥 (𝑘)) (𝑥 (𝑘+1) − 𝑥 (𝑘))∥𝑀−1
≤ ∥𝐹 (𝑥 (𝑘)) + 𝐹 ′(𝑥∗) (𝑥 (𝑘+1) − 𝑥 (𝑘))∥𝑀−1 + ∥[𝐹 ′(𝑥 (𝑘)) − 𝐹 ′(𝑥∗)] (𝑥 (𝑘+1) − 𝑥 (𝑘))∥𝑀−1
≤ ∥𝐹 (𝑥 (𝑘)) + 𝐹 ′(𝑥∗) (𝑥 (𝑘+1) − 𝑥 (𝑘))∥𝑀−1 + 𝜀 ∥𝑥 (𝑘+1) − 𝑥 (𝑘) ∥𝑀

https://tinyurl.com/scoop-nlo 87

https://tinyurl.com/scoop-nlo

R. Herzog cbn

or in the form

∥𝐹 (𝑥 (𝑘)) + 𝐹 ′(𝑥∗) (𝑥 (𝑘+1) − 𝑥 (𝑘))∥𝑀−1
≤ ∥𝐹 (𝑥 (𝑘)) + 𝐹 ′(𝑥 (𝑘)) (𝑥 (𝑘+1) − 𝑥 (𝑘))∥𝑀−1 + ∥[𝐹 ′(𝑥 (𝑘)) − 𝐹 ′(𝑥∗)] (𝑥 (𝑘+1) − 𝑥 (𝑘))∥𝑀−1
≤ ∥𝐹 (𝑥 (𝑘)) + 𝐹 ′(𝑥 (𝑘)) (𝑥 (𝑘+1) − 𝑥 (𝑘))∥𝑀−1 + 𝜀 ∥𝑥 (𝑘+1) − 𝑥 (𝑘) ∥𝑀 ,

each for sufficiently large 𝑘 , now shows the equivalence of Statement (𝑖𝑖) and Statement (𝑖𝑣). □

We now apply this lemma to Algorithm 5.34, where the sequence of iterates 𝑥 (𝑘) is generated via (5.32).
The residual these iterates leave in the true Newton systems can be expressed as

𝐹 (𝑥 (𝑘)) + 𝐹 ′(𝑥 (𝑘)) (𝑥 (𝑘+1) − 𝑥 (𝑘))
= 𝐹 (𝑥 (𝑘)) + 𝐹 ′(𝑥 (𝑘)) 𝑑 (𝑘)
= 𝐹 (𝑥 (𝑘)) + 𝐹 ′(𝑥 (𝑘)) 𝑑 (𝑘)

=0︷ ︸︸ ︷
− 𝐹 (𝑥 (𝑘)) − 𝐻 (𝑘)𝑑 (𝑘) + 𝜁 (𝑘)

=
[
𝐹 ′(𝑥 (𝑘)) − 𝐻 (𝑘)] 𝑑 (𝑘) + 𝜁 (𝑘) .

We thus obtain from Lemma 5.36 the following corollary.

Corollary 5.37 (Characterization of fast local convergence). Suppose that 𝐹 : R𝑛 → R𝑛 is a𝐶1 function
and that 𝑥 (𝑘) is a sequence generated by (5.32) that converges to 𝑥∗ with non-singular Jacobian 𝐹 ′(𝑥∗).
Then the following are equivalent:

(𝑖) 𝑥 (𝑘) converges Q-superlinearly w.r.t. the𝑀-norm, and we have 𝐹 (𝑥∗) = 0.

(𝑖𝑖) For any 𝜀 > 0 there exists an index 𝑘0 ∈ N0 such that[𝐹 ′(𝑥 (𝑘)) − 𝐻 (𝑘)] 𝑑 (𝑘) + 𝜁 (𝑘)
𝑀−1 ≤ 𝜀 ∥𝑥 (𝑘+1) − 𝑥 (𝑘) ∥𝑀 for all 𝑘 ≥ 𝑘0. (5.34a)

(𝑖𝑖𝑖) For any 𝜀 > 0 there exists an index 𝑘0 ∈ N0 such that[𝐹 ′(𝑥 (𝑘)) − 𝐻 (𝑘)] 𝑑 (𝑘) + 𝜁 (𝑘)
𝑀−1 ≤ 𝜀 ∥𝑥 (𝑘) − 𝑥∗∥𝑀 for all 𝑘 ≥ 𝑘0. (5.34b)

(𝑖𝑣) For any 𝜀 > 0 there exists an index 𝑘0 ∈ N0 such that[𝐹 ′(𝑥∗) − 𝐻 (𝑘)] 𝑑 (𝑘) + 𝜁 (𝑘)
𝑀−1 ≤ 𝜀 ∥𝑥 (𝑘+1) − 𝑥 (𝑘) ∥𝑀 for all 𝑘 ≥ 𝑘0. (5.34c)

This set of equivalent of conditions that are necessary and sufficient for the local Q-superlinear
convergence are known as Dennis-Moré conditions, introduced in Dennis, Moré, 1974. They exhibit
that two requisites are sufficient to ensure fast convergence:

(1) The residual in the linear system, ∥𝜁 (𝑘) ∥𝑀−1 , goes to zero faster than ∥𝑥 (𝑘+1) − 𝑥 (𝑘) ∥𝑀 .

(2) The difference between the Jacobian 𝐹 ′(𝑥 (𝑘)) and the model Jacobian 𝐻 (𝑘) , evaluated in the
direction of 𝑑 (𝑘) , goes to zero faster than ∥𝑥 (𝑘+1) − 𝑥 (𝑘) ∥𝑀 . Note: It is not necessary for 𝐻 (𝑘) to
approximate the Jacobian 𝐹 ′(𝑥 (𝑘)) in its entirety!

88 https://tinyurl.com/scoop-nlo 2023-05-28

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

We will discuss in the following two classes of methods that are specializations of Algorithm 5.34. The
first class of methods are inexact Newton methods (§ 5.6), which use 𝐻 (𝑘) = 𝐹 ′(𝑥 (𝑘)). The second
class of methods are quasi-Newton algorithms (§ 5.7), which feature 𝜁 (𝑘) = 0.

§ 5.6 Inexact Newton Methods

Inexact Newton methods use the true Jacobian 𝐻 (𝑘) = 𝐹 ′(𝑥 (𝑘)) in the linear systems (5.31), but they
solve them only inexactly, leaving a residual 𝜁 (𝑘) :

𝐹 ′(𝑥 (𝑘)) 𝑑 (𝑘) = −𝐹 (𝑥 (𝑘)) + 𝜁 (𝑘) (5.35)

We measure the norm of the residual in the linear system (5.35) relative to the norm of the outer
residual 𝐹 (𝑥 (𝑘)) associated with the current iterate 𝑥 (𝑘) . We require

∥𝜁 (𝑘) ∥𝑀−1 = ∥𝐹 ′(𝑥 (𝑘)) 𝑑 (𝑘) + 𝐹 (𝑥 (𝑘))∥𝑀−1 ≤ 𝜂 (𝑘) ∥𝐹 (𝑥 (𝑘))∥𝑀−1 (5.36)

with some 𝜂 (𝑘) ∈ (0, 1). The sequence (
𝜂 (𝑘)

)
is known as a forcing sequence.

Note that 𝐹 (𝑥 (𝑘)) is the residual associated with the zero vector, and hence

∥residual associated with 𝑑 (𝑘) ∥𝑀−1
∥residual associated with 0∥𝑀−1

=
∥𝜁 (𝑘) ∥𝑀−1
∥𝐹 (𝑥 (𝑘))∥𝑀−1

≤ 𝜂 (𝑘) . (5.37)

Thus we can interpret the forcing sequence as the relative reduction of the residual required in the
linear system 𝐹 ′(𝑥 (𝑘)) 𝑑 (𝑘) = −𝐹 (𝑥 (𝑘)), compared to a zero initial guess. It is evident that we should
demand 𝜂 (𝑘) < 1. Otherwise, 𝑑 (𝑘) = 0 would constitute a sufficiently accurate solution.

We refer to Algorithm 5.34 as an inexact local Newton’s method in case 𝐻 (𝑘) = 𝐹 ′(𝑥 (𝑘)). For
completeness, we state the algorithm as

Algorithm 5.38 (local inexact Newton’s method for 𝐹 (𝑥) = 0).
Input: initial guess 𝑥 (0) ∈ R𝑛
Input: routine to evaluate 𝐹 and 𝐹 ′

Input: spd Matrix𝑀 (oder Matrix-Vektor-Produkte mit𝑀−1)
Input: routine to determine the forcing sequence 𝜂 (𝑘)
Output: approximate zero of 𝐹
1: Set 𝑘 B 0
2: while stopping criterion not met do
3: Determine a search direction 𝑑 (𝑘) by (inexactly) solving 𝐹 ′(𝑥 (𝑘)) 𝑑 (𝑘) = −𝐹 (𝑥 (𝑘)) so that the

residual 𝜁 (𝑘) B 𝐹 ′(𝑥 (𝑘)) 𝑑 (𝑘) + 𝐹 (𝑥 (𝑘)) satisfies the condition

∥𝜁 (𝑘) ∥𝑀−1 ≤ 𝜂 (𝑘) ∥𝐹 (𝑥 (𝑘))∥𝑀−1 (5.36)

4: Set 𝑥 (𝑘+1) B 𝑥 (𝑘) + 𝑑 (𝑘)
5: Set 𝑘 B 𝑘 + 1
6: end while

https://tinyurl.com/scoop-nlo 89

https://tinyurl.com/scoop-nlo

R. Herzog cbn

7: return 𝑥 (𝑘)

Note: With 𝜂 (𝑘) ≡ 0, we obtain again the exact local Newton’s method.

We can now specify a local convergence theorem for Algorithm 5.38.

Theorem 5.39 (Convergence of Algorithm 5.38; compare Theorem 5.27). Suppose that 𝐹 : R𝑛 → R𝑛 is
a 𝐶1 function and that 𝑥∗ ∈ R𝑛 is a point where 𝐹 (𝑥∗) = 0 and 𝐹 ′(𝑥∗) is non-singular. Suppose that 𝑥 (𝑘)
is a sequence generated by Algorithm 5.38, where the elements of the forcing sequence satisfy 𝜂 (𝑘) ≤ 𝜂 < 1
for all 𝑘 ∈ N0. Then there exists a neighborhood 𝐵𝑀

𝛿
(𝑥∗) such that

(𝑖) 𝑥∗ is the unique zero of 𝐹 in 𝐵𝑀
𝛿
(𝑥∗).

(𝑖𝑖) For any initial guess 𝑥 (0) ∈ 𝐵𝑀
𝛿
(𝑥∗), the local inexact Newton’s method is well-defined, and it

generates a sequence 𝑥 (𝑘) which converges to 𝑥∗.

(𝑖𝑖𝑖) (
𝑥 (𝑘)

)
converges to 𝑥∗ Q-linearly w.r.t. the𝑀-norm.

(𝑖𝑣) If, in addition, 𝜂 (𝑘) ↘ 0 holds, then the convergence is Q-superlinear.

(𝑣) If 𝐹 ′ is Lipschitz continuous in𝐵𝑀
𝛿
(𝑥∗), and if, in addition to𝜂 (𝑘) ↘ 0, we even have𝜂 (𝑘) ≤ 𝐶 ∥𝐹 (𝑥 (𝑘))∥𝑀−1

with some constant 𝐶 > 0, then this convergence is even Q-quadratic.

Proof. We only give a sketch of the proof. Statement (𝑖) can be shown as Theorem 5.27. A guide
to proving Statement (𝑖𝑖) and Statement (𝑖𝑖𝑖) can be found in Geiger, Kanzow, 1999, Satz 10.3. For
Statement (𝑖𝑣), we use the characterization of Q-superlinear convergence by Corollary 5.37. We have

∥(𝐹 ′(𝑥 (𝑘)) − 𝐻 (𝑘)︸ ︷︷ ︸
=0

) 𝑑 (𝑘) + 𝜁 (𝑘) ∥𝑀−1 = ∥𝜁 (𝑘) ∥𝑀−1
≤ 𝜂 (𝑘) ∥𝐹 (𝑥 (𝑘))∥𝑀−1 by (5.36).

As in the proof of Lemma 5.36, see (∗), we have ∥𝐹 (𝑥 (𝑘))∥𝑀−1 ≤ 𝐶 ∥𝑥 (𝑘) − 𝑥∗∥𝑀 for sufficiently large
indices 𝑘 and thus

∥(𝐹 ′(𝑥 (𝑘)) − 𝐻 (𝑘)) 𝑑 (𝑘) + 𝜁 (𝑘) ∥𝑀−1 ≤ 𝜂 (𝑘) 𝐶 ∥𝑥 (𝑘) − 𝑥∗∥𝑀 .

Since 𝜂 (𝑘) ↘ 0, we satisfy (5.34b).

Statement (𝑣) follows similarly as in Theorem 5.27. □

A possible rule for the choice of the forcing sequence 𝜂 (𝑘) that guarantees the local Q-superlinear
convergence is

𝜂 (𝑘) B min
{
𝜂, ∥𝐹 (𝑥 (𝑘))∥𝜃

𝑀−1
}

(5.38)

with some 𝜂 < 1 and 𝜃 ∈ (0, 1], for instance 𝜂 = 1/2 and 𝜃 = 0.5.28

28More precisely, we even obtain the Q-superlinear convergence with rate 1 + 𝜃 with this choice.

90 https://tinyurl.com/scoop-nlo 2023-05-28

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

In the remainder of § 5.6 we consider a practical approach to the inexact solution of the Newton systems,
while simultaneously globalizing the inexact local Newton’s method (Algorithm 5.38). Since in this
class we are discussing globalization for Newton-like methods only in the context of optimization
(and not for general root-finding), we switch back to the optimization context now. That is, we have
𝐹 (𝑥) = ∇𝑓 (𝑥) and 𝐹 ′(𝑥) = 𝑓 ′′(𝑥).

We need to take into account the following:

(1) The Newton system 𝑓 ′′(𝑥 (𝑘)) 𝑑 = −∇𝑓 (𝑥 (𝑘)) is to be solved iteratively29. In this way, we can
take advantage of the fact that an inexact solution is sufficient and we can stop once the residual
norm for the linear system falls below the threshold dictated by the forcing sequence; see (5.36).
We refer to the inexact Newton direction as 𝑑 (𝑘)

𝑁
.

(2) The inexact Newton direction 𝑑 (𝑘)
𝑁

is required to be, at the very least, a descent direction for the
objective 𝑓 at the current outer iterate 𝑥 (𝑘) .

(3) As we did in the globalized exact Newton’s method (Algorithm 5.30), we need to verify whether
the inexact Newton direction 𝑑 (𝑘)

𝑁
offers sufficient descent. If not, then we fall back to taking a

step in the steepest descent direction.

It turns out that we can reach the first and the second goal simultaneously by a clever use of the
conjugate gradient method (Algorithm 4.17), applied to the symmetric linear system 𝐴𝑑 = 𝑏, where

𝐴 = 𝑓 ′′(𝑥 (𝑘)) and 𝑏 = −∇𝑓 (𝑥 (𝑘)) .

As a stopping criterion, we employ the relative criterion (4.14a) with 𝜀rel = 𝜂 (𝑘) , and the zero vector
serves as initial guess. In case the CG algorithm finishes “without an incidence”, then — due to (5.37)
— the solution returned is an inexact solution of the Newton system with sufficiently small residual
norm in the sense of (5.36).

Remark 5.40 (inner and outer iterations). In what follows we will sometimes use the terms inner
iterations and outer iterations. The outer iterations of those of the outer optimization method, which
is the inexact Newton’s method in this subsection. The quantities used in the outer iterations are the
iterates 𝑥 (𝑘) , search directions 𝑑 (𝑘) , step sizes 𝛼 (𝑘) , etc.

On the other hand, every search direction 𝑑 (𝑘) will now be found in an iterative way, which refer to as
inner iterations. In order to help avoid confusion, we will denote the inner iteration index by ℓ . Also, the
iterates of the inner solver for the linear system 𝐴𝑑 = 𝑏 will be termed 𝑑 (ℓ) instead of 𝑥 (ℓ) . The search
directions in the inner solver will be 𝑝 (ℓ) instead of 𝑑 (ℓ) . The residuals in the inner solver will be 𝜁 (ℓ)

instead of 𝑟 (ℓ) .

What could be the incidences that might occur in the CG algorithm in the present context? On the one
hand, we might reach the maximum number of iterations before reaching the relative tolerance. On

29rather than using a direct solver such as Gaussian elimination

https://tinyurl.com/scoop-nlo 91

https://tinyurl.com/scoop-nlo

R. Herzog cbn

the other hand, the symmetric matrix 𝐴 might not be positive definite. This means that the function

𝜙 (𝑧) B 1
2𝑧
ᵀ𝐴𝑧 − 𝑏ᵀ𝑧

has a least one direction 𝑝 ∈ R𝑛 , 𝑝 ≠ 0, of non-positive curvature; i. e., 𝑝ᵀ𝐴𝑝 ≤ 0 holds. A lack of
positive definiteness does not mean that a search direction of non-positive curvature will actually
be encountered during the inner iterations. On the one hand, the required tolerance may be reached
beforehand. But even for exact solutions (𝜀rel = 0), not all right hand sides 𝑏 actually invoke directions
of non-positive curvature.

In any case, if a direction 𝑝 (ℓ) with 𝜃 (ℓ) B (𝑝 (ℓ))ᵀ𝐴𝑝 (ℓ) ≤ 0 is encountered, a reaction is required
since otherwise,

• in case 𝜃 (ℓ) = 0, a division by zero would occur in Line 8 of the CG algorithm (Algorithm 4.17),

• in case 𝜃 (ℓ) < 0, the CG algorithm could be continued; however, we might lose the property
that the iterates 𝑑 (ℓ) are descent directions for 𝑓 at 𝑥 (𝑘) . This can be confirmed by examples.
As long as all search directions 𝑝 (ℓ) are directions of positive curvature (𝜃 (ℓ) > 0), the descent
property remains intact; see Lemma 5.42.

For the reasons above, it is customary to employ a variant of the CG method known as truncated
conjugate gradient method (truncated CGmethod) as inner solver in a globalized inexact Newton
method. Starting from a zero initial guess, iterate until either the relative stopping criterion (4.14a) is
verified, or a search direction of non-positive curvature is encountered. In that case, the most recent
iterate 𝑑 (ℓ) is returned as inexact solution.

For completeness, we state below the truncated CG algorithm. Notice that we chose the specific
stopping criterion (5.37) instead of a general criterion.

Algorithm 5.41 (Truncated conjugate gradient method for symmetric systems 𝐴𝑑 = 𝑏 w.r.t. the
𝑀-inner product; compare Algorithm 4.17).
Input: right-hand side 𝑏 ∈ R𝑛
Input: symmetric matrix 𝐴 (or matrix-vector products with 𝐴)
Input: s. p. d. matrix𝑀 (or matrix-vector products with𝑀−1)
Input: relative residual 𝜀rel
Output: approximate solution of 𝐴𝑑 = 𝑏
1: Set ℓ B 0
2: Set 𝑑 (0) B 0 // zero initial guess
3: Set 𝜁 (0) B −𝑏 // evaluate the initial residual
4: Set 𝑝 (0) B −𝑀−1𝜁 (0)
5: Set 𝛿 (0) B −(𝜁 (0))ᵀ𝑝 (0) // 𝛿 (0) = ∥𝜁 (0) ∥2

𝑀−1

6: while 𝛿 (ℓ) ≥ 𝜀2rel𝛿 (0) do // check stopping criterion (5.37)
7: Set 𝑞 (ℓ) B 𝐴𝑝 (ℓ)

8: Set 𝜃 (ℓ) B (𝑞 (ℓ))ᵀ𝑝 (ℓ)
9: if 𝜃 (ℓ) > 0 then
10: Set 𝛼 (ℓ) B 𝛿 (ℓ)/𝜃 (ℓ)

92 https://tinyurl.com/scoop-nlo 2023-05-28

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

11: Set 𝑑 (ℓ+1) B 𝑑 (ℓ) + 𝛼 (ℓ)𝑝 (ℓ)
12: Set 𝜁 (ℓ+1) B 𝜁 (ℓ) + 𝛼 (ℓ)𝑞 (ℓ)
13: Set 𝑝 (ℓ+1) B −𝑀−1𝜁 (ℓ+1)
14: Set 𝛿 (ℓ+1) B −(𝜁 (ℓ+1))ᵀ𝑝 (ℓ+1) // 𝛿 (ℓ+1) = ∥𝜁 (ℓ+1) ∥2

𝑀−1

15: Set 𝛽 (ℓ+1) B 𝛿 (ℓ+1)/𝛿 (ℓ)
16: Set 𝑝 (ℓ+1) B 𝑝 (ℓ+1) + 𝛽 (ℓ+1) 𝑝 (ℓ)
17: Set ℓ B ℓ + 1
18: else
19: Abort the while loop
20: end if
21: end while
22: return 𝑑 (ℓ)

It still remains to be proved that the approximate solution 𝑑 (ℓ) that the truncated CG method generates
and that is to be used as inexact Newton direction 𝑑 (𝑘)

𝑁
, is indeed a descent direction for the objective 𝑓

at the current outer iterate 𝑥 (𝑘) . This means that we need to show 𝑓 ′(𝑥 (𝑘)) 𝑑 (ℓ) < 0 or equivalently,
𝑏ᵀ𝑑 (ℓ) > 0.

Lemma 5.42 (The truncated CG method generates descent directions). Suppose that 𝑏 ≠ 0 and that
𝑑 (0) , . . . , 𝑑 (ℓ) have been generated by Algorithm 5.41 for some ℓ ≥ 1. Then the following holds.

(𝑖) 𝑏ᵀ𝑀−1𝜁 (𝑗) = 0 for 𝑗 = 1, . . . , ℓ .

(𝑖𝑖) 𝑏ᵀ𝑝 (𝑗) = ∥𝜁 (𝑗) ∥2
𝑀−1 for 𝑗 = 0, . . . , ℓ .

(𝑖𝑖𝑖) 𝑏ᵀ𝑑 (ℓ) =
ℓ−1∑︁
𝑗=0

𝛼 (𝑗) ∥𝜁 (𝑗) ∥2
𝑀−1 is positive and strictly monotonically increasing in ℓ .

Proof. Statement (𝑖): Since we use the zero vector as initial guess, we have 𝜁 (0) = 𝐴 0 − 𝑏 = −𝑏 for the
initial residual. Therefore,

𝑏ᵀ𝑀−1𝜁 (𝑗) = −(𝜁 (0))ᵀ𝑀−1𝜁 (𝑗) = 0 for 𝑗 ≥ 1

according to (4.28).

Statement (𝑖𝑖): The initial search direction is 𝑝 (0) = −𝑀−1𝜁 (0) , and hence we have

𝑏ᵀ𝑝 (0) = (𝜁 (0))ᵀ𝑀−1𝜁 (0) = ∥𝜁 (0) ∥2
𝑀−1 .

By induction, we find for 𝑗 ≥ 0:

𝑏ᵀ𝑝 (𝑗+1) = 𝑏ᵀ
(−𝑀−1𝜁 (𝑗+1) + 𝛽 (𝑗+1) 𝑝 (𝑗))

= 0 + 𝛽 (𝑗+1) 𝑏ᵀ𝑝 (𝑗) by Statement (𝑖)

=
∥𝜁 (𝑗+1) ∥2

𝑀−1

∥𝜁 (𝑗) ∥2
𝑀−1

𝑏ᵀ𝑝 (𝑗) by (4.24’)

= ∥𝜁 (𝑗+1) ∥2
𝑀−1 by the induction hypothesis.

https://tinyurl.com/scoop-nlo 93

https://tinyurl.com/scoop-nlo

R. Herzog cbn

Statement (𝑖𝑖𝑖): Since Algorithm 5.41 generated the iterates 𝑑 (0) , . . . , 𝑑 (ℓ) , the numbers 𝜃 (0) , . . . , 𝜃 (ℓ−1)
are all strictly positive. Consequently, 𝛼 (𝑗) = 𝛿 (𝑗)/𝜃 (𝑗) > 0 is also positive for 𝑗 = 0, . . . , ℓ − 1. We
consider the expression

𝑏ᵀ𝑑 (ℓ) = 𝑏ᵀ
ℓ−1∑︁
𝑗=0

𝛼 (𝑗) 𝑝 (𝑗) =
ℓ−1∑︁
𝑗=0

𝛼 (𝑗) ∥𝜁 (𝑗) ∥2
𝑀−1

with the last equality due to Statement (𝑖𝑖). The residuals 𝜁 (0) , . . . , 𝜁 (ℓ−1) are all ≠ 0, otherwise the
stopping criterion in Algorithm 5.41 would have been triggered. Therefore, the above expression is
strictly increasing w.r.t. ℓ . □

Remark 5.43 (on Algorithm 5.41).

(𝑖) The first search direction is 𝑝 (0) = 𝑀−1𝑏, which is equal to the steepest descent direction−𝑀−1∇𝑓 (𝑥 (𝑘))
in the optimization context. When 𝑝 (0) is a direction of positive curvature (if 𝜃 (0) > 0), then 𝑑 (1) is
the same as though we had applied the steepest descent method with Cauchy step size (Algorithm 4.6).

(𝑖𝑖) By contrast, when 𝑝 (0) is a direction of non-positive curvature, Algorithm 5.41 stops and returns
𝑑 (0) = 0. This is, of course, not a useful descent direction for the outer, inexact Newton method, as
will be detected by a quality test for the inexact Newton direction, and a fallback to a gradient step
will be the consequence.

(𝑖𝑖𝑖) The strictly increasing monotonicity of 𝑏ᵀ𝑑 (ℓ) = −𝑓 ′(𝑥 (𝑘)) 𝑑 (ℓ) w.r.t. the iteration counter ℓ means
that the descent properties of the iterates 𝑑 (ℓ) progressively improve, as long as the search direc-
tions 𝑝 (ℓ) remain directions of positive curvature for 𝐴. Therefore, it is reasonable to continue
performing CG iterations until either the desired tolerance is reached, or a direction of non-positive
curvature is encountered. This is the strategy Algorithm 5.41 is following.

As we already mentioned, the globalization of the inexact Newton method can be done along the same
lines as in Algorithm 5.30. This leads to the following algorithm.

Algorithm 5.44 (Globalized inexact Newton method for (UP); compare Algorithm 5.30).
Input: initial guess 𝑥 (0) ∈ R𝑛
Input: routine to evaluate 𝑓 and 𝑓 ′ (or ∇𝑓)
Input: routine to evaluate 𝑓 ′′ (or matrix-vector products with 𝑓 ′′)
Input: s. p. d. matrix𝑀 (or matrix-vector products with𝑀−1)
Input: routine to determine the forcing sequence 𝜂 (𝑘)
Input: globalization parameters 𝜂 ∈ (0, 1), 𝜌 > 0 and exponent 𝑝 > 0
Input: Armijo parameter 𝜎 ∈ (0, 1/2) // to be passed through to the Armijo backtracking line search
Input: backtracking parameter 𝛽 ∈ (0, 1) // to be passed through to the Armijo backtracking line search
Output: approximately stationary point of (UP)
1: Set 𝑘 B 0
2: Set 𝑓 (0) B 𝑓 (𝑥 (0)) // evaluate the initial objective value
3: Set 𝑟 (0) B 𝑓 ′(𝑥 (0))ᵀ = ∇𝑓 (𝑥 (0)) // evaluate the initial residual
4: Set 𝑑 (0)

𝐺
B −𝑀−1𝑟 (0) // evaluate the negative𝑀-gradient

94 https://tinyurl.com/scoop-nlo 2023-05-28

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

5: Set 𝛿 (0) B −(𝑟 (0))ᵀ𝑑 (0)
𝐺

// 𝛿 (0) = ∥∇𝑀 𝑓 (𝑥 (0))∥2𝑀 = ∥𝑑 (0)
𝐺
∥2
𝑀

6: while stopping criterion not met do
7: Determine the inexact Newton direction 𝑑 (𝑘)

𝑁
using Algorithm 5.41 with 𝐴 = 𝑓 ′′(𝑥 (𝑘)), 𝑏 = −𝑟 (𝑘) ,

preconditioner𝑀 and relative residual 𝜀rel = 𝜂 (𝑘)

8: Evaluate the generalized angle condition for the Newton direction

𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘)
𝑁
≤ −min

{
𝜂, 𝜌 ∥𝑑 (𝑘)

𝐺
∥𝑝
𝑀

} ∥𝑑 (𝑘)
𝐺
∥𝑀 ∥𝑑 (𝑘)𝑁

∥𝑀 (5.27)

9: if true then
10: Set 𝑑 (𝑘) B 𝑑 (𝑘)

𝑁
// use the inexact Newton direction

11: else
12: Set 𝑑 (𝑘) B 𝑑 (𝑘)

𝐺
// use the steepest descent direction as fallback

13: end if
14: Determine a step size 𝛼 (𝑘) > 0 from an Armijo backtracking line search procedure (Algorithm 5.11),

applied to 𝜑 (𝛼) B 𝑓 (𝑥 (𝑘) + 𝛼 𝑑 (𝑘)), with initial trial step size 𝛼 (𝑘,0) = 1, Armijo parameter 𝜎 and
backtracking parameter 𝛽 // 𝜑 (0) = 𝑓 (𝑘) and 𝜑 ′(0) = (𝑟 (𝑘))ᵀ𝑑 (𝑘) = −𝛿 (𝑘) in case of 𝑑 (𝑘) = 𝑑 (𝑘)

𝐺
, or

𝜑 ′(0) = 𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘)
𝑁

in case of 𝑑 (𝑘) = 𝑑 (𝑘)
𝑁

, are already known
15: Set 𝑥 (𝑘+1) B 𝑥 (𝑘) + 𝛼 (𝑘)𝑑 (𝑘)
16: Set 𝑓 (𝑘+1) B 𝑓 (𝑥 (𝑘+1)) // can be returned by the Armijo backtracking line search routine
17: Set 𝑟 (𝑘+1) B 𝑓 ′(𝑥 (𝑘+1))ᵀ = ∇𝑓 (𝑥 (𝑘+1))
18: Set 𝑑 (𝑘+1)

𝐺
B −𝑀−1𝑟 (𝑘+1) // evaluate the negative𝑀-gradient

19: Set 𝛿 (𝑘+1) B −(𝑟 (𝑘+1))ᵀ𝑑 (𝑘+1)
𝐺

// 𝛿 (𝑘+1) = ∥∇𝑀 𝑓 (𝑥 (𝑘+1))∥2𝑀 = ∥𝑑 (𝑘+1)
𝐺
∥2
𝑀

20: Set 𝑘 B 𝑘 + 1
21: end while
22: return 𝑥 (𝑘)

Remark 5.45 (on Algorithm 5.44).

(𝑖) See Remark 5.31 on choosing the globalization parameters 𝜌 and 𝑝 .

(𝑖𝑖) The quantity ∥𝑑 (𝑘)
𝑁
∥𝑀 required to evaluate the generalized angle condition (5.27) can be returned

at negligible additional cost by the truncated CG algorithm (Algorithm 5.41), as described in (4.33)–
(4.34).

The global convergence of Algorithm 5.44 can be verified very similarly as in Theorem 5.32. In fact, ??
in the proof (admissibility of search directions) remains exactly the same since the generalized angle
condition and the fallback to steepest descent directions remains the same as in Algorithm 5.30. In ??
(admissibility of step sizes), we need to take into account the fact that the inexact Newton direction
satisfies the Newton system only with a residual. We end up replacing the estimate (5.28) by

∥𝑑 (𝑘) ∥𝑀 ≥ min
{ 1 − 𝜂 (𝑘)

𝐶
, 1

}
∥∇𝑀 𝑓 (𝑥 (𝑘))∥𝑀 ≥ min

{ 1 − 𝜂 (𝑘)
𝐶

, 1
} −𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘)
∥𝑑 (𝑘) ∥𝑀

(5.39)

for all 𝑘 ∈ 𝐾 , and we have to modify the function 𝜓 accordingly. (Quiz 5.7: Can you fill in the
details?)

https://tinyurl.com/scoop-nlo 95

https://tinyurl.com/scoop-nlo

R. Herzog cbn

The transition to fast local convergence can be shown similarly as in Theorem 5.33. We can verify
again that

𝑑 (𝑘) = 𝑑 (𝑘)
𝑁

and 𝛼 (𝑘) = 1 (5.29)
holds for sufficiently large indices 𝑘 . Consequently, the convergence mode (Q-linear, Q-superlinear or
even Q-quadratic) follows depending on the choice of forcing sequence, using Theorem 5.39; see also
Geiger, Kanzow, 1999, Satz 10.8.

The combination of the inexact Newton method as outer algorithm with the truncated CG algorithm as
inner solver is often referred to as truncated Newton CG method. Since we do not necessarily need
to set up the full Hessian matrix 𝑓 ′′(𝑥 (𝑘)), but matrix-vector products with 𝑓 ′′(𝑥 (𝑘)) are sufficient, one
also speaks of a Hessian-free optimization. Matrix-vector products with 𝑓 ′′(𝑥 (𝑘)) can be realized,
e. g., using algorithmic diffentiation techniques (Chapter 4).

End of Week 5

§ 5.7 Quasi-Newton Methods

In contrast to inexact Newton methods (§ 5.6), quasi-Newton methods make use of the freedom
Newton-like methods offer in a different way. We discuss quasi-Newton methods only in the con-
text of optimization. A quasi-Newton method determines symmetric (and often positive definite)
approximations 𝐻 (𝑘) of the Hessians 𝑓 ′′(𝑥 (𝑘)) but then solves the systems

𝐻 (𝑘)𝑑 (𝑘) = −∇𝑓 (𝑥 (𝑘)) (5.40)

exactly before taking a step in the direction 𝑑 (𝑘) . Quasi-Newton methods are also known as variable
metric methods since, in contrast to gradient methods which maintain 𝐻 (𝑘) ≡ 𝑀 constant, the model
Hessian 𝐻 (𝑘) changes from iteration to iteration.

The model Hessian 𝐻 (𝑘+1) is constructed based on information gained in the 𝑘-th step. A consis-
tent requirement in all quasi-Newton methods is the so-called secant condition or quasi-Newton
condition,

𝐻 (𝑘+1) (𝑥 (𝑘+1) − 𝑥 (𝑘)) = ∇𝑓 (𝑥 (𝑘+1)) − ∇𝑓 (𝑥 (𝑘)) . (5.41)
This condition can be motivated in several ways:

(1) It follows from the fundamental theorem of calculus30 that

∇𝑓 (𝑥 + 𝑑) = ∇𝑓 (𝑥) + 𝑓 ′′(𝑥 + 𝑑) 𝑑 +
∫ 1

0
[𝑓 ′′(𝑥 + 𝑡 𝑑) − 𝑓 ′′(𝑥 + 𝑑)] 𝑑 d𝑡 (5.42)

holds for all 𝑥, 𝑑 ∈ R𝑛 . For the integral term, we have the following estimate, which uses the 𝐶2

property of 𝑓 : for any 𝜀 > 0, there exists 𝛿 > 0 such that∫ 1

0
[𝑓 ′′(𝑥 + 𝑡 𝑑) − 𝑓 ′′(𝑥 + 𝑑)] 𝑑 d𝑡

𝑀−1
≤ 𝜀 ∥𝑑 ∥𝑀

30The function 𝑡 ↦→ ∇𝑓 (𝑥+𝑡 𝑑) is the integral of its derivative 𝑡 ↦→ 𝑓 ′′ (𝑥+𝑡 𝑑) 𝑑 , and thus
∫ 1
0 𝑓
′′ (𝑥+𝑡 𝑑) 𝑑 d𝑡 = ∇𝑓 (𝑥+𝑡 𝑑)

��1
0 =

∇𝑓 (𝑥 + 𝑑) − ∇𝑓 (𝑥)

96 https://tinyurl.com/scoop-nlo 2023-05-28

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

holds for all ∥𝑑 ∥𝑀 ≤ 𝛿 .31

Omitting this integral term from (5.42), plugging in 𝑥 (𝑘) for 𝑥 and 𝑥 (𝑘+1)−𝑥 (𝑘) for𝑑 , and replacing
the true Hessian 𝑓 ′′(𝑥 + 𝑑) by its approximation 𝐻 (𝑘+1) , we obtain

∇𝑓 (𝑥 (𝑘+1)) = ∇𝑓 (𝑥 (𝑘)) + 𝐻 (𝑘+1) (𝑥 (𝑘+1) − 𝑥 (𝑘)),

which is the secant condition (5.41). Hence the secant condition approximately mimics the
property (5.42) of the true Hessian.

(2) Let us consider the two quadratic models32 at the consecutive iterates 𝑥 (𝑘) and 𝑥 (𝑘+1) ,

𝑚 (𝑘) (𝑥) = 𝑓 (𝑥 (𝑘)) + 𝑓 ′(𝑥 (𝑘)) (𝑥 − 𝑥 (𝑘)) + 1
2 (𝑥 − 𝑥

(𝑘))ᵀ𝐻 (𝑘) (𝑥 − 𝑥 (𝑘)), (5.43a)

𝑚 (𝑘+1) (𝑥) = 𝑓 (𝑥 (𝑘+1)) + 𝑓 ′(𝑥 (𝑘+1)) (𝑥 − 𝑥 (𝑘+1)) + 1
2 (𝑥 − 𝑥

(𝑘+1))ᵀ𝐻 (𝑘+1) (𝑥 − 𝑥 (𝑘+1)). (5.43b)

By construction, the derivative of the old model𝑚 (𝑘) agrees with the derivative of 𝑓 at 𝑥 (𝑘) .
Also, the derivative of the new model𝑚 (𝑘+1) agrees with the derivative of 𝑓 at 𝑥 (𝑘+1) . We require
now, in addition, that the derivative of the new model agrees with the derivative of 𝑓 also at the
old iterate 𝑥 (𝑘) , i. e.,

(𝑚 (𝑘+1))′(𝑥 (𝑘)) = 𝑓 ′(𝑥 (𝑘))
⇔ ∇𝑚 (𝑘+1) (𝑥 (𝑘)) = ∇𝑓 (𝑥 (𝑘))
⇔ ∇𝑓 (𝑥 (𝑘+1)) + 𝐻 (𝑘+1) (𝑥 (𝑘) − 𝑥 (𝑘+1)) = ∇𝑓 (𝑥 (𝑘)), since 𝐻 (𝑘+1) is symmetric
⇔ secant condition (5.41).

Using the Dennis-Moré conditions (Corollary 5.37) for Newton-like methods, we can now characterize
the fast (Q-superlinear) local convergence (without line search) of quasi-Newton methods.

Theorem 5.46 (Fast local convergence of quasi-Newton methods). Suppose that 𝑓 : R𝑛 → R is a 𝐶2

function. Suppose that the sequence 𝑥 (𝑘) is generated using the Newton-like method Algorithm 5.34 with
model Hessians 𝐻 (𝑘) which are symmetric and satisfy the secant condition (5.41), and with zero residuals
𝜁 (𝑘) = 0. Suppose that 𝑥 (𝑘) converges to 𝑥∗, where 𝑓 ′′(𝑥∗) is non-singular. Finally, suppose that for any
𝜀 > 0, there exists 𝛿 > 0 such that

∥(𝐻 (𝑘+1) − 𝐻 (𝑘)) 𝑑 (𝑘) ∥𝑀−1 ≤ 𝜀 ∥𝑑 (𝑘) ∥𝑀 (5.44)

holds for all ∥𝑑 (𝑘) ∥𝑀 ≤ 𝛿 .33. Then the conditions of Corollary 5.37 hold, and therefore 𝑥 (𝑘) converges to
𝑥∗ Q-superlinearly w.r.t. the𝑀-norm, and 𝑓 ′(𝑥∗) = 0 holds.
31We could likewise say that the left-hand side belongs to 𝑜 (∥𝑑 ∥𝑀).
32In contrast to (5.2), we write the model here in terms of 𝑥 , not in terms of the direction 𝑑 , which is notationally more

convenient. That is, we write𝑚 (𝑘) (𝑥) rather than 𝑞 (𝑘) (𝑑).
33In other words, ∥(𝐻 (𝑘+1) − 𝐻 (𝑘)) 𝑑 (𝑘) ∥𝑀−1 ∈ 𝑜 (∥𝑑 (𝑘) ∥𝑀)

https://tinyurl.com/scoop-nlo 97

https://tinyurl.com/scoop-nlo

R. Herzog cbn

Proof. We can estimate

∥(𝑓 ′′(𝑥 (𝑘)) − 𝐻 (𝑘)) 𝑑 (𝑘) ∥𝑀−1
≤ ∥(𝑓 ′′(𝑥 (𝑘)) − 𝐻 (𝑘+1)) 𝑑 (𝑘) ∥𝑀−1 + ∥(𝐻 (𝑘+1) − 𝐻 (𝑘)) 𝑑 (𝑘) ∥𝑀−1 by the triangle inequality.

By assumption, the second term is bounded by 𝜀 ∥𝑑 (𝑘) ∥𝑀 , provided that ∥𝑑 (𝑘) ∥𝑀 ≤ 𝛿 :

≤ ∥ 𝑓 ′′(𝑥 (𝑘)) 𝑑 (𝑘) − ∇𝑓 (𝑥 (𝑘+1)) + ∇𝑓 (𝑥 (𝑘))∥𝑀−1 + 𝜀 ∥𝑑 (𝑘) ∥𝑀 by the secant condition.

Using the uniform continuity of 𝑓 ′′ “near the
(
𝑥 (𝑘)

)
” (as in the proof of Lemma 5.13), we can bound

the first term by 𝜀 ∥𝑥 (𝑘+1) − 𝑥 (𝑘) ∥𝑀 , provided that ∥𝑥 (𝑘+1) − 𝑥 (𝑘) ∥𝑀 is sufficiently small:

≤ 𝜀 ∥𝑥 (𝑘+1) − 𝑥 (𝑘) ∥𝑀 + 𝜀 ∥𝑑 (𝑘) ∥𝑀
= 2 𝜀 ∥𝑥 (𝑘+1) − 𝑥 (𝑘) ∥𝑀 .

We have shown that condition (5.34a) of Corollary 5.37 holds, which implies the Q-superlinear conver-
gence and the stationarity of 𝑥∗. □

In view of
∥(𝐻 (𝑘+1) − 𝐻 (𝑘)) 𝑑 (𝑘) ∥𝑀−1 ≤ ∥𝐻 (𝑘+1) − 𝐻 (𝑘) ∥𝑀−1←𝑀 ∥𝑑 (𝑘) ∥𝑀 ,

the convergence 𝐻 (𝑘+1) −𝐻 (𝑘) → 0 is sufficient to ensure the prerequisite (5.44) of Theorem 5.46.

Let us now discuss how to construct quasi-Newton matrices 𝐻 (𝑘) in practice. From now on, we also
include a step size 𝛼 (𝑘) > 0 in the update of the iterates

𝑥 (𝑘+1) B 𝑥 (𝑘) + 𝛼 (𝑘)𝑑 (𝑘) .

To simplify notation, we introduce

𝑠 (𝑘) B 𝑥 (𝑘+1) − 𝑥 (𝑘) = 𝛼 (𝑘)𝑑 (𝑘) and 𝑦 (𝑘) B ∇𝑓 (𝑥 (𝑘+1)) − ∇𝑓 (𝑥 (𝑘)) . (5.45)

One important class of quasi-Newton methods constructs 𝐻 (𝑘+1) as a function of the previous ma-
trix 𝐻 (𝑘) and the two vectors 𝑠 (𝑘) and 𝑦 (𝑘) :

𝐻 (𝑘+1) B Φ
(
𝐻 (𝑘) , 𝑠 (𝑘) , 𝑦 (𝑘)

)
. (5.46)

Due to the dependence of 𝐻 (𝑘+1) on 𝐻 (𝑘) , we also speak of a quasi-Newton update formula.

For reference purposes, we state a generic line-search quasi-Newton method in Algorithm 5.47.

Algorithm 5.47 (Generic globalized quasi-Newton method for (UP)).
Input: initial guess 𝑥 (0) ∈ R𝑛
Input: routine to evaluate 𝑓 and 𝑓 ′ (or ∇𝑓)
Input: initial symmetric model Hessian 𝐻 (0) ∈ R𝑛×𝑛 (possibly s. p. d.)
Input: routine that implements the quasi-Newton update Φ
Input: s. p. d. matrix𝑀 (or matrix-vector products with𝑀−1)
Output: approximately stationary point of (UP)

98 https://tinyurl.com/scoop-nlo 2023-05-28

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

1: Set 𝑘 B 0
2: Set 𝑓 (0) B 𝑓 (𝑥 (0)) // evaluate the initial objective value
3: Set 𝑟 (0) B 𝑓 ′(𝑥 (0))ᵀ = ∇𝑓 (𝑥 (0)) // evaluate the initial residual
4: Set 𝑑 (0)

𝐺
B −𝑀−1𝑟 (0) // evaluate the negative𝑀-gradient

5: Set 𝛿 (0) B −(𝑟 (0))ᵀ𝑑 (0)
𝐺

// 𝛿 (0) = ∥∇𝑀 𝑓 (𝑥 (0))∥2𝑀 = ∥𝑑 (0)
𝐺
∥2
𝑀

6: while stopping criterion not met do
7: Determine the quasi-Newton direction 𝑑 (𝑘) by solving

𝐻 (𝑘)𝑑 (𝑘) = −𝑟 (𝑘) (5.40)

8: Determine a step size 𝛼 (𝑘) > 0 from a line search procedure with preferred step size 𝛼 (𝑘) = 1
9: Set 𝑠 (𝑘) B 𝛼 (𝑘)𝑑 (𝑘)

10: Set 𝑥 (𝑘+1) B 𝑥 (𝑘) + 𝑠 (𝑘)
11: Set 𝑓 (𝑘+1) B 𝑓 (𝑥 (𝑘+1))
12: Set 𝑟 (𝑘+1) B 𝑓 ′(𝑥 (𝑘+1))ᵀ = ∇𝑓 (𝑥 (𝑘+1))
13: Set 𝑑 (𝑘+1)

𝐺
B −𝑀−1𝑟 (𝑘+1) // evaluate the negative𝑀-gradient

14: Set 𝛿 (𝑘+1) B −(𝑟 (𝑘+1))ᵀ𝑑 (𝑘+1)
𝐺

// 𝛿 (𝑘+1) = ∥∇𝑀 𝑓 (𝑥 (𝑘+1))∥2𝑀 = ∥𝑑 (𝑘+1)
𝐺
∥2
𝑀

15: Set 𝑦 (𝑘) B 𝑟 (𝑘+1) − 𝑟 (𝑘)
16: Determine the quasi-Newton matrix 𝐻 (𝑘+1) B Φ

(
𝐻 (𝑘) , 𝑠 (𝑘) , 𝑦 (𝑘)

)
17: Set 𝑘 B 𝑘 + 1
18: end while
19: return 𝑥 (𝑘)

We recall the following desirable properties:

(1) 𝐻 (𝑘+1) must be symmetric (provided that 𝐻 (𝑘) is symmetric).
(2) 𝐻 (𝑘+1) must satisfy the secant condition (5.41), now written in the form

𝐻 (𝑘+1)𝑠 (𝑘) = 𝑦 (𝑘) . (5.47)

(3) 𝐻 (𝑘+1) should be close to 𝐻 (𝑘) in the sense that ∥(𝐻 (𝑘+1) −𝐻 (𝑘)) 𝑠 (𝑘) ∥𝑀−1 ∈ 𝑜 (∥𝑠 (𝑘) ∥𝑀) in order
to satisfy the condition (5.44) for fast local convergence.

(4) Ideally, the matrix 𝐻 (𝑘+1) should be positive definite (provided that 𝐻 (𝑘) is positive definite).

Notice that condition (4) guarantees that 𝑑 (𝑘) , and thus 𝑠 (𝑘) = 𝛼 (𝑘)𝑑 (𝑘) , is a descent direction.

A necessary condition for the positive definiteness of 𝐻 (𝑘+1) is obtained by multiplying the secant
condition (5.41) by 𝑠 (𝑘) :

0 < (𝑠 (𝑘))ᵀ𝐻 (𝑘+1)𝑠 (𝑘)︸ ︷︷ ︸
evaluation of the bilinear form 𝐻 (𝑘+1)

in the particular direction 𝑠 (𝑘)

= (𝑦 (𝑘))ᵀ 𝑠 (𝑘) = (
𝑓 ′(𝑥 (𝑘+1)) − 𝑓 ′(𝑥 (𝑘))) (𝑥 (𝑘+1) − 𝑥 (𝑘)) . (5.48)

For strictly convex functions, (5.48) is always satisfied in view of Theorem 2.8; see (2.26). Otherwise,
we need a line search procedure to guarantee (5.48). The Wolfe-Powell line search lends itself for this
purpose.

https://tinyurl.com/scoop-nlo 99

https://tinyurl.com/scoop-nlo

R. Herzog cbn

Lemma 5.48 (Wolfe-Powell line search ensures (5.48)). Suppose that 𝑑 (𝑘) is a descent direction for 𝑓 at
𝑥 (𝑘) . If 𝛼 (𝑘) > 0 satisfies the curvature condition (5.17) for some 𝜏 < 1, then the necessary condition (5.48)
for positive definiteness of 𝐻 (𝑘+1) is satisfied.

Proof. We can estimate

𝑓 ′(𝑥 (𝑘+1)) 𝑑 (𝑘) ≥ 𝜏 𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘) by the curvature condition (5.17)
> 𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘) since 𝑑 (𝑘) is a descent condition.

This can be rewritten as
(𝑦 (𝑘))ᵀ𝑑 (𝑘) > 0,

and since 𝑠 (𝑘) = 𝛼 (𝑘)𝑑 (𝑘) holds with positive step size 𝛼 (𝑘) , (5.48) follows. □

There are infinitely many possibilities (in case 𝑛 > 1) to satisfy the secant condition (5.47). (Quiz 5.8:
Why?) We are now describing some of the most prominent quasi-Newton update formulas of the
form

𝐻 (𝑘+1) B Φ
(
𝐻 (𝑘) , 𝑠 (𝑘) , 𝑦 (𝑘)

)
. (5.46)

• SR1 (Symmetric rank-1) update:
There is only one symmetric rank-1 update formula that satisfies the secant condition (Nocedal,
Wright, 2006, Chapter 6.2), and it is given by

ΦSR1(𝐻, 𝑠, 𝑦) = 𝐻 + (𝑦 − 𝐻𝑠) (𝑦 − 𝐻𝑠)
ᵀ

(𝑦 − 𝐻𝑠)ᵀ𝑠 , (5.49)

which requires that 𝐻 (𝑘)𝑠 (𝑘) ≠ 𝑦 (𝑘) holds throughout the iterations. That, however, is problem-
atic. Suppose that we have taken a full step (𝛼 (𝑘) = 1), i. e., 𝑠 (𝑘) = 𝑑 (𝑘) holds. Suppose, moreover,
that the step size 𝛼 (𝑘) = 1 gave us an almost stationary point of the line search function 𝜑 . Then

(𝑦 (𝑘) − 𝐻 (𝑘)𝑠 (𝑘))ᵀ𝑠 (𝑘)
= (𝑦 (𝑘) − 𝐻 (𝑘)𝑑 (𝑘))ᵀ𝑑 (𝑘) due to 𝑠 (𝑘) = 𝑑 (𝑘)

=
(∇𝑓 (𝑥 (𝑘+1)) − ∇𝑓 (𝑥 (𝑘)) − 𝐻 (𝑘)𝑑 (𝑘))ᵀ𝑑 (𝑘) since 𝑦 (𝑘) = ∇𝑓 (𝑥 (𝑘+1)) − ∇𝑓 (𝑥 (𝑘))

= 𝑓 ′(𝑥 (𝑘+1)) 𝑑 (𝑘) due to the quasi-Newton system (5.40)
= 𝜑 ′(𝛼 (𝑘)),

which is almost zero.

Moreover, the positive definiteness of 𝐻 (𝑘+1)SR1 cannot be guaranteed, even if 𝐻 (𝑘) was positive
definite, since the denominator in (5.49) may be negative. (Still, the SR1 has its purpose, in
particular in the context of trust-region methods.)

• PSB (Powell-symmetric-Broyden) update:
Condition (3) from our list of desirable properties suggests to keep 𝐻 (𝑘+1) close to 𝐻 (𝑘) . To this

100 https://tinyurl.com/scoop-nlo 2023-05-28

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

end, we consider the auxiliary problem

Minimize 1
2 ∥𝐻

(𝑘+1) − 𝐻 (𝑘) ∥2𝐹 , where 𝐻 (𝑘+1) ∈ R𝑛×𝑛sym

subject to the secant condition (5.47).
(5.50)

Here ∥·∥𝐹 is the Frobenius norm, see (2.7). Problem (5.50) can be shown to have a unique
solution34, which is given in terms of the update formula

ΦPSB(𝐻, 𝑠, 𝑦) = 𝐻 + (𝑦 − 𝐻𝑠) 𝑠
ᵀ + 𝑠 (𝑦 − 𝐻𝑠)ᵀ
𝑠ᵀ𝑠

− (𝑦 − 𝐻𝑠)ᵀ𝑠 𝑠 𝑠ᵀ

(𝑠ᵀ𝑠)2 (5.51)

This formula is said to be a rank-2 update since the rank of 𝐻 (𝑘+1) − 𝐻 (𝑘) is at most 2. To see
this, consider that ΦPSB is of the form

ΦPSB(𝐻, 𝑠, 𝑦) = 𝐻 + 𝑣 𝑠ᵀ + 𝑠 𝑣ᵀ + 𝛾 𝑠 𝑠ᵀ with 𝑣 = (𝑦 − 𝐻𝑠)/∥𝑠 ∥2 and 𝛾 =
𝑣ᵀ𝑠
∥𝑠 ∥2

= 𝐻 + 𝛾 (𝑠 − 𝛾−1𝑣) (𝑠 − 𝛾−1𝑣)ᵀ︸ ︷︷ ︸
symmetric, rank 1

−𝛾−1𝑣 𝑣ᵀ︸ ︷︷ ︸
symmetric, rank 1

.

Like SR1, the PSB update formula also cannot guarantee the positive definiteness.

• DFP (Davidon-Fletcher-Powell) update:
The DFP update considers an auxiliary problem

Minimize 1
2 ∥𝑊

−⊤(𝐻 (𝑘+1) − 𝐻 (𝑘))𝑊 −1∥2𝐹 , where 𝐻 (𝑘+1) ∈ R𝑛×𝑛sym

subject to the secant condition (5.47),

where𝑊 is any non-singular matrix with the property𝑊 ᵀ𝑊𝑠 (𝑘) = 𝑦 (𝑘) . Using (2.6) and the
property trace(𝐴𝐵𝐶) = trace(𝐵𝐶𝐴) for products of matrices, and setting𝑀 B𝑊 ᵀ𝑊 (which is
s. p. d.), we can rewrite this problem as

Minimize 1
2 trace

(
𝑀−1(𝐻 (𝑘+1) − 𝐻 (𝑘))𝑀−1(𝐻 (𝑘+1) − 𝐻 (𝑘))), where 𝐻 (𝑘+1) ∈ R𝑛×𝑛sym

subject to the secant condition (5.47)
(5.52)

with data𝑀 𝑠 (𝑘) = 𝑦 (𝑘) .35

It can be shown that the unique solution of problem (5.52) is independent of𝑀 and it is given by

ΦDFP(𝐻, 𝑠, 𝑦) = (Id − 𝜌 𝑦 𝑠ᵀ)𝐻 (Id − 𝜌 𝑠 𝑦ᵀ) + 𝜌 𝑦 𝑦ᵀ
= 𝐻 + 𝜌 (𝑦 − 𝐻 𝑠) 𝑦ᵀ + 𝜌 𝑦 (𝑦 − 𝐻 𝑠)ᵀ − 𝜌2(𝑦 − 𝐻 𝑠)ᵀ𝑠 𝑦 𝑦ᵀ, (5.53)

where 𝜌 = 1/(𝑦ᵀ𝑠). This update formula can be seen to also be of rank 2. This time, positive
definiteness can be guaranteed; see Lemma 5.49.

34see for instance Ulbrich, Ulbrich, 2012, S.76
35The average Hessian

∫ 1
0 𝑓
′′ (𝑥 (𝑘) + 𝑡 𝑠 (𝑘)) d𝑡 is one possible matrix𝑀 , provided it is positive definite.

https://tinyurl.com/scoop-nlo 101

https://tinyurl.com/scoop-nlo

R. Herzog cbn

• BFGS (Broyden-Fletcher-Goldfarb-Shanno) update:
The BFGS formula starts from the optimization problem

Minimize 1
2 ∥𝑊 [(𝐻

(𝑘+1))−1 − (𝐻 (𝑘))−1]𝑊 ᵀ∥2𝐹 , 𝐻 (𝑘+1) ∈ R𝑛×𝑛sym

subject to the secant condition (5.47),

where𝑊 is again any non-singular matrix with the property𝑊 ᵀ𝑊𝑠 (𝑘) = 𝑦 (𝑘) . Similarly as in
(5.52), we can rewrite this problem as

Minimize 1
2 trace

(
𝑀 [(𝐻 (𝑘+1))−1 − (𝐻 (𝑘))−1]𝑀 [(𝐻 (𝑘+1))−1 − (𝐻 (𝑘))−1]), 𝐻 (𝑘+1) ∈ R𝑛×𝑛sym

subject to the secant condition (5.47)
(5.54)

with data𝑀 𝑠 (𝑘) = 𝑦 (𝑘) .

The solution of this problem — once again independent of𝑊 — results in the rank-2 update
formula

ΦBFGS(𝐻, 𝑠, 𝑦) = 𝐻 − 𝐻 𝑠 𝑠
ᵀ𝐻

𝑠ᵀ𝐻 𝑠
+ 𝜌 𝑦 𝑦ᵀ (5.55)

where 𝜌 = 1/(𝑦ᵀ𝑠). Also here, Lemma 5.49 will ensure the positive definiteness.

• Broyden class update:
The update formulas of the Broyden class are the affine combinations of the DFP and BFGS
formulas. For any parameter 𝜆 ∈ R, we obtain

Φ𝜆Broyden(𝐻, 𝑠, 𝑦) = (1 − 𝜆) ΦBFGS(𝐻, 𝑠, 𝑦) + 𝜆 ΦDFP(𝐻, 𝑠, 𝑦) . (5.56)

The formulas obtained by restricting 𝜆 ∈ [0, 1] are known as the convex Broyden class.

In (5.48) we had identified 𝑦ᵀ𝑠 > 0 as a necessary condition for any quasi-Newton update formula
satisfying the secant condition to be positive definite. Indeed, this condition is already sufficient in
case of the DFP and BFGS updates. Consequently, the positive definiteness can be ensured using a
Wolfe-Powell line search as we proved in Lemma 5.48.

Lemma 5.49 (Positive definiteness of the DFP and BFGS updates). Suppose that 𝐻 is symmetric and
positive definite and that 𝑦ᵀ𝑠 > 0 holds. Then 𝐻+BFGS B ΦBFGS(𝐻, 𝑠, 𝑦) and 𝐻+DFP B ΦDFP(𝐻, 𝑠, 𝑦) are
symmetric and positive definite as well.

Note: One can show this result even for all members of the non-negative Broyden class (𝜆 ≥ 0); see
Ulbrich, Ulbrich, 2012, Satz 13.4.

Proof. The symmetry of 𝐻+BFGS and 𝐻
+
DFP are obvious. For any 𝑣 ∈ R𝑛 , 𝑣 ≠ 0, we have

𝑣ᵀ𝐻+DFP 𝑣 = (𝑣ᵀ − 𝜌 (𝑣ᵀ𝑦) 𝑠ᵀ)𝐻 (𝑣 − 𝜌 𝑠 (𝑣ᵀ𝑦)) + 𝜌 (𝑣ᵀ𝑦)2 ≥ 0.

102 https://tinyurl.com/scoop-nlo 2023-05-28

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

Equality in this inequality can hold only if both summands are zero. The first summand is zero precisely
when 𝑣 is a certain multiple of 𝑠 , but in that case the second summand will be strictly positive due to
𝜌 = 1/(𝑦ᵀ𝑠) > 0.

As for BFGS, we have

𝑣ᵀ𝐻+BFGS 𝑣 = 𝑣
ᵀ𝐻 𝑣 − (𝑠

ᵀ𝐻 𝑣)2
𝑠ᵀ𝐻 𝑠

+ 𝜌 (𝑦ᵀ𝑣)2

By the Cauchy-Schwarz inequality w.r.t. the 𝐻 -inner product, we can estimate this as

𝑣ᵀ𝐻+BFGS 𝑣 ≥ 𝑣ᵀ𝐻 𝑣 −
(𝑠ᵀ𝐻 𝑠) (𝑣 𝐻 𝑣)

𝑠ᵀ𝐻 𝑠
+ (𝑦

ᵀ𝑣)2
𝑦ᵀ𝑠

=
(𝑦ᵀ𝑣)2
𝑦ᵀ𝑠

≥ 0.

If this expression were equal to zero, then both inequalities would need to be equalities. In the first
inequality, this implies that 𝑣 is a (non-zero) multiple of 𝑠 . But then the second inequality is strict since
𝑦ᵀ𝑠 > 0 holds. □

While quasi-Newton methods avoid the evaluation of second-order derivatives of the objective 𝑓 , we
still need to solve a linear system (5.40) in every iteration. This brings up the question whether we
could perhaps work with the inverse matrix36 𝐵 (𝑘) = (𝐻 (𝑘))−1 and avoid the solution of linear systems
altogether, by evaluating

𝑑 (𝑘) = −𝐵 (𝑘)∇𝑓 (𝑥 (𝑘)) instead of solving 𝐻 (𝑘)𝑑 (𝑘) = −∇𝑓 (𝑥 (𝑘)) . (5.57)

This is indeed possible, and we can find update formulas for the inverse matrices. The fact that
common update formulas for 𝐻 (𝑘) are of low rank can be exploited, and it leads to low-rank update
formulas for 𝐵 (𝑘) . This is a consequence of the following key result, which has applications far beyond
quasi-Newton methods.

Lemma 5.50 (Sherman-Morrison-Woodbury formula). Suppose that 𝐴 ∈ R𝑛×𝑛 and 𝐶 ∈ R𝑟×𝑟 are
non-singular matrices and that𝑈 ∈ R𝑛×𝑟 , 𝑉 ∈ R𝑟×𝑛 are arbitrary. Then 𝐴 +𝑈 𝐶𝑉 is non-singular if and
only if 𝐶−1 +𝑉𝐴−1𝑈 is non-singular. In this case,

(𝐴 +𝑈 𝐶𝑉)−1 = 𝐴−1 −𝐴−1𝑈 (𝐶−1 +𝑉𝐴−1𝑈)−1𝑉𝐴−1. (5.58)

The significance of this lemma is the following. Typically we have 𝑟 ≪ 𝑛. Knowing the inverse 𝐴−1,
we can evaluate the inverse of the perturbed matrix 𝐴 + 𝑈 𝐶𝑉 with little effort, since the matrix
𝐶−1 +𝑉𝐴−1𝑈 on the right hand side, which is to be inverted, is only of size 𝑟 × 𝑟 . In particular, the
Sherman-Morrison-Woodbury lemma 5.50 states that the inverse of a rank-𝑟 update is a rank-𝑟 update
of the inverse.
36We are pointing out that in part of the literature, notably in Nocedal, Wright, 2006, the notations for 𝐵 and 𝐻 are reversed.

https://tinyurl.com/scoop-nlo 103

https://tinyurl.com/scoop-nlo

R. Herzog cbn

Proof. Suppose first that 𝐶−1 +𝑉𝐴−1𝑈 is non-singular. Then it can be checked straightforwardly that
the inverse of 𝐴 +𝑈 𝐶𝑉 is given by the right-hand side in (5.58). For the converse statement, we can
reverse the roles as follows:

𝐴↭ 𝐶−1, 𝐶 ↭ 𝐴−1, 𝑉 ↭ 𝑈 , 𝑈 ↭ 𝑉 .

□

Dropping indices, the update formulas we discussed in (5.46) are of the form

𝐻+ = Φ(𝐻, 𝑠, 𝑦) .

We will obtain update formulas for the inverse of the form

𝐵+ = Ψ(𝐵, 𝑠, 𝑦)

with the property that 𝐵 = 𝐻−1 implies 𝐵+ = (𝐻+)−1. Since ΦDFP and ΦBFGS are expressed in terms of
rank-2 updates of the input 𝐻 , the Sherman-Morrison-Woodbury lemma 5.50 allows us to express also
ΨDFP and ΨBFGS in terms of rank-2 update formulas. Indeed, we can obtain the

• inverse DFP quasi-Newton update:
The Sherman-Morrison-Woodbury formula applied to the DFP update formula (5.53) yields

ΨDFP(𝐵, 𝑠, 𝑦) = 𝐵 − 𝐵 𝑦 𝑦
ᵀ𝐵

𝑦ᵀ𝐵 𝑦
+ 𝜌 𝑠 𝑠ᵀ (5.59)

where, again, 𝜌 = 1/(𝑦ᵀ𝑠).

• inverse BFGS quasi-Newton update:
Similarly, we can obtain

ΨBFGS(𝐵, 𝑠, 𝑦) = (Id − 𝜌 𝑠 𝑦ᵀ) 𝐵 (Id − 𝜌 𝑦 𝑠ᵀ) + 𝜌 𝑠 𝑠ᵀ
= 𝐵 + 𝜌 (𝑠 − 𝐵 𝑦) 𝑠ᵀ + 𝜌 𝑠 (𝑠 − 𝐵 𝑦)ᵀ − 𝜌2(𝑠 − 𝐵 𝑦)ᵀ𝑦 𝑠 𝑠ᵀ, (5.60)

cf. homework problem 6.4. Interestingly, it turns out that the DFP and BFGS updates are inverse to
each other. More precisely, we have

ΨDFP(·, 𝑠, 𝑦) = ΦBFGS(·, 𝑦, 𝑠) and ΨBFGS(·, 𝑠, 𝑦) = ΦDFP(·, 𝑦, 𝑠) . (5.61)

Using an inverse quasi-Newton formula and obtaining the quasi-Newton direction from (5.57) solves
both issues with Newton’s method identified in the beginning of § 5.5. In the literature, the BFGS update
is reported to be generally the most efficient among the quasi-Newton updates. For completeness, we
therefore now state a globalized algorithm using the inverse BFGS update.

Algorithm 5.51 (Globalized quasi-Newton method with inverse BFGS update for (UP)).
Input: initial guess 𝑥 (0) ∈ R𝑛

104 https://tinyurl.com/scoop-nlo 2023-05-28

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

Input: routine to evaluate 𝑓 and 𝑓 ′ (or ∇𝑓)
Input: routine that implements the inverse BFGS update ΨBFGS
Input: s. p. d. matrix𝑀 (or matrix-vector products with𝑀−1)
Input: Armijo and curvature parameters 0 < 𝜎 < 𝜏 < 1 with 𝜎 ∈ (0, 1/2) // to be passed through to the

Wolfe-Powell line search
Input: expansion parameter 𝛾 > 1 // to be passed through to the Wolfe-Powell line search
Input: nesting parameters 𝛾,𝛾 ∈ (0, 1/2] // to be passed through to the Wolfe-Powell line search
Output: approximately stationary point of (UP)
1: Setze 𝑘 B 0
2: Setze 𝑓 (0) B 𝑓 (𝑥 (0))
3: Setze 𝑟 (0) B 𝑓 ′(𝑥 (0))ᵀ = ∇𝑓 (𝑥 (0))
4: Setze 𝑑 (0)

𝐺
B −𝑀−1𝑟 (0)

5: Setze 𝛿 (0) B −(𝑟 (0))ᵀ𝑑 (0)
𝐺

// 𝛿 (0) = ∥∇𝑀 𝑓 (𝑥 (0))∥2𝑀 = ∥𝑑 (0)
𝐺
∥2
𝑀

Input: Set 𝐵 (0)BFGS B 𝑀−1 // initial model Hessian equals the user-defined base metric
6: while stopping criterion not met do
7: Determine the quasi-Newton direction 𝑑 (𝑘) from

𝑑 (𝑘) B −𝐵 (𝑘)BFGS∇𝑓 (𝑥 (𝑘))

8: Determine a step size 𝛼 (𝑘) > 0 from a Wolfe-Powell line search procedure (Algorithm 5.18),
applied to 𝜑 (𝛼) B 𝑓 (𝑥 (𝑘) + 𝛼 𝑑 (𝑘)), with initial trial step size 𝛼 (𝑘,0) , Armijo parameter 𝜎 , curvature
parameter 𝜏 , expansion parameter 𝛾 and nesting parameters 𝛾,𝛾 // 𝜑 (0) = 𝑓 (𝑘) is already known and
𝜑 ′(0) = (𝑟 (𝑘))ᵀ𝑑 (𝑘) is easily evaluated

9: Set 𝑠 (𝑘) B 𝛼 (𝑘)𝑑 (𝑘)

10: Set 𝑥 (𝑘+1) B 𝑥 (𝑘) + 𝑠 (𝑘)
11: Set 𝑓 (𝑘+1) B 𝑓 (𝑥 (𝑘+1))
12: Set 𝑟 (𝑘+1) B 𝑓 ′(𝑥 (𝑘+1))ᵀ = ∇𝑓 (𝑥 (𝑘+1))
13: Set 𝑑 (𝑘+1)

𝐺
B −𝑀−1𝑟 (𝑘+1) // evaluate the negative𝑀-gradient

14: Set 𝛿 (𝑘+1) B −(𝑟 (𝑘+1))ᵀ𝑑 (𝑘+1)
𝐺

// 𝛿 (𝑘+1) = ∥∇𝑀 𝑓 (𝑥 (𝑘+1))∥2𝑀 = ∥𝑑 (𝑘+1)
𝐺
∥2
𝑀

15: Set 𝑦 (𝑘) B 𝑟 (𝑘+1) − 𝑟 (𝑘)
16: Evaluate 𝐵 (𝑘+1)BFGS B ΨBFGS(𝐵 (𝑘)BFGS, 𝑠

(𝑘) , 𝑦 (𝑘))
17: Set 𝑘 B 𝑘 + 1
18: end while
19: return 𝑥 (𝑘)

Remark 5.52 (on Algorithm 5.51).
(𝑖) The choice 𝐵 (0)BFGS = 𝑀−1 lends itself as the inverse of the initial model Hessian. In this way, the

user-defined base metric 𝑀 serves as the initial model Hessian, as in gradient descent methods.
However, in contrast to gradient descent methods, the metric then evolves according to the data 𝑠 (𝑘)

and 𝑦 (𝑘) acquired throughout the iterations.

(𝑖𝑖) Unfortunately, the convergence results for Algorithm 5.51 are not as rich as for other methods.

• One can show the local Q-superlinear convergence of 𝑥 (𝑘) to a point 𝑥∗ satisfying the second-
order sufficient optimality conditions (see Theorem 3.3), provided that 𝑥 (0) is sufficiently close

https://tinyurl.com/scoop-nlo 105

https://tinyurl.com/scoop-nlo

R. Herzog cbn

to 𝑥∗, the step sizes are fixed to 𝛼 (𝑘) = 1, and the initial Hessian 𝑀 is sufficiently close to
𝑓 ′′(𝑥∗).

• Global convergence can be proved under the assumption that the generalized condition numbers
of the inverse BFGS matrices 𝐵 (𝑘)BFGS w.r.t. 𝑀

−1 remains bounded. This is equivalent to the
generalized condition numbers of the (non-inverse) BFGS matrices 𝐻 (𝑘)BFGS w.r.t. 𝑀 remaining
bounded. (Quiz 5.9: Can you see why this is equivalent?)

Under this assumption, Lemma 5.5 ensures that the angle condition holds, and thus the search
directions are admissible (Lemma 5.4). Moreover, under the assumption that the sublevel set
M𝑓 (𝑥 (0)) B {𝑥 ∈ R𝑛 | 𝑓 (𝑥) ≤ 𝑓 (𝑥 (0))} is compact, the Wolfe-Powell step sizes can be shown
to be admissible (Ulbrich, Ulbrich, 2012, Satz 9.5). The global convergence, in the sense that
every accumulation point of the sequence of iterates 𝑥 (𝑘) is a stationary point, then follows
from the global convergence theorem 5.9. See Ulbrich, Ulbrich, 2012, Satz 13.11 for details.

• Unfortunately, the boundedness of the (inverse) BFGS matrices’ generalized condition numbers
cannot be guaranteed a priori. One possible remedy is to introduce a generalized angle
condition such as

𝑓 ′(𝑥 (𝑘)) 𝑑 (𝑘) ≤ −min
{
𝜂, 𝜌 ∥𝑑 (𝑘)

𝐺
∥𝑝
𝑀

} ∥𝑑 (𝑘)
𝐺
∥𝑀 ∥𝑑 (𝑘) ∥𝑀 (5.27)

into Algorithm 5.51. Due to the estimate

−𝑓 ′(𝑥 (𝑘)) 𝑑 ≥ 2
√
𝜅

𝜅 + 1 ∥𝑑
(𝑘)
𝐺
∥𝑀 ∥𝑑 ∥𝑀

for all 𝑑 ∈ R𝑛 that we have from Lemma 5.5, a violation of condition (5.27) either means
that the residual norm ∥𝑑 (𝑘)

𝐺
∥𝑀 = ∥ 𝑓 ′(𝑥 (𝑘))∥𝑀−1 has already become small (so that further

convergence can be entrusted to the local convergence result), or it otherwise indicates run-away
generalized condition numbers of 𝐻 (𝑘) w.r.t. 𝑀 .37

When (5.27) is violated, we might reset the matrix to 𝐵 (𝑘)BFGS B 𝐵 (0)BFGS, discard and re-evaluate
the current direction 𝑑 (𝑘) , effectively resorting to a steepest descent step. Under these modifi-
cations of Algorithm 5.51, the a priori assumption on the boundedness of the (inverse) BFGS
matrices can be dropped in the proof of global convergence. For further details, see Geiger,
Kanzow, 1999, S.167 and the reference Kosmol, 1989, Kapitel 11.5 they are citing.

(𝑖𝑖𝑖) In practice, Algorithm 5.51 often exhibits Q-superlinear convergence. This is remarkable since only
first-order derivatives of 𝑓 are being used.

Limited-Memory BFGS Method

While the quasi-Newton methods we discussed so far successfully avoid second-order derivatives of
the objective and replace the solutions of linear systems by matrix-vector products to obtain the search

37Notice that 𝜅 ↦→ 2
√
𝜅

𝜅+1 is monotone decreasing and it goes to 0 if and only if 𝜅 →∞.

106 https://tinyurl.com/scoop-nlo 2023-05-28

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

directions, one disadvantage remains. That issue is the high memory requirement to store the inverse
quasi-Newton matrices 𝐵 (𝑘) (or their non-inverted counterparts 𝐻 (𝑘)) when the problem dimension 𝑛
is not small. For instance, a problem of the (still moderate) dimension 𝑛 = 10 000 already requires

𝑛 (𝑛 + 1)
2 8 B︸︷︷︸

storage for one double precision number

≈ 381MiB

of storage, while a problem of size 𝑛 = 100 000 requires about 37GiB.38!

Typically (but not always), the true Hessian 𝑓 ′′ is sparse for large-scale problems. By contrast, the quasi-
Newton matrices 𝐻 (𝑘) and their inverses 𝐵 (𝑘) are always fully populated, although their difference to
their initial values 𝐻 (𝑘) and 𝐵 (𝑘) is at most of rank 2𝑘 .

Two ideas can be used to solve the storage issue.

(1) Instead of storing the matrices 𝐵 (𝑘) entry by entry, we only store the pairs of vectors

(𝑦 (0) , 𝑠 (0)), (𝑦 (1) , 𝑠 (1)), . . .
As we will see, this is sufficient to evalulate the matrix-vector products 𝐵 (𝑘)𝑟 .

(2) The above modification still requires us to store two additional vectors of length 𝑛 per iteration.
We can, however, limit the storage by keeping only the most recent 𝑚 pairs of vectors and
dropping the previous.

The combination of these ideas leads to limited-memory quasi-Newtonmethods. While the limited-
memory idea is generally applicable to all low-rank quasi-Newton update formulas, we concentrate
here on the inverse BFGS update. We start by reviewing the respective update formula (5.60), which
leads to the recursion

𝐵 (𝑘+1)BFGS = (𝑉 (𝑘))ᵀ𝐵 (𝑘)BFGS𝑉
(𝑘) + 𝜌 (𝑘)𝑠 (𝑘) (𝑠 (𝑘))ᵀ,

where 𝜌 (𝑘) B 1/(𝑦 (𝑘))ᵀ𝑠 (𝑘) and 𝑉 (𝑘) B Id − 𝜌 (𝑘)𝑦 (𝑘) (𝑠 (𝑘))ᵀ. Working out the first few elements of
this sequence, we obtain

𝐵 (1)BFGS = (𝑉 (0))ᵀ𝐵
(0)
BFGS𝑉

(0) + 𝜌 (0)𝑠 (0) (𝑠 (0))ᵀ

𝐵 (2)BFGS = (𝑉 (1))ᵀ𝐵
(1)
BFGS𝑉

(1) + 𝜌 (1)𝑠 (1) (𝑠 (1))ᵀ

= (𝑉 (1))ᵀ(𝑉 (0))ᵀ𝐵 (0)BFGS𝑉
(0)𝑉 (1) + 𝜌 (0) (𝑉 (1))ᵀ𝑠 (0) (𝑠 (0))ᵀ𝑉 (1) + 𝜌 (1)𝑠 (1) (𝑠 (1))ᵀ

etc. We only need to evaluate matrix-vector products such as

𝐵 (2)BFGS𝑟 = (𝑉 (1))ᵀ(𝑉 (0))ᵀ𝐵
(0)
BFGS𝑉

(0)𝑉 (1)𝑟 + 𝜌 (0) (𝑉 (1))ᵀ𝑠 (0) (𝑠 (0))ᵀ𝑉 (1)𝑟 + 𝜌 (1)𝑠 (1) (𝑠 (1))ᵀ𝑟,
which can be realized efficiently as follows.

Algorithm 5.53 (Recursive evaluation of 𝐵 (𝑘)BFGS 𝑟).
38A Mebibyte (MiB) are 220 bytes, a Gibibyte (GiB) are 230 bytes. The prefixes “mebi” and gibi replace the former “mega”

und “giga”, which should however be reserved to mean 106 and 109, reespectively.

https://tinyurl.com/scoop-nlo 107

https://en.wikipedia.org/wiki/Mebibyte
https://en.wikipedia.org/wiki/Gibibyte
https://tinyurl.com/scoop-nlo

R. Herzog cbn

Input: initial matrix 𝐵 (0)BFGS (or matrix-vector products with 𝐵 (0)BFGS)
Input: pairs of vectors (𝑦 (𝑖) , 𝑠 (𝑖)) and scalars 𝜌 (𝑖) = 1/(𝑦 (𝑖))ᵀ𝑠 (𝑖) for 𝑖 = 0, . . . , 𝑘 − 1
Input: vector 𝑟 ∈ R𝑛
Output: 𝐵 (𝑘)BFGS 𝑟
1: for 𝑖 B 𝑘 − 1, 𝑘 − 2, . . . , 0 do
2: Set 𝛼 (𝑖) B 𝜌 (𝑖) (𝑠 (𝑖))ᵀ𝑟
3: Set 𝑟 B 𝑟 − 𝛼 (𝑖)𝑦 (𝑖)
4: end for // 𝑟 { 𝑉 (0)𝑉 (1) · · ·𝑉 (𝑘−1)𝑟
5: Set 𝑑 B 𝐵 (0)BFGS𝑟
6: for 𝑖 B 0, 1, . . . , 𝑘 − 1 do
7: Set 𝛽 (𝑖) B 𝜌 (𝑖) (𝑦 (𝑖))ᵀ𝑑
8: Set 𝑑 B 𝑑 + (𝛼 (𝑖) − 𝛽 (𝑖)) 𝑠 (𝑖)
9: end for
10: return 𝑑 // 𝑑 = 𝐵 (𝑘)BFGS𝑟

Remark 5.54 (on Algorithm 5.53).
(𝑖) We do not need 𝐵 (0)BFGS as a matrix since only matrix-vector products with 𝐵 (0)BFGS are required.

(𝑖𝑖) Using Algorithm 5.53, it is even possible to change the inverse base metric 𝐵 (0)BFGS during the run of
the quasi-Newton algorithm. This is impossible when the update formula (5.60) is used to explicitly
form the matrices 𝐵 (𝑘)BFGS.

We now come back to the second idea of limiting the storage of the pairs of vectors (𝑦 (𝑖) , 𝑠 (𝑖)) to the
𝑚 most recent ones.39 This idea is easily incorporated into Algorithm 5.53. The resulting update rule is
called the inverse limited-memory BFGS update rule or briefly, the (inverse) L-BFGS or (inverse)
LM-BFGS rule.

Algorithm 5.55 (Recursive evaluation of 𝐵 (𝑘)LM-BFGS 𝑟).
Input: initial matrix 𝐵 (0)BFGS (or matrix-vector products with 𝐵 (0)BFGS)
Input: pairs of vectors (𝑦 (𝑖) , 𝑠 (𝑖)) and scalars 𝜌 (𝑖) = 1/(𝑦 (𝑖))ᵀ𝑠 (𝑖) for 𝑖 = 𝑘 −𝑚, . . . , 𝑘 − 1
Input: vector 𝑟 ∈ R𝑛
Output: 𝐵 (𝑘)BFGS 𝑟
1: for 𝑖 B 𝑘 − 1, 𝑘 − 2, . . . , 𝑘 −𝑚 do
2: Set 𝛼 (𝑖) B 𝜌 (𝑖) (𝑠 (𝑖))ᵀ𝑟
3: Set 𝑟 B 𝑟 − 𝛼 (𝑖)𝑦 (𝑖)
4: end for // 𝑟 { 𝑉 (𝑘−𝑚)𝑉 (𝑘−𝑚−1) · · ·𝑉 (𝑘−1)𝑟
5: Set 𝑑 B 𝐵 (0)BFGS𝑟
6: for 𝑖 B 𝑘 −𝑚,𝑘 −𝑚 − 1, . . . , 𝑘 − 1 do
7: Set 𝛽 (𝑖) B 𝜌 (𝑖) (𝑦 (𝑖))ᵀ𝑑
8: Set 𝑑 B 𝑑 + (𝛼 (𝑖) − 𝛽 (𝑖)) 𝑠 (𝑖)
9: end for
10: return 𝑑 // 𝑑 = 𝐵 (𝑘)BFGS𝑟

39We do not relabel the vectors.

108 https://tinyurl.com/scoop-nlo 2023-05-28

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

We conclude with some remarks on limited-memory quasi-Newton methods.

Remark 5.56 (on limited-memory quasi-Newton methods).
(𝑖) During the first iterations, the number of vectors pairs is gradually increased until the desired

size𝑚max of the storage window is reached. That is, we use𝑚 = min{𝑘,𝑚max}. Typically, 3 ≤
𝑚max ≤ 10 holds.

(𝑖𝑖) The modifications in Algorithm 5.51 in order to use the inverse limited-memory BFGS update rather
than the full (unlimited) inverse BFGS update are minor. In Line 7, we obtain the quasi-Newton
direction by evaluating

𝑑 (𝑘) = −𝐵 (𝑘)LM-BFGS ∇𝑓 (𝑥 (𝑘))
using Algorithm 5.55. The evaluation of the next inverse model Hessian 𝐵 (𝑘+1)LM-BFGS in Line 16 is
replaced by adding the most recent vector pair (𝑦 (𝑘) , 𝑠 (𝑘)) to the storage.

(𝑖𝑖𝑖) We cannot expect a limited-memory quasi-Newton method to converge Q-superlinearly in general.

§ 5.8 Nonlinear Conjugate Gradient Methods

Let us recap the contents of § 5 up to here. After introducing the general framework of line search
methods, we discussed a first example, the gradient descent method, in § 5.3. This makes do with
first-order derivatives but does not yield Q-superlinear convergence in general. This led us to consider
(inexact) Newton methods (§ 5.4, § 5.6), which achieve Q-superlinear or even Q-quadratic convergence
but are more expensive due to the use of second-order derivatives and solving (albeit only inexactly) a
linear systems with 𝑓 ′′(𝑥 (𝑘)) in each iteration. As a compromise, we then introduced quasi-Newton
methods (§ 5.7), which make do with first-order derivatives and are capable of achieving Q-superlinear
convergence.

An alternative class of methods which also works with first-order derivatives only is based on the
extension of the conjugate gradient (CG) method (§ 4.6) to nonlinear objective functions. These
methods are known as nonlinear conjugate gradient methods.

The essential characteristics of the CG method for quadratic objectives were:

(1) Every new search direction 𝑑 (𝑘+1) was obtained from the current search direction 𝑑 (𝑘) and the
direction of steepest descent, by forming a linear combination such that 𝑑 (𝑘) and 𝑑 (𝑘+1) became
𝐴-orthogonal. The 𝐴-orthogonality with all previous search directions was automatic.

(2) The Cauchy step size (exact minimizing step size) was taken along every search direction. This
was possible due to the objective being a quadratic polynomial.

For nonlinear CG methods, we need to observe the following in comparison.

(1) The Cauchy step size is no longer available. Instead, a line search procedure is used, which is
often a strong Wolfe-Powell line search.

https://tinyurl.com/scoop-nlo 109

https://tinyurl.com/scoop-nlo

R. Herzog cbn

(2) We continue to denote the residual as 𝑟 (𝑘) B ∇𝑓 (𝑥 (𝑘)).

(3) Since the Hessian of the objective is no longer a constant, s. p. d. matrix 𝐴, the requirement
of 𝐴-conjugate (𝐴-orthogonal) search directions does not make sense anymore. However, one
maintains the construction principle that every new search direction 𝑑 (𝑘+1) is obtained from a
linear combination of the current search direction 𝑑 (𝑘) and the direction of steepest descent:

𝑑 (0) B −𝑀−1𝑟 (0) for 𝑘 = 0,
𝑑 (𝑘) B −𝑀−1𝑟 (𝑘) + 𝛽 (𝑘) 𝑑 (𝑘−1) for 𝑘 ≥ 1.

(4.23)

The coefficients 𝛽 are obtained using any of the formulas in (4.24’), which are no longer equivalent
for nonlinear CG methods but yield distinct methods; see Table 5.1.

Algorithm 5.57 (Generic nonlinear conjugate gradient method; compare Algorithm 4.17).
Input: initial guess 𝑥 (0) ∈ R𝑛
Input: right-hand side 𝑏 ∈ R𝑛
Input: s. p. d. matrix𝑀 (or matrix-vector products with𝑀−1)
Output: approximately stationary point of (UP)
1: Set 𝑘 B 0
2: Set 𝑟 (0) B ∇𝑓 (𝑥 (0)) // evaluate the initial residual
3: Set 𝑑 (0) B −𝑀−1𝑟 (0) // evaluate the initial negative𝑀-gradient
4: Set 𝛿 (0) B −(𝑟 (0))ᵀ𝑑 (0) // 𝛿 (0) = ∥∇𝑀 𝑓 (𝑥 (0))∥2𝑀
5: while stopping criterion not met do
6: Determine a step size 𝛼 (𝑘) > 0 from an appropriate line search procedure
7: // the details depend on the type of method (rule for choosing 𝛽)
8: Set 𝑥 (𝑘+1) B 𝑥 (𝑘) + 𝛼 (𝑘)𝑑 (𝑘)
9: Set 𝑟 (𝑘+1) B ∇𝑓 (𝑥 (𝑘+1)) // updating the residual is not possible
10: Set 𝑑 (𝑘+1) B −𝑀−1𝑟𝑘+1 // evaluate the negative𝑀-gradient
11: Set 𝛿𝑘+1 B −(𝑟𝑘+1)ᵀ𝑑 (𝑘+1) // 𝛿 (𝑘+1) = ∥∇𝑀 𝑓 (𝑥 (𝑘+1))∥2𝑀 = ∥𝑟 (𝑘+1) ∥2

𝑀−1

12: Set 𝑦 (𝑘) B 𝑟 (𝑘+1) − 𝑟 (𝑘) // some nonlinear CG methods use this
13: Determine 𝛽 (𝑘+1) // different nonlinear CG methods differ here
14: Set 𝑑 (𝑘+1) B 𝑑 (𝑘+1) + 𝛽 (𝑘+1)𝑑 (𝑘) // obtain the new search direction
15: Set 𝑘 B 𝑘 + 1
16: end while
17: return 𝑥 (𝑘)

Different nonlinear CG methods differ with respect to the rule for choosing 𝛽 (𝑘+1) . Altogether, we had
seen in (4.24’) the two expressions

(𝑟 (𝑘+1) − 𝑟 (𝑘))ᵀ𝑀−1 𝑟 (𝑘+1) and (𝑟 (𝑘+1))ᵀ𝑀−1 𝑟 (𝑘+1) (5.62)

for the numerator and the three expressions

(𝑟 (𝑘+1) − 𝑟 (𝑘))ᵀ 𝑑 (𝑘) , −(𝑟 (𝑘))ᵀ 𝑑 (𝑘) and (𝑟 (𝑘))ᵀ𝑀−1 𝑟 (𝑘) (5.63)

110 https://tinyurl.com/scoop-nlo 2023-05-28

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

for the denominator.40 All six combinations (as well as additional variants) appear in the literature
and yield meaningful methods. Some prominent choices are summarized in Table 5.1. Some formulas
use the abbreviation 𝑦 (𝑘) = ∇𝑓 (𝑥 (𝑘+1)) − ∇𝑓 (𝑥 (𝑘)) = 𝑟 (𝑘+1) − 𝑟 (𝑘) as in quasi-Newton methods.

The line search procedure should yield an approximately stationary point of the line search function
𝜑 (𝛼) = 𝑓 (𝑥 (𝑘) + 𝛼 𝑑 (𝑘)). Typically, the strong Wolfe-Powell conditions are required for this purpose
with a small curvature parameter such as 𝜏 = 10−1 or 𝜏 = 10−2. In the (theoretical) case of an
exact line search, yielding an exactly stationary step size 𝛼 (𝑘) of the line search function, we have
(𝑟 (𝑘+1))ᵀ𝑑 (𝑘) = 𝑓 ′(𝑥 (𝑘+1)) 𝑑 (𝑘) = 𝜑 ′(𝛼 (𝑘)) = 0. Moreover, we also have (𝑟 (𝑘))ᵀ𝑑 (𝑘−1) = 0 from the
previous iteration, and therefore

(𝑟 (𝑘+1) − 𝑟 (𝑘))ᵀ 𝑑 (𝑘) = −(𝑟 (𝑘))ᵀ 𝑑 (𝑘) = (𝑟 (𝑘))ᵀ (𝑀−1 𝑟 (𝑘) − 𝛽 (𝑘) 𝑑 (𝑘−1)) = (𝑟 (𝑘))ᵀ𝑀−1 𝑟 (𝑘) .

In this case, we see that the three different expressions in (5.63) for the denominator of 𝛽 (𝑘+1) coincide.

Convergence proofs for nonlinear CGmethods are siginificantly more technical than for other methods,
and we do not go into the details. It can be generally stated that the methods using (𝑟 (𝑘))ᵀ𝑀−1 𝑟 (𝑘) as
numerator admit better convergence theories but that the methods using (𝑟 (𝑘) − 𝑟 (𝑘−1))ᵀ𝑀−1 𝑟 (𝑘) are
often faster in practice.

As a stopping criterion we can use again a relative and/or absolute criterion involving 𝑟 (𝑘) = ∇𝑓 (𝑥 (𝑘)),
see (4.14).

End of Week 6

40The expression −(𝑟 (𝑘))ᵀ 𝑑 (𝑘) was not explicitly given but can be derived immediately from (4.22), which implies (𝑟 (𝑘+1) −
𝑟 (𝑘))ᵀ 𝑑 (𝑘) = −(𝑟 (𝑘))ᵀ 𝑑 (𝑘) .

https://tinyurl.com/scoop-nlo 111

https://tinyurl.com/scoop-nlo

R. Herzog cbn

N
am

e
Choice

of
𝛽 (𝑘+1)

Rem
ark

H
estenes–Stiefel(1952)

𝛽 (𝑘+1)
H
S

=
(𝑦
(𝑘)) ᵀ𝑀

−1𝑟 (𝑘+1)

(𝑦
(𝑘)) ᵀ𝑑

(𝑘)

Fletcher–Reeves(1964)
𝛽 (𝑘+1)
FR

=
∥𝑟 (𝑘+1)∥ 2𝑀

−1

∥𝑟 (𝑘)∥ 2𝑀
−1

strong
W
olfe-Pow

ellconditions(5.12),(5.18)
w
ith

0
<
𝜎
<
𝜏
<
1/2

Polak–Ribière
(1969)

𝛽 (𝑘+1)
PR

=
(𝑦
(𝑘)) ᵀ𝑀

−1𝑟 (𝑘+1)

∥𝑟 (𝑘)∥ 2𝑀
−1

no
descent

guaranteed,
therefore

often
𝛽 (𝑘+1)
PR+

B

m
ax {0,𝛽 (𝑘+1)

PR },w
here

𝛽 (𝑘+1)
PR+

=
0
=̂
gradientdescentstep

Pow
ell(1985)

𝛽 (𝑘+1)
PR+

=
m
ax {0,𝛽 (𝑘+1)

PR }
refinem

ent
of

the
strong

W
olfe-Pow

ellconditions,see
Gilbert,N

ocedal,1992,eq.(4.1)and
section

6

Fletcher(1987)
𝛽 (𝑘+1)
F

=
∥𝑟 (𝑘+1)∥ 2𝑀

−1

−(𝑟 (𝑘)) ᵀ𝑑
(𝑘)

Liu–Storey
(1991)

𝛽 (𝑘+1)
LS

=
(𝑦
(𝑘)) ᵀ𝑀

−1𝑟 (𝑘+1)

−(𝑟 (𝑘)) ᵀ𝑑
(𝑘)

Gilbert–N
ocedal(1992)

𝛽 (𝑘+1)
GN

= −
𝛽 (𝑘+1)
FR

,
if
𝛽 (𝑘+1)
PR

<
−
𝛽 (𝑘+1)
FR

𝛽 (𝑘+1)
PR

,
if|𝛽 (𝑘+1)

PR
|≤

𝛽 (𝑘+1)
FR

𝛽 (𝑘+1)
FR

,
if
𝛽 (𝑘+1)
PR

>
𝛽 (𝑘+1)
FR

strong
W
olfe-Pow

ellconditions(5.12),(5.18)
w
ith

0
<
𝜎
<
𝜏
<
1/2

D
ai–Yuan

(1999)
𝛽 (𝑘+1)
DY

=
∥𝑟 (𝑘+1)∥ 2𝑀

−1

(𝑦
(𝑘)) ᵀ𝑑

(𝑘)

H
ager–Zhang

(2005)
𝛽 (𝑘+1)
H
Z

= (𝑀
−1𝑦

(𝑘)−
2
𝑑
(𝑘)
∥𝑦
(𝑘)∥ 2𝑀

−1

(𝑦
(𝑘)) ᵀ𝑑

(𝑘))ᵀ
𝑟 (𝑘+1)

(𝑦
(𝑘)) ᵀ𝑑

(𝑘)
W
olfe-Pow

ellconditions(5.12),(5.17)
w
ith

0
<
𝜎
<
𝜏
<
1

Table 5.1: Some common nonlinear conjugate gradient methods.

112 https://tinyurl.com/scoop-nlo 2023-05-28

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

§ 6 Trust-Region Methods for Nonlinear Unconstrained Problems

The line search methods from § 5 proceed by first determining a search direction 𝑑 (𝑘) , by (inexactly)
minimizing a quadratic model of the objective

𝑞 (𝑘) (𝑑) = 𝑓 (𝑥 (𝑘)) + 𝑓 ′(𝑥 (𝑘)) 𝑑 + 1
2 𝑑
ᵀ𝐻 (𝑘)𝑑 (5.2)

or by (inexactly) solving the linear system

𝐻 (𝑘)𝑑 (𝑘) = −∇𝑓 (𝑥 (𝑘)) . (5.4)

Subsequently, a suitable step size 𝛼 (𝑘) > 0 is determined and the iterate is updated according to

𝑥 (𝑘+1) B 𝑥 (𝑘) + 𝛼 (𝑘) 𝑑 (𝑘)︸ ︷︷ ︸
𝑠 (𝑘)

.

Trust-region methods, by contrast, determine the direction and the step size simultaneously. They
generate the combined step 𝑠 (𝑘) as a (usually inexact) solution of the trust-region subproblem

Minimize 𝑞 (𝑘) (𝑠) = 𝑓 (𝑥 (𝑘)) + 𝑓 ′(𝑥 (𝑘)) 𝑠 + 1
2 𝑠
ᵀ𝐻 (𝑘)𝑠, where 𝑠 ∈ R𝑛

subject to ∥𝑠 ∥𝑀 ≤ Δ(𝑘) .
(6.1)

As for line search methods, 𝐻 (𝑘) is the model Hessian, which we require to be symmetric but not
necessarily positive definite. The quantity Δ(𝑘) > 0 is the trust-region radius governing the trust
region {

𝑠 ∈ R𝑛
�� ∥𝑠 ∥𝑀 ≤ Δ(𝑘)

}
attached to the quadratic model.

Note: At 𝑠 = 0, the value of the model 𝑞 (𝑘) as well as its derivative agree with those of 𝑠 ↦→ 𝑓 (𝑥 (𝑘) + 𝑠).
In case of the Newton model (𝐻 (𝑘) = 𝑓 ′′(𝑥 (𝑘))), the second derivatives agree as well. Either way,
for small values of ∥𝑠 ∥𝑀 , the model 𝑞 (𝑘) will be in good agreement with 𝑠 ↦→ 𝑓 (𝑥 (𝑘) + 𝑠) by Taylor’s
theorem 2.3.

Since the trust region is a compact set and the objective is continuous (in fact, infinitely smooth),
problem (6.1) always has a global minimizer even when 𝐻 (𝑘) is not positive definite.

Analogously as in line search methods, trust-region algorithms need to monitor the quality of the
step 𝑠 (𝑘) , in order to obtain sufficient descent. In fact, we should rather speak of the step proposal 𝑠 (𝑘)
because trust-region methods may reject the proposal. The basis of evaluation of the quality of a
tentative step 𝑠 (𝑘) at the point 𝑥 (𝑘) is the comparison of the actual reduction in objective values

ared(𝑥 (𝑘) ; 𝑠 (𝑘)) B 𝑓 (𝑥 (𝑘)) − 𝑓 (𝑥 (𝑘) + 𝑠 (𝑘)) (6.2)

to the predicted reduction based on the model 𝑞 (𝑘) associated with the iterate 𝑥 (𝑘)

pred(𝑥 (𝑘) ; 𝑠 (𝑘)) B 𝑞 (𝑘) (0) − 𝑞 (𝑘) (𝑠 (𝑘))
= 𝑓 (𝑥 (𝑘)) − 𝑞 (𝑘) (𝑠 (𝑘))
= −𝑓 ′(𝑥 (𝑘)) 𝑠 (𝑘) − 1

2 (𝑠
(𝑘))ᵀ𝐻 (𝑘)𝑠 (𝑘) . (6.3)

https://tinyurl.com/scoop-nlo 113

https://tinyurl.com/scoop-nlo

R. Herzog cbn

This comparison is achieved in terms of the ratio of these two quantities,

𝜌 (𝑥 (𝑘) ; 𝑠 (𝑘)) B ared(𝑥 (𝑘) ; 𝑠 (𝑘))
pred(𝑥 (𝑘) ; 𝑠 (𝑘)) . (6.4)

In our algorithms, we are going to produce only proposals satisfying

pred(𝑥 (𝑘) ; 𝑠 (𝑘)) > 0, (6.5)

i. e., for which the model predicts a decrease. The actural decrease (6.2), however, can take either
sign.

Suppose now that 𝑠 (𝑘) is an (inexact) solution of the trust-region subproblem (6.1). Based on the value
of 𝜌 (𝑥 (𝑘) ; 𝑠 (𝑘)), two decisions need to be taken:

• whether to accept or reject the step proposal 𝑠 (𝑘) ,
• how to choose the next the next trust-region radius.

These decisions usually depend on two algorithmic parameters 0 < 𝜂1 < 𝜂2 < 1:

(1) In case 𝜌 (𝑥 (𝑘) ; 𝑠 (𝑘)) < 𝜂1, the step proposal 𝑠 (𝑘) is considered unsatisfactory. The reason for this
must be that the model 𝑞 (𝑘) does not coincide well with the true objective function 𝑓 within the
current trust region. In other words, the current trust region is too large.

We therefore reject and discard the step by setting 𝑥 (𝑘+1) B 𝑥 (𝑘) . We label this iterate unsuc-
cessful.41 We also choose a new trust-region radius Δ(𝑘+1) < Δ(𝑘) . In fact, the new trust-region
radius should even satisfy Δ(𝑘+1) < ∥𝑠 (𝑘) ∥𝑀 in order to avoid computing the same unsuccessful
step proposal again in the subsequent iteration.

(2) In case 𝜌 (𝑥 (𝑘) ; 𝑠 (𝑘)) ≥ 𝜂1, the step proposal 𝑠 (𝑘) is considered satisfactory and we accept it by
setting 𝑥 (𝑘+1) B 𝑥 (𝑘) + 𝑠 (𝑘) . The step is labeled successful. The trust region radius Δ(𝑘+1) for the
subsequent step is chosen as follows.

(a) In case 𝜌 (𝑥 (𝑘) ; 𝑠 (𝑘)) ≥ 𝜂2, the coincidence between the predicted and actual reductions is
considered exceptionally good. We can therefore allow the trust region for the next step to
grow. However, this is sensible only if the current step 𝑠 (𝑘) actually did lie on the boundary
of the trust region, i. e., when ∥𝑠 (𝑘) ∥𝑀 = Δ(𝑘) holds.

(b) Otherwise we keep the trust-region radius: Δ(𝑘+1) B Δ(𝑘) .

We may call 𝜂1 the acceptance threshold and 𝜂2 the quality threshold.

The above guidelines lead to the following generic trust-region method (Algorithm 6.1).

Algorithm 6.1 (Generic trust-region method).
Input: initial guess 𝑥 (0) ∈ R𝑛
41We still count this as an iterate since essentially the same amount of work has been carried out as in a successful iterate.

114 https://tinyurl.com/scoop-nlo 2023-05-28

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

Input: routine to evaluate 𝑓 and 𝑓 ′ (or ∇𝑓)
Input: routine to construct the model Hessians 𝐻 (𝑘)

Input: s. p. d. matrix𝑀 (or matrix-vector products with𝑀−1)
Input: initial trust-region radius Δ(0) > 0
Input: trust-region step quality parameters 0 < 𝜂1 < 𝜂2 < 1
Input: trust-region growth parameters 0 < 𝛾1 < 1 < 𝛾2
Output: approximately stationary point of (UP)
1: Set 𝑘 B 0
2: Set 𝑓 (0) B 𝑓 (𝑥 (0)) // evaluate the initial objective value
3: while stopping criterion not met do
4: Determine a step proposal 𝑠 (𝑘) by an inexact solution of the trust-region subproblem (6.1)
5: Evaluate the ratio 𝜌 (𝑥 (𝑘) ; 𝑠 (𝑘)) according to (6.4)
6: if 𝜌 (𝑥 (𝑘) ; 𝑠 (𝑘)) ≥ 𝜂1 then // satisfactory step proposal
7: Set 𝑥 (𝑘+1) B 𝑥 (𝑘) + 𝑠 (𝑘) // accept the step proposal
8: Set 𝑓 (𝑘+1) B 𝑓 (𝑥 (𝑘+1))
9: if 𝜌 (𝑥 (𝑘) ; 𝑠 (𝑘)) ≥ 𝜂2 and ∥𝑠 (𝑘) ∥𝑀 = Δ(𝑘) then
10: // exceptionally good step proposal and trust region too small
11: Set Δ(𝑘+1) B 𝛾2 Δ

(𝑘) // grow the trust region
12: else // satisfactory but not exceptionally good step, or trust region sufficiently large
13: Set Δ(𝑘+1) B Δ(𝑘) // keep the trust region
14: end if
15: else // unsatisfactory step proposal
16: Set 𝑥 (𝑘+1) B 𝑥 (𝑘) // reject the step proposal
17: Set 𝑓 (𝑘+1) B 𝑓 (𝑘)

18: Set Δ(𝑘+1) B 𝛾1 ∥𝑠 (𝑘) ∥𝑀 // shrink the trust region
19: end if
20: Set 𝑘 B 𝑘 + 1
21: end while
22: return 𝑥 (𝑘)

Remark 6.2 (on Algorithm 6.1). The evaluation of the ratio 𝜌 (𝑥 (𝑘) ; 𝑠 (𝑘)) requires

• one function evaluation 𝑓 (𝑥 (𝑘) + 𝑠 (𝑘)) and
• one model evaluation 𝑞 (𝑘) (𝑠 (𝑘)) = 𝑓 (𝑥 (𝑘)) + 𝑓 ′(𝑥 (𝑘)) 𝑠 (𝑘) + 1

2 (𝑠 (𝑘))ᵀ𝐻 (𝑘)𝑠 (𝑘)

per iteration. If the step proposal is accepted, then 𝑓 (𝑥 (𝑘) +𝑠 (𝑘)) becomes 𝑓 (𝑥 (𝑘+1)), so that really only one
evaluation of the objective 𝑓 is required per iteration. The evaluation of 𝑞 (𝑘) (𝑠 (𝑘)) is usually a by-product
of the computation of the (inexact) solution of the trust-region subproblem (6.1).

In the remainder of this section we will consider the following questions.

(1) Which requirements do we have to impose on Algorithm 6.1, in particular concerning the choice
of model Hessians 𝐻 (𝑘) and the inexactness of the trust-region subproblem solves, in order to
obtain global convergence? (§ 6.1)

(2) How can we obtain fast local convergence? (§ 6.2)

https://tinyurl.com/scoop-nlo 115

https://tinyurl.com/scoop-nlo

R. Herzog cbn

(3) What is a good algorithmic approach to solving the trust-region subproblems (6.1) with adjustable
accuracy? (§ 6.3)

Assumption 6.3. Throughout § 6 we are assuming that 𝑓 : R𝑛 → R is a 𝐶1 function.

§ 6.1 Global Convergence

In line search methods, we used the angle condition to compare candidate search directions, such
as the Newton direction in Algorithm 5.30 or the inexact Newton direction in Algorithm 5.44, to a
reference direction. The steepest descent direction 𝑑 (𝑘)

𝐺
served as that reference and simultaneously as

the fallback search direction. This was essential in establishing the global convergence.

A similar idea for trust-region methods uses as reference the Cauchy point or Cauchy step 𝑠𝐶 . The
Cauchy point is defined as the unique solution of the trust-region subproblem (6.1), but restricted to
the subspace generated by the steepest descent direction. Dropping the iteration index for the time
being, the Cauchy point problem reads

Minimize 𝑞(𝑠) = 𝑓 (𝑥) + 𝑓 ′(𝑥) 𝑠 + 1
2 𝑠
ᵀ𝐻𝑠, where 𝑠 ∈ R𝑛, 𝜏 ∈ R

subject to ∥𝑠 ∥𝑀 ≤ Δ(𝑘)

and 𝑠 = −𝜏 ∇𝑀 𝑓 (𝑥) .
(6.6)

We assume 𝑓 ′(𝑥) ≠ 0. (Quiz 6.1: Why?) Abbreviating

𝑔 B ∇𝑀 𝑓 (𝑥)

and reducing the problem to the variable 𝜏 by plugging in the constraint 𝑠 = −𝜏 ∇𝑀 𝑓 (𝑥), we obtain
the reduced Cauchy point problem

Minimize 𝑞(−𝜏 𝑔) = 𝑓 (𝑥) − 𝜏 ∥𝑔∥2𝑀 +
𝜏2

2 𝑔
ᵀ𝐻 𝑔, where 𝜏 ∈ R

subject to |𝜏 | ≤ Δ

∥𝑔∥𝑀 .
(6.7)

This is the minimization of a univariate quadratic polynomial over a compact interval that is symmetric
about 0. The solution of this problem is given in the following lemma.

Lemma 6.4 (Evaluation of the Cauchy point). Suppose that 𝑔 ≠ 0 and Δ ≥ 0 hold. Then the unique
solution 𝑠𝐶 = −𝜏𝐶 𝑔 of (6.10), respectively the unique solution 𝜏𝐶 of the reduced problem (6.7), is given by

𝜏𝐶 =

min

{ ∥𝑔∥2
𝑀

𝑔ᵀ𝐻 𝑔
,

Δ

∥𝑔∥𝑀
}
, if 𝑔ᵀ𝐻 𝑔 > 0,

Δ

∥𝑔∥𝑀 otherwise.
(6.8)

116 https://tinyurl.com/scoop-nlo 2023-05-28

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

Therefore, the decrease predicted by the model at the Cauchy point 𝑠𝐶 satisfies

pred(𝑥 ; 𝑠𝐶) = 𝑓 (𝑥) − 𝑞(𝑠𝐶)

≥ 1
2 ∥𝑔∥𝑀 min

{
Δ,

∥𝑔∥3
𝑀

max{0, 𝑔ᵀ𝐻 𝑔}
}

≥ 1
2 ∥𝑔∥𝑀 min

{
Δ,

∥𝑔∥𝑀
max{0, 𝜆max(𝐻 ;𝑀)}

}
, (6.9)

where we interpret
∥𝑔∥3

𝑀

0 and ∥𝑔∥𝑀0 as +∞.

Proof. We denote the objective in (6.7), which is a univariate quadratic polynomial, by

𝜑 (𝜏) B 𝑓 (𝑥) − 𝜏 ∥𝑔∥2𝑀 +
𝜏2

2 𝑔
ᵀ𝐻 𝑔.

For any 𝜏 ∈ R and 𝑠 = −𝜏 𝑔, we have

pred(𝑥 ; 𝑠) = 𝑓 (𝑥) − 𝑞(−𝜏 𝑔) = 𝑓 (𝑥) − 𝜑 (𝜏) = 𝜏 ∥𝑔∥2𝑀 −
𝜏2

2 𝑔
ᵀ𝐻 𝑔. (∗)

We need to distinguish two cases to find the optimal value for 𝜏 .

Case 1: 𝑔ᵀ𝐻 𝑔 > 0 (𝜑 is strongly convex)
The derivative of 𝜑 is equal to zero precisely at

𝜏∗ =
∥𝑔∥2

𝑀

𝑔ᵀ𝐻 𝑔
> 0.

In case this value is feasible, it is the unique solution of (6.7). Otherwise, due to 𝜑 ′(0) =

−𝜏 ∥𝑔∥2
𝑀

< 0, 𝜑 ′ is negative on the entire interval [0, Δ
∥𝑔∥𝑀], and therefore 𝜑 is decreasing on

this interval. Consequently, the maximal feasible value 𝜏 = Δ
∥𝑔∥𝑀 is the unique solution of (6.7).

To summarize this case:

𝜏𝐶 = min
{ ∥𝑔∥2

𝑀

𝑔ᵀ𝐻 𝑔
,

Δ

∥𝑔∥𝑀
}
.

In order to evaluate pred(𝑥 ; 𝑠𝐶), we obtain from (∗):

pred(𝑥 ; 𝑠𝐶) = 𝜏𝐶 ∥𝑔∥2𝑀 −
𝜏2
𝐶

2 𝑔ᵀ𝐻 𝑔

=

1
2
∥𝑔∥4

𝑀

𝑔ᵀ𝐻 𝑔 = 1
2 ∥𝑔∥𝑀

∥𝑔∥3
𝑀

max{0,𝑔ᵀ𝐻 𝑔} if 𝜏𝐶 =
∥𝑔∥2

𝑀

𝑔ᵀ𝐻 𝑔
≤ Δ

∥𝑔∥𝑀 ,

𝜏𝐶
[
∥𝑔∥2

𝑀
− 1

2

[
Δ
∥𝑔∥𝑀

]
𝑔ᵀ𝐻 𝑔

]
if 𝜏𝐶 =

Δ

∥𝑔∥𝑀 ≤
∥𝑔∥2

𝑀

𝑔ᵀ𝐻 𝑔
.

In the first case, (6.9) is satisfied since clearly

1
2 ∥𝑔∥𝑀

∥𝑔∥3
𝑀

max{0, 𝑔ᵀ𝐻 𝑔} ≥
1
2 ∥𝑔∥𝑀 min

{
Δ,

∥𝑔∥3
𝑀

max{0, 𝑔ᵀ𝐻 𝑔}
}

https://tinyurl.com/scoop-nlo 117

https://tinyurl.com/scoop-nlo

R. Herzog cbn

holds. Moreover, due to (2.12), we have 𝜆max(𝐻 ;𝑀) ≥ 𝑔ᵀ𝐻 𝑔
∥𝑔∥2

𝑀

> 0 and therefore

· · · ≥ 1
2 ∥𝑔∥𝑀 min

{
Δ,

∥𝑔∥𝑀
max{0, 𝜆max(𝐻 ;𝑀)}

}
.

In the second case, we have

𝜏𝐶
[
∥𝑔∥2𝑀 −

1
2

[Δ

∥𝑔∥𝑀
]
𝑔ᵀ𝐻 𝑔

]
≥ 𝜏𝐶

[
∥𝑔∥2𝑀 −

1
2

[∥𝑔∥2
𝑀

𝑔ᵀ𝐻 𝑔

]
𝑔ᵀ𝐻 𝑔

]
=

1
2 𝜏𝐶 ∥𝑔∥

2
𝑀

=
1
2 Δ ∥𝑔∥𝑀

≥ 1
2 ∥𝑔∥𝑀 min

{
Δ,

∥𝑔∥3
𝑀

max{0, 𝑔ᵀ𝐻 𝑔}
}

=
1
2 ∥𝑔∥𝑀 min

{
Δ,

∥𝑔∥𝑀
max{0, 𝜆max(𝐻 ;𝑀)}

}
,

so (6.9) also holds here.

Case 2: 𝑔ᵀ𝐻 𝑔 ≤ 0 (𝜑 is concave)
Since 𝜑 is now concave, the solution 𝜏𝐶 of (6.7) must lie on the boundary of the feasible interval.
In view of 𝜑 ′(0) = −𝜏 ∥𝑔∥2

𝑀
< 0, we have

𝜏𝐶 = + Δ

∥𝑔∥𝑀 .

Therefore, we obtain

pred(𝑥 ; 𝑠𝐶) = Δ ∥𝑔∥𝑀 + 1
2

[Δ

∥𝑔∥𝑀
]2 |𝑔ᵀ𝐻 𝑔|

≥ Δ ∥𝑔∥𝑀

≥ 1
2 ∥𝑔∥𝑀 min

{
Δ,

∥𝑔∥3
𝑀

max{0, 𝑔ᵀ𝐻 𝑔}
}

≥ 1
2 ∥𝑔∥𝑀 min

{
Δ, ∞}

=
1
2 ∥𝑔∥𝑀 Δ

≥ 1
2 ∥𝑔∥𝑀 min

{
Δ,

∥𝑔∥𝑀
max{0, 𝜆max(𝐻 ;𝑀)}

}
,

so (6.9) holds again. □

In order to formulate a condition on the step proposals 𝑠 (𝑘) that ensures the global convergence of the
general trust-region method (Algorithm 6.1), we compare

• the decrease in the current model pred(𝑥 (𝑘) ; 𝑠 (𝑘)) obtained by the proposed step 𝑠 (𝑘)
• with the decrease in the model pred(𝑥 (𝑘) ; 𝑠 (𝑘)

𝐶
) obtained by the Cauchy step 𝑠 (𝑘)

𝐶
.

118 https://tinyurl.com/scoop-nlo 2023-05-28

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

We require that 𝑠 (𝑘) realizes at least a fixed fraction of the decrease obtained by 𝑠 (𝑘)
𝐶

. In fact, it will be
sufficient that 𝑠 (𝑘) realizes a fixed fraction of the lower bound (6.9).

Definition 6.5 (Fraction of Cauchy decrease condition).
Consider the trust-region subproblem

Minimize 𝑞(𝑠) = 𝑓 (𝑥) + 𝑓 ′(𝑥) 𝑠 + 1
2 𝑠
ᵀ𝐻𝑠, where 𝑠 ∈ R𝑛

subject to ∥𝑠 ∥𝑀 ≤ Δ
(6.10)

with 𝑓 ′(𝑥) ≠ 0 and thus also 𝑔 B ∇𝑀 𝑓 (𝑥) ≠ 0. The Cauchy step for (6.10) is denoted by 𝑠𝐶 .

(𝑖) A vector 𝑠 ∈ R𝑛 satisfies the fraction of Cauchy decrease condition for (6.10) if there exists a
constant 𝐶 ∈ (0, 1] such that

pred(𝑥 ; 𝑠) ≥ 𝐶 pred(𝑥 ; 𝑠𝐶) (6.11)

holds.

(𝑖𝑖) A vector 𝑠 ∈ R𝑛 satisfies the weak fraction of Cauchy decrease condition for (6.10) if there
exists a constant 𝐶 ∈ (0, 1] such that

pred(𝑥 ; 𝑠) ≥ 𝐶 1
2 ∥𝑔∥𝑀 min

{
Δ,

∥𝑔∥𝑀
max{0, 𝜆max(𝐻 ;𝑀)}

}
(6.12)

holds.

Note: By (6.9), the fraction of Cauchy decrease condition (6.11) implies the weak fraction of Cauchy
decrease condition (6.12). Moreover, the weak fraction of Cauchy decrease condition (6.12) implies that
an accepted step size proposal satisfies

𝑓 (𝑥) − 𝑓 (𝑥 + 𝑠) = ared(𝑥 ; 𝑠)
= 𝜌 (𝑥 ; 𝑠) pred(𝑥 ; 𝑠) by definition of the ratio 𝜌 (·; ·)
≥ 𝜂1 pred(𝑥 ; 𝑠) since the step proposal was accepted
> 0 by (6.12).

In particular, any trust-region method that falls into the framework of Algorithm 6.1 is a descent
method.

Our proof of global convergence requires (roughly) the following auxiliary results to be shown:

(1) The weak fraction of Cauchy decrease condition implies that Algorithm 6.1 cannot get stuck in
an infinite sequence of consecutively rejected steps (Lemma 6.6 and Corollary 6.7).

(2) If the sequence of function values 𝑓 (𝑥 (𝑘)) is bounded below, then any subsequence of successful
steps, whose associated trust-region radii Δ(𝑘) sum up to∞, is a sequence of vanishing gradients
(Lemma 6.8).

https://tinyurl.com/scoop-nlo 119

https://tinyurl.com/scoop-nlo

R. Herzog cbn

We now show that for sufficiently small trust-region radius, step proposals satisfying the (weak)
fraction of Cauchy decrease condition will always be successful. This result even holds uniformly for
an entire class of trust-region subproblems.

Lemma 6.6 (Any acceptance threshold is achievable for small trust-region radius). Suppose that
𝑥 ∈ R𝑛 is a point satisfying 𝑓 ′(𝑥) ≠ 0. Suppose, moreover, that 𝜂1 ∈ (0, 1) and 𝐶 > 0 and 𝐻 > 0 are
given. Then there exist 𝛿 > 0 and Δ > 0 such that the following holds: for any trust-region subproblem

Minimize 𝑓 (𝑥) + 𝑓 ′(𝑥) 𝑠 + 1
2 𝑠
ᵀ𝐻𝑠, where 𝑠 ∈ R𝑛

subject to ∥𝑠 ∥𝑀 ≤ Δ

with data 𝑥 ∈ 𝐵𝑀
𝛿
(𝑥) and Δ ∈ (0,Δ] and 𝐻 symmetric with ∥𝐻 ∥𝑀−1←𝑀 ≤ 𝐻 , any step proposal 𝑠 that is

feasible and satisfies the weak fraction of Cauchy decrease condition

pred(𝑥 ; 𝑠) ≥ 𝐶 1
2 ∥𝑔∥𝑀 min

{
Δ,

∥𝑔∥𝑀
max{0, 𝜆max(𝐻 ;𝑀)}

}
(6.12)

achieves a ratio 𝜌 (𝑥 ; 𝑠) ≥ 𝜂1.

Proof. The ratio under consideration satisfies

𝜌 (𝑥 ; 𝑠) = ared(𝑥 ; 𝑠)
pred(𝑥 ; 𝑠) = 1 − pred(𝑥 ; 𝑠) − ared(𝑥 ; 𝑠)

pred(𝑥 ; 𝑠) .

In order to show that it is > 𝜂1 we need to estimate the numerator of the fraction from above and the
denominator from below.

We begin with the denominator. Since 𝑓 ′ is continuous, we can find 𝛿 > 0 such that

∥𝑔∥𝑀 = ∥∇𝑀 𝑓 (𝑥)∥𝑀 ≥ ∥∇𝑀 𝑓 (𝑥)∥𝑀2 C 𝜀

holds for all 𝑥 ∈ 𝐵𝑀
𝛿
(𝑥). We now set Δ B 𝜀/𝐻 and consider a trust-region problem with data as

specified in the statement of the lemma. Then we have

Δ ≤ Δ =
𝜀

𝐻
=
∥∇𝑀 𝑓 (𝑥)∥𝑀

2𝐻
≤ ∥∇𝑀 𝑓 (𝑥)∥𝑀

𝐻
=
∥𝑔∥𝑀
𝐻
≤

{ ∥𝑔∥𝑀
𝜆max (𝐻 ;𝑀) , in case 𝜆max(𝐻 ;𝑀) > 0
∞ in case 𝜆max(𝐻 ;𝑀) ≤ 0.

Notice that we have used (2.13) to infer 𝜆max(𝐻 ;𝑀) ≤ ∥𝐻 ∥𝑀−1←𝑀 ≤ 𝐻 in the last inequality. By the
weak fraction of Cauchy decrease condition, we therefore conclude

pred(𝑥 ; 𝑠) ≥ 𝐶 1
2 ∥𝑔∥𝑀 min

{
Δ,

∥𝑔∥𝑀
max{0, 𝜆max(𝐻 ;𝑀)}

}
≥ 𝐶 1

2 ∥𝑔∥𝑀 min
{
Δ,
∥𝑔∥𝑀
𝐻

}
(6.13a)

= 𝐶
1
2 ∥𝑔∥𝑀 Δ. (6.13b)

120 https://tinyurl.com/scoop-nlo 2023-05-28

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

For the numerator, we can estimate

pred(𝑥 ; 𝑠) − ared(𝑥 ; 𝑠)
= −𝑓 ′(𝑥) 𝑠 − 1

2 𝑠
ᵀ𝐻𝑠 − [

𝑓 (𝑥) − 𝑓 (𝑥 + 𝑠)] see (6.3)

= −𝑓 ′(𝑥) 𝑠 − 1
2 𝑠
ᵀ𝐻 𝑠 + 𝑓 ′(𝑥 + 𝜉 𝑠) 𝑠 by Taylor’s theorem 2.4

≤ ∥ 𝑓 ′(𝑥 + 𝜉 𝑠) − 𝑓 ′(𝑥)∥𝑀−1 ∥𝑠 ∥𝑀 −
1
2 𝜆min(𝐻 ;𝑀) ∥𝑠 ∥2𝑀 by (2.3) and (2.12)

≤ ∥ 𝑓 ′(𝑥 + 𝜉 𝑠) − 𝑓 ′(𝑥)∥𝑀−1 Δ +
1
2 𝐻 Δ2 by (2.13) and ∥𝑠 ∥𝑀 ≤ Δ.

Notice that 𝑥 + 𝜉 𝑠 and 𝑥 are both close to 𝑥 , namely

∥𝑥 + 𝜉 𝑠 − 𝑥 ∥𝑀 ≤ 𝛿 + Δ ≤ 𝛿 + Δ and ∥𝑥 − 𝑥 ∥𝑀 ≤ 𝛿.

Using the continuity of 𝑓 ′ and reducing 𝛿 and Δ if necessary, we can thus achieve

∥ 𝑓 ′(𝑥 + 𝜉𝑘 𝑠) − 𝑓 ′(𝑥)∥𝑀−1 +
1
2 𝐻 Δ ≤ 1

2 (1 − 𝜂1)𝐶 𝜀.

This allows us to continue the estimate above as follows,

pred(𝑥 ; 𝑠) − ared(𝑥 ; 𝑠) ≤ ∥ 𝑓 ′(𝑥 + 𝜉𝑘 𝑠) − 𝑓 ′(𝑥)∥𝑀−1 Δ +
1
2 𝐻 Δ2

≤ 1
2 (1 − 𝜂1)𝐶 𝜀 Δ

≤ 1
2 (1 − 𝜂1)𝐶 ∥𝑔∥𝑀 Δ.

Combining this with the estimate (6.13) of the denominator, we conclude

𝜌 (𝑥 ; 𝑠) = 1 − pred(𝑥 ; 𝑠) − ared(𝑥 ; 𝑠)
pred(𝑥 ; 𝑠) ≥ 1 −

1
2 (1 − 𝜂1)𝐶 ∥𝑔∥𝑀 Δ

𝐶 1
2 ∥𝑔∥𝑀 Δ

= 𝜂1. □

The result of Lemma 6.6 immediately implies that Algorithm 6.1 produces infinitely many successful
step proposals, provided that it does not stop with 𝑓 ′(𝑥 (𝑘)) = 0 and that the model Hessians remain
bounded.

Corollary 6.7 (Infinitely many successful step proposals). Suppose that the iterates 𝑥 (𝑘) of Algorithm 6.1
satisfy 𝑓 ′(𝑥 (𝑘)) ≠ 0 and that the model Hessians𝐻 (𝑘) are symmetric with ∥𝐻 (𝑘) ∥𝑀−1←𝑀 ≤ 𝐻 . Moverover,
suppose that the step proposals 𝑠 (𝑘) are feasible and satisfy the weak fraction of Cauchy decrease condition
(6.12). Then there exist infinitely many indices 𝑘 satisfying 𝜌 (𝑥 (𝑘) ; 𝑠 (𝑘)) ≥ 𝜂1, i. e., the step proposal will
be accepted.

Note: In particular, a successful step can only be followed by finitely many unsuccessful steps.

https://tinyurl.com/scoop-nlo 121

https://tinyurl.com/scoop-nlo

R. Herzog cbn

Proof. We proceed by way of contradiction. Suppose the opposite, i. e., that 𝜌 (𝑥 (𝑘) ; 𝑠 (𝑘)) < 𝜂1 holds
for all 𝑘 ≥ 𝑘0. This means that from a certain iterate onwards, all step proposals will be rejected. By
the logic of Algorithm 6.1, see Line 18, this implies

Δ(𝑘+1) B 𝛾1 ∥𝑠 (𝑘) ∥𝑀 ≤ 𝛾1 Δ(𝑘)

for all 𝑘 ≥ 𝑘0 and thus Δ(𝑘) → 0. Moreover, the iterates 𝑥 (𝑘) and model Hessians𝐻 (𝑘) remain constant
for 𝑘 ≥ 𝑘0. In particular, the entire sequence

(
𝐻 (𝑘)

)
is bounded. The subproblems (6.1) thus satisfy the

prerequisites of Lemma 6.6.42 This entails that, no matter how close the acceptance threshold 𝜂1 is to 1,
as soon as the trust-region radius Δ(𝑘) has become sufficiently small, we will have 𝜌 (𝑥 (𝑘) ; 𝑠 (𝑘)) ≥ 𝜂1
and the step proposal will be accepted. This is in contradiction with our assumption. □

We proceed to show Statement (2).

Lemma 6.8. Suppose that the iterates 𝑥 (𝑘) of Algorithm 6.1 satisfy 𝑓 ′(𝑥 (𝑘)) ≠ 0 and that the model Hes-
sians 𝐻 (𝑘) are symmetric with ∥𝐻 (𝑘) ∥𝑀−1←𝑀 ≤ 𝐻 . Assume that the sequence of objective values 𝑓 (𝑥 (𝑘))
is bounded below by 𝑓 . Moverover, suppose that the step proposals 𝑠 (𝑘) satisfy the weak fraction of Cauchy
decrease condition (6.12). If 𝐾 ⊆ N0 is any (finite or infinite) index set of successful steps such that
∥𝑔 (𝑘) ∥𝑀 ≥ 𝜀 > 0 holds, then the associated trust-region radii are summable:∑︁

𝑘∈𝐾
Δ(𝑘) < ∞.

Proof. For any index 𝑘 ∈ 𝐾 we have by assumption 𝜌 (𝑥 (𝑘) ; 𝑠 (𝑘)) ≥ 𝜂1 and thus

𝑓 (𝑥 (𝑘)) − 𝑓 (𝑥 (𝑘+1)) = ared(𝑥 (𝑘) ; 𝑠 (𝑘))
≥ 𝜂1 pred(𝑥 (𝑘) ; 𝑠 (𝑘))

≥ 𝜂1𝐶 1
2 ∥𝑔

(𝑘) ∥𝑀 min
{
Δ(𝑘) ,

∥𝑔 (𝑘) ∥𝑀
𝐻

}
as in (6.13a)

≥ 𝜂1𝐶 1
2𝜀 min

{
Δ(𝑘) ,

𝜀

𝐻

}
by assumption.

Since the function values 𝑓 (𝑥 (𝑘)) are monotone decreasing and, by assumption, bounded below, we
must have ∑︁

𝑘∈𝐾
𝜂1𝐶

1
2𝜀 min

{
Δ(𝑘) ,

𝜀

𝐻

}
< ∞.

42We can use 𝑥 = 𝑥 (𝑘0) and we do not need the variation in 𝑥 .

122 https://tinyurl.com/scoop-nlo 2023-05-28

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

More precisely, let 𝑘min be the smallest index in 𝐾 , then we have∑︁
𝑘∈𝐾

𝜂1𝐶
1
2𝜀 min

{
Δ(𝑘) ,

𝜀

𝐻

}
≤

∑︁
𝑘∈𝐾

𝑓 (𝑥 (𝑘)) − 𝑓 (𝑥 (𝑘+1))

≤
∞∑︁
𝑘=𝑘min

𝑓 (𝑥 (𝑘)) − 𝑓 (𝑥 (𝑘+1)) all summands are ≥ 0 and a superset of the above

≤ 𝑓 (𝑥 (𝑘min)) − 𝑓 since 𝑓 (𝑥 (𝑘)) ≥ 𝑓 for all 𝑘 ∈ N0

< ∞.
This implies the claim. □

With Statements (1) and (2) in place, we can now prove a global convergence theorem for Algo-
rithm 6.1.

Theorem 6.9 (Global convergence of model Algorithm 6.1). Suppose that the model Hessians𝐻 (𝑘) in Al-
gorithm 6.1 are symmetric with ∥𝐻 (𝑘) ∥𝑀−1←𝑀 ≤ 𝐻 . Assume that the sequence of objective values 𝑓 (𝑥 (𝑘))
is bounded below by 𝑓 . Moverover, suppose that the step proposals 𝑠 (𝑘) are feasible and satisfy the weak
fraction of Cauchy decrease condition (6.12). Then the following holds.

(1) Algorithm 6.1 either terminates after finitely many iterations due to 𝑓 ′(𝑥 (𝑘)) = 0, or else we have43

lim inf
𝑘→∞

∥ 𝑓 ′(𝑥 (𝑘))∥𝑀−1 = 0. (6.14)

(2) Suppose in addition that 𝑓 ′ is uniformly continuous on the set of iterates {𝑥 (𝑘) | 𝑘 ∈ N0}.44 Then
Algorithm 6.1 either terminates after finitely many iterations due to 𝑓 ′(𝑥 (𝑘)) = 0, or else we have

lim
𝑘→∞

𝑓 ′(𝑥 (𝑘)) = 0. (6.15)

Note: Statement (6.15) implies that all accumulation points of
(
𝑥 (𝑘)

)
are stationary points. Quiz 6.2:

Details?

Proof. Statement (1): Assume that Algorithm 6.1 does not terminate, i. e., we have 𝑓 ′(𝑥 (𝑘)) ≠ 0
for all iterates. Suppose that (6.14) does not hold. This means that there exists 𝜀1 > 0 such that
𝑔 (𝑘) B ∇𝑀 𝑓 (𝑥 (𝑘)) satisfies ∥𝑔 (𝑘) ∥𝑀 ≥ 𝜀1 for all 𝑘 ≥ 𝑘0. Let 𝑆 ⊆ N0 denote the index set of successful
step proposals. This index set is infinite by Corollary 6.7. From Lemma 6.8, we further obtain∑︁

𝑘∈𝑆
Δ(𝑘) < ∞. (∗)

43Statement (6.14) means that there exists a subsequence
(
𝑥 (𝑘)

)
𝑘∈𝐾 such that 𝑓 ′ (𝑥 (𝑘)) 𝑘∈𝐾−−−−→ 0.

44Unlike in the proof of, e. g., Lemma 5.13, we cannot deduce the uniform continuity since the sequence 𝑥 (𝑘) is not necessarily
bounded.

https://tinyurl.com/scoop-nlo 123

https://tinyurl.com/scoop-nlo

R. Herzog cbn

This implies in particular Δ(𝑘) 𝑘∈𝑆−−−→ 0.

Step (1) We show that 𝑥 (𝑘) is a Cauchy sequence.
Let 𝑘 > ℓ ≥ 0 be any two indices. Then

∥𝑥 (𝑘) − 𝑥 (ℓ) ∥𝑀 ≤
𝑘−1∑︁
𝑗=ℓ
𝑗∈𝑆

∥𝑠 (𝑗) ∥𝑀 unsuccessful steps do not move 𝑥

≤
𝑘−1∑︁
𝑗=ℓ
𝑗∈𝑆

Δ(𝑗) ≤
∞∑︁
𝑗=ℓ
𝑗∈𝑆

Δ(𝑗) ≤
∑︁
𝑗∈𝑆

Δ(𝑗) .

The last sum is finite by (∗). Therefore, the tails of this series (“Reihenreste”)
∞∑︁
𝑗=ℓ
𝑗∈𝑆

Δ(𝑗) converge
to 0 as ℓ →∞. This shows that 𝑥 (𝑘) is a Cauchy sequence.

Step (2) We show that
(
Δ(𝑘)

)
𝑘≥𝐿 is bounded away from 0.

𝑥 (𝑘) has been shown to be a Cauchy sequence, hence it converges to some 𝑥 . The continuity of
𝑓 ′ and ∥𝑔 (𝑘) ∥𝑀 ≥ 𝜀1 for all 𝑘 ≥ 𝑘0 imply ∥∇𝑀 𝑓 ′(𝑥)∥𝑀 ≥ 𝜀1. We now apply Lemma 6.6 with 𝜂2
(the quality threshold) in place of 𝜂1 (the acceptance threshold). It shows that there exists Δ and
an index 𝐿 ∈ N0 such that 𝜌 (𝑥 (𝑘) ; 𝑠 (𝑘)) ≥ 𝜂2 holds for all indices 𝑘 ≥ 𝐿 (such that 𝑥 (𝑘) is close
enough to 𝑥) satisfying Δ(𝑘) ≤ Δ.

We now show, by way of induction, that

Δ(𝑘) ≥ min
{
Δ(𝐿) , 𝛾1 Δ

}
for all 𝑘 ≥ 𝐿 (∗∗)

holds, so that indeed the trust-region radii are bounded away from 0. Claim (∗∗) holds trivially
for 𝑘 = 𝐿. As induction hypothesis, suppose that (∗∗) is true for some 𝑘 ≥ 𝐿. In the induction
step, we distinguish two cases. In case Δ(𝑘) ≤ Δ, we have 𝜌 (𝑥 (𝑘) ; 𝑠 (𝑘)) ≥ 𝜂2 as noted above.
Therefore,

Δ(𝑘+1) = 𝛾2 Δ(𝑘) > Δ(𝑘) ≥ min
{
Δ(𝐿) , 𝛾1 Δ

}
.

In the opposite case Δ(𝑘) > Δ, the step might not have been successful and the trust-region
radius might have been reduced, but we can estimate it as

Δ(𝑘+1) ≥ 𝛾1 Δ(𝑘) > 𝛾1 Δ ≥ min
{
Δ(𝐿) , 𝛾1 Δ

}
.

To summarize, we have shown (∗∗) for 𝑘 + 1 and the induction is complete.

We now have reached the contradiction that Δ(𝑘) is bounded away from zero for 𝑘 ≥ 𝐿 and
simultaneously, the subsequence Δ(𝑘) 𝑘∈𝑆−−−→ 0; see above Step (1).

Statement (2): Suppose now that 𝑓 ′ is uniformly continuous on the set of iterates {𝑥 (𝑘) | 𝑘 ∈ N0}, i. e.,
for every 𝜀 > 0, there exists 𝛿 > 0 such that ∥𝑥 (𝑘) − 𝑥 (ℓ) ∥𝑀 ≤ 𝛿 implies ∥ 𝑓 ′(𝑥 (𝑘)) − 𝑓 ′(𝑥 (ℓ))∥𝑀−1 ≤ 𝜀.
We proceed again by contradiction and assume that (6.15) does not hold. That is, there exists 𝜀2 > 0
such that the index set

𝐾2 𝜀2 B
{
𝑘 ∈ N0

�� ∥ 𝑓 ′(𝑥 (𝑘))∥𝑀−1 ≥ 2 𝜀2
}

124 https://tinyurl.com/scoop-nlo 2023-05-28

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

is infinite. The uniform continuity of 𝑓 ′ implies the existence of 𝛿 > 0 such that

∥ 𝑓 ′(𝑥 (ℓ))∥𝑀−1 ≥ ∥ 𝑓 ′(𝑥 (𝑘))∥𝑀−1 − ∥ 𝑓 ′(𝑥 (𝑘)) − 𝑓 ′(𝑥 (ℓ))∥𝑀−1 ≥ 𝜀2 (∗∗∗)
holds for all 𝑥 (ℓ) with the property ∥𝑥 (ℓ) − 𝑥 (𝑘) ∥𝑀 ≤ 𝛿 for some 𝑘 ∈ 𝐾2 𝜀2 .

Consider now also the index set

𝐾𝜀2 B
{
𝑘 ∈ N0

�� ∥ 𝑓 ′(𝑥 (𝑘))∥𝑀−1 ≥ 𝜀2},
which is infinite as well due to 𝐾2 𝜀2 ⊆ 𝐾𝜀2 . Recall that 𝑆 ⊆ N0 denotes the index set of successful step
proposals. The set 𝑆 ∩ 𝐾𝜀2 may be finite or infinite. In any case, Lemma 6.8 implies∑︁

𝑘∈𝑆∩𝐾𝜀2

Δ(𝑘) < ∞.

Therefore, there exists 𝑘0 ∈ 𝑆 ∩ 𝐾𝜀2 such that the remainder of this series (“Reihenrest”) that comes
after 𝑘0 is small. More precisely,

∞∑︁
𝑗=𝑘0

𝑗∈𝑆∩𝐾𝜀2

Δ(𝑗) < 𝛿. (∗∗∗∗)

In fact, by making 𝑘0 larger, if necessary, 𝑘0 can be chosen to lie in 𝑘0 ∈ 𝐾2 𝜀2 . (Quiz 6.3: Why?)

We now show by induction that ∥𝑥 (ℓ) − 𝑥 (𝑘0) ∥𝑀 < 𝛿 holds for all ℓ ≥ 𝑘0. The claim holds trivially for
ℓ = 𝑘0. As induction hypothesis, suppose that there exists ℓ ≥ 𝑘0 such that ∥𝑥 (𝑗) − 𝑥 (𝑘0) ∥𝑀 < 𝛿 is true
for 𝑗 = 𝑘0, . . . , ℓ . We can invoke (∗∗∗) to see that ∥ 𝑓 ′(𝑥 (𝑗))∥𝑀−1 ≥ 𝜀2 holds for all 𝑗 = 𝑘0, . . . , ℓ . In other
words, all indices 𝑗 = 𝑘0, . . . , ℓ belong to 𝐾𝜀2 . We can therefore estimate

∥𝑥 (ℓ+1) − 𝑥 (𝑘0) ∥𝑀 ≤
ℓ∑︁

𝑗=𝑘0
𝑗∈𝑆

Δ(𝑗) unsuccessful steps do not move 𝑥

=

ℓ∑︁
𝑗=𝑘0

𝑗∈𝑆∩𝐾𝜀2

Δ(𝑗) all indices 𝑗 = 𝑘0, . . . , ℓ belong to 𝐾𝜀2

≤
∞∑︁
𝑗=𝑘0

𝑗∈𝑆∩𝐾𝜀2

Δ(𝑗) summands are positive

< 𝛿 by (∗∗∗∗).
This concludes the induction step and we have shown that indeed ∥𝑥 (ℓ) − 𝑥 (𝑘0) ∥𝑀 < 𝛿 holds for
all ℓ ≥ 𝑘0. Invoking again (∗∗∗), we infer that ∥ 𝑓 ′(𝑥 (ℓ))∥𝑀−1 ≥ 𝜀2 holds for all ℓ ≥ 𝑘0, which is in
contradiction to (6.14). □

Remark 6.10 (on the global convergence theorem 6.9). For the global convergence theorem 6.9 to hold,
it is not strictly necessary that the step proposal satisfy ∥𝑠 (𝑘) ∥𝑀 ≤ Δ(𝑘) . A relaxed constraint of the form
∥𝑠 (𝑘) ∥𝑀 ≤ 𝛽 Δ(𝑘) is enough and allows us to gain some more flexibility in a practical algorithm; see for
instance Ulbrich, Ulbrich, 2012, Satz 14.10 and eq.(14.50). However, in this class we are not going to exploit
this algorithmically.

https://tinyurl.com/scoop-nlo 125

https://tinyurl.com/scoop-nlo

R. Herzog cbn

§ 6.2 Fast Local Convergence

In this section we show that the generic trust-region method Algorithm 6.1 will transition to a local,
inexact Newton method. This means that the trust-region constraint ∥𝑠 (𝑘) ∥𝑀 ≤ Δ(𝑘) will be inactive
from a certain interation index onwards. If one then solves the trust-region subproblems to sufficient
accuracy (compare the forcing sequence in inexact Newton methods in § 5.6), one can obtain Q-
superlinear or even Q-quadratic convergence of the iterates.

We restrict the discussion here to trust region Newton methods, which are defined by the choice
𝐻 (𝑘) = 𝑓 ′′(𝑥 (𝑘)). However, model Hessians based on quasi-Newton updates are very important in
practice as well.45.

Theorem 6.11 (Transition to fast local convergence in Algorithm 6.1). Suppose that 𝑓 is of class𝐶2 and
that the model Hessians 𝐻 (𝑘) in Algorithm 6.1 are the exact Hessians 𝑓 ′′(𝑥 (𝑘)). Assume that the sequence
of objective values 𝑓 (𝑥 (𝑘)) is bounded below by 𝑓 . Moverover, suppose that the step proposals 𝑠 (𝑘) are
feasible and satisfy the weak fraction of Cauchy decrease condition (6.12). Suppose further that the sublevel
setM𝑓 (𝑥 (0)) B {𝑥 ∈ R𝑛 | 𝑓 (𝑥) ≤ 𝑓 (𝑥 (0))} is compact.

(𝑖) Suppose that 𝑥∗ is an accumulation point of 𝑥 (𝑘) and that 𝑓 ′′(𝑥∗) is positive semidefinite. Then the
entire sequence convergences to 𝑥∗, i. e., 𝑥∗ is indeed the unique limit point of 𝑥 (𝑘) .

(𝑖𝑖) There exists an index 𝑘0 ∈ N, such that

(a) 𝜌 (𝑥 (𝑘) ; 𝑠 (𝑘)) > 𝜂1 holds for all 𝑘 ≥ 𝑘0, i. e., the step proposal will be accepted.

(b) 𝑓 ′′(𝑥 (𝑘)) is positive semidefinite and ∥ 𝑓 ′′(𝑥 (𝑘))−1 ∇𝑓 (𝑥 (𝑘))∥𝑀 ≤ Δ(𝑘)

2 holds for all 𝑘 ≥ 𝑘0.

(𝑖𝑖𝑖) If, in addition, the step proposals 𝑠 (𝑘) satisfy

∥ 𝑓 ′′(𝑥 (𝑘)) 𝑠 (𝑘) + ∇𝑓 (𝑥 (𝑘))∥𝑀−1 ≤ 𝜂 (𝑘) ∥∇𝑓 (𝑥 (𝑘))∥𝑀−1 (6.16)

with a forcing sequence 𝜂 (𝑘) ↘ 0, then 𝑥 (𝑘) converges to 𝑥∗ Q-superlinearly w.r.t. the𝑀-norm.

Statement (b) means that from a certain index 𝑘0 onwards, full exact Newton steps would be useful
step proposals that are not only feasible w.r.t. the constraint ∥𝑠 (𝑘) ∥𝑀 ≤ Δ(𝑘) but lie well inside the
trust region.

Condition (6.16) requires that the step proposal 𝑠 (𝑘) will eventually be close to the full exact Newton
step in the sense that the relative residual norm is bounded by the forcing sequence 𝜂 (𝑘) ; compare the
condition (5.36) for inexact Newton methods for root finding.

45In contrast to the quasi-Newton line search methods from § 5.7, the positive definiteness of 𝐻 (𝑘) is no longer required. A
further distinction is that one works with quasi-Newton update formulas for the model Hessian 𝐻 (𝑘) and not for the
inverse 𝐵 (𝑘) , since the inexact iterative solution of the trust-region subproblems (6.1) is based on matrix-vector products
with 𝐻 (𝑘) .

126 https://tinyurl.com/scoop-nlo 2023-05-28

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

§ 6.3 Solution of the Trust-Region Subproblem

We now address options for the inexact numerical solution of the trust-region subproblem (6.1), i. e.,
with a problem of the form

Minimize 𝑞(𝑠) = 𝑓 − 𝑏ᵀ𝑠 + 1
2 𝑠
ᵀ𝐻𝑠, where 𝑠 ∈ R𝑛

subject to ∥𝑠 ∥𝑀 ≤ Δ.
(6.17)

The data of the problem are the model offset 𝑓 ∈ R, (negative) model derivative 𝑏 ∈ R𝑛 , symmetric
model Hessian 𝐻 ∈ R𝑛×𝑛 and trust-region radius Δ > 0.

Although the Cauchy point is a sufficiently accurate solution of the trust-region subproblem in order
to achieve global convergence (Theorem 6.9), and fast local convergence can only take effect as soon
as the trust-region constraint ∥𝑠 ∥𝑀 ≤ Δ is inactive and no longer plays a role (Theorem 6.11), we will
characterize the exact global solution(s) of (6.17) first.

Note: Due to the possibility of negative eigenvalues in 𝐻 , problem (6.17) is not convex in general.

Theorem 6.12 (Characterization of global solutions of the trust-region subproblem (6.17)).
(𝑖) Suppose that 𝑠 ∈ R𝑛 is a global minimizer of (6.17). Then there exists 𝜇 ∈ R such that the following

holds:

𝜇 ≥ 0, ∥𝑠 ∥𝑀 − Δ ≤ 0, 𝜇 (∥𝑠 ∥𝑀 − Δ) = 0 (6.18a)
(𝐻 + 𝜇 𝑀) 𝑠 = 𝑏 (6.18b)
𝐻 + 𝜇 𝑀 is positive semidefinite. (6.18c)

The number 𝜇 is uniquely determined.

(𝑖𝑖) Now suppose that (𝑠, 𝜇) ∈ R𝑛 × R is such that (6.18) is satisfied. Then 𝑠 is a global minimizer of
(6.17).

(𝑖𝑖𝑖) If (𝑠, 𝜇) ∈ R𝑛 × R is such that (6.18) is satisfied and in addition, 𝐻 + 𝜇 𝑀 is positive definite, then 𝑠
is the unique global minimizer of (6.17).

Proof. Statement (𝑖): Suppose that 𝑠 is a global minimizer of (6.17). Then ∥𝑠 ∥𝑀 ≤ Δ is obvious.

Case 1: ∥𝑠 ∥𝑀 < Δ holds.
Then 𝑠 is also a local minimizer of the unconstrained problem

Minimize 𝑞(𝑠), where 𝑠 ∈ R𝑛 .

Consequently, the necessary optimality condition of first order (Theorem 3.1) holds, i. e.,

∇𝑞(𝑠) = 𝐻 𝑠 − 𝑏 = 0,

https://tinyurl.com/scoop-nlo 127

https://tinyurl.com/scoop-nlo

R. Herzog cbn

as well as the necessary optimality condition of second order (Theorem 3.2), i. e., 𝐻 is positive
semidefinite. This shows that (6.18) holds for the choice 𝜇 = 0.46

Owing to the complementarity in (6.18a), 𝜇 = 0 is the only possible choice.

Case 2: ∥𝑠 ∥𝑀 = Δ holds, and in particular, 𝑠 ≠ 0.
We first show that there exists 𝜇 ≥ 0 such that (𝐻+𝜇 𝑀) 𝑠 = 𝑏 holds. We proceed by contradiction
and therefore suppose that for all 𝜇 ≥ 0, we have (𝐻 + 𝜇 𝑀) 𝑠 ≠ 𝑏.

The choice 𝜇 = 0 implies 𝑦 B ∇𝑞(𝑠) = 𝐻 𝑠 − 𝑏 ≠ 0. The choices 𝜇 > 0 imply that the vectors 𝑦
and𝑀 𝑠 cannot be anti-parallel. Therefore,𝑀−1𝑦 and 𝑠 cannot be anti-parallel either. Concerning
the angle 𝛼 (w.r.t. the𝑀-inner product) between these two vectors, we thus have

cos𝛼 =
(𝑀−1𝑦)ᵀ𝑀 𝑠

∥𝑀−1𝑦 ∥𝑀 ∥𝑠 ∥𝑀 =
𝑦ᵀ𝑠

∥𝑦 ∥𝑀−1 ∥𝑠 ∥𝑀
> −1.

Let 𝑣 be a vector in the direction of the angle bisector between −𝑀−1𝑦 and −𝑠 , e. g.,

𝑣 B − 𝑀−1𝑦
∥𝑦 ∥𝑀−1

− 𝑠

∥𝑠 ∥𝑀 ≠ 0.

Then we have
𝑦ᵀ𝑣 = 𝑦ᵀ

(
− 𝑀−1𝑦
∥𝑦 ∥𝑀−1

− 𝑠

∥𝑠 ∥𝑀

)
= −∥𝑦 ∥𝑀−1 −

𝑦ᵀ𝑠
∥𝑠 ∥𝑀

∥𝑦 ∥𝑀−1
∥𝑦 ∥𝑀−1

= −∥𝑦 ∥𝑀−1
(
1 + cos𝛼)

< 0.
Hence we conclude 𝑞′(𝑠) 𝑣 = 𝑦ᵀ𝑣 < 0 and therefore 𝑣 is a descent direction for 𝑞 at 𝑠 . Due to[

d
d𝑡

1
2 ∥𝑠 + 𝑡 𝑣 ∥

2
𝑀

]
𝑡=0

= 𝑣ᵀ𝑀 𝑠

=

(
− 𝑀−1𝑦
∥𝑦 ∥𝑀−1

− 𝑠

∥𝑠 ∥𝑀

)ᵀ
𝑀 𝑠

= − 𝑦ᵀ𝑠
∥𝑦 ∥𝑀−1

∥𝑠 ∥𝑀
∥𝑠 ∥𝑀 − ∥𝑠 ∥𝑀

= −∥𝑠 ∥𝑀
(
cos𝛼 + 1)

< 0

we have ∥𝑠 + 𝑡 𝑣 ∥𝑀 < ∥𝑠 ∥𝑀 = Δ for small enough 𝑡 > 0. Hence we can obtain a feasible point
with a strictly smaller objective value than 𝑠 , which is in contradiction to the optimality of 𝑠 .

Consequently, it must be possible to satisfy the conditions (6.18a) and (6.18b) with some 𝜇 ≥ 0.
It is not difficult to see that, in fact, 𝜇 must be unique. Indeed, the assumption 𝐻 𝑠 + 𝜇1𝑀 𝑠 = 𝑏 =

𝐻 𝑠 + 𝜇2𝑀 𝑠 leads to (𝜇1 − 𝜇2)𝑀 𝑠 = 0, which is only possible for 𝜇1 = 𝜇2 due to 𝑠 ≠ 0 and the
invertibility of𝑀 .

46In this case 𝑞 is convex, and thus 𝑠 is also a a global minimizer of the unconstrained problem.

128 https://tinyurl.com/scoop-nlo 2023-05-28

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

It remains to show that 𝐻 + 𝜇 𝑀 is positive semidefinite, i. e., (6.18c). To this end, we consider a
direction 𝑑 ∈ R𝑛 with the property 𝑑ᵀ𝑀 𝑠 < 0. We need to show

𝑑ᵀ(𝐻 + 𝜇 𝑀) 𝑑 ≥ 0.

Let us define 𝑡 B −2𝑑
ᵀ𝑀 𝑠

∥𝑑 ∥2
𝑀

> 0. Then

∥𝑠 + 𝑡 𝑑 ∥2𝑀 = ∥𝑠 ∥2𝑀 + 2 𝑡 𝑑ᵀ𝑀 𝑠 + 𝑡2 ∥𝑑 ∥2𝑀 = ∥𝑠 ∥2𝑀 ≤ Δ2.

The global optimality of 𝑠 implies

0 ≤ 𝑞(𝑠 + 𝑡 𝑑) − 𝑞(𝑠)
= 𝑞′(𝑠) (𝑡 𝑑) + 1

2 (𝑡 𝑑)
ᵀ𝐻 (𝑡 𝑑)

= 𝑡 𝑦ᵀ𝑑 + 𝑡
2

2 𝑑
ᵀ𝐻 𝑑

= −𝑡 𝜇 𝑠ᵀ𝑀 𝑑 + 𝑡
2

2 𝑑
ᵀ𝐻 𝑑 due to 𝑦 = 𝐻 𝑠 − 𝑏 = −𝜇 𝑀 𝑠

=
𝑡2

2 𝜇 ∥𝑑 ∥
2
𝑀 +

𝑡2

2 𝑑
ᵀ𝐻 𝑑 due to 𝑡2 ∥𝑑 ∥

2
𝑀 = −𝑑ᵀ𝑀 𝑠

=
𝑡2

2 𝑑
ᵀ(𝐻 + 𝜇 𝑀) 𝑑.

Thus we have confirmed that 𝑑ᵀ(𝐻 + 𝜇 𝑀) 𝑑 ≥ 0 holds for all directions 𝑑 ∈ R𝑛 satisfying
𝑑ᵀ𝑀 𝑠 < 0. Since the sign of 𝑑 is irrelevant, the same result likewise holds for directions
𝑑ᵀ𝑀 𝑠 > 0. The remaining case of directions 𝑑ᵀ𝑀 𝑠 = 0 follows by continuity.

Statement (𝑖𝑖): Suppose that (𝑠, 𝜇) ∈ R𝑛 × R is such that (6.18) is satisfied. Let 𝑠 ∈ R𝑛 with ∥𝑠 ∥𝑀 ≤ Δ
be an arbitrary comparison point, 𝑑 B 𝑠 − 𝑠 and 𝑦 B ∇𝑞(𝑠) = 𝐻 𝑠 − 𝑏 as above. We estimate

𝑞(𝑠) − 𝑞(𝑠) = 𝑦ᵀ𝑑 + 1
2𝑑
ᵀ𝐻 𝑑

= −𝜇 𝑠ᵀ𝑀 𝑑 + 1
2𝑑
ᵀ𝐻 𝑑 due to 𝑦 = 𝐻 𝑠 − 𝑏 = −𝜇 𝑀 𝑠 by (6.18b)

≥ −𝜇 𝑠ᵀ𝑀 𝑑 − 1
2𝜇 ∥𝑑 ∥

2
𝑀 by (6.18c)

= −𝜇2
(
2 𝑠ᵀ𝑀 𝑑 + ∥𝑑 ∥2𝑀

)
= −𝜇2

(∥𝑑 + 𝑠 ∥2𝑀 − ∥𝑠 ∥2𝑀)
= −𝜇2

(∥𝑠 ∥2𝑀 − ∥𝑠 ∥2𝑀)
≥ 0.

The previous inequality requires a comment. It holds trivially in case 𝜇 = 0. For 𝜇 > 0, (6.18a) implies
∥𝑠 ∥2

𝑀
= Δ2, and by assumption we have ∥𝑠 ∥2

𝑀
≤ Δ2. This shows the final inequality and thus the global

optimality of 𝑠 for (6.17).

https://tinyurl.com/scoop-nlo 129

https://tinyurl.com/scoop-nlo

R. Herzog cbn

Statement (𝑖𝑖𝑖): If 𝐻 + 𝜇 𝑀 is even positive definite, then the estimate above can be sharpened for 𝑠 ≠ 𝑠 ,
i. e., 𝑑 ≠ 0:

𝑞(𝑠) − 𝑞(𝑠) = −𝜇 𝑠ᵀ𝑀 𝑑 + 1
2𝑑
ᵀ𝐻 𝑑

> − 𝜇 𝑠ᵀ𝑀 𝑑 − 1
2𝜇 ∥𝑑 ∥

2
𝑀

= · · ·
= −𝜇2

(∥𝑠 ∥2𝑀 − ∥𝑠 ∥2𝑀)
≥ 0.

This shows that 𝑠 is even the unique global minimizer of (6.17). □

Remark 6.13 (on the characterization of global minimizers).
(𝑖) The remarkable fact about Theorem 6.12 is that the optimality conditions (6.18) are simultaneously

necessary and sufficient, even though problem (6.17) is generally non-convex.

(𝑖𝑖) As an alternative to the proof in Theorem 6.12 we might use optimality conditions of Karush-Kuhn-
Tucker type (see Chapter 2) to prove that (6.18a) and (6.18b) are necessary conditions for any local
minimizer and, in particular, for global minimizers of (6.17). In this way, we will see that the
number 𝜇 can be viewed as the unique Lagrange multiplier pertaining to the constraint

1
2
(∥𝑠 ∥2𝑀 − Δ2) ≤ 0,

which is of course equivalent to ∥𝑠 ∥𝑀 ≤ Δ. As we can see easily, the linear independence constraint
qualification (LICQ) always holds.47 Proceeding in this way, however, we will not find the condition
(6.18c) that is — as we saw in the proof — characteristic for global minimizers of (6.17).

(𝑖𝑖𝑖) It was proved in Martínez, 1994 that (6.17) can have, besides its global minimizers, at most one
additional local minimizer which is not a global minimizer.

Based on the characterization (6.18), one can devise methods to find an exact global minimizer of
the trust-region subproblem (6.17). The most prominent method utilizes a one-dimensional Newton
method for the equation

1
∥(𝐻 + 𝜇 𝑀)−1𝑏∥𝑀 −

1
Δ

= 0

to determine the value of 𝜇, unless 𝜇 = 0 and 𝑠 = 𝐻−1𝑏 already solve (6.18); see Nocedal, Wright, 2006,
Chapter 4.3 for details if you are interested.

In the remainder of this section we discuss a practical method to find an inexact solution 𝑠 to the
trust-region subproblem (6.17). Our goal is to satisfy

(𝑖) the conditions for global convergence imposed in Theorem 6.9, i. e., the trust-region constraint
∥𝑠 ∥𝑀 ≤ Δ and the (weak) fraction of Cauchy decrease condition (6.11),

47In case ∥𝑠 ∥𝑀 < Δ, the only constraint present is inactive, so LICQ holds. Othwesise we have ∥𝑠 ∥𝑀 = Δ > 0 and thus 𝑠 ≠ 0.
This implies that the gradient of the only active constraint,𝑀 𝑠 , is non-zero and thus linearly independent.

130 https://tinyurl.com/scoop-nlo 2023-05-28

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

(𝑖𝑖) the conditions for fast local convergence imposed in Theorem 6.11.

It will turn out that a clever modification of the conjugate gradient method — the Steihaug(-Toint)
conjugate gradient method48 — is capable of satisfying these requirements.49

This variant of the CG method will be applied to the linear system 𝐻 𝑠 = 𝑏. In case that 𝐻 is s. p. d., this
system constitute the necessary and sufficient optimality conditions for an unconstrained trust-region
subproblem, i. e., (6.17) with Δ = ∞. The Steihaug-Toint variant of the CG algorithm has two significant
modifications compared to the base version (Algorithm 4.17).50

(1) Similarly as in the truncated conjugate method (Algorithm 5.41), we start the method with
𝑠 (0) = 0 and we detect the occurrence of a search direction 𝑝 (ℓ) with non-positive curvature
(𝑝 (ℓ))ᵀ𝐻𝑝 (ℓ) ≤ 0. In constrat to the truncated CG method, where we would stop immediately,
we proceed with the current step and produce 𝑠 (ℓ+1) = 𝑠 (ℓ) + 𝛼∗𝑝 (ℓ) , where 𝛼∗ is not the usual
Cauchy step size but is chosen such that 𝑠 (ℓ+1) lies on the boundary of the trust region. We then
stop the method.

(2) In case that the current step would leave the trust region, i. e., in case ∥𝑠 (ℓ) + 𝛼 (ℓ) 𝑝 (ℓ) ∥𝑀 > Δ,
we do not utilize the full step size 𝛼 (ℓ) but, again, proceed only to the boundary of the trust
region and then stop the algorithm.

If none of these two situations occur, then the Steihaug-Toint CG method stops as soon as an approx-
imate solution to 𝐻 𝑠 = −𝑏 has been found with sufficiently small residual norm. With regards to
Theorem 6.11 we utilize the relative residual norm and a tolerance given by a suitable forcing sequence,
compare (5.37),

∥residual associated with 𝑠 (ℓ) ∥𝑀−1
∥residual associated with 0∥𝑀−1

=
∥𝜁 (ℓ) ∥𝑀−1
∥𝑏∥𝑀−1

=
∥𝐻 𝑠 (ℓ) − 𝑏∥𝑀−1
∥𝑏∥𝑀−1

≤ 𝜂. (6.19)

In case the outer iterate 𝑥 (𝑘) is already close to a point 𝑥∗ satisfying the second-order sufficient
optimality condition, one can guarantee that the Steihaug-Toint CG method will not stop for any of
the two reasons above but it stops as soon as (6.19) holds. Therefore, the condition (6.16) concerning
the accuracy of the step proposal is satisfied, and Theorem 6.11 yields the Q-superlinear convergence,
provided that the further requisites of that theorem hold.

The Steihaug-Toint CG algorithm for the inexact solution of (6.17) is given in Algorithm 6.14.

Algorithm 6.14 (Steihaug-Toint conjugate gradient method).
Input: right-hand side 𝑏 ∈ R𝑛
Input: symmetric matrix 𝐻 (or matrix-vector products with 𝐻)
Input: s. p. d. matrix𝑀 (or matrix-vector products with𝑀−1)
Input: relative residual 𝜀rel
48after Steihaug, 1983 and Toint, 1981
49Other, slighly more elaborate approaches, can be found in the literature, e. g., the dogleg method and the two-

dimensional subspace minimization approach; see Nocedal, Wright, 2006, Chapter 4.1 if you are interested.
50As we did with the truncated conjugate method (Algorithm 5.41) in the context of inexact Newton methods, we switch to

problem adapted variable names. That is, we use iterates 𝑠 (ℓ) , search directions 𝑝 (ℓ) and residuals 𝜁 (ℓ) .

https://tinyurl.com/scoop-nlo 131

https://tinyurl.com/scoop-nlo

R. Herzog cbn

Input: trust-region radius Δ > 0
Output: approximate solution of the trust-region subproblem (6.17)
1: Set ℓ B 0
2: Set 𝑠 (0) B 0 // zero initial guess
3: Set 𝜁 (0) B −𝑏 // evaluate the initial residual
4: Set 𝑝 (0) B −𝑀−1𝜁 (0)
5: Set 𝛿 (0) B −(𝜁 (0))ᵀ𝑝 (0) // 𝛿 (0) = ∥𝜁 (0) ∥2

𝑀−1

6: while 𝛿 (ℓ) ≥ 𝜀2rel𝛿 (0) do // check stopping criterion (6.19)
7: Set 𝑞 (ℓ) B 𝐴𝑝 (ℓ)

8: Set 𝜃 (ℓ) B (𝑞 (ℓ))ᵀ𝑝 (ℓ)
9: if 𝜃 (ℓ) > 0 then
10: Set 𝛼 (ℓ) B 𝛿 (ℓ)/𝜃 (ℓ)
11: Set 𝑠 (ℓ+1) B 𝑠 (ℓ) + 𝛼 (ℓ) 𝑝 (ℓ)
12: if ∥𝑠 (ℓ+1) ∥𝑀 > Δ then // iterate would leave the trust region
13: Determine 𝛼∗ as the positive solution of ∥𝑠 (ℓ) + 𝛼 𝑝 (ℓ) ∥𝑀 = Δ
14: Set 𝑠 (ℓ+1) B 𝑠 (ℓ) + 𝛼∗ 𝑝 (ℓ) // go to the boundary of the trust region
15: Set ℓ B ℓ + 1
16: Abort the while loop
17: else
18: Set 𝜁 (ℓ+1) B 𝜁 (ℓ) + 𝛼 (ℓ)𝑞 (ℓ)
19: Set 𝑝 (ℓ+1) B −𝑀−1𝜁 (ℓ+1)
20: Set 𝛿 (ℓ+1) B −(𝜁 (ℓ+1))ᵀ𝑝 (ℓ+1) // 𝛿 (ℓ+1) = ∥𝜁 (ℓ+1) ∥2

𝑀−1

21: Set 𝛽 (ℓ+1) B 𝛿 (ℓ+1)/𝛿 (ℓ)
22: Set 𝑝 (ℓ+1) B 𝑝 (ℓ+1) + 𝛽 (ℓ+1) 𝑝 (ℓ)
23: Set ℓ B ℓ + 1
24: end if
25: else
26: Determine 𝛼∗ as the positive solution of ∥𝑠 (ℓ) + 𝛼 𝑝 (ℓ) ∥𝑀 = Δ
27: Set 𝑠 (ℓ+1) B 𝑠 (ℓ) + 𝛼∗ 𝑝 (ℓ) // go to the boundary of the trust region
28: Set ℓ B ℓ + 1
29: Abort the while loop
30: end if
31: end while
32: return 𝑠 (ℓ)

Remark 6.15 (on Algorithm 6.14).
(𝑖) The first iterate 𝑠 (1) is the Cauchy point of problem (6.17).

(𝑖𝑖) We consider three cases which may occur in an iteration.

(a) In case of a “usual” CG step (identical to what the plain CG algorithm 4.17 would produce),
then

𝑞(𝑠 (ℓ+1)) = 𝑞(𝑠 (ℓ)) − 1
2 𝛼

(ℓ)︸ ︷︷ ︸
>0

𝛿 (ℓ)︸ ︷︷ ︸
>0

holds, see (4.12).

132 https://tinyurl.com/scoop-nlo 2023-05-28

https://tinyurl.com/scoop-nlo

cbn Nonlinear Optimization

(b) If 𝜃 (ℓ) > 0 holds (the current search direction 𝑝 (ℓ) is a direction of positive curvature) but
the full Cauchy step 𝑠 (ℓ) + 𝛼 (ℓ) 𝑝 (ℓ) lands outside the trust region, then it is useful follow the
convex function

𝛼 ↦→ 𝜑 (𝛼) B 𝑓 + 𝑏ᵀ(𝑠 (ℓ) + 𝛼 𝑝 (ℓ)) + 1
2 (𝑠
(ℓ) + 𝛼 𝑝 (ℓ))ᵀ𝐻 (𝑠 (ℓ) + 𝛼 𝑝 (ℓ))

in the direction 𝛼 > 0 to the boundary of the trust region in order to obtain the largest possible
descent, since

𝜑 ′(0) = 𝑏ᵀ𝑝 (ℓ) + (𝑠 (ℓ))ᵀ𝐻 𝑝 (ℓ) = (𝜁 (ℓ))ᵀ𝑝 (ℓ) = −𝛿ℓ = −∥𝜁 (ℓ) ∥2𝑀−1 < 0

ist.

(c) If, by contrat, 𝜃 (ℓ) ≤ 0 holds (the current search direction 𝑝 (ℓ) is a direction of non-positive
curvature), then the function 𝜑 is concave. This suggests, again, to proceed to the boundary of
the trust region in the direction 𝛼 > 0.

(𝑖𝑖𝑖) The considerations above show: in case the Steihaug-Toint CG algorithm does not stop with 𝑠 (1)

but continues, the further iterates continue to reduce the objective 𝑞 monotonically. Therefore, the
inexact solution 𝑠 (ℓ) returned by Algorithm 6.14 always satisfies the fraction of Cauchy decrease
condition (6.11) with 𝐶 = 1.

(𝑖𝑣) The reason for terminating the algorithm when an iterate 𝑠 (ℓ+1) is about to leave the trust region
is the following. As we know from Lemma 4.22, the sequence of norms ∥𝑠 (ℓ) − 0∥𝑀 is strictly
monotonically increasing. If we would let the algorithm continue, we would never return into the
trust region.

(𝑣) Concerning the recursive update of the quantity ∥𝑠 (ℓ) ∥𝑀 without using the matrix𝑀 , we can refer
to (4.33)–(4.34) to obtain the formulas

𝜔 (0) B 0, 𝜔 (𝑘+1) B 𝜔 (𝑘) + 2𝛼 (𝑘)𝜉 (𝑘) + (𝛼 (𝑘))2 𝛾 (𝑘) (6.20a)
𝜉 (0) B 0, 𝜉 (𝑘+1) B 𝛽 (𝑘+1) (𝜉 (𝑘) + 𝛼 (𝑘)𝛾 (𝑘)) (6.20b)
𝛾 (0) B 𝛿 (0) , 𝛾 (𝑘+1) B 𝛿 (𝑘+1) + (𝛽 (𝑘+1))2 𝛾 (𝑘) (6.20c)

for the quantities

𝜔 (ℓ) B ∥𝑠 (ℓ) − 0∥2𝑀 , 𝜉 (ℓ) B (𝑠 (ℓ) − 0)ᵀ𝑀 𝑝 (ℓ) , 𝛾 (ℓ) B ∥𝑝 (ℓ) ∥2𝑀 .

(𝑣𝑖) Using these quantities, we can evaluate the step size 𝛼∗ required to reach the boundary by solving
the quadratic equation

∥𝑠 (ℓ) + 𝛼 𝑝 (ℓ) ∥2𝑀 = 𝜔 (ℓ) + 𝛼 𝜉 (ℓ) + 𝛼2𝛾 (ℓ) = Δ2.

Due to 𝜔 (ℓ) = ∥𝑠 (ℓ) ∥2
𝑀

< Δ, this equation has exactly one positive solution, which is

𝛼∗ B − 𝜉 (ℓ)

2𝛾 (ℓ)
+ 𝜉 (ℓ)

2𝛾 (ℓ)
(
1 − 4𝛾 (ℓ) (𝜔 (ℓ) − Δ2)

) 1/2
.

End of Week 7

https://tinyurl.com/scoop-nlo 133

https://tinyurl.com/scoop-nlo

Chapter 2 Theory for Constrained Optimization
Problems

https://tinyurl.com/scoop-nlo

https://tinyurl.com/scoop-nlo

Chapter 3 Numerical Techniques for Constrained
Optimization Problems

https://tinyurl.com/scoop-nlo

https://tinyurl.com/scoop-nlo

Chapter 4 Differentiation Techniques

https://tinyurl.com/scoop-nlo

https://tinyurl.com/scoop-nlo

Bibliography

Akaike, H. (1959). “On a successive transformation of probability distribution and its application to
the analysis of the optimum gradient method”. Annals of the Institute of Statistical Mathematics 11,
pp. 1–16. doi: 10.1007/bf01831719.

Alpargu, G. (1996). “The Kantorovich Inequality, with Some Extensions and with Some Statistical
Applications”. MA thesis. Department of Mathematics and Statistics, McGill University, Montreal,
Canada.

Alt, W. (2002). Nichtlineare Optimierung. Vieweg Studium: Aufbaukurs Mathematik. Eine Einführung
in Theorie, Verfahren und Anwendungen. [An introduction to theory, procedures and applications].
Friedrich Vieweg & Sohn, Braunschweig. doi: 10.1007/978-3-322-84904-5.

Anderson, T. W. (1971). The Statistical Analysis of Time Series. John Wiley & Sons, Inc., New York-
London-Sydney. doi: 10.1002/9781118186428.

Barzilai, J.; J. M. Borwein (1988). “Two-point step size gradient methods”. IMA Journal of Numerical
Analysis 8.1, pp. 141–148. doi: 10.1093/imanum/8.1.141.

Cartan, H. (1967). Calcul Différentiel. Paris: Hermann.
Cauchy, A.-L. (1847). “Méthode générale pour la résolution des systemes d’équations simultanées”.
Comptes Rendus de l’Académie des Sciences Paris 25, pp. 536–538.

De Asmundis, R.; D. di Serafino; F. Riccio; G. Toraldo (2013). “On spectral properties of steepest descent
methods”. IMA Journal of Numerical Analysis 33.4, pp. 1416–1435. doi: 10.1093/imanum/drs056.

De Asmundis, R.; D. di Serafino; W. W. Hager; G. Toraldo; H. Zhang (2014). “An efficient gradient
method using the Yuan steplength”. Computational Optimization and Applications 59.3, pp. 541–563.
doi: 10.1007/s10589-014-9669-5.

Dennis Jr., J. E.; J. J. Moré (1974). “A characterization of superlinear convergence and its application to
quasi-Newton methods”. Mathematics of Computation 28, pp. 549–560. doi: 10.1090/s0025-5718-
1974-0343581-1.

Elman, H. C.; D. J. Silvester; A. J. Wathen (2014). Finite Elements and Fast Iterative Solvers: with Applica-
tions in Incompressible Fluid Dynamics. 2nd ed. Numerical Mathematics and Scientific Computation.
Oxford University Press. doi: 10.1093/acprof:oso/9780199678792.001.0001.

Forsythe, G. E. (1968). “On the asymptotic directions of the 𝑠-dimensional optimum gradient method”.
Numerische Mathematik 11, pp. 57–76. doi: 10.1007/BF02165472.

Geiger, C.; C. Kanzow (1999). Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben.
New York: Springer. doi: 10.1007/978-3-642-58582-1.

Gilbert, J. C.; J. Nocedal (1992). “Global convergence properties of conjugate gradient methods for
optimization”. SIAM Journal on Optimization 2.1, pp. 21–42. doi: 10.1137/0802003.

Gonzaga, C. C. (2016). “On the worst case performance of the steepest descent algorithm for quadratic
functions”.Mathematical Programming Series A 160, pp. 307–320. doi: 10.1007/s10107-016-0984-8.

Gonzaga, C. C.; R. M. Schneider (2015). “On the steepest descent algorithm for quadratic functions”.
Computational Optimization and Applications 63.2, pp. 523–542. doi: 10.1007/s10589-015-9775-z.

Herzog, R. (2022). Grundlagen der Optimierung. Lecture notes. url: https://tinyurl.com/scoop-gdo.

https://tinyurl.com/scoop-nlo

https://doi.org/10.1007/bf01831719
https://doi.org/10.1007/978-3-322-84904-5
https://doi.org/10.1002/9781118186428
https://doi.org/10.1093/imanum/8.1.141
https://doi.org/10.1093/imanum/drs056
https://doi.org/10.1007/s10589-014-9669-5
https://doi.org/10.1090/s0025-5718-1974-0343581-1
https://doi.org/10.1090/s0025-5718-1974-0343581-1
https://doi.org/10.1093/acprof:oso/9780199678792.001.0001
https://doi.org/10.1007/BF02165472
https://doi.org/10.1007/978-3-642-58582-1
https://doi.org/10.1137/0802003
https://doi.org/10.1007/s10107-016-0984-8
https://doi.org/10.1007/s10589-015-9775-z
https://tinyurl.com/scoop-gdo
https://tinyurl.com/scoop-nlo

R. Herzog cbn

Hestenes, M. R.; E. Stiefel (1952). “Methods of conjugate gradients for solving linear systems”. Journal
of Research of the National Bureau of Standards 49, 409–436 (1953). doi: 10.6028/jres.049.044.

Heuser, H. (2002). Lehrbuch der Analysis. Teil 2. 12th ed. Stuttgart: B.G.Teubner. doi: 10.1007/978-3-
322-96826-5.

Kosmol, P. (1989).Methoden zur numerischen Behandlung nichtlinearer Gleichungen undOptimierungsauf-
gaben. Teubner Studienbücher Mathematik. [Teubner Mathematical Textbooks]. B. G. Teubner,
Stuttgart. doi: 10.1007/978-3-663-12239-5.

Martínez, J. M. (1994). “Local minimizers of quadratic functions on Euclidean balls and spheres”. SIAM
Journal on Optimization 4.1, pp. 159–176. doi: 10.1137/0804009.

Nocedal, J.; A. Sartenaer; C. Zhu (2002). “On the behavior of the gradient norm in the steepest descent
method”. Computational Optimization and Applications. An International Journal 22.1, pp. 5–35. doi:
10.1023/A:1014897230089.

Nocedal, J.; S. J. Wright (2006). Numerical Optimization. 2nd ed. New York: Springer. doi: 10.1007/
978-0-387-40065-5.

Steihaug, T. (1983). “The conjugate gradient method and trust regions in large scale optimization”.
SIAM Journal on Numerical Analysis 20, pp. 626–637. doi: 10.1137/0720042.

Toint, P. (1981). “Towards an efficient sparsity exploiting newton method for minimization”. Sparse
Matrices and Their Uses. Ed. by I. S. Duff. Based on the Proceedings of the IMA Numerical Analysis
Group Conference, organised by the Institute of Mathematics and Its Applications and held at the
University of Reading, 9th–11th July, 1980. London: Academic Press, pp. 57–88.

Ulbrich, M.; S. Ulbrich (2012). Nichtlineare Optimierung. New York: Springer. doi: 10.1007/978-3-
0346-0654-7.

138 https://tinyurl.com/scoop-nlo 2023-05-28

https://doi.org/10.6028/jres.049.044
https://doi.org/10.1007/978-3-322-96826-5
https://doi.org/10.1007/978-3-322-96826-5
https://doi.org/10.1007/978-3-663-12239-5
https://doi.org/10.1137/0804009
https://doi.org/10.1023/A:1014897230089
https://doi.org/10.1007/978-0-387-40065-5
https://doi.org/10.1007/978-0-387-40065-5
https://doi.org/10.1137/0720042
https://doi.org/10.1007/978-3-0346-0654-7
https://doi.org/10.1007/978-3-0346-0654-7
https://tinyurl.com/scoop-nlo

	Introduction
	Elementary Notions
	Notation and Background Material
	Vector Norms
	Matrix Norms
	Eigenvalues and Eigenvectors
	Kantorovich Inequality
	Functions and Derivatives
	Taylor's Theorem
	Convergence Rates
	Convexity
	Miscellanea

	Numerical Techniques for Unconstrained Optimization Problems
	Optimality Conditions
	Minimization of Quadratic Functions
	Direction of Steepest Descent
	Gradient Descent Method with Cauchy Step Sizes
	Gradient Descent Method with Constant Step Sizes
	Gradient Descent Method with Other Step Size Rules
	Gradient Descent Method as Discretized Gradient Flow
	Conjugate Gradient Method

	Line Search Methods for Nonlinear Unconstrained Problems
	A Generic Descent Method
	Step Size Strategies
	Gradient Descent Method
	Newton's Method
	Newton-Like Methods
	Inexact Newton Methods
	Quasi-Newton Methods
	Nonlinear Conjugate Gradient Methods

	Trust-Region Methods for Nonlinear Unconstrained Problems
	Global Convergence
	Fast Local Convergence
	Solution of the Trust-Region Subproblem

	Theory for Constrained Optimization Problems
	Numerical Techniques for Constrained Optimization Problems
	Differentiation Techniques

